Square root
VBT
Calculator
magnet

Câu hỏi

Trong không gian với hệ trục tọa độ , cho điểm và đường thẳng . Tọa độ điểm là hình chiếu vuông góc của điểm lên đường thẳng là:

Trong không gian với hệ trục tọa độ , cho điểm  và đường thẳng . Tọa độ điểm  là hình chiếu vuông góc của điểm  lên đường thẳng  là:

  1. .

  2. .

  3. .

  4. .

G. Giáo_Viên

Giáo viên

Xác nhận câu trả lời

Giải thích

Đường thẳng có vecto chỉ phương u   → = 2 ; - 1 ;   2 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAtAAAACiCAYAAABoIvp/AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAFO9JREFUeNrt3U+IFVt+AOBDaIKLJghjiCEOyNCLJvSiFwYccNEBFxJkkMGAASG9aIIEF2/hwoUBwYWQDryQXvRCggsJLhrGASEOyOBCggsXL2CICxlcuJDQECFCOsTAS53pat61uu6tc++tuvdW1ffBgeE5WrdO1fnVr06dPyH0w1pWfhIAAIBKf5KV/az8Jis/Uh0AADDaz7PyfV7+JSsnVAkAAIz2YCCJ/uesLKkSAAAYLvY6/+tAEv0LVQIAAKP9OCv/MZBE/5MqAQCA0X6alf8eSKIfqxIAABjt0kACHcsvgzHRAAAw0p8XkuhfZ+X3VAsAAAz3F4Uk+t+y8keqBQAAhvvLQhIdJxn+VLUAAMBwLwtJ9P9l5a9VCwAAlPtVIYEenFxo628AAMj9blb+dkjyfFQ+ZuVnqgoAgEktVyScXS2xN/onLj8AABLo9PK/Wfm7rPyB2wAAAAn0eIn0P7gVAACQQKeVuErHP7oVAACQQFeXB1n5sdsAAAAJ9OjyIit/7PIDANBnv5OVP8vK/4xInP8zHO5WCAAA5H45JHl+npU/VD0AAPC1fy9Jnv9GtQAAwHF/VUic97Pyp6oFAACOu1JInn8T7DYIAAClLobDDVGOkueXWfmRagEAgON+mpX/Gkief5WVE6oFAACOWwmH45yPkue4AseSagEAgON+PxyOcz5Knn+hSgAAoFzcNOXXkmcAAEjz9+HrDVIM2wAAgCEGl6t7lZVlVQIAAMP9PE+e34fDcdAAAECFnwWbpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFBLWbmVlZWOnt9yVjaycjsrO1l5kpUXA+VpVnbzP7+eldW8ToDpnMvb1nlVIW424Jv8HgOYuRj03mTl+6zsdei8zmblTlZeZ+UgP79xyses3M/rBxg/cY4J1pe8Pd1VJeJmzTYG7q/dPOEHaFzsKbiXlc8DwW+7Iy8EexMG/2HlaR6sgdHiV6wnA4nN9xJocbMhVwrPr/fiNDCLYPmyYw+45bwX4kuND4Bi2dHLAUNjysMR7U8CLW42YS1PnAePF3vADcEDardZeGs/yN/k2ywG0XcNPgAGy7v8eMBh4vwoIQGTQIubTcXNU+FwyMng8Z5n5aRLDNRltxBkYvJ8ueXndLHwQjCL8ikrl9xO9NiZMF7PpQRa3Gwybi7nSfPg8d4Gc1iAGoLL044mz3WO2RunHOTHh74lzjsTtDsJtLjZdNxcKnnOxaTdCjDARFbyN/HBoBJ7ja61/LzW5tCDUtajsuIWowfi5/Bvp2hzEmhxc1Zxc68kaffFEBjLelb2SwJY25Pn+DBPGbsXA/WbPKA+zMvjcLiG6ftQ39g+EwvpcuJ8N29L07QTCbS4Oau4eSIrz0L3vrgCM3JhSPJ8swPn9iiMXoc0Pqw38kA6ytFGAffzvzfpw2Db7UYHk617hcQ5/u/nefv7TgItbi5w3JREAxPZCOVj3HY7cG7xU9yXIb0mNxKC/6iAG3fUmuTzZvw9VuagK64MJM4f8rhRlljdkECLmwscN2Oi/zaYuwIkWg3ln1vj5Iq2r425VBIQY4mfG+saU3empOcipTxw69ERMSF6kicaVTEjta1IoMXNecTN1ZLk/nOwOgdQEsTKxqjt53/Wdpsl5xY/JZ9q4FgPJuhNOeMWpGduSqDFzQWPm9dLjhtfKKwTDfxW/Fz1bkiA6sonq+L5xc/LTc7mfjTmw2DTbUjPrEugxc0WxM3HJcd95tYAoqeh2xPcrpScW9NLE8XxfePMOn/hNqRnzkqgxc0WxM3Y21w2qf62WwT67c6QwBR7GrqyxFpxbc+dOT6AhpUYoJfcjkigJdDi5sLFzc3Q7S+0wJjOheHb6XZl8fjThXPcD7Mdv/ZqjIfBWbckEmgJtLi5kHGz7DfF3nJr+UPPxEb/ZkhA2uvQeW6F+Y41Hqc3ZcNtiQRaAi1uLmTcHNbhtOt2gX4ZNuM5BogubTE9OAEkzp6e9TCJOKYvdZ3T625LJNASaHFzYePmkyG/wVAO6IlRQzcedeg8Y9AfXNf6xpx+x8tgJQ6QQIubbY+bF8Lw7cWBHng9Ihid79B5roX59qIc2ZFAgwRa3OxE3Hw75HdsuXWg266PCESvOnaug+P4bs3xd6RuGCGBRgItgRY3FztufhOGrwhigxXoqDiu7MOIQNS1N+jNvLfg85wD27VgEiFIoMXNLsTNuAvjF/cq9MuNikB0qqPnPe9lhjYSHwSn3aJIoCUl4ubCx81hwyA/dfg5Cr32ZkQQeqp65vog+NRwonI1HPYsxd9ywiVBAq09iZsTuzXiN227dNAtFyoC0U1VNNcHQRMvMHG1lTiuvfi58aPrjQRaexI3J3a+Iqnv7VjoE3lDWXH/0iF7FYFoVRU15uockoS4EcFB8GkcCbT2JG42YdQ61bf6cpHOZOVyVu6Hw3UHPzd0YeJxNiuKT0E04XRF8I9vzEuqqTFVY8/rXj5wJXy9jqsvD0igtSdxs15PR/yu9117psYu9fVwuIxXHKMSd5TZD7Ob2bldcSN8lMTQkNthMT+D9UVV2697rdWq43U60COBnnH71Z66ETfHdSd0dFWluK3ivXC4XfGzikS5rMRe6Dp7g5cSfsND7YWGvKq49+6ookY9mXH9vxkz3l1wiZBAa089j5vjulTx+x60teIfjnnDF8vzmn/P5WATBeZj1JqVR+WqamrU+xF1/yVPJOpUdb3FHiTQ2pO4OZ3linvjU5j/UoATiROiNvISk9c4lubRGA2h7jebJwnHPKO90IDrCffemmqaW5LwqIFjHoTxHvjXXSYk0NpTz+PmJD5U/M5rXbooFxKT6Do/wSyH6gkI73rSKAZfbPpcZrnwe8rLm8mr83uBWW/gmC/HfOCvu0xIoLWnnsfNSTxvSaJfmxehemHuOgemf5PQ4B70pFFMO7SmK2VzRvV9IuHl7aNY3ajdOQTXG2Pci69cIiTQ2pO4OZEHFffDfujYpNLvKk74Zc3He5XQ6PoyBlUCPdsE+nzCb3khVjdmacQLTPwSdqbB4z5LuPbx0/RFlwkJtPYkbk7kdujRpNKlUD2EY6fG460kBoi+7J0ugZ5tAn0z4bdY/aU5V2cUZ8qcrHh5jw+oDZcICbT2JG5ObDPh/r3dlQtzLsy2Nzjl7eR1jxqGBHq2CfRuwm+5L143Ztjuj3F2+SxmZ8cOgziJJY7TO9ogKk56iZ9A7TyJBFp7EjenczHh/n3clQtTNR75S6h3D/O3CZW7LYGWQDckZfjQlnjdiNUw/GvXNdUDrUugETeL1hPu3zddf7Npojf4UmJwuCSBlkA3JGX5JUsuNePRkPreUzUggaYTcfN04j3ciZWuqtbsq7M3OGX5sIPQryXEJNCzS6DPJP4Wk15m14sS489J1QMSaDoTN3uxO+VqwklerulYKbu/9XEFhFN50Ox7mcU4rvXEhn1e3K7d4+BrE0ig6UPc7MXulFVrOdbZG3w7sVLvaDM05GriPXhWVdXq/JCX51uqBiTQdC5ufuzDPfwozK43+H3oSbc+rX1hlEDXL87SfxfKZ2EvqR6QQNO5uJmS7+22/SJ9mFEjvZgYFN56qNKgu8Ea5LN2v6R+48ZNy6oGJNB0Mm6mJNCtnjy+lnCCGzUd61liUNjRbmjQduJ9SD3i16TiJ8j4ae+0qqn9YdTF0sckUQJNF+JmynKxrZ7vVrUjW1wUvY7xz+dCesC8rO3QoNQVT5henCFeXPP9U/7ijgRakiiBprtx80Xo+FrQVes/P6/pOI8TA0LdG7aABHpx4kts31bckEBLoCXQdD9upiTQ79t8ofZD86thjNpBp1heaTtIoDuhuLvpgeRZAi2BlkDTm7jZ6QQ6ZfxzHath7AXBEgl0n2wGPc8SaAm0BJo+x81OJ9BV6+HGMTfTroZxoXAzzGrCIkig52M9jx2DdbmlWiTQEmgJNL2Km51OoHcqTuy7Go7xOvywNF3VcJG6JizCKLsS6MbEGeLFxfNvqBYJtARaAk3v4manE+g3odnl5LYKN0NVRT7XjpiBu4kPJ8usjefkwAvzUflWtdQmfjHc7GFZl0BLoMXNzibQ37XxxGJyUDWk4sqUN8XRG9VuIZkeVmzpyyx8E+xEWLcTJcEyDpWxIRJIoOln3ExJoFu5DnTV+Odpl5M7+ky+n/87KRV5TntiBq5JoGt/CBQ3SdqTPIMEml7HzXcJ9/DjNp5Y1TjQ11P82xvhh97tOHQjbjt5UHG8fQ9cZuR84sPpgqpKUlxl53kwlwEk0PQ9bqbM23jYxRPbnuKt6ujffpknxRdDx/dDr8F2Xm99L1dnUNdnEh9OF8X4Sg/C8XXcJc8ggUbcTEmg73excU669uC34YcVNVbz/3Yv4Xg3e96gUpdW63rZnEFdx5e6LwvyW9qs+BUrTgY5pVpAAo242dXnbNX454MJ34Y2Birs9sB/fx2MN5VAL04CnXpPWn5tuHuSZ5BAI26OkHIPb7T9DahYXk7wb8aJgh8GboqjBPxUwlvIvnYlgZ5xAp1S3/fdlqXuFOrpgxdgkEAjbg44HTq6XGzVzMhJ1iB8FMpX07iSUIFPtC0J9IwT6JSl7B65LY+5VfLyu6JaQAKNuDlgLeH+/dy2k0qZQDXu5KnNEcl3yvhn6z9LoGedQF8IHV2fskHx2gx+TYpDvc7P6bfEGevxS5oJi0igETcXL25udPEZeznhjWCc5eRW8r9THLpxJGWs6ao2JoGecQKdsrTiR7flyIfApTn+lqOZ6yCBRtxcvLh5PXRwmOROqG877eWBBDneGOsTJCkp+6D34RPxVp5E973Mcu3lZwkNXA/n4Ut3cR7DlTn9ljhe7miuxTcuDRJoxM2FjJu3Eu7f6227qO9rbJCDvaabJX+esv7zg4QLH8cLxYmNJ7VJapQyDnqt53V0seQleGuOv+dl/hs+iQdIoCXQ4ubCxs2qxSq+hJbF8JRGmTr++Xb4ehxL2bCP+wnHG/VGNrhP/Mtgp0LqtZJwf17tcf1slDwE5jlfYXDzgZ2a/s2TecyLHQBxi/dz4gwSaO1J3Jxa1Rfe5227sJdCPdtpD36a+BSGL8XyPCEAnEx4gxnclAXq9Lbi/rzT03pZz9v2YF3cm9NvORGO79w1bTxYyQP8wZA4eCfo4UYCrT2Jm5P6UHHvtm4IXtWKGE8Sb5D9gb9zecT/d7/ieK9H/N2bocXjZGiNqmEcfVyJY62k7T4Is+9JWs7b/rsx4kaKiyUPubLyIRjCw3ystiiB1p76ETfH/Q1V+3+0bm7b04oTuj1m8rw94v+bslzesBmYGwNvstbipUmnKxp63zb5ORuOz5P4lL98351RiZ8Zn414KG9Neb1THvaD526da+aRlLYhgdae+hE3x1U12uFNGy9yVY/wZsUb8cfw9fiVE1MGgKsVx4mVbHtgmlY1VqsvvZCnQ/Uk43mXT3nvxqTuT3DMd1MeE8b1TeK9uT3n36k99SNujutOxe+50baLfDKhkoeN94yJ7udCAzhZQwBYK3mLO/rsEHsF18VRZuBa1xr7hPHhu7D464RPmzC8mfC4dzQTZuhp4n0574lYfW9PfYmb4xo1/+0gtHD77vOJb4aDJxZ7g4sbfLwPafu3byccbzBBXiu8xXlgMStLYfT29ns9SJ5TNjxahHJuynP9MuFx32smzMj6GPfp5zDfyXl9bk99ipvjPk8/j/gtO2282Bshvas/Tpx6W9I44k2fOn4pZWe9vfx33S1U+F6wlBSzdTOMHgfd1Q1V4nm9aslDoI4dtL5McXwrAbGISdk8h3H0tT31LW6OY9T453i/nGnjBV+d8iKk9jwf2Z7wOM+C3d+YveUwejLMpQ6ec2xnT0M7HgLf5y8505qmx2hTM6FBsZdw0iER81pnuI/tqY9xcxzfjvgtD9vcQD9PeAHeTPDWcG2C47yQPDNH98LiTtZpwl6LHgJ1faq+P8VvMKyMJjq2tvJn35cp20j8anxjzI4u7UncrNvHMLz3udUrsDyc4ALEtaEnGfBd1aNXdhwz3ZmnkyMaf9eGcUz6hWhe5UFN5x1X9Zl0xvxdTYQpxaVin+bJ7qcG20uMY6/zYz3MSxMrWvWtPfU1bqa61OVOqLOheim7wUXPL095vKsJb9Wf87dmY55ZBLdG3KvXOnSeL1r2IKhzKcHY6zfJzHkJNG1ud2cbOqc+tac+x80UT8LwuXWd2Iky9ibvhfLhHAf5n12psbftXP72+66QnMexznGpO73OLJKlET0qb73odcq5/OV9J49RsYfkZt6LUvZpekuVgfZEqfiCNqzD9FYXTzi+OW6EwyXuViSz8FvXR7zRX1Q9vVEcznNOlYD2RKmdIc/MOJRIxxP0yLBZ1q8Eg14+8A9cd9CeKHUmv6ZlQzfOqh7olzjUadh8AZ8eu+9UOD7JGdCeOO6JZyUwKM4FKBvTtR+amdHO4tgK3V8HHLQn6nhOliXPj4OvDNBrw8Z17aqaThtcVeC9BwFoTxwzbOnXeI11MkHPxYm1w3YH04vSTcVJpJuqBLQnjnkUypcmXlM1QHQ2lI+HjhMkVlRPp5wpXOs4mVRvGWhPfG0rlO82qGMJ+MpGKJ9l/MIDoTPi58jBrw2fgxnkoD1RtDrkeXhd1QBlLg4JGvdVTSce9q8K1/WKagHtiWPX9m2w4gYwppuh+9t89038zFzcivi2agHtiWPJ82vJMzCp+JmquLxd7Jk29qt9NsLxWeT3VAtoT3zlRFaelzz3dB4BY9kckkSfVzWtcbdwDeMYzauqBbQnjiXPxd154/XVaQRM5HIeRIorc5xTNQstTvp8VrhuL4MJTqA9kXJ99z3ngGmth+OfLGMSfUHVLLSj9UvjtYvj2k+oEtCe+MpySfIcJxCuqhqgDnHHpbKxYZdVzcKK63ffDYeTYgDtia+VTRjczZNqgFrdCl8vcyeJBqBtToevV1KJQxVvqhagSbEnZnDzgDip5oZqAaAF4vDDwWGJMZE+q1qAWYifuLbDDxMMn6kSAFrgbvjhC2rsdbbTLjBzcUOBx97eAWiJ5fy5tdbXCvh/+rUd7bt5L6oAAAEbdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1zdHlsZSBtYXRoc2l6ZT0iMThweCI+PG1vdmVyPjxtcm93PjxtaT51PC9taT48bW8+JiN4QTA7PC9tbz48L21yb3c+PG1vPiYjeDIxOTI7PC9tbz48L21vdmVyPjxtbz49PC9tbz48bWZlbmNlZD48bXJvdz48bW4+MjwvbW4+PG1vPjs8L21vPjxtbz4tPC9tbz48bW4+MTwvbW4+PG1vPjs8L21vPjxtbz4mI3hBMDs8L21vPjxtbj4yPC9tbj48L21yb3c+PC9tZmVuY2VkPjwvbXN0eWxlPjwvbWF0aD7OA4xFAAAAAElFTkSuQmCC" style="width: 115.00px; height: 24.00px; margin-left: -0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="begin mathsize 18px style stack u space with rightwards arrow on top equals open parentheses 2 semicolon minus 1 semicolon space 2 close parentheses end style"> . Vì nên u   → . K M → = 0 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAaEAAACACAYAAACiL9blAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAB/AJ7+MwAAFPBJREFUeNrtnQ9kVt8fxz9mJpmYJJOJJMnMyNdkZiJJJhNJMpPIJJlEJpkkJslXEkkmSSTJzFckM0nGZGYyI0mSickkM+P7u+e38+h2v/fe8znnnnPuvc/zfnFIe557znPOuedzzud8/hBVFweDMheULQQAAAB4Zj4o/wZlOiiN6A4AAAA+6QjKmhREr4OyAV0CAADAJ4NSCInyT1Dq0SUAAAB88jAkiMYgiAAAAPhECJ2JyIkIqjkAAADeEIYJ0yFBNEkwVgAAAOCRpqDMhASR+HczugUAAIAvhM/QbEgQfQ3KXnQLAAAAX+yg36bboqwE5TS6BQAAgC+WQ0KoUp7QusoOAAAAcIIwRrgXI4DC6rkj6CYAACg+4ymLedmL8CfahSEGAAAIobyKuDe6H5SdGGoAAIAQyrPsw3ADAACEkO/ygmDCDQAAEEKey1RQ2jHEAAAAbFIXlP4U4bNE8BkCAADgmJUYAfQqKFvRNaAKEAY1iI0IQEFpjxFAF9EtoIoQc3ohKG3oCgCKhYiIMBcSPt+Dsh/dAqpQCFVCUg2iOwAoBkI98S70gn4MynZ0C6hiIVQpwohoC7oFgPwQie1eh15KIYw2o1tAjQghUb7h1A9AfjwPvYwvg7IRXQJqTAhVynVatxIFAHjiBv2Z2rsBXQJqWAhVNAFQRQPggf6IAKpHlwAIof+XH0E5ga4CwB0i3E7FH0jcB21Al4Aa4RitO15zhBF8igBwgDjxfJQv2fugbEKXgBqjhf60Bk0r8CkCwAFngvKJYJoKapurTEEEnyIAHAArIACIuoPymSmM4FMEAADAOiJayHOmIIJPEQAgd/5FKXVZCZWfQVmWRecZ8CkCAEAIoeRa4FMEAIAQQsm1wKcIAAAhhJKrEDqOVwIAACGEkoc6rgWvAwAAQgjFd7lGMEwAAABgARE5/j7xTbS70WUAAABsIFLaLzAF0AuCsyoAAABLDAVljSF8VoNyHt0FAADABtuCMsk8/cwHpRVdBgAAwAY6qRweEDINAwAAsAh8fwAAABRWCMH3BwAAQC5CCL4/AAAAvAsh+P4AAADIRQjB9wcAAIB3IQTfHwAAALkIIfj+AAAAyAX4/gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhhD60Hvn0clGlaz8K7QusBcX8FZTEoz4NyIygHCPmpAAAAZGRTUC7ReuDbfzXL96BcD0ozuhG44rDBxDQtzxntWXZU9wFFvfct1XOvwGP9ykM/gmJxSZ52ksbzh5wX0/JElPQ5cUq6gpMRcEGbPJqPBWUhKGsOBMBHKYAGGe0ZDcpLi8JoNihPpBoijVNBeRaUN4qXUVWeFHScBzL24w85hnvwypSCXUGZoeRMvBeDsjVhPbiZ8g68D8oOdC9widjpdMsdfRaBJATJMcqWdqBBntReG9QvUh7szlB3q9z5fdOs91UBx1QsGj8NVTHDckED5eFQyiZObDabmHNmKuEZS0HpQjcDH3QZCKJvDlQ2dVIdwD35tFmsuynlZUx6QYvGW8NNRBNegdJxPOWdfaj5rA1yHiSp5/aju4EPHmgKoBYHbWhkCsOb5EZn3aPRB2sFG79LBgLog1yAQLnoTRnTyQzv3mzCM8Vpay+6Hbimn/K/tB4mtdrosMM+OKi5iG8pyNiJ+5tVAyF0ENO+dOxL0RYIVey2DM/enTKPvhZovoMaF0LjjurvVJyC3mZ8wTicKuEiXpeyg1UZkYBysYXS7y4vWajjGqWrbgFwBlcd5+KiUlyOLpJ/9VuUJ5oL+bECjNtVMjMouYYpXzrGKV1FbkO1KtRyaabeZzAMwBXvGAvXooN6W+RRPw/1WxRdC7nzOY/ZX2Ru1diBKV8qTijGc9hiXSOUbpCzGcMBbMM1CHhoud49KQJICMVtHvtgr8FCfj/HMRO73qhn/Acqr2UfSB/rL5RuJGPzXdlO5XXUBiXlGHPxOmGxzi65GOapfgtzOdIGjiPrsxzH7O+YhYhrIfcEU75UDCnG87WDOicVQg8+ZcAq3PsgW8fwvoRF3rf6Le2l49wPvcuprd0xbRF3Q9eZ43gSU7401FP6fakoAw7qPVdgLQCoQlSTvBLGw8UOPi/1W5ioOlL8m2OuvZxTWz9H2jEjT47TTCGEIJXlgWOx6eK92amoU5hyb8XwABu0MxeuGxnrEealE1Qc9VuY45H2iMW8gdkvvtv9IEY10ipPqZz2zmDKl4o3lJ+p/WdF3VcwPMAGF8m9T4xQH8VZngn1W08B+mCU4s2XOfdCOz22sydlITjuaTMB/NFC/o2FwjxW1L2AIQI24AQNXc2w40+KgvCO3IT+MSEqILvl/y8w+sbXHdbmmHaGTzVcHyekaCgP5xjj2e+w/jOM+v/CMIEs1BPPNHvM4Nni3qGo6rcwUdPsX6G2jTH65rindj6L2RiE0y1w7vV+EfLElAnO/Ot0WP9+gtMzcEwvc/c8qPlcYfIdZ34t/q+nYH0QNc0Om10/ZPSND714nKPiUOjv3Hu955jypUFsFlTq4DXHmwrOveg0hgpkgZtllJvgrDFl4S6S+i1M9LQWNncdZvTNqOP2NccI9KnIZy4wx3EAU7407GOM51cP7fjBEISNGC5gykfipW3g0JHyvCKp36JCM6qO3B76+8kCnC6ieV7E7niX4jNJBQ6G5eEsuVGT6zLOaMcRDBcwYRdz4eJY31yl+LulpYJP0KhFWdTclZNfaM5h++JSdV+IfEbc63HSOCBqdrl4TPlaxlV4RDncC4lJLcxxhenuM3kcs5X4SoRq6UsoyN7nF47ljeriXZwakgKfFlX9FiZqmn038vfdxLvsd4GILL5M6ggNR5jjeBdTvlRwAgoPe2jHiGttgPB4FSamg1LizcXsaD9b+jF1lB6l+G/MO6+8IF720KTUz/2UnN/+FpXDCis6H3tjNmScBb7BQduiToo/pWCKcpvZxl5M+VLB8VHzEX6pj9GOL5wHbZcPEwu98CeYZv5Im0c+VRiUHsw7b3BVOFMx322iZJ+UoqvfwkRNs1cThMlPRj+1WW5bnAPxuYTPzhPPz6sB0740bGSuzT7etaPMzapy03mazPOO2Iqc/FTxI/CS+OMQc+yvR77XTckh5cugfgsTNc1OikTMicdmcwO1O2aDOJnw2W3McXyNKV8qupnjeshDWw4z27Kbs/NtlKVZPvgW8+E2FpZNip33JOadV7hjvz80f9J0w2VRv4WJmmYnpUZ+zuinPkttEn04Q/9Vw21P+Dw3HfklTPlSwfXf6/LQFucCcVDxYFv3QQOU/wUb+M0s8b3rd8UsjGVUv4WJM83em/DZUfIXjy0uVXeabw83VM/enPr5QAYNTNmKTVP9k8w6ffjnbGK2xTjVfRP5uQ96q6inG3LBG80aL9UAJd+JfCqZ+i1M1DT7e8pnOY6gNt6Tv2IE4yvFqWmZ0bbFHPsZQsgM7vWJjyuMDcy2GMew6yT390EqM1fEs/ILV4WjupAXC+aekvZB9HTzWENguXAaFItJ1MBAuEak5YnpIL+GRRBC/oQQV13uY93kpjQx9hVSRUm1sdMdofy9foG+CodTXpa0D75pbLY4RhxfMrYnLtHfacV3him7nxeEUDGFEDecli+c+qGleeXauA+qI3V030ECvqgjnsmxULUtMSdf2Uzr95Je2nKO+nIlQ3u6DIX7G8rm5wUhBCFkUwgZp/v+7PgYz7HyaIVs8EaXxq5mkPnZhZKpU6Om2aq05XXMfjCJKhKXqnuJ1Om3NxIvBce7nPsaQghCKBXVDs/GfZAqYdp3yAWvXGVOqF65+H6g6jMBjppmjzC+wzEA6La02HDMvY+SYz09hBCEkA8hpLpwzXoftIPR8CeQC16ZYqpwGjQXkWWFSqsoxJlmczKNcrLP6obFiXMCfGF5kYLVaTm5VytCKM3/wcZ90A1Gw/sw37zRxJxME5HvjTG/d68EfRDdeHEtM5+SXRPVuFTdQg23lfl9TgoOWJ2WlzslFEJ3TB7s8j5oI1OF0YL5ltsCnFSGIt/bRbz7Bxcx1GwzaqhC4Zw8dKyD4oQaV/3NTcEBLUN5OUPlE0LaAQd2ktv7IM6lNvKb+IVrmt1heKoV5U3B+yB6+uBmGh0ge4v+sZjvPtX4DWeZY3EGU7609FFxnFW5fkLazqoqj9wsJxShAvhEDk36gBGLjDFZSviuCN3xnYrvl5JGnGk2N9MoxxDgH8Zz4lJ1i3HRuU97wRwHaBnKC9fwZKOHtnAjemuH7UnbFWe9D+KGnDiKuZbrAqy7mx9gPuMTFTMi+uUMJ/GDZC7Aw4xnfA/EBo+TgmMOU77UcKPc+0jXvoXZFu0ApmmOiFnug+oo/a4pbIG1CXPNG0PMiaRKkjVLjvTDHoiaZuvc4TQy5zRpCvHHmr9hP7P/kSCy3HCNiA56aAt3zu3QeWg7ubsPushs8HvMs1wX4KSicpLkhnUXURm2Fej3x5lm65pUc4wzktRqIhVD1FBHVw0nuM7s/8OY8qWHM998RCvpYW7AtCwxz5MbXfLm0AnrB/kJfQ/UNDAn9CzzeZz8OqI8KlAfHKfsSRQ5d2JJO9O4EDsmKTA4CfaEuq4e0770zFEx7l+PMdqhfYXzgtzcB92l37rxV5R/RkCwDjdBFleFs4N49xJ55rGJEjXNnjB4xjiZ3XPGpYIYdaiiGceUrwo41qxnPbSDc8f/TOeB4si0Qvbvg/ZFOmYZO7XCwPWu19kYcNVCRVG7Rk2zhxwtCucj34lL1f2VzIKKcv28EBC4OuBESb9fkPXjqs4DVQEsTe6DhFqjEmNMqB1U9wavML+8wvGuXyU9nW5jzMJe1KgYcZaBHQbP+VtzUaiTQtiWFoDr57UHU74q4NzF+HBI5qjfte6mrpD9+6BKvqBKkjOVY+NlzC9vcL3rTVQ4XFP8r+QnDXESUdPsJcPncBwInyp2sg8snuZchdsCxYBjkelD06C6hxTrvpa/0mvLE7iNfl96V45k7xWN3of55Y1zjlU475nPv5pjH0xY2j1y7tbeys+203+NQUTiO1O3hDZmP48WbP4hinY2VC4RKx7GcMWmIKyndCsp3fsgoW6Ykd+dl2q5raQOqgj8wQ0+aqrC6WQ+X6j7duTw++NMs08aPmsf43cu05/qad1o3UlcoHI6gEMIZYOT5tvle8XJhDCi88DDZPc+KKzm6JT/d4IsWlGATNQTz4rtW8Z6uHcVeYx93GV+s+GzNjB/Z9zCcTfj73hJ5XQAhxDKBscvz+XGg2OeraXZUlk06dwHha1+bmssSAMEfMEN/ZE1YnoL48ieV36bqGn2jGPVRFIYoyx3YtzNxGQB5yCEUDaEtknln3bT4fipjHG+6j4wLSf9Z82OeR96wcKXUqrL092QDd64xXx5bDi8DTPrmvXcB9H5mNVJ+pPB4pRV8PYw67kCIVR1QojkJj+vzcc7mwJQ5TWvsxu+FvpeV+j/VZZYXwn4hJOaW8yJJgt1bZTjy3lZz3r6/XGm2VljbY1pLky3PexGs5idQwgVXwi1M95hFwGDG0kdaUXrLvkI2bkP6kqRgqeoXJY71cw25ovzzmKdJ5l1CvWCj7uL6OlM1xcqjocai9ICrd8j+dhMLBV0HkII2UFlhdrroE6Vc7R27rCblP0+SIT0/kK/Q8VHpe9jMr9Aa5EvbVFz0ZQNrg/PNcv1TjHrvemhD6Iv7piFZ17TWJRsuCI0M+tCFtXqpp/c3uvGoXJS1TaIsHEfVIkHJy5nW2P+/tlQ7VMX0j0ix5AdnjEXr07PqoPwfHCZCyXOtHTIwnO5GS9tCdlTzPpOYspXNXWhA0CS64tNldxmSjeGmdd9oA3/oBFKt3DbnEHtUwl8Wk3m20IddkcK5hWpgrpHfnxlxIT9yVi4XPlscVVWLgNtXiY3Ye85RgLzltRwgqfMvtxMoNpRJZW0aXmsSsmjHd7tUMYHhndjTxM+o/Imv6F4tsitsrVKJos4XSQlDRTOjAcc18/N+fPUUf27iJc6wmU09YWYumzMrz2M32QrcjjXNHuWQK2chmZsnk5S5l2aVmvK1q4wXLanfDfs4CrugZL8HVQmunG70K7QS1YtarhmSs9aWxFELk9EI0wBcMFhG7jqwA+U3ViAI4RXLT27QfF7rlv8HVzV3wMCtUK7YoN3yvEpaJUMo6uojvRJHAkJie+KhVNVx6aYHWVlsa4mq7k75MdBNI15ZhuOOGzDUeJf4A9ZrvtlguC3xa+E3zFHdlOUTDP77wzW5ppiMGUumGTrjW6i09LwGKcJUYXy36I4Pa3Qn/5AccxoCLpW2VkVM9bGKpogXF8ZV/cxHRqLv0sh1KTRDjG/bDkxd5L7QI9x5rJrZDeB3wmN/uvHulxzjKbMB1MrUKGRmHB14lbplR9JNUOdXJimDRYrVTiTHrlLFJdnldTf4vK8rcomx6rG4uHCwUzHmfKiw37YTXo+FvOU3Wm2UXEKtHX/FGe6atPUPawl4JS7BGqRNO3TPYPnpYVcy2w0tkpmzlerxL+rWTN4fm8VTgzu4rFG9u9ChjT7X5zaXBmDPDaYD2Lz02JY30ZSB/kUJq7bHexCZyyOZW9IS6BzkuwkUIvcVggOzsZuq+LduWOjoR8MFgRxWtGx4vqo+fxqDWQ6yvz9trLL1suNwhvDjcaiFF421GFCEIiou1Nk7nUu1JQiTM1+5sIufn8f8e/BhL77asbfOxTZTLRm7DehhxfOxW8z9NuaXJA6HGxuQLE5EdIuxUUnGUrY3Ik7/uGU74p3xZr/2TXNCS12djs16xjReP7pKp4QOyn54jq8YLRnqKNNHsU/GJ5A0wTAG3ks5+ys++Vua5LSLzOzLKwiYOiLGPWCUCVOZDjlV9TBYwaqi3A4E9OgoYOy7u8O+k2cjN5LteEjKdBBdSM2Mir/vGX5zkww3lexBmyz2cBGUhsOVHbFFw13Upw6xILSXQMT4hAlO4v+ouzm6IfJfRysPkY77pO/uFxR67Zxh8/m9n8WNdxzj30Hw4XaQZzw7xpuCn/JDVmrq8ZtkALmrVwgV2Slc3K3dJyym5dukDvDWflsUcc3uVs+VWNqgh1yQBdlPyzKRXsn3hMAgGPEWisixl+XG56F0Lq/Iv/9Uf5tRH7W2vr8P9vuEMW5TJF/AAAA5HRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtb3Zlcj48bXJvdz48bWk+dTwvbWk+PG1vPiYjeEEwOzwvbW8+PC9tcm93Pjxtbz4mI3gyMTkyOzwvbW8+PC9tb3Zlcj48bW8+LjwvbW8+PG1vdmVyPjxtcm93PjxtaT5LPC9taT48bWk+TTwvbWk+PC9tcm93Pjxtbz4mI3gyMTkyOzwvbW8+PC9tb3Zlcj48bW8+PTwvbW8+PG1uPjA8L21uPjwvbWF0aD4foc5SAAAAAElFTkSuQmCC" style="width: 65.00px; height: 20.00px; margin-left: 0.00px; margin-top: 1.11px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack u space with rightwards arrow on top. stack K M with rightwards arrow on top equals 0"> ⇔ 2 1 - 2 t - t + 2 1 - 2 t = 0 ⇔ - 9 t + 4 = 0 ⇔ t = 4 9 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABTIAAAI4CAYAAABZbBa8AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAEYylM7iQAARQFJREFUeNrs3Q/kVtf/APAjSZKRJElGkmQyJpNJIkmSRJJkJmYymYyZSTKRmcnXjEwmk5hJkomZZGZiZjKTkWSSRJIkif3u2fP06/N5ep577+fzuf+ee18vjt/Xb32ec55zzz33fd/PveeEADz3SlK2d+S7LkjKp0k56bBDaefYdt0AIJ4UTwLiSYDyvJGUg0k5k5TLSbmflMdJeZqUJ0l5lJQbSTmXlM+TsiMpc1rwvXcm5U7/ey5veXB9pH8c/03KQ0Me80UpzvfPsQtJWWqoAK4P4knxJJgvxJO0yOoJ5+5vSXnQP2ef9s/hu/3z9rOkbErKLF1GkeKkeDQp//QnyqmWp/0BumEMv/vCpHw/4bv8FHq/fLXN/KQc7k8uE4+dwBPzRTk+nPCd43m3x9ABXB/Ek+JJEE+KJxlj8Yesj5JyfRrn7b2kHEvKEt3ITAfh5/0Lwb8FlV+S8vqYfP/4q8DdCW2PvyTMbtkxnpeUT0Lvl81hx0vgifmiPFv659jz7/tNUuYaSoDrg3hSPIn5QjwpnmTMxATmg5RzMf63H0Pv6cwnKf8uPq0ZfxTzhCZTFn+9mu4vYFnlWei9btJkxwba/GXLjm+8uMVf8O5lHCuBJ+aLcr0+cIN7LSnLDCnA9UE8KZ7EfCGeFE8yBlYm5Y8R596d/nVi8ZC/WxN6P1yMSmr+Htq9DAsFe6c/2f9bcrkQmvdrUXz156eBdn7RomMb14s51J9Q8hwjgSfmi/LFQPPWhO8aA9G3DC3A9UE8KZ7EfCGeFE/SYINPBA+eb3mWUYnJyqsjPiM+6b9eN5PlQAUXkInlUmjO6zXxBLo50L7PW3JcYx9/MIWAU+CJ+aJaSwaCz/jLpF0oAdcH8aR4EvOFeFI8SRPtDqN/gDg9xc+a2z83R71qvlF3M8r2ii8i0x3kZXgzTH4cP5avW3BM47oS74fpv6Yh8MR8UW3weXvg+1q0HXB9EE+KJzFfiCfFkzTJjpTz68o0PzNuGHct5Tryhm5n0Iow+pHgv0NvjZ84WBeHyYuuxldLVidlZ1L+F17+BTpveafG775xyHc/14KA873w4he5+EvJz/1gOj4V8IvAE/NFI60KL681ttuQA1wfxJPiScwX4knxJA2wLvSekhx2Xj1KytIZjt1Rm33FBP0i3c9Ew9Yk+DP0dlqcqrhQ869TvJDEtQ8W1vC9N/RPtoltiX0x7mun/NX/LnFHsIMjTvhTAk/MF430Vnj5NY1thh3g+iCeFE9ivhBPiiepUbwOpC0v8lEBdXwa0peGgP+8N2SAxF+3ZhXwuY+ncDGpev2gN8PLvwLG14EWt+CYxl35Vmf8m8UCT8wXY9PPsW+8TgG4PognxZOYL8ST4knqcjHlfIoJziJ+wIuvmD9Iqeddh4F54eXHzj8t8PPjY8f3c15IHvcHbRVeDS+vYRR/serajlh/CTwxXzTW2SHBwRLDEHB9EE+KJzFfiCfFk1RsT8b5dKTAuo6H7j5NTQ4fDwyKsyXUsTGM3s1qsOyv4DsvCL11VwbrPtrB439e4In5orHiXDW4WHt8DWu2oQi4PognxZOYL8ST4kkqEp+0TNvwLZ5vSwus79WM8/akQ9JdswYGY1wouaxfpI7kvJB8X8H3vjCk3t87OgbOCTwxX0zLhv6NW9lP3Wwb8r1PGI6MiarOk6rEm74vR5Rdrg/iSfGkeBLzhXiSlvo44zz6qYQ6r4T0xOlKh6Wbtg8Mhs0l1hV3l7sV6l9D56MRJ8Hqjo4BgSfmi6lbFl6s2/JeBfUNe9JlsyFJw1V9nlRhTsp89KXrg3hSPCmexHwhnqSF4g+5dzPOozLG8PsZdX7dpk6e1bJ6qgo6zldQ36GQ71exOSXVvyYMf8Wgy79GCTwxX0x97v9lQv2vVVDniiFzV3xF6BXDkgbHYlWfJ1WQyHR9EE+KJzFfiCfpmndynENLSxqzaXU+De3YWO+/BT9/6Xd0mT7p17NgjPtqdv/AP/8FeVUFdS4K+dYq2VjSxeLPIXU9Ct1eKFbgifliak6GybvS1lGvtWFourrOk7JJZLo+iCfFk5gvxJN0zc8Z58+NEuvOeqr68Lh3btx5a+KOeWUkM+Pke2pCHTGQGdcM8I4J3+N0hfVezXEh2VpCvaPWSDnW8UlJ4In5Ir8PB+qusi9Wjvj+aw1PGqbO86RsEpmuD+JJ8STmC/EkXbIsx/lT5hg+k1H33+PcufGR08GduC6H4l//3jqk4+JixcvHsM++mPAdVlVY76kaLiTx5HsSWvwossAT80XpDgype3fFx+FSsLEEzdaE86RMEpniSfGkeBLzhXiSLnk/x/nzdon1v5uj/rFMxMdGDy48+msob62HvUM6Ltb/5pj12/MdoC5VXG+egbil4DpPj6jnjHlJ4In5IodR6ytV/Rrh3hHt2GuI0gBNOU/KJJEpnhRPiicxX4gn6ZILOc6ft0qsf2OO+j8dt06NE86jgS8RHx0ve+3KbUl5HF5eG2fLGPXdN6G3lkHVO5XtyjEQi1zseHXNFyyBJ23QlflimC9G1FvHL9cxifI0DF+XZpZhSo2adJ6UfQ5KZIonxZPiScwX4km6II6HJxnnzrOSx82cHOfvb+PUqftHTARVbcCzLin3h7Rhv/GeakfFJ8LZEfU8MlELPDFfpIjXkospdX9WU5+cH9Gedw0XatDU86SOYPpLw0E8KZ4UT2K+EE/SIutCdhLxdgXteJDjHJ4/Dh16dEjj40Y/iypux9r+hXmwLUeN+WlfSP4qsK7lKfWcdSgEnpgvUi7aNzPq3lxTn+wPLVzomrENbpt6npRFIlM8KZ4UT2K+EE/SFQdCdiLzQgXtuJijHdub3JFx1/BvwvA1KpfW1KYtIzry2357mWxnqG7Hq89DPQvSCjxh/OaLKP6S90WOC2V8HaeuJ3DSbqh3GDJUYBzOk7JIZIonxZPiScwX4km64kyod8fy574NY7xOZnws+3IY/hhp3RvtfDWiMy+H6l51Hxf7MgZgUbu2xSTyvZR6ljsUAk/MF33xaf6PMuaMqn95THNnRLuuGDKUaNzOkzJIZIonxZPiScwX4km64tcc4/hIBe04nqMd55rYgcuScn1Egz9pQPteTenQ6/320/NpSP9Vam5B9aT98nbPYRB40vn5YlH/8+Pi0M9yBpx5S9nLi3yXUvdKw4YCjfN5UgaJTPGkeFI8iflCPElXPMkxTqvY7X5fjnb807TOi1u5360gUJmpRymdGtu/znnwn7Mp/XSmooDqe4dB4Emn54tlKdeVIkrZr+R8klL3McOGgoz7eVIGiUzxpHhSPIn5QjxJF8zLOU6rWJtyZ452lL17+pTEzGtaFvhJQxob18F4mtGxj/sHoOv+SumjDQXVMTvjeBx3GASedHq+2FNi0BnL6pL7JW3R+puGDQUZ9/OkDBKZ4knxpHgS84V4ki7YkHOcbqmgLVtztmVVEzrueM7Gxl9D14T6EporknJpChPS4Q6fDPNT+uX3AuvZHqpZB0XgCeM/XwyTtrbRiQb0zdKM83at4UMFmn6elEEiUzwpnhRPYr4QT9IFO0K+/Nb6CtrSpKRq6mRzPpT760bdJT7ePreDJ0PaI8FFPjr/vwacbAJPGI/5YtCajHNiW0P6J20dpqOGDyUbl/OkaBKZ4knxpHgS84V4crxsCu3OLZW14c3enHXOr+AYvpKzLbvqGmRx578/OzLIriZlcccuJN+k9EWR/sjo+zmu6QJPzBcjHAzpa6/Mbkj/3Ehp52+GD86TUkhkiifFk+JJzBfiyfEikTk9+3PWWcW1cG7OtrxdxwDbnJT7HRpksdxOyhsduYjM7gcxZT+2Piek/7L0xPVc4In5YprnxOUG9dH5jAB5rmGE86RwEpniSfGkeBLzhXhyvEhkTs8XOeusYonHOTnb8mnVg+tQ6FYCc3AToH0duJC8PeL7n6p4ovrHNV3giflihFn9OXnU+XCkQX10OnTz1V7qN07nSZWBtESmeFI8KZ5EPCmebB6JzOn5OmedVcnTlq+qakx8n/670N0kZpd2Pvx1yHe+m5SFBdeT9Qj0Bdd0gSfmixHWZ5wPGxrUR1kb4h0xjHCeFE4iUzwpnhRPYr4QT44XiczpGcdE5tdVNGRl6M56mHnLxaQsaOFF5K1Q3S88Wb8qfeeaLvDEfDHCJyH96flZDeqntzPO3e8NJZwnhZPIFE+KJ8WTmC/Ek+NFInN6JDKH2J6UB0Hiclj5O/SSvG3yy5DvebKkui5k9O83rusCT8wXI/xUUWBQhF3Ba4/UY5zOk6JJZIonxZPiScwX4snxIpE5PRKZE8RfH07kOFl2tHhSjY+yZ71OHy/221vyfXcM+X6/h/J2t7oVGrJugsATGj9fTBQXhH+aci580LC+2pZx7j4L7X4yjnqM23lSNIlM8aR4UjyJ+UI8SRecDBKZ/1kShq9TMbF8G3rrZnbBeyF9N8RYjo35d5yXlJsD3+leUl4tsc4nGX36hTlJ4In5YogtGefCaw3rr6z2xrLCsKLj50nRJDLFk+JJ8STmC/EkXfBlGL9EZuGx2ObQW1g3rdIPOjg4NvQv7Gn9Eh9NXzSm3+/z8PIvOhtLrG9WjsG935wk8MR8MUTaYuf3GthfG3PMd1sMKzp+nhRNIlM8KZ4UT2K+EE/SBe+G8UtkFrY5VQwEjuWo8JMOD5B1obfob9br9m+O2fd6q4agb16Osfa2OWnsA8+863WMa5nTwXFYx3wx6GrKMTnbwD5bkmMs7WzB2HC+N0tTz5MurX/1degW8aR40vVFPCmeFE9SvX0Nmmvm5GxLIdfmZSH7VfJ/+/+m6w7k6Kf4a9KhMfk+cef1wbWFjlZUb1Y/7jPcBJ4CT/PFgPkhfamPJt6wzs8xlva2YHw435s15pp6nkhkuj6IJ8WTri/iSfGkeJLi7Mw518yroC3zcrZl10wrigvs3s9ZmROj52bO/voxKYsb/l3O1xR0rxd4CjwFnmOnrvliKhfqZWMaeL7TgvHhfB+fgLbO80Qi0/VBPCmedH0RT4onxZMUJ8/6qbGsrKAti3K2ZcbLIExlkt1kjOQKAMYliD080NbvGnYjI/AUeAo8zReD0hazvtHQvsvzy2Qb1nBzvjdHk88TiUzXB/GkeNL1RTwpnhRPUpw8byfEsrmCtmzM2ZblM61oa1Ju56zMidFzPWd/XQy9tSyaaNtAWy9UXH+eAS7wFHgKPM0XU5l/m5o0yLNWzKctGCfO9/GIU+o+TyQyXR/Ek+JJ1xfxpHhSPEmxnuUYH9tqOM9HLcU4q4jKYgb3bI4K4yvV8zs+QPIE4HFDoAMN/g5vhMk7sF9KyuyK27Ba4CnwFHiOhSbMF88tDuO5wPnc4IlM57vzZCpxlESm64N4Ujzp+mK+EE92M55kev7MMT52V9COXTnacavoSvcOTDDDyvkOD45F4eWFiQfLn/2gqqleTcqdCe39uT8pVi3PGh92mRR4CjzNFxPtDum/7C1oaD9aI9P57jx5QSLT9UE8KZ50fRFPiifFkxQrz4OJVTxstz9HO74vo+IVSbkWspOZXVuUeGlS/soRsDa5X2Ii9kaYvAt9XU/Yzg5+UepC4Mn4atJ88dy3KeP/9wb3pV0mcZ5UL+0VvC8NE/GkeFI8iXhSPEmLHAnN+IE1zw9PR8uqfG6OBsRJaElHBkXcUeluxgV/T8O/Q/xl6Y8JbY7/e2HNbcpax8GNhsAT88VEd1LG/2cN78+sC/pOw46OnydFk8gUTzre4knMF+JJuiLP2pRnG3CNqWStzrimzOOUBtxr+ckS1884nXEQ4kLBqxr+PeKvN78MtHlRA9p1N6NvT5qPBJ6YL/pWhvoXr56u9Tku6FsMPTp+nhRNIlM8KZ4UT2K+EE/SpXMua3xU8cTxbyF7o595VXTImjD5cXBlcka76ZsfxUD+xzB5YdWmPEl7MaN/vzEfCTwxX/S9mzL2n4b6FozPY3OO68kKw4+OnydlzGcSmeJJ8aR4EvOFeHJ8dGkd7XMl9F/WEpFPKjiGT0L9ydT/tyBHkNC1cnAMJoK4pf2FCW2+nZRlDWpf1tOu34kDBJ6YL/q+Sxn7PzW8b7Ne9XjW73/o8nlSxo20RKZ4UjwpnsR8IZ4cHxKZM/NFjnqXl3j8lueo/3gdA+tokMCMr6+sH5OJ4OxAu1c2rH0HM/r6B7GAwBPzRd/DlLF/uOF9uyvHdQW6fp4UTSJTPCmeFE9ivhBPjheJzJnZEOpdR3VXjvrX1TW4tmVMAG0uV8P4bHA0cbOm+6G3REDTbM3o79tiAYEn5ovE2qZeEHN6u4ZAhu4Z9/OkaBKZ4knxpHgS84V4crxIZM5MfCL3Xka9n5d4/E40/Xoc1174O3QriXmqHxSPg88HgpE3K6o3Jnn3hfyPtM8L9a/hIPCk68ZhvjiUMu4fh+a/RpP1NsMXhiEFGPfzpGgSmeJJ8aR4EvOFeHK8SGTO3P8y6r1S4vH7NdSXRM3tldCddTMPjNHJf2RgQq7yNfjna468MYW/+Suj7+cEBJ50fb64GMb71+es9dt2GYoUYNzPk6JJZIonxZPiScwX4snxIpE5c6+H7LVUy7gmzu9/dlrdq5s02I61eHDFx3I3jtGJ/0GYvOva5grrfr4ewrUp/t3JjGOwMSDwpMvzxax++0aN+/fHoK/PZ5y7SwxHZqgN50nRJDLFk+JJ8STmC/HkeJHILMbvGXXvKKHO3Rl1/tzEAbcn9H59yTpYcd2MZaG+x7ZjvW8l5U6Otl5PyqtjdNK/M9D+7RXWHXenuh+mt5v7zozjsFt8IPCk0/PFxjD9X/bimwM/VBxUD3Mzpf03DEcK0IbzpGgSmeJJ8aR4EvOFeJIuylpP9XQN15adTe2suHju3YzGLxyTC/ilpCwYo4E6GLztqbDuRf2J8/mvcFPtt7kh/dex4+YhgSedni/S1gPK2p3x+S/Xb9TY3/EHtLTXLL4yJCnAuJ8nZZDIFE+KJ8WTmC/Ek3RRHC//hPQ1YYt8vXxhxjX4etM7bGnoPdrd9Hfi09bROTlmg3TrwKT2boV1r5lwEYnl7DQ/x7peAk/MF6NcSRnzZ1L+7uP+vzlWc5+vyDhvNxuWFGDcz5MySGSKJ8WT4knMF+JJuuq9jDHzXoF1fZhR155x6LC4yOcPobm7FG1I6eAPxmxwxkfkJ77Sf6jk+mb1J9H4es758PKvQpum+blpjz7fMwf9vwsCTzo2X8wO6b8+700JsON//yvUv8HDzoxzdpahyQy14Twpg0SmeFI8KZ7EfCGepKvimPgjlP+UZDy/bqXUc3XcOu6rEV9kU80H888w/NHaHWPWv+v6k1ZTFqu9OYPvMi+kP4q81Dz0n+sCTzo2X2zJ+Jxhc8Nr/e8aA9Y1Dej7tA3xvjY0KUAbzpMySGSKJ8WT4knMF+JJuuz1kJ7Ef6eAOtKexozX5NXj2HEfjLg4vl5Tez4f0p77/Ul5nKwJLxY3bko5PMPvdCpYoD0rOH+WcQzif/drHG2aLw6nfMaDIf8+7tZ4O1TzhEBeaa86rjM8KUAbzpMySGSKJ8WT4knMF+JJuu6DkL4+7Ez2sYnnStqPGx+Mc8ftSsqTIR22quJ2DHvd5HYN7ZipFSF7U6U6ykx3eH8j5bO/Mf+E/TmPw0ZdRYvmi7Sg7fKQC+nzp0wuNqT/Zw25/j0vfxieVHBzMw7nSVkkMsWT4knxJOYL8ST0rn+jzoELMxiXl1M+91QbOm59ePkXnDgZrqyo/m1h+JoAS8asH+Nj77cbeBH5saDv9+uIz7/T8Yknrjt7o+Jjwfhrw3zxOOVznvSvIfEiuqs/T/zbP1cWNOQYvBXKfZUD2nCelEUiUzwpnhRPYr4QT0LPd6HYDa/Ppnze923quNVDJsGYzFxRcr2bwsu/YMQFRxeNWf8tmkLwUXUp6lWd7Sl1vN7RCWdxSN9lb9QNmleCuq0N88WiaXx23MxheYOOw9ER7fzHOUqB5/q4nydlkcgUT4onxZOYL8ST8ML/QnryMU/yPl5PLnUtxopPQP4VXn69u6wnI+MO5YO/wMSL+Pwx67e4bsG1hl5E7hc8gY76nsc6NMHECWRbfxJ4FKa/+PWRpGwO7dyNlvbPF29O47PXNuxYjDoOBw1TCtKG86QsEpniSfGkeBLzhXgSJtsTemvDjkrif5yUZUP+bnn/ejDqb+NamXvbPin+MvClr5VQz7Bd1WLmeO6Y9VecpK829CISy4mCv++OMPoXp7aKrwvc6V84n5R0nJ70Pz/Ws8v83Vptmi9mh/RXgSaWW6F5O+KtSbkp9Os5RRn386RMEpniSfGkeBLzhXgSXhYfJDydcT7EXNrlfnmY8W/ja+ZLu9Bx8YnIH8OLLdm3llBH/BXywoTOPd+fyNoUiDehvFbCdx514dzW0vNhU8XHbJ+5u5M37uM4X7yf4zNPhWau9XdiRHt3GqYUbJzPk7rmwy4mMsWT4knxJOJJ8SRMFDe+/ipkJyqHlfgDwcmSrt+NFpOKccHRLSXXcyi0bLHRDng95NtVDmi/eMN5sX+BjU+CxNfjfg691wNXNbTNr4Thr/H95HDiPGnEjbhdy8WTgOukeBJ64tO9m/vnw7mk/N0fe08mnC83+v/teP/feiIYhvh6RPD5pq4BGu7IkLkrBgDLdQ1URiIT8SQgngSgMnEt1btDJu8rugZosEVh+K/nB3QNVEoiE/EkIJ4EoFLbR9yAbNc1QEMNe/rnom6BysVE5pMR5YTuEU+KJwHxJABVTeJxl7b5ugZomLfC8B0wF+oaAPEkgHgSoP3mJeVa8FoY0Gzz+zfFg7v5rdE1AOJJAPEkQHfEBY3vDQk+N+kaoCHODJmjtukWAPEkgHgSoHs2JOXpwKQeF29frGuAmh0YEnTu1y0A4kkA8SRAd+0eMrn/mpTZugaoycakPBuYlz7ULQDiSQDxJADvDQk+z+oWoAark3J/YD46pFsAxJMA4kkAnnt3SPB5TLcAFXo1KXeC138AxJMA4kkAMuwJHr8H6rEsKbfD5N0kt+sWAPEkgHgSgFHiWiKDj+F/oFuAkoPOfybMOfFX9Dd0C4B4EkA8CUCWlUm5PhB8fqRbgBKsDpNf/7mSlEW6BUA8CSCeBCCv+Uk5PRB8fq5bgAJtCJOf2DmqSwDEkwDiSQCma/fAhSHuPjlHtwAztC8pT/vzyq1+EAqAeBJAPAnAjCzuB5zxAvEwKSt0CTADs5LyV39O+Sr0ntgBQDwJIJ4EoDBx4fZtugEowKakvKUbAMSTAOJJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICy/JSUfwcKAAAAACWbk5QdSTmRlPNJuZOUx0l5mpQnSXmYlN+TcjYph5KyVpfRYQfDy0lMicxuWd0fB2eS8ltSHvTnyqf9ufNuUs4l5bOkbErKLF0GAAAAMxMTkt/2b77/nWK5lZSjSVmkG+mQVaGXqJLI7J5XkvJRUq5PY768l5RjSVmiGwEAAGBqViTlh5Sb7vh0UXx19sek3E/Ks5R/G5M6MaE5V7fScvGpuj9SzgXa66P+vJg2Z8b5Mj6d+SRjvjwcPKEJAAAAucRXw4c9gRkTNG8nZf6Qv3n+6nla8vNGUt7UvbTYsZD+1B3tszKMTl7HJTg+TMriIX+3Jimfh9FJzbhUx3LdCwAAAMPFJya/H3FTfXAKn7MuKX+P+Jz45OZ+XU0LrQvZrw/TLltCb33gYcf6QlIW5PiMmKy8OuIz4tPu63UzAAAATBafsvx5xM309ml8XryBvxJGJ3QO63Jadv7cDBKZXbI7jF5S4/QUPyv+iHQpjH7VfKPuBgAAgJ74WviopOPRGXxuTO5cC6OTOod0PS1xKuTb0IV22JFyjK+UMF/Gpz7f0O0AAADQe3po2M1zfMJs9gw/O24a9Djlpn+X7mfMpSW1JDLbZ13KnPYoKUtn8Nlxx/unIz77dlIW6X4AAAC6bH8YnXR5v6A6Pk6pIz5ptMJhYEzFxNK9IJHZpeN9J+X4flRAHZ+mfP4lhwAAAICuiptMjHqyKD4VNL+geuZk3PxfdSgYUxcHxnJWUpN2He/BHcrnFlBHnHcfpNTzrsMAAACAm/LJ5fuC6zoc0hM81stk3Lw3MIZPZZxTEpnjbU/GsT1SYF3HU+qJO5kvdDgAAADokvUZN+X7C65vSRi9w28sD9ycM0YG1369EXpP0klktlN80vKflOMa57alBdb3asY4OumQAAAA0CVXMm6Uy1i38nJGnZ/W1BcbknI+9JK7bRA3aPpyRLG50szNCr3lECYmsdb1/5tEZjt9nHFcf6p4jo5jbqXDAgAAQBesyrgpf1RSvR/kqHd+xX2xLLxYj+69lhzfOSl9/KXhP2NHwugEvERm+8QfBu5mHNcy5o73M+r82qEBAACGmdWyeuB4xg3yuZLqfS1k7+p8sOJz+5cJdb/WkuMrkVmetQP9+dvA3C2R2T7v5Ji3lpZQ74qMOuOGbIsdHgAAYKK4Zt8v/RuZMn3Sr2eBLqcCf4f6nvR5nFH37xX2w8kJ9d5t0fGVyCzHvIFzJz5BPPh6r0Rm+/yccUxvlFj3rYy6Dzs8AADAc3Fzkr8m3DCUkcyMr6ydmlDHn8ETFpRrech+umhfifX/kKP+KtZ++3CgztMtOsYSmeU4GbJfJ5bIbJdlOearMueOMxl1/+0QAQAAUXyl6/bADUPcqKTo17+3DrkxiTujLncIKMmeHDfmO0qs/2SO+g+V3AcHhtS5u0XHWCKzeINz9Q8j/p1EZrtkrVMZy9sl1v9ujvrXOkwAANBt8aZgcGH/X5PySkn17R1yYxLrf9OhoARf5rgx3lJi/fty1H+xxPoPjahzYYuOsURmsRYNXBPi/x715LxEZrtcyDFfvVVi/Rtz1P+pwwQAAN0VEziPBm4Sroby167cFl5eO/BRKDehRDedy3FjvKnksZ5V/5NQzuZXX4T61+WsgkRmsc6H/E8sS2S2x6z+XJR2PJ+Fcjfqm5NjvvzNoQIAgG7aH4YnOKragGddUu4PacN+h4YCXQv1JjJX5ag/ljUF1hnP4bQE02ctO8YSmcUZ3LH6VMa/l8hsj3U55qnbFbTjQchOps53uAAAoFuODrk5iBv9LKq4HfG19odD2nLUIaIgj0K9icw8TxgVuWZlTEbczKhrc8uOsURmMZYPzMdxHGUljCQy2+NAjnnqQgXtuJijHdsdLgAA6Ia4a/g3YfgalUtratOWETcq3/bbCzOR9apk2WtkRs9ytGGmyfuYcPoiRz1PQ7mvhtZBIrMYvwz03bocfyOR2R5nQr07lj/3bbBOJgAAEHqvm14Ow1/Tqnujna9G3KxcDtW96k475Xkasuyne/I8FTrdBEF8ivqjpNzL+V0vtPAYS2TO3Mdheokiicz2+DXH/HGkgnYcz9GOcw4XAAC027KkXB9xQ/BJA9r3asoNy/V++2E6nua4Kd5Tchvu52jD+Sl8XkxexkRT3PQiz9OeUynjuKyDRObMvD4wjuJayXmf2pXIbI88T6/vraAd+3K04x+HCwAA2uut0Ht1fNRrpnMb0s60p9Zi+9c5lEzD41D/a4q3c7Thx5yftSzlfC6i7BjDYyyRObO+m/gjVzxfVk7h7yUy22FeaMbT69HOHO0oe/d0AACgJvHJhrSnLJ405GYgru+X9eTc4/4NDkzFrRw3xWdLbsOPOdpwN+dn7QnlJTFjWT2Gx1gic/pODPTX+1P8e4nMdtiQc37YUkFbtuZsyyqHDQAA2iXPOlOxfJ+UNaG+hOaKpFwK+RMthx1apuBCjjF1reQ25Elk3iuorrS1Mk+09BhLZE7PpoG+ujSNz5DIbIcdOa+/6ytoS5OSqgAAQAXi043nQ7lPbdVd4hN0cx1qcvgm5HtNcXaJbfghRxseFFDPmow6trX0GEtkTl3cRO1OmJxIXzyNz2laInNTy699ZW14szdnnfMrOIav5GzLLqcxAACMv+VJ+bMjN3FXp3njTbfkvUEvc23Ii6GaJzIPhvqStXWSyJy67woa/xKZ7Uhk7s9Z55wKjuHcnG1522kMAADjbXPItztym0rcROUNh54Uq3KOpa9LbEOeRObdAuo5l/L5l1t8jCUyp2Ywuf9NiWO7ahKZ0/NFzjpn1Xw+V7lJGwAAUKJDoVsJzMFNgPYZAqS4kWMc3S/xJj1PIvPKDOuYFdJ3aD/S4uMrkZlf3PX+wYT+uRlm9rqwRGY7Eplf56yzKnna8pXTGQAAxk+8Af0udDeJObEcNxwY4VjOMfROSfXn2czqwgzrWJ/x+RtafHwlMvO7PNA/62b4eRKZEpllqPspegAAoAQrQ3fWw8xb4k31AkODAa/mHD/XS6r/To66z8ywjk9C+lPLs1p8fCUy8/kwFP9qrkSmRGYZJDIBAKBltofJrwcqL8rfoZfkhYnO5Bw/BwquN+8anSdmWM9PFSU8mkgiM9trSXk6oV/+CMUktyUyJTLLIJEJAAAtMauf8EgL7v8J5e7AXLeFIft1+oehl+yF55Yn5UmOm+NHSVlRYL15l36YyTqvcTfypymf/UHLj61EZnb/XJvQJ/E8KOrHnqYlMpmek0EiEwAAKNiSpPyaEdh/G2a2ccM4eS8pzzL645hhwwSf5LxBjks2FLFEwUch/9NVm2dQz5aMz36t5cdVIjPd5wN98n6Bny2R2Q5fhvFLZDq3AQCgwWKS425GUP9BB/slbmDyMKNf4iu3iwwh+n7KeZP86wzGTXxq+HSY2muic2bwnY6nfO69DhxTicz0OXJif1wq+PMlMtvh3TB+icwjDhsAADRPfJU8z47Ln3S4j+Kuu49D9uv2bzagrXnXIRvXMmcMxktMMl7P+X3iuJnKEgXx9fXPB8bj3ZBvXdeZuJry2Wdr7OsurVfYxNdc41PFtya08X5SFhdch0RmO+xr0Bw/J2db3nbYAACgWZaF7FfJnz851nUHcvRTfA39UM3tlMhshrhMw19T+F6/98fYmvBig5T4f2NSaFtSDifllxF/tyvH55+ewXeZH9KXWKjzZl8is16DG1ztLKEOicx22JlznM+roC3zcrZll8MGAADNETfruZ8zmN+ru/5zM2d//RiKfyopL4nM5ohPq/1QYl8c7/fHkRz/dk+JCYhlNfaxRGZ9BhPop0uqRyKzHbbkHOcrK2jLopxt2eKwAQBAc0zlBnqT7vrPuTFIOkhkNk/cNOp+gX0QEzurJ3z+bzn+ZuEM2p+2SceNmvtWIrMeSwbGdPyR55WS6pLIbIcFofxNyfLamLMtyx02AABojq1JuZ0zmN+vu/6Td93Di/0b/TpIZDb3Jj4+OfnPNL/3naScCJMTmNGyHH/7S4njvu7kmkRmPQY3tHqrxLokMtvjWY5xvq2CdmwL+ZaKmeWQAQBA85IrZ3ME9PFpm/kd76s8CZO4AcuBmtspkdl8cfOouOZlfML3en/cPO3fOMf/HZ90izs/f9sfT2+kfNZHOfpsJuu2Ls747J1jcF5KZBbrYHh5iYMySWS2x585xvnuCtqRZ13hWw4XAAA0V1wD82FGUH++w/2zKEzemXdYiTdoqxvQVonMbrkWsp8qmsl6rbszPntBzd9fIrN6F8e0/7aaLmqX54fTKn4M3J+jHd87XAAA0GwrciRFYjKza4mkpSF79+mvgwQb1VsX8i1zMBPfhvSd1rtiTko/fNmxcSeRyXTl2ZisioR9nh/8jjpcAADQfHNzBPi/hvrWf6xa3LH0bkpfxKdY9xg21ORMjpvxDTOs407KZ3/Wob6WyHxBIpPpyrM25dkK2pFn475tDhcAAIyPfaG3Vt+oAP9eqH9tvDLFV3FPZ9zkxLUNVxkq1OTVkL1xxh8zrGOlG/3/J5H5gkQm0zU/x3Gq4knv30L2khzzHC4AABgva5JyI3Rn/bmplLPB5kfU66sc43SmPza8m/LZcXOi2R3qb4nMF7qeyOzSuqznShg/WUvYPKlgDD8J9SdTAQCAEiwY45vWsspBw4KaxScls57GvFpAPd+lfP5PHetzicwXJDIlMmfiixz1Li9x/C7PUf9xlxkAABhvR4MEZlwrc72hQANcyDFe1xZQz8OUzz/csT6XyKxPVuK0ahKZM7MhlP80eZpdOepf57QDAIDxty0jsdHmEp9uW2II0JDzMGu8flVAPWvd6E8ikVkficx2JTJnhd4622n1fl7i8TuRUfdtpxwAALTHiqT8HbqVxDzVT2JA3eK6rP9kjNdbSXmlgLoOpdTxuJ+M6BKJzPpIZLYrkRn9L6PeKyUev19DfUlUAACgBq+E7qybecDhpkHOhOyddt8qqK6LNSQ3mkwisz4Sme1LZL6eYy4r4wfE+SF7feHVTjkAAGinYy2+eYuvvW10iGmQd0J1G1HFpy2fptTzfgf7XyKzPhKZ7UtkRr9n1L2jhDp3Z9T5s9MNAADabU/ovWaadTP0dVKWhfpeR431xifV7uRo6/WkvOrQ0iBrc5xnpwqsb2OY/hNL8YntH5KyuWXHQCKzPk1LZFKMtzOO6+kS6jwX6ttkCAAAaIiYZLmbcXOwsCFtzbqJuZSUBQ4pDRJ/AMhKwF8ouM6jKXXdzfjb8/1/90bLjoNEZn0kMtsp/sCYtubv41Ds6+UxDkl70vy6QwIAAN2xNCnXQvPXnPorpY0nHUYaZlFSboT0JE5M8swuuN4rKfWdSfm7j/v/5lgLj4VEZn0kMtvrvYxj+16BdX2YUdcehwMAALolLqL/Q2juLqAbUm5gPnD4aJjFofeEUNqN97eh+OUaYlI0bTOMvSP+bmv/v8cfC+a08HhIZNZHIrO94vz1Ryj/Kck4r91KqeeqQwEAAN311YgbhU013yz9GYa/urbDIaNhliflZkhP3hwtqe4tGfUuHfI3ryXlYeglQNe09JhIZNZHIrPdXg/pP568U0AdaU9jxtfN7VQOAAAd98GQm4WH/RuWOnw+pD33k7LOoaJh4kY790L6unG7Sqz/cErdD4b8+yVJud3/74dafFwkMusjkdnNmGHiurwzWWd7ST/+8EYGAACQKiZbngy5IVlVcTuG7Yx6u4Z2QJb41FDak0nxNcuynxxKSxpdHpIgeP76+8WWHxuJzPpIZHbDN6H4Dc1m9eetUZ97SrcDAAATrQ+9Jx8Hk5krK6p/WxieDFri0NAgSzNutmP5OinzKmjL45Q2POmfuzE5EH+oeL6betyQaEHLj5FEZn0kMrvju1DshnxnUz7ve90NAAAME58gux1eTmauKLneuCbn4BOhcUH/RQ4JDRETgh8l5VHKzfaNUN36sotCesJoWImvwS/vwLGSyKyPRGa3/C+kJx/z/GgSN0u75JwFAACmKz4B+Vd4+fXusp6MjDuUDz5ZdiX0dlaHJoi7f99IudGOyc0jododwN8MU0tixqet13bkeElk1kcis3v2hN6avKN+PPk4KcuG/N3y/rw56m8f9udeAACATHGx/l8GbiqulVDPuvDywv7xyYy5DgE1i2PwQFL+Dumvb38R6ln+YHZIf7V8YrkVurXTr0RmfSQyuynOgaczjn281l/ul4cZ/za+Zr5UtwIAAFMRn4j8sX9T8TQpW0uoI752dmHCzcv50EvQQB3i6+Px1fC4qURakvDP0Nvsp+61Jt8P2UnMU6H9a2IOksisj0Rmt8WN+b4K2YnKYSXOuXFtzdd0IwAAMF0xqRgX9N9Scj2HgsX8qUd8UnF/6D0BlLb+5e9J+TQprzes/XGTrIv9xMGT/nf4OSnH+kmFLpLIhHrFH4U29+ehc6H3ZPuj/hz1fJ660f9vx/v/dpZuAwAAgOE2h5c3mHpenoXeU5ffJGV3qOfVcaZPIhMAAACA1ni+WU5MZsbNpeL6bvFV7ZjgnKN7xppEJgAAAACtEZdNWKAbWikmMp+MKCd0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMp5+S8u9AAQAAAABojIPh5SSmRCYAAAAA0BirkvI4SGQCAAAAAA01Kyl/hOFJTIlMAAAAAKARjoXRSUyJTAAAAACgdutCehJTIhMAAAAAqNX8pNwMEpkAAAAAQIOdCtlJTIlMAAAAAKA2O0K+JKZEJgAAAABQi0VJuRckMgEAAACABrsYJicqs5KaAAAAAACVei9MTlLGdTIHE5sSmQAAAABAbVYk5XF4kaC8EXo7l0tkAgAAAACNMCspV8OL5OSzpKzr/zeJTAAAAACgEY6EycnJTyf8N4lMAAAAAKB2a8PkxORvofeE5nMSmQAAAABAreYl5e/wIin5KCkrB/6NRCYAAAAAUKuTYXJS8r0h/0YiEwAAAACozdYwOSH5w4h/J5EJAAAAANRiUVLuhhfJyPi/F4/4txKZAAAAAEAtzofJycgdKf9WIhMAAAAAqNw7YXIi8lTGv5fIBAAAAAAqtTwpD8OLJOTNpMzP+BuJTAAAAACgUr+EyUnIdTn+RiITAAAAAKjMx2FyAvLTnH8nkQkAAAAAVOL1pDwLL5KPvydlVs6/lcgEAAAAAEo3JynXw4vE4+OkrJzC30tkAgAAAAClOxEmJx7fn+LfS2QCAAAAAKXaFCYnHS9N4zMkMgEAAACA0ixIyp3wIuF4LymLp/E5EpkAAAAAQGm+C5MTjjum+TkSmQAAAABAKfaGycnGb2bwWRKZAAAAAEDhliXlQXiRaLyZlPkz+DyJTAAAAACgcJfD5ETjuhl+nkQmAAAAAFCoD8PkJOOnBXymRCYAAAAAUJjXkvI0vEgw/pGUWQV8rkQmAAAAAFCIOUm5Fl4kF58kZWVBny2RCQAAAAAU4vMwObn4foGfLZEJAAAAAMzYhjA5sXip4M+XyAQAAAAAZmRBUm6FF0nF+0lZXHAdEpkAAAAAwIycCZOTijtLqEMiEwAAAACYtl1hckLxdEn1SGQCAAAAANOyJPReI3+eTLyZlFdKqksiEwAAAACYlp/C5GTiWyXWJZEJAAAAAEzZwTA5kXi85PokMgEAAACAKctKLDa1bHXoAAAAAKA7JDIBAAAAgMaTyAQAAAAAGk8iEwAAAABoPIlMAAAAAKDxJDIBAAAAAAZkJU4BAAAAAGonkQkAAAAANJ5EJgAAAADQeBKZAAAAAEDjSWQCAAAAAI0nkQkAAAAANJ5EJgAAAADQeBKZAAAAAEDjSWQCAAAAAI0nkQkAAAAANJ5EJgAAAADQeBKZAAAAAEDjSWQCAAAAAI0nkQkAAAAANJ5EJgAAAADQeBKZAAAAAEDjSWQCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVGJDUs4nZb2uAAAAAACaaFlSHiTl36S8pzsAAAAAIJ9ZLaun6X39S+glMWN5TZcAAAAAQLaFoZdYe6fkej7p17Og4/19MrxIYt41/AAAAAAg25Kk/BVeJNbKSGbOTsqpCXX8mZTFHe3vDyf0QyynDUEAAAAASLciKbfD5MTa5VD8699bB+qI5Z+kLO9Yfx8Y0g+7DUMAAAAAGG1t6L3WPDGp9mtSXimpvr3h5SRerP/NjvT3oSHfP5aFhiIAAAAADLclKY/C5ITa1VD+2pXbkvJ4oN5H/fa02RdheBLzd0MRAAAAAIbbH4Yn1KragGddUu4PacP+FvZ17NOLYXgSM5bPDEcAAAAAeNnR8HIyLW70s6jidsTX2h8OacvRFvV1TNjeDKOTmLFsNiQBAAAA4IW4a/g3YfgalUtratOWMDy5922/veNqfhj9KvnE8jQUv6kSAAAAAIyt+Hpz3Il8MJH2LNS/0c5XYXiS73Ko7lX3osSnWj9Kyr2QncSM5YKhCQAAAAA9y5JyPQxPpH3SgPa9GkYn+q73299kMXn5aVJ+C73E8L8FlqOGLwAAAABd8FbovTo+6rXmuQ1p56MwOpkX27+uof27LKV/iyg7DGEAAAAA2m5fUp6E0Umy+N+asD5jXE/yaUhP6D1Oys4G9vGeUF4SM5bVhjEAAAAAbXY85EuUfZ+UNaG+hOaKpFwK+RN7h8fsOKStlXnCMAUAAACgq+LTjedDuU8J1l3Ohua8Ep9mTcb32FZDmza1fGxMLOdMBwAAAADNtDwpf4ZuJKmuJmVxw4/HwZT2x02BZtfQJolMAAAAAGq1OSn3Q3eSVLHcTsobDT4m51LafrmmNklkAgAAAFCbQ6FbCczBTYD2NfCYzOq3bVS7j9TULolMAAAAACoX18P8LnQ3iTmxHG/YsVmf0d4NNbVLIhMAAACASq0M3VkPM2+5mJQFDTk+n4T0p0jr2iVeIhMAAACAymxPyoMgcTms/B16Sd66/RSamWCTyAQAAACgdPEpvhMhPXnzT1J2tLgPFobs1+kfhl6yty5xN/KnKe37wFBuHT8iFFcAAACAMbckKb9mJAC+Db11M7vgvaQ8y+iPYzW1bUtGu14znFtHAlIiEwAAAEhsTsrdjJv/Lj7lFzfMeZjRL/EV70UVt+t4SnvuGc6tJAEpkQkAAACdFl8lP5bjxv+TDvfRutDbPCfrdfs3K2zT1ZS2nDWsW0kCUiITAAAAOmtZyH6V/N/+v+m6Azn6Kb6GfqiCtswP6a+8v+1wtZIEpEQmAAAAdFLcrOd+zpv+vbrrPzdz9tePSVlcYjt2ZtS/zKFqJQlIiUwAAADopKnc9G/SXf85N4U++7rEdnyZUu8NhwkAAACANtmalNshX1Juv+76z/Wc/XUx9HaAr6MdXztMAAAAALTNgtDbGCYrMRdfqZ7f8b7alKOf4oZAB0pux+KMNuw0rAEAAABoq7gG5sOQniA73+H+WZSUWxn982dSVlfQlt0hfbOhBYYzAAAAAG22IinXQnYyc07H+mVpUv4K2ethVtUv36a043fDGAAAAIAumBt6Sbm0pN2vodz1H5tkS1LupvRFfIp1T8VtupPSns8MYQAAAAC6ZF/orfc4KmF2L7R7Lca4DuXpkJ7QjRvurKq4XSsz2rTN0AUAAACga9Yk5UbIt0t310rcIKmOzY/eTWnT06TMbsjY2dShsXDOVAEAAABQv7hxzMUgcTmxHKzxeHyX0q6fGjRuJDIBAAAAqMXRIIEZ18pcX/NxSNtZ/nCDxotEJgAAAAC1iesvpiXS2lyuhvo3OFqb0cZ1DRorEpkAAAAA1GpFUv4O3UpinkrKnAb0/aGUNsaNmWY1aJxIZAIAAABQu1dCd9bNPNCgfk/r86Yl0yQyAQAAAGiMY6G9yal7SdnYoL6OT1s+TWnv+w0bGxKZAAAAADTKntB7rTkr2fN1UpaF+l5/jvW+lZQ7Odp6PSmvNqyfN2a0eXXK38YnaH9IymbDFQAAAIAui5vQxB290xJtCxvS1nMZ7byUlAUN7OO0XePvZvzt+f6/e8NQBQAAAKDrliblWpjeE4NV+iuljScb3L9XUtp9JuXvPu7/m2OGKAAAAAD0zA+9V5iHJds+b0D7NoTRycAPGtyvs5PyLKXte0f83db+f4/J2zmGJwAAAABM9lUYnnDbVGOb4hqZfw5pU1zfc0fD+3NLSH8dfumQv3ktKQ9DLwG6xpAEAAAAgOHiE46DCbeYWHu9pvZ8PqQ995Oybgz68nAYncR8MOTfL0nK7f5/P2QoAgAAAEC6XUl5El7emGZVxe14O7ycALxdQzum62IYnci8PPBvYxLzev+/XTQEAQAAACCf9aH35ONgMnNlRfVvCy8n/2Kib8kY9eHjMDqR+aTfl/HV+Zg4vtP//98Izdx9HQAAAAAaK+5Y/vxV54nJzBUl1xvX5Bx8IvRqUhaNUd8tCunrYw4r95Ky3LADAAAAgKmLT0DG3bMHX+8u68nIuEP54JOMV0JvZ/Vx8maYWhIzPv261nADAAAAgOlbmJRfwuTE27US6okb+DwcqOdSUuaOYZ/NDumvlk8st0Lv6VcAAAAAYIbiE5E/hl7i7WlStpZQR1wb8kJ4keA7H3oJwXH1fshOYp4K1sQEAAAAgELFpOJ3SdlScj2HkvJ9S/osbloUdyGPT5rGdT8fJeXnpBwL47P7OgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUYU5SdiTlRFLOJ+VOUh4n5WlSniTlYVJ+T8rZpBxKylpdBgAAAABUJSYkvw29hOW/Uyy3knI0KYt0IwAAAABQhhVJ+SGMTlI+SMpPSfkxKfeT8izl38YnN2NCc65uBQAAAACKEl8NH/YE5h9JeTsp84f8zfNXz9OSnzeS8qbuBQAAAABmIj4x+X0YnoQ8OIXPWZeUv0d8Tnxyc7+uBgAAAACmIz5l+XMYnnzcPo3PW5CUK2H005mHdTkAAAAAMBXxtfBRScejM/jcmBy9FkYnMw/pegAAAAAgr9NheKLxZlJmz/Cz46ZBj8PoZOYu3Q8AAAAAZInrVY5KMr5fUB0fp9TxMPSSnQAAAAAAQy0Po5+WjLuWzy+onvjq+p0wOpl51aEAAAAAAEa5GEYnF78vuK7DKXVZLxMAAAAAGGp9SE8s7i+4viVJeZZS34OkLHRYAAAAAICJRu1S/ryUsW7l5Yw6P3VYAAAAAIDnVoX0hOKjkur9IEe98x0eAAAAACA6HtITiudKqve1jHpjOejwAAAAAADR3yE9mfh1iXU/zqj7d4cHAAAAAFgesp+K3Fdi/T/kqH+lwwQAAAAA3bYnZCcSd5RY/8kc9R9ymAAAAACg274M2YnELSXWvy9H/RcdJgAAAADotriRT1YicVOJ9W/LUf+TpMxyqAAAAACgu66FehOZq3LUH8sahwoAAAAAuutRqDeROSfkS2TudqgAAAAAoLvia9t1rpEZPcvRhqMOFQAAAAB0V56nIbeX3IY8T4WedqgAAAAAoLuehuwk4p6S23A/RxvOO1QAAAAA0F2PQ3YS8dOS23A7Rxt+dKgAAAAAoLtuhewk4tmS2/Bjjjb8X3t3FOnlGccB/Oc4ksxIcmQSyUwXE5nJLmZMV5kZyWQX2c1kdjFxLmYyM3aRdNVNkiNH7GIXx5Fuki4yI0kyicx0cSSyiyRzLvZ7vGVt+r/vc3L+/2f8Px++Ohf93+f1e+6+3vd9HtgqAAAAAJheSzFcIt4a8z3UFJkPbRUAAAAATK9zMVwillPFZ8d4Dxcr7uFPWwUAAAAA0+tw1J1c/vEY72E5PJEJAAAAAPR4K+qKzDNjvIeaItM3MgEAAABgyt2L4SLxUWZmTOvXFJlXbRMAAAAATLcfou6pzCNjWv9SxdpLtgkAAAAAptuOqCsy74xp/ZWKtRdtEwAAAABQisKaMvPoOq9b+43OU7YIAAAAANiZeRrDheLjzK51XPenqCsyP7NFAAAAAEDxTdSVirczm9dhvfnK9Ur22x4AAAAA4LnLUVcs/pLZ+oprbMksRH2JWbLB1gAAAAAAz5WSsRzqU1Mu3s98tIZrl9fXT2SevHCNBxXr3LUtAAAAAMB/bcv8FvVPS96I7hCgtzMzz65R/p3LHMh8m7k24ncHK66/YEsAAAAAgJcp38C8GGt7/Xst+TG618WPV/zfT20HAAAAANDni8yjWL8Cczmz+4XrX6/4zRbbAAAAAAAMKU9nlicnyzcxX6W8XMmcin8XmMX2it9eM34AAAAAYK32RffNy5+jOxSoHNzzV2b12d/l6c1LmfPRfTdzb8+15mO4yPzayAEAAACAlm5Ff4lZytE5YwIAAAAAWilPdtZ8TxMAAAAAoJnFGC4y3zcmAAAAAKCVHdG9Nt5XYt40JgAAAACgpdMx/DTmJ8YEAAAAALTyZgw/jfmrMQEAAAAALS3F8NOY7xgTAAAAANDKgRguMU8bEwAAAADQymuZ+9FfYv6Red2oAAAAAIBWFqO/xCzfzXzPmAAAAACAVo7E8CvlXxkTAAAAANBKObjnSfSXmGeNCQAAAABoZXtmJfpLzCVjAgAAAABa2Zq5F/0l5nJm1qgAAAAAgBbmMneiv8Q8n5kxKgAAAACghZ2Z36O/xPzOmAAAAACAVj7IPIzRBWY59OegMQEAAAAArRzLrMboErO8ar7bmAAAAACAFt7IXIn+V8nPZDYZFQAAAAAwaeWgnvnM4xhdYJZTyz80KgAAAACghcPRlZSjCsxSbh7PbDAqAAAAAGCSNmaOZu7G6ALzaeZkZptxAQAAAACTUl4fL6+Gn43uxPFRBebt6A772WxkAAAAAMAklJPFP89ciP7vX97IfJ/ZY2QAAAAAwKTsj+7V8JeVlqvRPXV5LnMovDoOAAAAADTybvzzncurmYXMl9EVnA7tAQAAAAD+F2bDNy4BAACACfgb34JYw8Z+AAEAAAH/dEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1vPiYjeDIxRDQ7PC9tbz48bW4+MjwvbW4+PG1mZW5jZWQ+PG1yb3c+PG1uPjE8L21uPjxtbz4tPC9tbz48bW4+MjwvbW4+PG1pPnQ8L21pPjwvbXJvdz48L21mZW5jZWQ+PG1vPi08L21vPjxtaT50PC9taT48bW8+KzwvbW8+PG1uPjI8L21uPjxtZmVuY2VkPjxtcm93Pjxtbj4xPC9tbj48bW8+LTwvbW8+PG1uPjI8L21uPjxtaT50PC9taT48L21yb3c+PC9tZmVuY2VkPjxtbz49PC9tbz48bW4+MDwvbW4+PG1zcGFjZSBsaW5lYnJlYWs9Im5ld2xpbmUiLz48bW8+JiN4MjFENDs8L21vPjxtbz4tPC9tbz48bW4+OTwvbW4+PG1pPnQ8L21pPjxtbz4rPC9tbz48bW4+NDwvbW4+PG1vPj08L21vPjxtbj4wPC9tbj48bXNwYWNlIGxpbmVicmVhaz0ibmV3bGluZSIvPjxtbz4mI3gyMUQ0OzwvbW8+PG1pPnQ8L21pPjxtbz49PC9tbz48bWZyYWM+PG1uPjQ8L21uPjxtbj45PC9tbj48L21mcmFjPjwvbWF0aD6F9J/oAAAAAElFTkSuQmCC" style="width: 212.00px; height: 89.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="left right double arrow 2 open parentheses 1 minus 2 t close parentheses minus t plus 2 open parentheses 1 minus 2 t close parentheses equals 0 left right double arrow negative 9 t plus 4 equals 0 left right double arrow t equals 4 over 9"> . Chọn B.

Đường thẳng  có vecto chỉ phương <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="18px"><mrow><mover><mrow><mi>u</mi><mo>&#xA0;</mo></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mfenced><mrow><mn>2</mn><mo>;</mo><mo>-</mo><mn>1</mn><mo>;</mo><mo>&#xA0;</mo><mn>2</mn></mrow></mfenced></mrow></mstyle></math>

.

 nên <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>u</mi><mo>&#xA0;</mo></mrow><mo>&#x2192;</mo></mover><mo>.</mo><mover><mrow><mi>K</mi><mi>M</mi></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mn>0</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D4;</mo><mn>2</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mn>2</mn><mi>t</mi></mrow></mfenced><mo>-</mo><mi>t</mi><mo>+</mo><mn>2</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mn>2</mn><mi>t</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D4;</mo><mo>-</mo><mn>9</mn><mi>t</mi><mo>+</mo><mn>4</mn><mo>=</mo><mn>0</mn><mspace linebreak="newline"/><mo>&#x21D4;</mo><mi>t</mi><mo>=</mo><mfrac><mn>4</mn><mn>9</mn></mfrac></math>

.

Chọn B.

1

Câu hỏi tương tự

Trong khô ng gian Oxyz , cho đườ ng th ẳ ng c ó ph ươ ng tr ì nh 2 x − 1 ​ = − 1 y + 1 ​ = 3 z − 2 ​ . Đ i ể m n à o dưới đâ y thu ộ c đườ ng th ẳ ng đã cho?

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG