Square root
VBT
Calculator
magnet

Câu hỏi

Trong không gian với hệ trục tọa độ cho hai điểm và mặt phẳng qua sao cho cắt tại nằm giữa Giá trị của là

Trong không gian với hệ trục tọa độ cho hai điểm  và mặt phẳng  qua  sao cho  cắt  tại  nằm giữa  Giá trị của  là

G. Giáo_Viên

Giáo viên

Xác nhận câu trả lời

Giải thích

A B : đ i   q u a   A 1 ;   2 ;   3 A B → = 4 ; - 6 ; - 4                             ⇒ v t c p   u   → = - 2 ;   3 ;   2 ⇒ A B : x = 1 - 2 t y = 2 t + 3   t ∈ ℝ z = 3 + 2 t " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABS0AAAQPCAYAAAD1Zs72AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAH8bTQd6AAAgABJREFUeNrs3Q/kldf/APAjSZLIJMnEZCYzkZkkGclMJjHJZGZMZmZmzNckmTGTmZkxyWQSSZLMSDIzM2aSmRnJZJJIkiTx/T3ne+/n1/3c7n2ec+/n+Xfvfb04zKp7nvPnOfc+7+f8CQFYqGez9HGWLqsKAAAAAKApK7L0XugEKv/bkwAAAAAAarUuS19k6V6YH6wUtAQAAAAAarUqS19m6WEYHKwUtAQAAAAAavNOlm6H/GDl8SxtUlUAAAAAQJXWZOnHkB+svJClDaoKAAAAAKjai1m6EYYHK29laY9qAgAAAADqsDfk7135a5bWqiYAAAAAoA77Qv5y8DNZWqqaAAAAAIA67Az5ActTqggAAAAAqMv6LN0JwwOW8UCexaoJAAAAAKjDoixdDsMDlvFAntWqCQAAAACoy39C/rLwXaoIAAAAAKhLnEF5NwwPWH6vigAAAACAOh0O+bMsN6oiAAAAAKAuq7J0PwwPWF5QRQAAAABAnQ6G/FmWe1QRAAAAAFCXeGJ4PBV8WMDyXvfvAAAAAADUYnfIn2V5QhUBAAAAAHU6E/KDlq+pIgAAAACgLsuy9CAMD1g+zNJK1QQAAAAA1CUesJM3y/JXVQQAAAAA1OnbkB+0/EwVAQAAAAB1+ifkBy13qiIAAAAAoC5PhPyAZdzPcqlqAgAAAADqsivkBy3/UkWttChLm1UDAAAAANPog5AftDyuihq3KksvZ+ndLH2XpUuhMwM2ts9LqgdgZCuy9MqMlHVllj7O0jeaHabu3n5FNQAA0+xYyA9afqiKKheX32/p/vDcl6UvsnQiSz9l6V5B+zyh+gBGsjtL17P0IEtPTXE5Y2D2YJbudr8v7mj6VtgUOi8h40vhi1m61f2uj/3xfre9rmTpdJYOh86KmCWqrXGLQ2eP98+6bXO121b3u213rzuunMnSVzW125nuvX02S2s1EQAwjc6G/KDYLlVUqbcL6j8v/aH6AJLFlzynesbQC6EzU2naLM/SgSzd7vvOELRsTgwoHcrStTG/72NQLAbKtqnK2m3I0pHQCU6O025xcsBzFV1b72qpeL/v1VwAwLT5u+AH14uqqFJxeXcMHH/ffZgZ5Ufx1yVdw/NZ+iF0Zgnc617PRk0DM+NgmP7Z9duzdCPM3/pk8ZSVcVmWPgqdmXuDvjMELesXZ7vG2ZIPwvgvKPvTz76jaxEDzSdKbLdvQzWrY17q3tu9+ThAEwCYGncLfmQtU0W1iw8jFxN+AJcxC3bYQUxxz8w9mgJm4sG8dxuKE1NYxk/6xrevpqx8MUARZ1zdLPjOELSsV5wVOe7MyqIUv6MPquLKxN9Gtytot9gfNlX0u7H3pczlLD2pGQGAaVA0s2+RKmrEMwkPLCsWmMfKMP/tfH+6370OYHr1zyS6NEVli7OaLvSV7/MpKl/cL+/90NlHLyVgImhZnzfCowPzqkxxZYRZdeX6T8VtFu/DzRVcdwxS/tOTTwxibtGcAMCkK/pRTXMPo3nt8lsJeaTsp3lUU8DU2hYGvxCZhpdV8YCdq31lOzwl7RaXtb8X0oOVgpb1Wshe1eOkH8L0bXXQlEM1tVncwmFdBde/JswPXMaXz04XBwAmWtEPK5qxqqBdypgtdCyh/W9qCphKMTD5x5D7fsOEl+2FMH+pZExHpqTN3gnjLzkWtKzeK6HegOVcOqbqF2xYsDm+yDnX/fM4Q7L3RPD433FFyp5uG9wdoc1+ragcMXD5b19eDugBACaWoGU77Sxol50l5JG6wTwwfd7Pued3T3C54uFx/dtenJ7wtorByv3h0QyqGET5KXQCsXH26M9B0LIN1ofhW67EQw/j3qpxr8TVYf5s5hj42tC9774Mj88QTk1vaIKxbQmDg5Xx/lo7wufEfeDjXqOphypWtXd4DKTerCkvAIBKCVi100chfz/LJSXk8WVI2zQemC5xJnfeIRMfT2i54nL3/plOcTbTpO/592d4tC3Iu93263c0CFo27dcBdR5nM28fsy//EkZfcvyEZhjZ8jB/SfXcuLGQPb3jwTgp2zf8VmG5toTHt4DaqbkBgEkjaNlOZ3La5OeS8tiR0P6HNQVMnaIA18kJLFNcEt4/yy0uEV89Be0VZ24VLdlfHQQtm7R/QH3HF4OLSvjceyE9cOk7e3T9L3CPhHL29Y33bMpy8fU19svYlzZpcgBgkghats+igoeUT0rMK28mR5xladYGTJeNCeP+3xNWpnigRf8elnGG0dYZa9s/g6BlE+KS4P6luGXOVo77KN4KaUHL+NthuSZJtiFUO8v8g4Q2e63iMvZvBRRngK7R9ADApBC0LMcboZnN9welL0e47rjM8McweMnSOs0KU+f3hDFkkk4QXxk6Qdb+MhyawbY9EwQtm/Cfvno+UUEeL4bHl/oOS29qkmSne+rtqwo+P27lc7ugvao+JCyOkf0H88Tl706cBwAmgqBlOVJO4q4r7Rrj+uNMjje6DzvbNCdMpbdGGEeen5AynR1w7b/PaPueDoKWdYvB/d7T3OMhOlXNdDyYeO+e0ixJnu6ps/MN/j48XkNZBx3u+IUuAABMAkHLcvwY2hGwfBgsDQMeF2fb3BxhLJmEk2Y/HDIGbpjRNha0rN8rfXW8o8K84qy9f4K9S8vyebe+4izEKrfC2VfQXidqKu+gmdg7dAMAoO0ELctxP7QjaPm7pgByHtBT02ctL89zYfBy2VmePSRo2Wydn6khv/cT798lmiZXnCE79xLnpYrz2hman2kZrR8wZsaA7QrdAQBoM0HLdnm7oD2eVkXAiDb0Paw+SBj7T7c84PDHgGuOJ/XO8uFhgpb1WtxzL8X765ka8lwV0va2fFHz5JoLJJ6sIa/toT0viL4ZkP83ugMA0GaClpPz0HlV9QBj6N2+Ip4ceyBh7L/W4vIM29vvE98fgpY12tVTt8dqzPfXhPv3Zc2TK26jszvUc4p2UdByd43lfjpM9h7GAMAMErRsjzh7KG+Z+beqCBjR3r5xJB64VbRccS618XTZJ4eMk3HG2+oZb2tBy3r1brnwTI35Hg2ClpMkb7yN49bKmq/nh2BrIQBggghatseLoT1v44HJtyzMP9n4t+7/XxnSgpZbW1imYSfxHtfcgpY1m5vB/EPN+b6VcO++pHlaI+8gnpMNXM9rQ67lNU0FALSRoGV7fBLyTwW3WTqwkDFlY8+f3U0Y//e2rDwbgiBNHkHLesXVD1dC/Scwv5pw7z6reVrj65x2eq6B64mHNA3a1zj25UWaCwBoG0HL9sjbp+oX1QOM4Km+B9MjfX9+LmH8/7plZTox5Drvetj+H0HL2bCroJ0fuh9a5a8h7XSkwWs6M+Sa3tJcAEDbCFq2w4qCdvhEFQEj6A1K3g6Pn6r9dZisE8SfyrnOE5r7f9octFwfOqcU/xs6e5LeDJ2Zius128iKgpZ/arfW2DSkjf4OncOAmvJmznUBALSKoGU77Clohx2qCEjUf/DDOwP+zmsJ4/+tFpXpcM51vq7J/6etQct4KMyw7QjuBofGjGp3QTsf026tcXxA3d0InZcwTcp7CbRLswEAbSJoWa5VoROAjDMRLoTODKc4O+FB94HxYpYOhMdPi/w25J8uWdVSrzXdH6gfhs5spThD48UZbbu439/73Xq4nKV73bqP7Xet+/9fafD64knOMXj9QZZOdfvW0pI+Ox64sm9IerGhtoh9Mh5S8FdPW9zrtk2cJfjCgH8X9zyMAayvsvRdls5m6Z/uv5uVPQ9jP7nSM35cHvL3Noe0w3iWtKRMN3Ou8alA1Mag5dPd+y/vuu53713S7Cuozz3arRUGzbK8EebvLdyk60Pa9UdNBwC0iaDlwsWA4huhE5B8mBgIiD9cezdg/zfn754t4RpjMPXl7nUezdL5MHgGRbz+lTPUdqtDJ4h8JbHd5vYXXdX3Gedz0lNjXldsr/dCJ/j2x4C+9U+J/fd6Tnm/qKkt4vLlj0Zsi5N9/fVMzt9dNyN9+kBfubcN+XuLE8erNgR782aW3fQV9P/aGLQ8mngvn9Z8yT4O+S85l2q3xsWl3/17Wcal121aVn8yp12f1oQAQFsIWo4vPhjEWW+DAj6/hU7AKb5Rn5sl+UzoBIDm/s7V0JnF9ExBG7w3wjXFQGichRYDXTGAE2dO3g+jBeRmwdrQmY036ATNS1l6t9sui7optuNnPX//cng0A23/AgIqMZC2r9svTnT7TWp7lbUEcEdBPjsrbosYrPw0PD6rJwbU4ozSPd32mruPnuzed3Mz734OnQBcCMNnBl2aoX7d+zLieMHf/yuhn7Vh6XVeMO6Ur6KkemoqaHkjcTx7oPmSncipx+ParRXODWiX5S27xo+CfdQBgAkgaDme+CA/aHZkPAF8S8G/7d1EP26G/k5BGzw7wnXtC+kBykHp4ylvtxhoPhgGBwbjDL+i5d/P9TzMHej+v4s59fldwee9uYC22ltSneTNtoiBwyqXB8eA760w+FTVtQX/NgYvr3X/fmzTTTnl+GxGxqXe/dPuJtThyYR+dqThMi0Og18uzKVPfR39vzYGLR+MMKYt0YRJ/sypw23arfHfGL0z/uPvxFdbeq15Bzpd1ZQAQFsIWo4mzoz7cUA9xRle+0f4nLlDJU6F/CWtN0a8vjgbLb7Nj6eRPx86SztjIPN84sPHtiluu7gH4rCZZV+H9CV1L4RHsyjjMvG8JbZFgcXF3faKKe4vGpeEf57YVk+WUCcrCh5Oq9rbKpb1woD8YhBy6wifsy08OjDm3TDbB1lt7Svzhwn/5mBCP/uh4XK9Eqrfv29atDFoeT2YsVem5Tl1+Lt2a1T8Tv51wHfah6F9syyjtQVt+7wmBQDaQNAyXQz+DdoHMr5Jf27Ez1rT8xCZFzT6rsTrv1jQ1jHwumhK2y4+NAwKLsYZl6+N8XlzByflLdNbyP6g7xW0VVn7We4vyOdgBW0RA4iDlh7+FObvFZrqUngURK77IKu2iOX7o6fMfyWWeVfCd8Cdhsv2ZcH1bQ3MaWPQ8uuQFvz6QfMlydvfdZd2a8zb3ftrWD3d6v4Oadus1LyXroc0KwDQBoKWxeJsuCNhePBozZif+3eobwlw9G1BXiemsO3i7IazOQ8RW8b83J0JbffzAq57ZahnP8ufQ70zb4fNhowzgcc9PKLowIhzMzBGvR/Gm1m6LjEw0eThXJeCpamp2hi0XBsGbwHR/4Jno+Zb0Pf4r9qtEfG3wOWQvpT+amjXzP+8g+9+c7sBAG0gaJkvHhLyUxi+dPupBXz2uYT6X1NiWYoeaN+asrZbnRPwiA9jzy+wXxS13UJmKWwJ1Qeziw6AKnvm7eEwfAn6Qk67/TCUd5DVJFrVF1wYNUibcvDTyw2VbUnInwl031fUSGN8U7Nmt4ThAbA4zuzWdEkWh+Gz+Z7XbrW2w5uh+IVK0V7BbXjhkrc90cNQzkn0AAALImg5XAwY/pnzg33TAj+/KGh5ueTy3AzV75HYFnGWyNWcttu8wM9flnDvvLCAz3+rhrb6tCCPsyW2x1dD8ojLmBc6i69oX8bnpnyc6p0FHpfCj/oi5UJCX97fUNm2F1zXNV/h87Q1aDn3fRqX+v/bDYbEYFicNfiMZkv2+pB2PardahF/830Rimegpqa40mFVw2U6VnCNO912AEDTBC2H/1C/Gqo9/OGHgrr/osTyPF2Q199T1nb/VPwjvGgD+5sL/Pzjodr9LOMMyhuhnhmKw2ZY3g4Lm6k85+sK26HtNoaFz+4t2jaizO0IRvVmqC+wPg3aHLRk4X4Jg1d8PKFqKh+HUrbzGSfF2ZpNbr9R9PLyoOYHAJomaPm4VQU/UMsKJha9rS/zDXfRwS5fzkjbfVRSPi+HavcHzQu6lhFASjmA5dmK+11Zh0YcC7O1T2uv38P8vdLGWcr3RkJfuNhQ+YpmAZ30FT6PoOX02hLMhGvK8e69Ew9iTNlOY9R0psGyvV5wbac0PwDQNEHL+eLBLb+F/CXbi0vKK+/H74MS84mKloC+MgVtFwM2v4R6DmTZF6rbc3JNqH4/y6L+UMYMxbzA7rcltkXenlz7pnis6p+FOO7+ci8lfA80tXfk2YLr+jbQS9Byeg06NO0b1dKYuB/l093vufg9E1+wXA3jBy6b+q56NdiCAwBoOUHL9IfkGEjcUFI+RXsiXiixTDGY9zDUFyBtSt6S6rKX0OUtqY11vZDlXntCtftZPpVw3y90huL6MPzAiOuh3OVweQ+Ka6d0nFoZ5i/vP7/Ah++Uh+o1DZTzn4Jr+tpX+DyCltNp0Mz430M7DnJhvrjv5ec533//zflebOLQm52h+IT4RZoVAGiSoOUjBwrq4kCJeRUtL/6wxLx2F+R1fgra7t2CMu4qOb+8GZ2/LPCz8wKiZexn+VmodtZHfMC5FOqZUbI4DA/I/z3FY9XhvofKhb5MuZ7QJ5pYhlq0FPNzX+HzCFpOn/iCs//FTJwJv07VtNqKLH0S8l8Y96f3G7jOlJn26zUnANAkQcuObQX1EE85LnM2YtEBE8+XmNfRgrw+mPC2e7YguFH2vndLCh5EDi3w86vcz3JZSJsBspDZnHkb+/9S4307rUsnN/T1v8MlfObp0L4H6kUJ1/Smr/CR2lHQcvL0H2QW7/0XVctE/T65EtKCln82cH0vJlzXS5oRAGiSoGVnqeW1gnp4ueQ8v8vJ61bJeRXNonpugtsuBhD/yCnbvVD+EuGiQ2xeWMBnrw/V7mf5XsI9f2UBn7+xwroZJG+G7e4pHa8uhvlLCpeX8JmfJvSL72ou57KEa3rdV/g8gpbTZdDhOwL1kyduTXMppAUun6352tYkXNNuTQgANEnQMoQjof6Tc/8K9Zx4/HxB2W5MeNsdLCjfoQryzFu+vdCAc9EM3IXMgIwz11IOCjiygDzyHszOVdAWeUGalVM4Vu0N1Sy1fzWhX/xWc1lXhvYeXtFWgpbTI/b/f2r4PqMeq0PaNhx1z2hfnnBNr2k+AKBJsx603JJQB5sq+PFa1w/EoqDesQluu3igTN6y8JuhnFlovRZ1P7eqgPOJUN1+lm+GtJke486qeLvm+2hRTvtfmsKxKs487J0RXuZS+2dD+04Q3xoELUclaDk9zoTyXibRDtsTxrSTNV9TStDyDU0HADRp1oOWRUt2qjikpih4VOZy5l8L8tozwW13NtR3cNKcopM2F7p8+1aoJsAcA3z/JNzvcb+0FWN8fgyo5c0iqWK28o6c/L6YwrHq4zDaabRVpDoPZEh5wBe0nE/Qcjr0Hwp4UpVMjaLfLX/UfD0p23DYkgAAaNQsBy1fSyj/tpp/tF4uMZ+i5ZUPw+QuoX0hFM8KW1FBvqcrrM+i/SAXEhD9IKQFpX6v6PO3V9AWeds6vDJlY1XRrOK60q4ay5xyQISgZfr4JGg5GfpfjJ1VJVOlaHVP3TPalySMsx9rNgCgSbMctPyroOxVLDGNb7UfhHpmiO0N7dqjrkznC8r2VQV5rgr5p4YvdLnuu6Ga/SzjIQBzMzhvF+Tx2Rifvzh09kYd9pl/V9AWi3PK8rD7IDZNimbn1JU+qrHMG4Kg5agELSfbpm4bzbXXD92xjulStLf0ohqvZWkw0xIAaLlZDVruSij72xXkW7Q0fEeJeZ0I0/n2fGNC222sIN+qD/05E6rZz/Lr8OiQoKJg70sV9OkPKmiLvID8z1M2Vr0c2hGwLPuQsCIpe605PXw+QcvJtS7M32Ljp9AJKDF9jhbcp3W+dLOnJQDQerMatPyxoNxxNmQVy4t/LsizrDfs8XPuhvqXvtfhm4JyXa4gz6LZhDG9sMD2ylv+O+5+lpvD/CD8nYL+t7jkPh1nPa6u+f79bIrGqdgeV/raqKp9JQ8lfB9cqrnsZgCNRtByMq3qu8/jrP3lqmVqFW1N1LagpdPDAYBGzWLQcn1Cuc9UkG/RDMEy964q2g/uXqh3CVJZ4syTor39qjiAp+hk7FsL/Pyik5LH2c8yPvj8GR7N2tkWyj906umCz7zQwH20c4rGqo/6yvZ5hXntCWkHNdU5bjwM9W8DMckELSdP3Ae590DA+N9PqJap9lJoz/Lwor3PY9qtyQCAJs1i0PJgaObN8ncFeb5bYl6HC/I6NaFtty+h7TaVnGfKydsLXTZ7IJS/n+Wn4VGgKe4P+Fkof7/Convp7Zrvo1jWadkDbk2YP1v6dsXBjOdD2hLxDTXWQdHs5m98hc8jaDlZ4iy33pnqcZ/tVapl6q0N7TmIp+iF6bjbxgAAlGYWg5a/h/pP1V4XimcNPVNifn8U5PXWlD6U36ogz3cT7pO9C8zjQih3P8vnevrbocR+v3mMfH4L1RweNEzRzM5p2s/yeF/ZPqw4v0UhLWhZ56ybcwXX8q2v8JHGR0HL9ogz4c/3jfNrVMtMyFuS/UfN17IjYcxfr8kAgCbNWtBydUKZf68g36KN16+WmNfahDI+OYFtF4MqDwrKdbKCh4ui2V4xOLiQGXCLQ35A+9gY9TS33PCv7sNxUb+/N8Z1ryj4zCsV9IGTBXkenpJxqn/2y7VQzz5n1xLGjk9qrIdjNd/vk07QcnK+y872tMu/E/qdzHiWhXYcdhbtDO3aEgQA4DGzFrR8NaHMR0vO85lQPMuyzBlD+wvy+ntC225bQtu9X3Kenybk+csC8yg6HXrUWZy9+yBu6f6/vaH87QJ2F3zmdyW3Rcqp8a9MSUCjf6Z0Xae3nk6o4zoDhUWznL/3FT5S+wlatsOJnjaJL8WeViUzZW2Nv2EW+pv4huYCAJo2a0HLL0L9+1meS8hzV4n5nQnTeXjFuzXXY2+wOe/wn0MLzOeTUN6s2Gd6rvXLIQ/Jg9L+Ma7741Dvyc4p2zosm4Ix6r2+cl2uMe+vE+6xKzVeT1FA/19f4fMIWrbfkTB/O5PnVMnMyRvXXqj5Wl4vGDNOay4AoGmzFrRMmUm0vcT8doe0E3mXl5RfXGpctIR614S23fFQ7yEhP3U/88eCOt1cUj4L3c8yztCbC+zF7QZ6A3jXQ/n7qRbdS2Vu3j8XsI6zPm4Pye/yFIxPqwaUb0eN+e8L7TpBfFnBtdwPjHJPClo263BfW9QVoFrTvbct822HYePstQau5VDBmPG55gIAmjZrQcu/Espc1gm98TCf6wn5lXl4yEsFecXg26SernwhoS7LKttckCye3vx+qO7gn7hPYVn7WfbOfNza8/+LDq8Zd7bapYLPLeswq/XdB/y508in+STpb/vKdLHm/F8OaYfx1Dkb6M+Ca1kSmCNo2V4Hw/w9hLfWmPfcXsCbNEMrfBea3y94TtG+wa9qLgCgabMWtLybUOayZiOc6nlAycvv4xLL93lBXhcmuO1u19Rfnw2PlljH4OW3obpN818J5exn2XtwS/9hNG+EavZTvVvDfRQDUnPB0WMhf/+tSX+42jygTHUvHV0W0oKWe2q8pm8KruVFX+P/T9CynXq3fIgvDuucPT03Zl7WDK0x6GV2fHm5roFrKdpOyIn2AEDjZi1o+aCmMs/NCPut+7BQ10P3bwV5fVjw7+NMq/Utbbv7NbRdXKY/Nxs3LguPgbe8YOneBeZ3OCx8P8u4pHju1Od4gEv/zLOiZfW7cz475h8PbtozRnuUYS5g/He3bfICWGsT2ratBh2+c6yha0l5sVPnKe1FW2zsCcwRtGyf/pdGdR4W9lTorAaYewFH87YPuTePNHQ9V0M79i8GABhq1oKWD2soczzl+kE3FZ14fD8Uz0j7qBvAKFr6vDShfBtz/n0MVt5u8Q/VlLZb6Oy+uUOT4oPekyH/xPJ4PQvdSqCM/SzP9/SlZwf8+T8FZRi2jDvW5S9heGCz6vvo/Z5yzc04HPYCoOiE03goUFwG39ZTev8THt/GYV1D13I+oW3rPJxhach/2fSpr/H/J2jZLv0B97015r2q+10+N56s1BytcHHIfdnEjMZFBb+rvtZcAEAbzFrQ8l5CmRfy4zEeBDM3syEGIor2iDtb8Hl7Q/q+lzsL8rqe82/jLLQ/G3iwGkXKLNmFBHp6Z/HNBenyltv/ssDyLA4L38/y05B/AvgTBfWVV4a5k6RPjXkvLSSgu6fnc97q/r+8pcsnEwIH8XrbuKfbugF12eT+nMcS7rObNV/TueB02xRtDlrGl0Bxhu7f3bE89vn4EuLLMN5BYG33ct/4/laNeceXPFdCOduYzFq7VWnYnuPvNHQ96wvGix2aDABog1kLWl5KKPPuMT87znK70f2Mn7r/7/0w/nLt7d2HhNshLRhXdApk3vKj70N+gKoNblfYdr3LtL/s+f95S6cOVfQAkzorp3fZ4bCg3a6CPD4r+OzYn1cP+TvXCj5755j18kp4FKD+uu//D8vrg5w6frDAvlG1QTMbn23weg6FtH0tV9V4Ta+H9gRQ2+xsaGfQMt67edsOxODeJ1PUDnHLl94XEe9XnF+cMRcDUPFlz5nw+Muw7dptqLgfdHz5F18UxVO911aUT5zpOmjVw7kGy767YKxw2jwA0AqzFrQ8nlDmM2P+8L0ZHgV65mZrnijIa9jDxAvh0YnJqXtgnSrIa9eQf3ek57qfaHHbfZ/QdqPOUIs/yo/2/PsYbJ5bhl+0tH/zAsvzURh/1mjvDN64F+Kw/RoPhtEDi7EvpwT6imZ1fTlGnfQGYi/0PTR9kpPXywM+a1tP4OBAS/v0/gFl+b3ha3ojpAUt6wwCLwv5M63XBqK/QvuCls+FtFny/+1+P0+6zT3f3W1IV7XbQIuH/GZ62P1u21ByfueGtE2Tv7nyvlOPBACAlpi1oOVbiT/CR1lG+n54NLPhYTfoM+fngnwG7VMZg2VzS8xH2a/takFeywb8m97lz9tb3naHE9rt3ggPAXHZ2099DxC9s8fyAn63SijPyTHvvd6ZiDFQ/tQC8ljR9/d7tzcoOlW8KOgaZ+isHuEB8oswP3DXf215QdL+oO3WnsDBsZb25/VDghtN79G4L3GMPFrzdR0NDuPJsywU7/sb/7zu2VOnwmhBtvcmuA2e6xk/25IOaLeBDiTcK3ElwpIS8hq05ca/Bd/ddcjbdmNzAABoiVkLWq4OaQe6pPygjA8ov/T9u9f6/k7RjIv+B8j4Q3FuxuaoS7VHOc055nuk588mYYnX1sSHp/hDPO/QouXdB5beZW83wuOnpv+ek8eJEspzJYy+/LY3UHg/zA+QD3JphD7Ru73B3GndeTYmtMWPCZ+zJcw/OfuvIWW/lngfxRmAczMsL4TiA6yaCjANa5uml7EfSLzPboR6A2Cbcq7l28Cbie32Ys3XdS+MFvyK4/KKCaz/9T3jZ5vSOu020J+J5Yp/b9uYecT6GLRlw9+huYPWen8DDvvNeMlwCgC0yawFLUP3ATflx2oMOMbZds/0PZjEh8NBJ0AOmmlQtLzq0+6Px/jj9sOeH5Ex2LJ0xHIVBWPnZiPFQFdvQO78BLXdX4lt91vo7Ge4uCdIFJdCfxUe3xszBomf68tnXVjYfpMpivrGd6EzyyP2j1e6Zer985RtA4oC2Tu7dbS/p17uDqiPYX4PacsT3+l7SIv/HWf0/TTgYWnVGGWJM1l29d3b8dqWt7Qf581w2dXwtf00QqDijZqv7Zcw+iFjsyD28yuJbVb3eP8gjB5o2z9h9R+3J/g3tC9geV67DTXqjNgYfBxlBU78vTXoRVt8Gd2Gk9y3tGhcBwDINYtBy/iAUfaeU8NOBn04xmf9EAYv5S4yTplikGiSZkfsKrnd4oPmoL2r3gvVnYy9kIfC/3b/XepsvHH63yhBs+0ltsWFgoe5UT4rzo5Z1cL+uzwUH5ZyssHre2vEer4R6t1PMu8wpo0z+h0eVw/8OGK7xZc3dc2S/WuMseDkBNV/HGeuhPYFLBe6bcK0t9vpMes0vgyLL5jjydq9S8fjf8cXpR8P6Q/xt8beFpV/2IFr14IDeACAlpnFoGX0akkPBTe7P16HuT3i5x0L4++hdGbEvP5qaWCnyHcltd0vYfieixcL/l0Z/hzjmmN/GmXv0VEfpseZKXOkhLZI2cfxfuJnXW5hv44PgfEE7KuJZYizcZ6v8dq2h9H3sOsNXMaZOXUtw7885Dqm6fTpIjG4Pzdz/G4Y/4CWgwOCL3UFR4pepk2CJ3L6Y9Pp1gKDT9PcbtFLNbVDHB/jti7LWlb+Yf32XY9FAEDbzGrQMto7QiBk2HKhNQV5pC5FvxsWvrRq3wjX/lOYzIBlCMNP/UxNsc0P5DzQxYBA3gzFQyWV4+MxHgjXj5jHpyN8/psLaI/vx2yLuJdl6ob/v4a0PTRXtrCv3huzfu526zaezvtaidcUA/+nu33qQSjn4Tx+TtzCIO73uqXCOh022/raFH9Xxfq83g1E3Q/VBFfudz8/5vNqidcegzU/h9EDbm23KHFMaip9od0KHaiw/uOLz9dDO/dUfi4Mf5FhliUA0DqzHLSMNoT8WXXDfoymbsy+PhTvnRQDCGVtyl4UPLoX8gN2k+TdMNq+VDEAFGcmFS1nLQr+lnWq5vJQfFDO3EyND8Zss5Q8robxDxrofwBMDYDFYOUbI5bp3ZB/0uvHLezXS0p8CP6qhdc0LO2ruF6HBYt2Tun31PZQb8Cr7PaL9+Xb3e+nO6F424qbE9AmS0J7A5YxPavdksQZl7+XUN+xfuILqvjyb3XLy/xFaOchcAAAA8160HLOxm7QIx6QEZfg3u+mu92gT5zpFGdCjhNcfDp0ln3f6X7mne5DwIehmhMk46EncYbEvb783g/l7MXYJku7D9ixff7sKfO97gPUuW6wJ87OSp3xcKbgwaTs6/+g2153e649BvViMHtPWPhMjZhHDChe7qmf690HrFEDh0VWd/v1+Z7+HvOM+3md7l7HpgV8ftxr9O++ejqcpacM5TNl2Mn1F1XNROrfS/WCKtFuNXum+xvvWPf30s2e7+Te34PxuzOusjnR/c0YA33rJ6icK8LgLSXccwBAawlawiMxQJg3W/CEKoJWGLaX6guqZuJ/i3yrOrQblTgYBq9C8eIPAJiIH5yClsy6otPJ96oiaIU4a/xGGLyvKZNlZSjv1Gu0G4PFfcwHzbJ8W9UAAG0maAmPHCu4H55QRdAarwy5T19RNRPl1TD/QKflqkS7UbpBs9PPqRYAoO0ELaEj7u14O+de+E0VwUQ8iMfDpQRQJsf5nrb7WnVoN0q3ZcA4+U/wIhYAmACCltDxYsG9cEgVQessC51Dpqo6bZ1qbQvzZ+utUyXajVLFFzhX+8bHeJDdc6oGAJgEgpbQ8UXBvbBZFUErxUMkbg64Z7ermlaLeyL+09NeB1SJdqN0xweMjTtVCwAwKQQtoeNqzn1wR/VAq8WZXw/67tt4UM9qVdNKS7J0saetfg6dLTrQbpTn7QG/Z95ULQDAJBG0hBA2FdwHJ1QRtN6eAffuL1larGpaZWmWvu9po2tBcFm7Uba45c3DvvHwA9UCAEwaQUsI4WDBfbBXFcFE2B+8dGizVaEzO2+ubf4NneX9aDfKsyFLt/rGwfdVCwAwiQQtIYTfC+4DJ2zC5HhrwD38iWpp3AtZut7TJn9kaa1q0W6Ual1fe1kSDgBMNEFL/MDPvwd+U0UwceLsaEsj2yHueXiory2+C51TjdFulOfJ0JkF23tK+CuqBYCm9C5n/LBF1/XfGlJ8ELmfpbuhc2Lo+dBZ/vVl90HlOd2jtPaCafdewT1wSBXBRIp7uvUvkXxPtdQuzlS/Ex4tK96tSrQbpYsBy2s9Y12cbblJtQDQlLgs415o535Nx7N0NktXwuOzHOpMd7v1En9kOdlwOEFLZt3FgntgsyqCifV0lv7qu6c/VC21ezdL/wmdw1zQbpQr7mHZuyT8x9DZhxQAGnOi7wf4pZZ/kcaZDVdDcwHM+EV+wI+ugQQtmWXxR33ey5U7qggmXlzOeqzv3j6sWoApsC3Mn1FudQgArfhyGrRcuu2zCeNDwx9htGDjxW55l/R9Vizriiy9nKV3snQupM3qjMsmduhC8whaMssOFfT/k6oIpsaevof7EwN+XwBMin1ZetAdz/7pPjMBQKNisG5Y4G/DBFz//pAesPw7jDYzcnXo7GmZ8tkf6Ur/T9CSWRXHzPsF/f+4aoKpEn8rzK1WiTOp16sSYEKfCf/sjmVfBwckAdAS7+c8XE/CBtm7QnrQ8p0x89geHm0cnpc+1p3+R9CSWRRnad9I6P9xLFmnumDqxEN6dqoGYILFZ54tqgGAtoh7r90Okx2E2x3Sg5ZrF5DPS4l57NGtBC2ZCXFGwguhc6jAz2G0bSpicDO+MFqtGgEAAOBxR8Pk7732emKQ4FIN9RXTzSytnPF+JWjJNPsppM28Tk3xs37P0vfBbG0AAAAIG0PaHpBtlxJIjOmzEvJan5jXwRnvW4KWTLO4d925ipKgJQAAADMvzuwpCi5NwgniF0NaIHF7Sfn9lpDX9RnvW4KWAAAAAIzsrZC+dPH5FpcjBlQfJJThXigv+Hoksd42z3D/ErQEAAAAYCRxv8W472Jq0LLNB8tsTSzD6RLz3JeY53sz3McELQEAAAAYyedhtEMiPmtxWQ4llmF/iXmmnlZ+bIb7mKAlAAAAAMk2hM4+lXPBo5Sl1adbXJ5fQ1oA8ckS89yVmOeZGe5ngpYAAAAAJPsxzD8s5kAoDjBda2lZVoS04GHZJ6CnBi3PzXA/E7QEAAAAIMneMD9w9EaWdoa0ANziFpZnT+K1f1FxPQpaPk7QEgAAAIBCy0JnxuRc0Oi37v9fGdICcFtbWKZjidf+Usn5HkjM99QM9zdBSwAAAAAKfRLmB4029vzZ3VAcZNrbwjJdT7juuGfnopLzPRnSgpafz3B/E7QEAAAAINdTYf6BO0f6/vxcKA4yfd2yMm0MaYHDsxXkfTMx710z3OcELQEAAADI1RuUvJ2lJ/r+/OsweSeIfxDSAodvl5zvi4n53svSkgrKvTZ0ZnBezdL9LN3J0vEwf+ZsGwhaAgAAADBU/0E77wz4O6+F4iDTrZaV60JICx4+U3K+ZxPzPVxBmTd322FQfg+z9HqL2kfQEgAAAICB4onfV8KjQNHlIX9vc0gLxC1pUbkeJlzvlZLz3ZJYT3E266qS814d0palb2tJGwlaAgAAADBQ/ynXwwJaqUHAl1pSrl0hLXhY5j6cy7P0d2K+r1VQ5k8T8/6tJW0kaAkAAADAY+Leh72ngh8v+Pt/heJAU1uWH38V6j0IJwZ1f0jM87OKyvxrYv4xLW9BGwlaAgAAAPCYGKScCxDF4OXagr9/MhQHmo60pGwpMx7jaemLS8hrZZbOh2YDltGtkB603NqCNhK0BAAAAGCeGLTqDRB9mPBvDobiQNMPLSjb+pAWuPu+hLzicvqrIe2k8KpnoY4y0/KJFrSToCUAAAAA/29Rlv4Ij4JDf3X/X5GUfSLvtKB8b4W0wN17C8hjU5bOhPTg6FM1lPtQ4vX82ZJ+WDQLFgAAAIAZ8n6YHyDakfjv1oW0oNjKhst3OvE6N4z4uc9k6YPQOcgm5fMvhHpP6l6RpX9Cfft4LsTSgmu87jYFAAAAmB2rwvy9D8+N+O/vh+Kg2MsNli/OGH2QcI3/hs5hNP3p2Sxtz9LOLO3L0uEsnQrp+0XGgGY8kf2phsr/dLdsw67vw5b0w50F9XjKrQoAAAAwO+JBOb1LcEcNrl0IxYG7/Q2W78WQvq/jQtPD0NlHMp5U/mpoxz6RUZzp+mnoLPuP1xj304xL2V9oUT/8rKBu33arAgAAAMyGjWF+YOjQGJ/xbSgO5h1rsIyfhPqClj9n6Z3QnmDlpIizYa+F/P0sV6kmAAAAgNnwe3gUGIonXi8d4zPeCMXBvIstKWNdKQbZYjD3GV2slD70hSoCAAAAmA1vhvmBod1jfs5LoTiId7+hMq4OaUHGk1la0k0xcBv3sowBx3ggUdxrcU/oHFYUZ4xeCGn7eM6lo8HMyzyxvvMOC7odzLIEAAAAmAlxj8Mb4VFg6PwCPmtJSAverWmgnHsTr+2NET83LmeOh/P8kPj5sa536HYDfVlQd6+rIgAAAIDZEE/A7j08ZsMCP+96KA7c7WygnCdCWlDxyQXkEQ/cuZOYz7u63jyvFNTXd6oIAAAAYDbEAGUMVM4Fhg6X8JmnQ3HA7v0Gynor4br+LiGfzaFzIndK4PItXfB/NoX8YG881GipagIAAACYDfFQnLnAUJwhubyEz/w0FAfr6p4193xICyJ+XVJ++0L6PpdbZ7wPPh3mb0/Qn+LhSSvdqgAAAACzoX+Px30lfe6roThQ91vNZf0opAUQd5WY54XEPONJ7UtmtA8+F/IDlr8EAUsAAACAmbEsS9fC/OBQWZ4N7TtB/GLCNcVl8mUuQU6d3RnTBzPYB18M+Uv2z3X7KQAAAAAz4uOQHlCrKq2vqawx8PUw4Xp+rCDvS4l1cW3G+t87BW3yiVsUAAAAYLY8FTozHZsOWu6qqby7E6/nYAV5HxyhPrbNQN9bEfJPcb8ZOqeIAwAAADBjzobmA5YxfVRTeY+E5g7EeWmE+jg05f0u1u8/OeX/IUur3Z4AAAAAs+fl0I6AZUwnairzlYRruZelRRXkvWSE+jg9xf0uzu69nVP2P4L9KwEAAABm0uIwP4D3IFS3r+ShUByku1RDmZ8JaQHDUxVew4PEa7g05f3vydDZN3RY+f8OncOLAAAAAJghcTl2b5Do8wrz2hPSTuteVHGZ3wlpAcP9FV7DncRruDUj/fBQQZ94z60KAAAAMBvWZOlueBQcikt1n6gwv+dDWqBuQ8XlTt2/85kKr0HQ8nE7C+olbh2w1G0LAAAAMN2Oh/lBoQ8rzm9RSAvU7a7wGuJy+JSl2dcqrot7iXVxbcb65HNZup5THz9naZVbFwAAAGA6xVOb+4NjS2rI91ooDtR9UmH+qSd3H6vwGlKDtzGdncG+Gfe5zDtR/K/QmSUMZTuSpeWqAQAAAJoRg2bxZObeQNAbNeV9OhQH6k5WmP/nIS1YuKfCa0g9CKjq4Gmbrc3SvyE/cGnGJWWbO/zpOVUBAAAA9XsvzA8AXa4x769DcaDuSoX5Xw5pwcKVFV7DnpAetNw/w/306dDZ03NY3fwezIqjXHN9635w+BMAAADUKs5Oux3mB3921Jj/vtDcCeJrQlqg8PeK6+BoSA9azvqMrx0F9XPaLU2J+vvXuWBGLwAAANTi276H8os15/9ySAvWvVBB3m8k5v1ZheWPwdibiddxVXf9n8PBbFTqMah/xYOhXlQ1AAAAUJ3NofmZfMtCc3tKnkjM+6UKy783pM+yPKDL/s/S0AngDqunO8HBPJSj6ICwRaoIAAAAyjXo8J2mDnm5G4oDdocrKP+dhHwfZGlxhWVP3VMz1tETuu3/K9pW4CtVRAmK7stfsrRONQEAAEB5/hMeD8419fB9PiE4UPZehVtCWrDwfIXlfjukz7L8SJedJwadr4X8YLO9B1molHsz7gm8V1UBAADAwsXg5L2+B+9vGryeYwmBgZsl53kwpAUkDlZU5g0hbYZpTHFGbN3LUNdm6fPQWYYdT06Os1KPZ2lji/rxpwX19rZbnQV6NeSfWN+bjgSn1wMAAMCCDJrZ+GyD13MoMShQ5sy5XxPzfLmC8sb9Fq8l5h8DJk/X3B6bw/BATTzJ/fWW9OOdBXV3yq1OCZ4MnWXgKffr36H+fYEBAABgKuwf8KD9e8PXlHqK9+6S8lsT0pdlryy5rE+F/ENk+vex3FpzW6wOaaeZb2tBX15acI3X3e6UKPXlSpyZ/J7qAgAAgHTrw+DDZz5t+LqKDlWZS0dLyu+DkB60LHOWY9z37nZIn2G5uYG2+DTx+n5rSZ8uOkQJyhSD9f8k3iPngn1VAQAAoNCyLF0K1c5gHNeBxCDAjbDwvR3jv78S0oOW/ymhfHEfyO9HyDO201MNtcWvI1xnG/bvK7pGKFucfX068R6Js31fVGUAAAAw3LmcB+tdDV/bTyE9UPbGAvMaZZZlTPHAonH2tYxLl+MM0osj5BWXlcaDfxY12Ba3RrjerS3o14KW49eNlH5fzqW4ZcOdMHjGel76pOH7GgAAAFonzoY7W/BAfbLB63trxIf/ONty7Zh5xRmlD8J4gYsfsvRalp7pCz7E/46zWLdnaU+WDmfpwoj5xL/7Vegc+NG0UWZaPtGC6xW0HL9upHpTPMxnna8kAAAAZl0MpsVTnlMPfYknLT9f47Vt7+Y5zsN/DFzGGZeLE/PaEdKXc9aZ4jL1uDR+TYv6TephI5dacr2CluPXjVR/inva7vX1BAAAwCyKgbwYDLw35kN1XP4Y9188HjozC8u6pu9CJ3AYg13jznYcNEMxHghzIktb+vL8oPtnZeVV1vXGWZhxCfimlvafFSHtoJEdLbleQcvx60ZqJmi5x9cUAAAAs2hJiQ/YX7XwmoalfX15ngvN7HsXgxJ/hs6S/BhM/bQbpIhByknZ0y6emP5vTlnfadG1ClqOXzdS/cvDnwwAAAAAjC2ekPxxlv4KnWBsPHgk7n3athmigpbj141UX4r3koN4AAAAAGaEoCV1iwdvHQlpwcrrWdqmygAAAABmi6AlddqYpb9DWsDyTJZWqTIAAACA2SNoSV3+k6WHIe3ArXdVFwAAAMDsErSkamuz9GNIm10Z94B9VpUBAAAAzDZBS6r0apZuhbSA5dHQ2e8SAAAAgBknaEmT/Sum21nao6oAAAAAmCNoSZP965csPamaAAAAAOglaElT/evjLC1SRQAAAAD0E7Sk7v51PUvbVA0AAAAAwwhaUmf/OpOlVaoFAAAAgDyCltTRvx5k6V3VAQAAAEAKQUuq7l9/ZelZVQEAAABAKkFLqnQ0S8tUAwAAAACjELQEAAAAAFpF0BIAAAAAaBVBSwAAAACgVQQtAQAAAIBWEbQEAAAAAFpF0BIAAAAAaBVBSwAAAACgVQQtAQAAAIBWEbQEAGbFkiytUQ0AANB+gpbAtFiRpVdmuPwXjOHwP4uytClLe7L0aZZOZOlSlu5374sTqgjjfq6VM/59CgC0hKAlMA12Z+l6lh5k6akZLP+7xnBm2OosvZqlb7L0c3cc6L8XHmbpcpa+y9IuVYZxP9eZ7medzdJaVQ0ANEXQEphkT2TpVM+YFWedrJyxOngmS/eM4cyYF0JnFuUfOb9h4ouMGMiMQcplqgzjfrIPej7vdpb2qnIAoAmCls052FPPH05QnygjxRkvcZne3SzdzNL50Fmu92X3h/FzugcJtmfpRk+/Op6lxTNWB3EZ7CVjODNiXZYOZemfnD4fZ1keydIW1YVxf0FeytKdns/9NktLVT8AUCdBy2bEpTa9b8jbtL9WDPzE5UBXQie4+N+G0t1uvezu/kCHXp/09Zev1IMxnKn1TPf7IO87Kb7A+Ch0Zl+Dcb8cG8P8l4Nxi4UnNQEAUBdBy2ac6KvnSy2+1g1Zei9LV0NzAcy4xO9A8IafTkCi/+CBz2e0LjYbw5mB+z0u784LVsaZYDFYafk3xv1qxv0YpOyd3RyDmGYyAwC18MBbv21h8HLpts8mXB7y9w4blC52y7uk77NiWeNJzy9n6Z0snQtpszqvZWmHLjSz4gE7/cHzwzNaF8tD2osEmFT7snSroH+fzNIaVYVxv/JxP95nvYHLuMWP08UBgMp54K1XDNYNC/xtmIDr3x/SA5Z/h9FmRsbTX79M/OyPdKWZEw/duNHXD47McH0cTbxXYNL0H641KMVg5quqCuN+reN+DFz+25eXA3oAgEp54K3X+zl1vXsCrn9XSA9avjNmHvFwlTsJn/+x7jQzXhzQJ07PcH2Mch/CJImHsP1T0Kd/DZ19ocG4X/+4H/eXvdmX3x7NAwBUxQNvfVZl6XaY7CDc7hF+NC/kofKlxDz8UJ5+cXuBuwOCFktneBy5GQQtmT67Btzr/SkeFLdEVWHcb3Tcj/tZ9m/ps1MzAQBV8MBbn6JlPScnoAyvJ/5gvlRDff23+yN+pa41teKS8P4ZlnGJ+OoZrpNzA+4BYziT7q2E8f5z1YRxvzXjfv92QfeytElTAQBlE7Ssx8aQtgdk26Xup/RZCXmtT8zroO41ldaFx/ewjDM7ts5wnfQ/JB4d8DBrDGfS/Kem7xQw7pfrRF++14ODsQCAkgla1uP3hLqehBPEL4a0QOL2kvL7LSGv67rX1ImzZ/8e0NaHZrhOYhD/Xk9dXAmdk2QFLZlkHyWM8d+oJoz7rRz343d1/8E8cfuWxZoOACiLoGX1Upa9zaXnW1yOGFB9kFCGe6G84OuRxHrbrJtNlbMD2vj3Ga6PRd0Hwd4XHHN9XtCSSfVuwth+TjVh3G/1uL9zQP5faD4AoCyCltWKb6FH2Ty9zQfLbE0sQ5mnOu9LzPM9XW1qfBgGz0LeMMN1cjAMP7RL0JJJ9GpI2zJlharCuN/6cf/MgGvYoQkBgDIIWlbr85AesGz7vl2HEsuwv8Q8U08rP6arTYXnwuMnks76rI3n++oibpmwqMUPr1Ak7vF8r6Df3s/Ss6oK4/5EjPvrB3x3x2XjXjoAAAsmaFmdDX0/4lKWVp9ucXl+DWkBxCdLzHNXYp5ndLeJFx/I/hjQtnez9MSM1smyMH9vz1gXT/f9HUFLJklcffBPwpj+garCuD9R4/43wX60AEAFBC2r82OYf1jMgYT6vtbSsqwIacHDsk9ATw1a2vds8h0c0rafzHCd9D8EDprFLGjJJDmTMJ5fUk0Y9ydu3H86TN5e7QDABBC0rMbevnp8IwzerHxQauOpi3sSr/2LiutR0HI6xdm59we0a5ydvHpG6+Tlvrr4fsjfE7RkUqTuUSzIwaya9HH/h+AQPQCgZIKW5YtLe66F+XsRRSsTH9i2trBMxxKv/aWS8z2QmO8p3W6iDetfx2e0PlZl6UZPPcT/Xj1hD6/QK27xcCtM9hYpYNzP99qQ63lN8wIA4xK0LN8nfXW4sefP7ibU+d4Wlul6wnXHWXGLSs73ZEgLWn6u202sDaG+IPik6F9Cuyvn7wpaMgm+ThzLHb7DrJqGcX9JGLx/+5UKfh8CADNC0LJcT/X9YDsy4g/N/3Yf7tpkY+LD5tkK8r6ZmPcuXW9inRjSpndn9CHnjb56OFrw9wUtabu4193DhHH8B1XFjJqmcX/YvrVvaWYAYByCluXq/SF5Ozx+6nHKbJO2LY/7IKQFDt8uOd8XE/O9Fzpv95k8T+W064kZrY87PXVwNUvLW/zwuj50Do34N3T2JI0vGb7t/n+Yczw0s72Ivo9xv35vhnoOagQAZoSgZXn6D9p5Z8DfeS2hzm+1rFwXEh84nyk537OJ+R7W9SbW4Zx2fX0G6+PnvjrYnPBvmnp4jQdGDNvu4m73z+HpxHH83wkqk77PrI77KfJeRloVAwCMTNCyHPHE7ys99XZ5yN/bnPgAt6RF5UpZ1nel5Hy3JNZTnM26Sveb2Hsmb/n/UzNWH//pK//Hif+uiYfXGIi6V5BvnH22QTefeV+G6dqXWN9nVsf9UQzbB/1HTQ4AjErQshz9p1xvG/L3UoOAbVkmtyvxgbPMfTjjsqi/E/N1IuXk2p3TrjdnrC429o0Lv4f0/TybeHg9mnh/Ogl6tsXvu7uJfWXrkM+IB/O8HzrbRVzuft6Dbor//U+3n33ZHVOWVVwmfZ9ZHfdHkXeI4tOaHgAYhaDlwq3tezA7XvD3/0qo97Ysjf0q1HsQTnzI/SExz890vYl2OqdtT81QPSzpGxPujfhQ18TD643Ee/SBbj7T9oX0fYl7Lc3Se1n6I/Hf9/e5uLXINn0f435jPsq5tk80PwAwCkHLhes9ZCAGL9cW/P2TCfV+pCVlS5nxGB/OFpeQ18osnQ8ClrNgcbffDGvfT2eoLr4IxXvhtu3h9UFIDyI5JGt2nU7sI70vKeKBbtfD6MHKQSnuFfisvo9xv3Z5q3Suan4AYBSClguzta++Pkz4NwcT6v2HFpRtfeKD2fcl5LWt+0M2ZUbO67rdxHuloJ33zEg9bC/hvm/i4TU1qGS22ewqejHRmz4InT1sfw3lBCt7U1x++76+j3G/VmsLru953QAASCVoOb6491Dv8rW/Qtp+RCn7RN5pQfneSnw4e28BeWzK0pmQHhxt6nCW7RU8TLc11bEXW9HhHFtnYPxY2RcAift4rp6Qh9evE/vSD4FZ9dIIY8433e+8Kse17/R9jPu1ytu//ZCuAACkErQc3/t9dbUj8d+tS3zoWdlw+VKX9o16SuozoTOz5rfEz78QqtufLJWgZbkuBcsq+7eJGHdf2CYeXuMsmluheIbbRl8TM+uTMP7MyBjwi8tl48uL3oN14kvBNd175XBIm53fm47r+xj3a3Ml5/p+0xUAgFSCluNZ1ffgcm7Ef38/oe5fbrB88eEwZWnfv6Fz2nd/ivuIxUDfztA5jCE+YJ5KeNjr/UEbT2R/qiXtLWhZniUhfwbG/RkYP17rK/O3C/isph5et+Tcz3Ebh92+Jmba2THGnjiL8ckR89ldEBzpTwf1fYz7tchbRRN/AyzVJQCAFIKW4zkS5u9dNWpw7UJC3e9vsHwvhvqCZPHHa9zLLJ5U/mqWnmhhewta1leX16Z87IhBmdth/qEEyyf04TXOeotL/f/t3se3ug/iz/iKmHn3Rhhz4nLZhcymj7MxT46Q3xZ9H+N+5Y4VXONO3QIASCFoObqNYeF783ybUPfHGizjuEv7xj3hNS4FfKLFbS5oWZ43C/I/O+Xjx8W+8m5e4OdNwsMrs2X5COPNjdA59K0MRxLz/DOk7T8Nxv3xfRqqn/UMAMwAQcvR/R7mvy0fZ4nLGwl1f7ElZawrxRmrbZ2pImhZnqLZFyeneOz4oK+sH5fwmYKWtM0oh/C8UnLeFxPzfUczYdyv1OsF13hK1wAAUghajqZ/lti4e1elPNQ1tbff6sSHvhhcWtJNMXAbZ9fEgGM8kCgu+9kTOocVxSDVhZC2j+dcOhraNfNS0LI8RXvdfTulY0fc57V3n9h4GFEZs70ELWmbV0P6LPuyPZn4XXNVM2Hcb3QcuKZ7AAApBC3TxdO8b/TUzfkFfNaSxIe6NQ2Uc2/itb0x4ufGH+ox+PdDSF82uEO3mzr/hOLDOKZNvN8vh/kvJJ4u6bMFLWmblJUEMb1eUf4fJ+a/XVNh3K/MzlC8n7ltGgCAQoKW6Q73/djasMDPu55Q/01sVH4i8YHvyQXkEd/A30nM511db6oUzYL6fMrHjrKXpgpa0jafJY7tqyrKf1X3OzplRj8Y96uRsqJovW4CABQRtEyzoe8h6HAJn3k6of7fb6CstxKu6+8S8okb0aeeMPuWLjgVFiW09ZtTVuZtfeX7oeTPF7SkbVIOxLlT8TWcSbiGm5oK435lXky4B1/SVQCAIoKWaXo3948zJJeX8JmfJtT/dzWX8/mQFkQsawnvvpC+1+JW3XDiLQvNLRltQtxSonc5fHwhsHoGH16bdCRM9x60Sya0zi9UfA2p25ys1/f1feN+JdYktOHuAABQQNBy9IeffSV9bsphBb/VXNaPEh8WdpWY54XEPK+2+CGF9Ie5onbeN0XlPV7DA5qgpcDNJNZ51Qd+rUqsv1f1fX3fuF+J5Qlt+JqvKACgiKBlvjgz7FpPffxS4mc/G9p3gvjFhGuKy+SXlphn6uzOmD7QJSfa1jA7Qcv+lxLHKspH0FLgZhLr/HQN1/FPwnUc0vf1feN+JVKClm8EAIACgpb5Uk8hrTLVtXwtBmhTDi/4sYK8LyXWxTVdcqJtD7MRtIzL4nr3ho2zhFfM8MOrwM1sBW6+CO0IWp5KuI5j+r6+b9yv7DflrO1hDQBUQNByuKdC8UnHdaRdNZV3d+L1HKwg74Mj1Mc2t+3EStmYfxqClv1bHmypMC9BS4Gbtnkj4brP1HAdnydcxyl9X9837ldiSUIbfuwrCgAoImg53NmW/DD/qGUPOFUciPPSCPVxyG07sTaE6Q9avttXnk8rzk/QUuCmbfYkXPe5Gq7j9ZZch74//X3fuP+4pcFMSwCgBIKWg73coh/mJ2oq85WEa7mXpUUV5L1khPo47badWCl7XE366eHnwmQGAF4WuBG4qfH781IN15GyekDQUt837jf3fW9PSwCgkKDl4xaH+QG8B6G6fSUPteTh7pnEH7hVLqV7kHgNl9y2E31vTfvMCw+vzLqUk7tv13AdKcHTc5oL434lnB4OAJRC0PJxH/XVwecV5pWyjC4ejrOo4jK/k/gDd3+F13An8RpuuW0nWtFhT195eBW0ZOIV7Qf9sIZr2JHQ789qKoz7lViZkP9uXQcAKCJoOV88/fFumD8b5IkK83s+8YflhorLnbp/5zMVXoOg5Wy4UdC+33h4FbRk4p1P6HMrKr6G7QnXcFJTYdyvxNaE/F/SdQCAIoKW8x3vK/+HFee3KPGHZZVvo+OS3ZSl2dcqrot7iXVxrYF+sT1M995gde4ZWvRw962HV0FLJl7Kyd3bWzBuH9FUGPcrkTLTeb2uAwAUEbR8pP+tcAyO1bHR+7WEdvikwvxTT+4+VuE1pAZvm1rOJ2hZnmNhumc+eXiFEHYl9Lm9FV9DStDkPU2Fcb8SO0PzWx8BAFNA0LIj/nD6IzRzquHp0OwStpQZMTHtqfAaUg8Cqjp4OoygZXneLcj/e8NyqQ/L0ISUGfxVbwWRchDPK5oK434lXi24xhuaEQBIIWjZ8V5fuS/XmPfXCe1wpcL8L4e0YNbKCq9hT0gPqu1voH8IWtYXSPjXsDx1D6/om4PSjw0HTWJapZkw7lfi9YZ/awAAU0LQsvPQcruv3DtqzH9fQjtUtYxmTUgLZP1ecR0cDelBteca6COCluVZVpD/fcPy1D28MpuKghZxJubiCvN/uyD/vzQRxv3KHCq4xs81IwCQQtCyc/BHb5kv1px/yhK2mF6oIO83EvP+rMLyx2DszcTruNpQHxG0LNefBdewJDBND6/MpviC4n5obk+9opdhX2gijPuVKdq/+lXNCACkmPWg5ebQ/Ey+ZaG5PSVPJOb9UoXl3xvSA2oHGuongpbl+qbgGl40NE/Vwyuzq2j7kypP774Y6n8RCMb9jjMF17hGMwIAKWY5aDno8J1jDV3L3YS2OFxB+e8k5Fv1Er7UPTVjHT3hlp0Ku0Nzhz55eIX6FB2yditUs/XJopB/ENAfmgbjfqWuhmb2aQcApswsBy3/Ex4Pzq1r6FrOh/pnwG0JacHC8xWW++2QPgPwI7fr1FhaEFD4VBVN1cMrs+1sQR99rYI8XyzI83XNgnG/MvGlwcOc6/taEwIAqWY1aBmDk/f6yvpNg9dzLKEtbpac58GQFiw8WFGZN4S0GaZzs2IWuV1n5qHLqaKT8fD6ZOjMAP87dILQcUyNM6e/DJ0ZdhA9F+o/6O2LUO0BPPo+szrup1hfcH07NCEAkGpWg5aDZjY+2+D1HAppwbtVJeb5a2KeVRyUEPcyupaYf1w++LRbderknSx8U/W0/uH1lZD/0iHOsvlE89B1pKCf7ioxr3iQ1+1QXcBE32dWx/1UeVvAxG2JvIQGAJLNYtByf6hnpscoUk/x3l1SfmtC+rLslSWX9amQv9dR/z6WW92mUykeQJW3RHytKmrtw+tzBW3Xm45rIkLnhduNkL/H3dKS8no3J5+j+j7G/cp9Epo5fAsAmEKzFrSMS1YGHT7T9B56+xIfgo6WlN8HIT1oWeYsx3hS+O2QPsNys1t0qh0NDuOZxIfXU2G0E+nf00yEzgzFvH7yVQl5xJds14d8fly+vUzfx7jf6PX5XQcAjGSWgpbxYeVSqHYG47gOJD4AxZkqC11WE//9lREeuv5TQvk2Zun7EfKM7fSU23PqbcrpA9+qntY+vN4LowVu4ozpFZqKULwVylsL/PzjQz43BjLX6vsY9ysXf2Pez/ltBwAwklkKWub9yNvV8LX9NMJD0BsLzGuUWZb/7T6kjbOvZVzqF2eQXhwhr/hD92Cw39Es+SUnyEA7H14fjDiGxLRfU9H1TUFfeWfMz/1PzljytL6Pcb8WWyr8/QoAzKBZCFouz9LZgnKebPD63hrxASjOthx3xsjuMR+6YvohS6+FzsmovUHF+N9xFuv20FnSG09UvTBiPvHvxqWBT7olZ07ektGNqqeVD69/jTF+nNRU9Pi0oL+cCJ29l1Ms7X5/DPqcP7K0Tt/HuF+bYbOprwUvpAGAMUxz0DL+OIonFKce+hL3qnq+xmvbHkbfH6s3cBnfWC9OzCuelnp6zLyqTHGZ+oERHk6ZTpeH9A8n8Lbz4fXQGPe6ZYH0ezV09i7Om3n/Vfe7clCwI35vvJvzHR8P/Fim72Pcb8X3+buaDQAYxzQGLWMgLwYDR917qncPqrj/Ytwb67USr+m70AkcxgeYcWc7Dpqh+FvozErZ0pfnB90/Kyuvsq43zsKMS8A3uf3o2hWGz8ygfQ+vMRD084j3/i1NxQDxVPGvs/SwoP/EP7/R/W6O26ncCflBwq36Psb92j035HriiwWzLAGAsUxj0HJJKC/I9lULr2lY2jfij9qy0/1uiqeD/xk6S/JjMDUuA4zLxjf50UqOX4f0q52qppUPr/Fefjt0gkgxgFQUdLqpqcixrvtd8W8Y/4XYmSy9WMO16vvM6rhf5IvQzsMuAYAJNksH8QDttXHIGHRR1Uyk/r16L6gSEsUXXPHwmmNZOh86MxXjyom5F2NxNUTcqzKuXPgsdPbFXazvQ6NWdO/N/+r/AECZBC2BtjgyZBx6QdVM/PfLt6oDfR+m1sEweLulp1QNALAQRcuaAOryROjsW9c/Dv2oaibOyr423KNK0PdhKsW9aQfNsnxb1QAAC3U/5Act7UEI1OmVIWPRK6pmorwa5u83uFyVoO/DVBq0SuKcagEAypB3AmdMy1QR0IIHoKse/ifK+Z62+1p1oO/DVNoy4Pv6n9BZOQEAsGB/hvyg5YuqCKhZfFlyecB49JWqmQjbwvyZZutUCfo+TJ34IvFq3/d0PDTrOVUDAJTlbMgPWu5SRUAD4ub9NweMSdtVTavF/fz+6WmvA6oEfR+m0vEB39E7VQsAUKZjIT9o+YEqAhoSZy096BuT4kE9q1VNKy3J0sWetvo52BcZfR+m0dsDnhneVC0AQNneD/lBy+OqCGjQngHj0i9ZWqxqWmVplr7vaaNrQXAZfR+mUdw66mEwyQEAqMGwk3rn0h+qCGjY/gFj0wnV0hqrQmdm2Vzb/Bs6y/tB34fpsiFLt/q+j99XLQBAVVaG/KBlfJNqRhPQtLcGjE+fqJbGvZCl62H+i661qgV9H6bOur4+b0k4AFCLKyE/cPmyKgJaYG+wJK0t4n59h/ra4rvQOU0W9H2YLk+Gzkzi3lPCX1EtAEAdjob8oOXHqghoibiXVv/StPdUS+2eyNKd8GhJ7G5Vgr4PUykGLK/1fOfG2ZabVAsAUJddIT9o+aMqAlrk6Sz91TdOfahaavdulv4TOgeRgL4P0yfuYXm975lglWoBAOoU96x8EPL3tbTsCWiTOCYd6xurDqsWACjFtjB/ZcMhVQIANOVkyJ9tafkT0EZ7+h6q4qniS1QLAIxtX3g0oeGf0AlgAgA0ZmfID1p+p4qAllodOsHKOFbFvebWqxIAGEs8bOrP7nfq18FqKwCgJT9QejfZ7k+3u38HoK3iIT07VQMALMj2LG1RDQBAm8RN5fNmW+5QRQAAAABAnVZk6W4YHrQ8rYoAAAAAgLp9GvJPEX9aFQEAAAAAdXoidA6yGBa4PK6KAAAAAIC6vR/y97a0MTcAAAAAULtfw/Cg5d9ZWq6KAAAAAIA6rcvSreBQHgAAAACgRXaE/GXiX6kiAAAAAKBue0J+4PKIKgIAAAAA6rY7Sw/C8MDl91laqZoAAAAAgDrFE8NvhOGBy39DZzk5AAAAAEBtVmfpfMhfLn4qS+tVFQAAAABQp7dC/sniD7P0XZY2qSoAAAAAoC5PZOnz0AlQ5s28BAAAAACo1ZNZ+iJL94KgJQAAAADQIsuz9G6WLgdBSwAAAACgZZ7N0qHQCWACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA49iRpT+ytEpVAAAAAABt8FeW/pul37K0XHUAAAAAAE17IUsPQydweSFLS1UJAAAAANC090InaBnT91larEoAAAAAgKYdC48Cl2eDwCUAAAAA0LAYpLwY5s+4tFQcAAAAAGhUPIgnHsgzF7j8MTicBwAAAABo2MosXQqPApfxv9eoFgAAAACgSauydDk8Clz+m6VNqgUAAAAAaNJTWXoYHgUu72fpTdUCAAAAADTpTngUtJxLJ0JnCTkAAAAAQG3i4TvfhMcDlr3LxV9RTQAAAAAwmc6F4cG/SU9ns/S0JgYAAACAyTLNQcuY4r6XR7K0XlMDAAAAwGSY9qBlb9qsuQEAAACg/WYhaHkmS5s0NQAAAABMhmkOWv6apY2aGAAAAACo2qIsvR6GBytvZelN1QQAAAAA1O1+eDxgeT5Lq1UNAAAAAFC3uOy7P2D5gWoBAAAAAJqwMkt/hEfByptZelG1AAAAAABNWJ6lX8KjgOWVLK1TLQAAAABAExZn6UJ4FLCMwcsnVAsAAAAA0JTT4VHA8ocsLVMlAAAAAEBTPguPApbfZ2mJKgEAAAAAmvJ6mB+wXKxKAAAAAICmbMrS/dAJWMb9LJeqEgAAAACgKXFGZTwdPAYsf8/SClUCAAAAADTtrSxdzdIqVQEAAAAAtMUiVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwfe/cDedX5PwD8kSSTkSTJjMkkk5FJksQkkyQmmcyMycxMxswkScwkMzMmM5lEkiQzJjOTiclMZsYkmSQykySx332+935+3c/t3nOee+85555z7+vF4/ez76d7znme5zznOe/z/AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAxnq6lXbKBgByLPW8AAAAoAq7W+lWKz1spedkBznWt9K7rXSqlX5opbutdL9Tfx600r1W+quVzrXSsVba1UqLZNvELWylHa30SadsrnfK6kGn7O532oHzrfS5cnO/ZYh15L9WutBKqxQRAAAARVvWSmc7L58xXQrtETTQKwYmDrfSza76MkyKAZYYVNkiKyu3tpVOhHaAa5RyO9lK62Sj+63L+13H+qeV9ioyAAAAivJyK93uevGMo3gWyhZ6xGUD4uith2G04Em/dLmVXpS1pYuBr9MFltvXof2hA/dbtL2V/u2pH4sVIQAAAOM42vNS+7ksoY84SmvUkV556VErHZLFpYlThP8podxifVgve91vHTEY2v3x67dWekZRAgAAMKw4SupSz8vscdlCH2+EdqDjv5JTXBPP6KxifVhymcXRdRtls/utIwYpb3QdIwYxNylSAAAAUsUNdq73vMAeky308XYoP3jSnb4LliYoyuGKyixuBvOs7Ha/dawM8wOXcf1Uu4sDAACQa0OYP4UvphOyhT52hmoDKHPppKwf26DgVxzBd7Hzv8cRkt07S8f/f00r7emUwb0hyuyKLHe/dYmBy797jmODHgAAAAbaGuZvlhDTOdlCH6v71JW59Gdor4Ua10pc0UoLuv5dDHzFHap3t9Jn4ckRvanpDUUwsk2hf7AyjqZeNcTvPBXaax+m7jS+R9a737rEAPgddQQAAIA8cWOH3pFTcXSUNQTp50p4MrBxLbR3mh+l7v0chp9ybHfq4S0J86fmzt3na8b4zbjByq2EMvtF9rvfesQAeu/6nDsUNwAAAHPilPDeUTxxivgKWUMf+8OTQY04imtBAb97P6QHUqyzOrzPwpNLPywo4HfjaL6U6eKrFYH7Lef64jnZdR4AAID/bZDRu4ZlHPmyWdbQR5wS3Dul80iBvx/XUbwb0oIoMbixRJEkW1tiuUXvJ5TZa4rB/dbH6Z5jxZG7KxU/AORb5aEJwJRaGtrrofW+nB6WNQzwYU9dOV3CMeLaqo9CWiDlTUWS7FxXvn1ewu/H9RP/ySkvm3q53wY9i3o35olT4heqAgAw2OrOAzSu/bNKdky1uL7P+WBkETBbLvR5Kb0qWxggTke92VVX4qYeZY28OhTSgihnFUuS57vy7PsSj3Myp7xOKQr32wA7+hzvU9UAAAZ3FK51PTRj8PJZ2TKVngmPRwbslx3AjPgg9N9BeK2sYYCdPfVlW4nHiqP2boT8IMq/iiXJ8a7+bJkbGO3LKa/TisL9luF8n2NuUxUAoL+4o133AtW3vcxNnRicvtxVxi/IEmAGrAv9pwMa1UKW7unF5ys43oGQNvprkaLJ7evMrYu4veRj7QhGWrrfRre6z7MpBtqfVh0AoL/er5xxseqNsmVqfBnmB6UBpl3vTIK5FHf+XSZ7GCCuLfcwPB6Ru6aCYy4PaWvtbVU8meYCiWcqONbLOWX1ieJwvw3RN59LX6oSADDYW+HJ3fNekS2N17vL5UlZAsyAQWuXHZU1ZNg1oefllZAfRNEnyxbXQdwdqtlYMi9ouVtxuN9yPD/guC+pFgAw3EueHSub6+0+5blHtgBTLq7h+6BP+xdH9KyQPWQ43lVf1lR43K+CoGWTZE0Pj+3MUlnkfkvwXbBJHAAM7Ytgmss0GLRmj2mRwLQbtLOvdebI82OnrnxX8XHfCvlBlO2KpzayNuI5I3vcb4leG3Ds11QNAMh2qs8D9GwrLZY1jXB8QCfI11tg2q0Ngj6M7utW+itUv5PvqyE/iGITvfr4IqOc1ske91uiuNnPwz7HjnmyQPUAgGwX+zxEfwmm1tXZ0gHlZsQsMCtOD2j/7nkJpMZ2hewAyiP1t1b+GFBOJ2SN+21I5wecw1uKCQCyxVGVl/o8RP9upfWyp3bibu/Xczph22QTMMWey2j/TsseaiwviPJ7gcdaHdq7FMf+XFz79U5oj3hbrRiSrB9QRn+G9mZAZVFuzbzf8ryZUZ8AgByx8/Vznwdp3Fn8VdlTmzI6HvKnucTpJ0ZpANPsWEYb+LrsocZ25zzDi9pZOW4uci8MHo1ss598/ZZQuh3aH03Kotyaeb+lyPrYtktRAUC+5RkdpaNTdq0rOh2Z+OL7a2h/yS4qOLswtHdnvxHaAcQ4KvLjMPoOk7FcPgjtL+3/JaQLE87bNZ2gQRwVcLFz3vc7eRHz+W5oT5E5HMpbR2hVp2O/r1PGceRVXAT+39D+0p1nQ6cMz7XSrc55P+r83787/z2WySyMeoj1OY7cfT+017v9JxS35u3mThn1S1s1yWTUyaz28DlZRI3ty3mG7yngGM93nrtZx4nPs7WKY6B+oyxjwPLFEo+p3Jp5vw3j1oDz+FFRAUCaExkP9m/D6IG3SYqBpRigjIHXcxkvu2cLOt7ZAb8fg5jPJP5GDFQeCe21RR+FtGBlajpcUkc7Bmavj3A+P47wEhAXNN/aKdcYTItfyi90OoN5+bUh4zcPjHANF8L0BC9jMD8Ge99rpW9a6Vqf/LxR0LEWZHTeY/pUc8wAWSNn7sgeau5IyJ4pUcRHoa8Sn1/nFEdfcWZL71qWf1bwrFduzbzfhnEm43yeV1wAkO/1nI5S7LTVfVfLTaEdcLkS2l+kU4NP9wo49pqcY8Qg0KKc34iBzduh2EBlWVNQ4vqa3/U5RgxGfd4JLsRA2Nx09XjtO1rpt/DkQuipC5EfGePabw/4zZgnN8f43Vh3djboPn82tEcfxMBgHIX6yxD3SlFTqbblHGeH5pgBzmXUm7Oyh5o7nVF/TxV0jNQ+xEPF0dfFPuWypILjKrdm3m/D+CjjfI4qLgDI91lCZylOXXmtxtfwSqfDea6T4v9/L7EjuLqAY+cd452c39gbygtYxlTEtKKYT/12QfyjUzfy1tRcEUZfiy4e+81OioHOODLht8Rr/7rnt5bkdGiHTU1Za+rNMa5xb0HnkDXaIAaxF2mO6WNh54V9UN35WBZRc79n1N8tBR3j4RBturb2scU9fZu4HEyV67ort2beb8PI2hjouuICgMFikOndIYMXJ0L10yrGub63E65p3M7p8wnHuDzmMbLWcqtiSm2cQt07Ki8GmT4K6RsADcqnGBBfNcZ5DTPKdFVPZza+LJzs/M2yrnqzpvPbtxJ+P67XubIB90MM/CzppHi+Mdh6PPG+f6aA4z+d83JmbScG2RnqtT4ZDGNJRt29WuBxUp5XRuzNF59tV3ryJ87A+CBUM8pSuTX3fhvGqpyyfUmxAVCG/2Y4xU1smrSe3wc513OsgGP8HPJHqo5qXZjclNoYyLsU+k+53jTkb2UFGD8Z4xz/yOnkz41MiEHTv7v+ty9CfrAxrjN6LeGe+LLBbdl7OddW1HqW+3OOc2iKng8vz9DzoIp11vJmA2zWJaHGstZjLXLpli8S79nvFMn/xI/a/4bsD5IfhPJHNyq3Zt5vw8pae/2wYgOgDP/NeIodvb0NKas4ci5r7cJvCzjG2pzO74MxfjtrNGzsBC0sKd9e7ASs+q1dOcrC4T+E7HU/R3UloWyfDY9HM8S6sGnIss3b6CcGR5c2tC1bGqpZz/JyznG2hOkhaFmsX4MpkzTX1wPq7ZWCjxNHc93NuVcehXJ3wm6CfmtsZ6U4fXdbieej3Jp5vw3rr4zy/UWxAVCG/6T/n5q8sAHldTSUMwqyW9zZetA6mn+P8btZG1D8UFJ+xQ56vyBs/G/rR/i9ZSE78DdqUDcGpLOmHMeRFEu7Ooux07p8hONcSLgXXmtoW7YplL+eZd5mVfdD+jIDTSBoWZxFJbUdUIWFYfAHzTKmhMb2/G5GO7t7hsshruuc9wEkb3mksj6QKLdm3m/DOB+yg9KLFR8ARROwnP+F8NmGB2aeKeg4Gwd0mEbd3XZBp8Na5ZTauH7coEDgqFPR8zYaGjVwvD7nd58Lj6e3/xRGX6Pq9YT74JuGtmVvVXBvfJxzjAtT9nwQtKwuL2/qjlBjg54dX5V4zLjsSVxS4e9OMCQGw+LoszUzmP+xj/BpyB/JmJrijIHlys39NoKTYXJLPQEwowQrn1z7Z1eNyysG/x6Eata56RcE+mDE39ocqp1S+0oYPKppnB169+Vcx7cF5vVcihvuHAqPp58/Pcb5bwhpwfsmOhXKXc8y3nu3c/LuvSl7PghaFidv1/tpC3gzXfqtdx3bw2WypvR248+S2rw4WnOpLHa/DSnv4+0hxQdA0QQq+6f4lbiu08W/zzjvIwUeZ0Gf3x91LaKPQnVTajeFwaM6fx3zWHEkbtYUzw0j/u7pjN+c67z+E8YfCbw4oe7fa2hbdiOUu57lroS8e2HKng+ClsXJG51yRneEmho0w8OIqvLFj3H/dp7LD0po987LYvfbkPJm7JxVhAAUTYCyedPFP6+os9AbtPxzjN+6VFGwIJbXnTB4rZ11BRyj3y7u8WVi3xi/mTLla29F93wT19ZbWUHeXco5xp0pfD4IWhYnbz3Zr3VHqKl+m499KVsmJq5HGTcRfKXT74gfRK6P0fbtk6XutyG8Gix1AgCViev5nMp5+MbRbXWbLp61ruLtAo/Tu87iwRF/J45YzdpkpqgptbEjn7U4/WcF5k38En6iU39ivowT3F6X8FLxbYHnnneshw28l/eEctezfC4h305rUslwI6f+fCGLqKF+I8yvBjvd11Hssx0PgzdwGZRuBZunuN/S7Qj5O8QvUJQAUKy4w3TeWnV12l08b33IojqfB8L8QNaKEX9ne6hmSm3WCNQ4taqua28dSHipKHIB+2kcafl1KHc9y0+C0SqMJ29q53FZRM08FZ4cwRdHlD8ra2otrnt9NGQvZdObDsg291tBffqYVitOAChenF76e2jGdPFFOef5SkHH6Z6iMs6OhVmLdhc1pXZrTp4cqXHd+zZUN211YUjbjKppylzPMr5IpIxceSZAfwsS6s+bsomaORaeHEG1VbY0Rvwg/FdIC1r+LrvcbwX1t2ParjgBoBxxunjeFL4Y0NlZg3PNCqIUMeJrTShupN+VUO6U2kU5HfOHnbKtazDjYU6dK7LTuiyhs/lDw+7b1aHc9SzfS8izvzSfZHgqoQ69PqXXfiJM91qo0zpNut9mIALrzROf+b8m1uUXZJf7LcHKhLq0W5ECQHlSN56I08UnuWbLxYxzO1HA73dPtR4nsLgkZE9RKuJF/aOcsvqqwfXtRsHH2xamb23GN0N5IyDjPZ6ywcGJAIMtDbO7vICgZTPra+8H3MNu48aKS/vcCqaIu9+KsSShLr2mWAGgXH8kvqz83EqrJnSOWRsIjTudOI5KnFt/LQYcx1mbZncod0pt7OzlTd3dWOO6djTn3I8WfLw9CfX6g4bdr6dDeUHfNxPbAqMKyLI5CFoKWjbH+eCjzLRJ+SB/Rja53xKkBC3fUKwAUK5zQ7ywTKpzcSSUtzZRdyBt3M0hsjbHKWJKbd4oy7pP2/055/zXVlhv5tKOht2vd0M561nGUZY3EvIrBvaf1mwyZsBA0FLQsg4OBoGsaXUhpy5fk0XutwQpy51YSgIASpYSqIgpblQzqZGWe0M5uz/HtWrud34nTicaNxiTNWp13IBvDCrl7fpe5x1586bO/1bCMc+G/ADcwgbdqy+G8tazfD+xHbiqySRHysYFgpaClpO2o+faLrh1p8qmnLr8QBa53xLkbQZa980vAaDx3k58UZn0ejM7SnqROlHgS/SKUO6U2p0J5bStxnUtb+r8wRKO+U+Yrk143g3lLD8QNy+YG8GZl2efaDbJsTYIWgpa1tv6MH+ple9Csz5gkSZvjeYFssj9lmNxMNISACYmrn14P+dBHEcfbqnBua7JOc8XR/jN7lFrRQSvstZPjCP6lo75+2dy8uBhzTvgX+Sc/5qK60wTF+I/H8pZz3KubGLg8vucPNuu6SRHyhpgdg8XtJyUZ8P8jVp+6gQmmD5fhdlbo9X9Vv3zzJqWAFCCOH0vb0RVDF4sr8n55k3PGGVdwqudf3uvlZ4r4By/CeVNqY3ByIeh2aMGs6bO/1HC8Q4kdDRXNeiejXXgQSh+PcuNXb8RR15nbfQU66DRSORZGIxMoZ5in+avMH+DwSWyZWq9FgQt3W/jsXs4AEzA/pC9tmBMH9bwvLMCNnuG/K3uabbvFHR+t0J5U2pT1oir8w6MK0O1u4ZHP+Yc87uG3bd5OzKPsp5lfGH7PTwe/bAl5H/IgBR5z5jPZREVi7Mdfu2qg/H/XyZbptr2YHq4+23868jrf+9W3ABQjNhZyNuYJE4x3VDT889am2iYUTtxVOW9UGzg6vlQ7g7VH4ZmrxG3L+fci65zz4Tp2zX8YCh+PcuPw+PlC+I6hJ/kHOMjzSiJ8jYN+1IWUaE4WupymD+6f7lsmXqrgo143G/jyftgbNkcAAr3nzQwxfXylta47L7NOPcvhvidnzr/5k5ob55ThLdCuVNqTyeU3ys1Lrus879dwvHyAnx/NLDtuhSKXc9yXXg8Gm5uo62rOfm2ccqfDy/PUHt/ruS8vJhz/K91R6hIHFH+fU97uVK2zISsqb3XZI/7LcG2hOfpasUOQJEEJ/sH1d5tQNmdKeAF+KOuf7OzonO7VMDv/5xQjs/VuOxuVxi8WNDpJE/TzsUx6J013fbkCHk0N23rj85LxoqcPLs/A88HQcvinMw5/hndESoQ27oLXfXu7zDaqHSa6amMNui07HG/JdiR8yx7FCwzAEDBBCnnp7hA9vqGlN1XY74Ab+gK/Hxa8LllbV5ysOTfn0t13Y1xXah2LaC8hfd/a2C79Uoodj3L7uD9ps5/25tzjLMz8HwQtCzOuznH/1Z3hAp0j/KPH8+elyUzJWt6+AHZ435L8GrOs+y2YgegaAKV8wN9TdrF72jGtVzI+bdxLZ250XdXQrE7IL8Uyp9S+yihPOsqK3gRr+vpgo93LSeftjaw3ToailvPck14vKnVZwNeNvql/TPwfBC0LE5eoP1v3RFKdqKrvt0N7Q9ozJasdmiD7HG/JXh9ws9SAGaQYGU7YPHWlHUc8jbUmVsPMH4RLXptnQMhe0ptEdNGmhy0PJ9xzpcLPlbehj+nGtpu/RSKWc8y1sW5dSvjxlZPdf1vt3Lybs0MPB8ELYvzVMJzCMpyrKuuxZkKVQWoVnaeQ6aL1sOgPsFNWeN+S3Q451l2XPEDULRZD1j+GZr79TNrikbW9IxPw+NRfWWMsrtYQWDgQWhm0DJ2JB9mnPORAo+1uPMiklVHljWw3i8Kxa1neaTr323u+u/PB6PiIkHLYv2ecw6LdEkowaEw/8Ph5gqPPbe+9XrFUAvfDGh7jsoa91uivPWZX1UFACjaLAcs4yizJQ0uu6zFsP8Z8G+6d/UuY7OhvKDcOwUd55+E8l1YwzLbknPO2wo81tEKj1WlnaGY9Sw3d/2bYz3/2xvBTs+RoGWxvgzTt1QD9fZemL/JYJXt/tyH1d8UQ230m0EQPwI+K2vcb4nO5zzHVqoGAPCkGJx6Z4iX04ehuODZJG0Lw0013FFB0GVrTt6vzfi3cS3HbxM7eZcSyvmFGpbZ4Zx6WdSUnhdD9mjEIw2u98fC+OtZxjVd50ahxjU/e0e4nQqjb5YUjx9HcO/RNNNjd069UmcoUu/Hl50VHvu50F7Hr6wPpAxv0EeoE7LG/TaE6yF7M1MAIMNnIT+QFQMVL03J9eZNYe0Wg4n3O/89rgdY1ijErKBc3o6Cc19vU6a1fJNQ1rtLuL44Mvfn0F6zZ5TdyX/MON+fCjrHeF5/hOndpbiI9Sy/D4+D+/2C2zdC9mZJSwf87oJO/Sir/tFs8d7MGon+sSyiIL0B8r0VHnt5J3gx9zFuqeKohR/6tDlxvUUj49xvqRaE7A/iX6gKAJAtb0e7S52H+7TI29hhbvTYxk7HdG6zkTLXMcwKymVt+vJhGG5dpbzpuzF9WvC1Lem6vh9G+Pd5azEeK+g8T2Qc42po9pIIC8P461l+HLJ3AF+WU69+zvjtLzp/c1ZzzABVrPnLbHulp52scqPBdV0BlJhOj/Fbz3Sei3HkegzGxA+vcepr/EC9RjEPZXsod8meWS63abnfUqwO07nsEABU5nTI/vo3bbtXLszpPMTgVNyxcG79xzjS8bmSzycroPRaRocv/u9xk4rUjSieC/lBy+sFXlv8cn05jBf43RXKHxmaFcyNoy+bHrTfHsZbz7I7f86MWE6f5Px2vM9WaI4ZIOvj2h3Zw5i6Z1XEdKDk4y3oBDLi0gbn+/QBXh7xd+PU2nshe8R70zePiesqx49oca3buOPzqpKOE/sv/WYPXCzhWLNQbtN4v6XKWuLk3yl8zwKAQq0J/QNm8b+9NcXXnRVciZ3gu12dibKnxecFlPp1yF/onFssp2F3cb8S8gOXrxRwXTEAdbXzezE/1474O3nLF4y7EH7sPA+aevpHmI5A2kdj5OErXX8X17EcNOL0UM4xdgx4+ZzLe9PCyfJUyJ4ivkoWMaLuWRV1SKN+OFyXc4+kzuCoq/iB9+yA/uq5MfoYg1wcUDZFz7qZ9nKb1vttGFkbPFobFQAyxODDr6H/qJUtU37tWR3Euf8trttXxZSNg2G43czjOkp/h9G/Tr+W0In7PYy3fueGrnOMX9M3j/Fb18JwGycN46UweEf1y6HcJQGqdCakr+PabWfX/RDbhefGOMbTPX8fXzDnPg7Myq7ijOerYDMeirWuqx2qSzo44rWcHfI47zWsrA7mXE8MXsYR/YsKONbJPr//dyhn1s20l9u03m/DyFreZKNmGAD6ixsb9Ftc/M9Q7lTouniQ0JGpagfDrM5M7xqQMWA5t1nMOFOUriVc/6hffz8Kj0fvjhv4XRHyN4ga1aaMzvPJgl586uKvnHxcPqAcu4PDeYHnX0N6YDSOFL7d1eYsCZBvfUb9EvhmWKu72qE6pVFnD9wf8jhxOvLTDSqv3xOvK/7dqB/eY35cGNA3frak65r2cpvW+y3Vgox3jl81wwDQXwzGfBf6b7gzK7tV5k1Neb3Cc8nqsMaOzvOdTs+rrXSr89//GrOs4sv/o4TO3JkhOse7el4qYh5vHTNv9uSc328j/u5rAzqR8b+9OYX1PW/q2TeddiHWsxis/yUMH8DP+xAQp4fH0btxE59/ul6+1gVI9/OA+nVL1jCEuJzA3zUMoHxfYjvfL+1vUJkNO0LvQqevM0x/42af3zlbct942sttWu+3VJsyjv+GphgA+uv3FfnrMFsLQWcFLT+o8DyWj9DJypumm+rNxOPFL+NHQnuk3cKec4+BqLhWz/WefxMXry8iGHUq5E8HG2aTnBiAHTTFNAbqpnVn1VFeiuaWSkhda/LRCL+/S3PMkHZm1KcXZQ+Jz9280eeTSuMsc/DHCMc706ByOzdinl7t9OvirI/uGRTx/9/e6d/0qw8xyLa3guua9nKb1vst1eEweKaQDXgAIDEIdHAG82FQ0PLjis9jw5AdrDjSoMiNgfaX0Ak8H4rbbftWSBtNkbf+Znw5eXfA790KzRu1MKzfRyjHOBpymB01h30p2R9gNL8NqFNHZQ05lmXUn0mnu2MGMQ6PcMwmTU/dXlE5xA+1cXmUpyq6rmkut2m+38Z9Xr2rOQaAJx3v89B8bUbzol/Q8osJnEcMtqWuZxRHL64t4Rzi2k/XC+gAxq/GRY5KWDNkBz5+MZ+byh47onE0ahwl+NWA8p57MZmF9RSPjPBCtHrIY3w8xO+/GWB0u0Lxa9wy/eJz4UpNAygxfTrm9cUg2+URAjdNcrDE/I9riL8extuEULnNzv2WYl0YvGO5UZYA0OO9ngdmDOJsm+H86A1ifTXBc3knoXMVz6/MNZXiSMS4E/mNETp+1zrXsLDifIlBsh+HPNc4hTmu57p3xjqMMTD7a0gbYfL+iHmTcozYUd8SYHyDXoZ3yBoynnP/1Ti9UFCg6O1W+rbTz8lbtuNOA8sxjri8WkB+x/yJ61XGj2grJnxN01hus3C/5fl0wLF3a44BYL49fQITL814nnQHV47X4Hzii/bFTmc1bmgSNyj5KbSnO1a9zmKcsn6w05n/s3MuD7rOK+bd6dAOhK8t8TzO5nQ454K4caOiuF7VuU7dvt851/h/b3T++7FOJ3HxDNf5eO0xIHm5q0xjHsWg8zeddmJhAceIdee3rnK41SnLN4KRBRTnxTB4tBTQ31vhyQ0Ymyr2jeIyIydDO9h3p6e/Mtdnic+gC51+y5FOX2C1cqNkT3fq33/KDgCyxc1Tujfh+DtM72Yjw4ij9OKorz2yopZicCtr2vw1WQQz78SA9mGDrIGBejdhRLlRvEN9nk0xiPmcrAGAx2Lg51qYvybiM7KFBtgcskdZfimLYObFTR5u92kffpQ10NfSUP3uySi3WRM3o+w3yvJtWQMAT4pByhudtFJ20BB5i+1bDwiIdg5oI3bKGnjCq133SJyFs0SWKDcK128WwEXZAgCDrQwCljTLDyFtPUuAfi+I173YwxO+77pHvpAdyo3CberzPIoDR5bJGgCA6RA3g8naOfM3WQR0earTLvS2FZ/LGvh/W8L80XrPyhLlRqHih7LrPc+huD77OlkDADA9Bk33FIgABombG9zp0168LGvgf7MTbnTdFwdliXKjcKf6PIN2yBYAgOnyabCeJTC8OCLpYU97ETfqWSFrmGGLwvwlVy6H9kaNKDeK83af/uqbsgUAYPr0m+Y5l+K08adlETDAnj7txs+hvewEzJrFrfRt171wMwjiKzeKtjU8uazR+7IFAGD6LA3ZoyyvyiIgx/4+bcdp2cKMWR7ao/Pm7oG/Q3sZBZQbxVnbSnd7njcHZAsAwHR6NWQHLT+VRUCCt/q0H0dlCzNiQyvd6qr711pplWxRbhTq2Z7yMiUcAGDKfR2yg5a7ZBGQaG8wZY/ZEtc8PNxT578J7V2NUW4U55nQHgXbvUv4TtkCADDdrofsoKUOPDCMuNZY79S992QLU2pZK/0bHk8rtnGdcqN4MWB5s+uZEkdbrpctAADT7fmQHbD8TRYBI7Ytf/S0Jx/IFqbUu630YWhv5oJyo1hxDcvuKeE/hvY6pAAATLkPQnbQ8qQsAka0pNOGdLcpx2QLAIm2hPkj9w/LEgCA2dE7Eqo3vSWLgDHt6XnpjLuKL5ItAGTY10oPO8+NG6EdwAQAYEbsD9kBy5jelU1AAVaEdrAytitxHbnVsgSAAeJGSb93nhlfBOurAwDMlB2t9CDkBy1/11EECrS10/4AQJaXW2mTbAAAmH4vhHagII6uvBTyg5XdKe6qeTy0p3i+0ulErpWlAAAAAMA45qZlFpVs0AMAAAAAjGVjaI+ULCptkKUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBXL7TSkVb6TVYAAAAAAJPydCu9F9qByv+6EgAAAABApZ5tpU9b6X6YH6wUtAQAAAAAKrW8lT5rpUehf7BS0BIAAAAAqMw7rfRPyA5Wnmql9bIKAAAAACjTylb6MWQHKy+10lpZBQAAAACUbWsr3Q6Dg5V3W2mPbAIAAAAAqrA3ZK9deaWVVskmAAAAAKAK+0L2dPDzrbRYNgEAAAAAVdgRsgOWZ2URAAAAAFCV1a30bxgcsIwb8iyUTQAAAABAFRa00m9hcMAybsizQjYBAAAAAFX5MGRPC98liwAAAACAqsQRlPfC4IDlt7IIAAAAAKjSsZA9yvJFWQQAAAAAVGV5Kz0IgwOWl2QRAAAAAFClQyF7lOUeWQQAAAAAVCXuGB53BR8UsLzf+RsAAAAAgErsDtmjLE/LIgAAAACgSudDdtDyNVkEAAAAAFTlqVZ6GAYHLB+10lLZBAAAAABUJW6wkzXK8oosAgAAAACq9HXIDlp+IosAAAAAgCrdCNlByx2yCAAAAACoyrKQHbCM61kulk0AAAAAQFV2heyg5R+yCAAAAACo0vshO2h5ShYBAAAAAFU6GbKDlh/IIgAAAACgShdCdtBylywCAAAAAKr0Z8gOWm6VRQAAAABAle6F7KDlU7IIAAAAAKjSg5AdtFwgiwAAAACAKj0K2UFLAAAAAIBK/RcELQEAAACAGhG0BAAAAABqRdASAAAAAKgVQUsAAAAAoFYELQEAAACAWhG0BAAAAABqRdASAAAAAKgVQUsAAAAAoFYELQEAAACAWhG0BAAAAABqRdASAAAAAKgVQUsAAAAAoFYELQEAAACAWhG0hHpY2kpHWulLWQEAAADMOkFLmKynW+lQK93r3HP/yhLGsL6V3m2lU630QyvdbaX7rfSwlR506tlfrXSulY610q5WWiTbAAAAqBtBS5iMJa10sJX+6bnnBC0Z1qpWOtxKNxPa9H4pBjRjEHOLrAQAAKAuBC2hWk+10kehPQKu3z0naEmqOEo3jpZ8GEYLVvZLl1vpRVkLAADApAlaQjUWt9L7rXQn554TtCRFHBU56sjKvPQotJcsAAAAgIkRtIRyxfUCD7TSrZAWMBK0JM8boR1Y/K/kdCG0g+0AAABQOUFLKMfCVnovpAcrBS1J8XYoP1jZnb7r1GUAAAColKAlFGtBK70TRp+6K2jJIDtDtQHLuXRS1gMAAFA1QUsoRgxW7m+lG+HxuoA/tdKJ0N4s5XIQtGR0qzt1o1+d+bOVjrbSrlZa0amLc+LyBGtbaXcrfdZK18Nogcs3FAEAAABVErSEYvzeuWd+aaV3W2l5n7/5KghaMporferKtVZ6eYTfipv4/ByGC1rG3e6XKQYAAACqImgJxYi7La/N+ZsVQdCS4e3vU0/iqMkFBfzu/ZAeuDymKAAAAKiKoCVU6/cgaEm6p1rpTk8dOVLg728M7VGUKUHLGOBcokgAAACogqAlVOt8ELQk3Yc99eN0CcfYGtprsKYELt9UJAAAAFRB0BKqdS4IWpImTv/u3oU+bqJT1kjHQyEtaHl2gvkR1+KMQf/NqgYAAMD0E7SEaglakmpnT93YVuKx4i7jN0J911x9ppX+6ZzDflUDAABg+glaQrUELRmlrpyv4HgHQtpoy0UV50MccXq56/gvqBoAAADTT9ASqiVoSYqFrfSwUyfiepNrKjjm8pC2tuXWivPiy65j31Y1AAAAZoOgJVRL0JIUu7rqxMkKj3sl4bnwSoXn837PsU+qGgAAALNB0BKqJWhJiuNddWJNhcf9KtQnaPl2n2PvUTUAAABmg6AlVEvQkhQ/durDdxUf962E58L2Cs5j0Pqay1QNAACA2SBoCdUStCTF1630Vyh3x/B+Xk14LpS9Ec7xAce9qloAAADMDkFLqJagJXW2K6d+xo16FpR07KWtdDHj2J8oHgAAgNkhaAnVErSkzvKClr+XdNyNrXQ959jbFA8AAMDsELSEaglaUme7c+pn0bt3LwmDp4N3p4ehvBGeAAAA1JCgZbb4kryllQ610tlWutlK9zsv0N+30rNj/n787dOtdLfzm7c7L/A2m5hegpbU2b6c+lnU7t3LW+mDVrqT8ByK6YKiAQAAmC2Clk9aGNqjjWIw8V5O/sTpjEtGOMaKVvo243evtdJi1XMqCVpSZ0dC9mjHcdql5Z3f/yW018b8r8B0WNEBAABMF0HLxza30lehPZJymJflj4Y8zvrQHlGZ97vvqZ5TSdCSOjudUTdPjfG7zyS2e6OmXYoOAABgughahvBqK/3V59ofJL4s3xjiWHGziX8Sf/eU6jmVBC2ps98z6uaWMX53bygvYBnTWkUHAAAwXQQtQ3g9tKc9nm+ld1ppQ3i84UOc+n0kIZ82JBxnTWivXZn6Ei5oOZ0ELamrJRn18mrJx85a2/JTRQMAADB7BC3bm94szPmbMzn5dCjn38e13G6E4UYOvV3Ctb4cyh3tVKd0rqb1TdCSusraObzM6dfrcu6JHYoGAABg9ghapnkxJ5++z/i3cdTmDz1/+2znv8cRml+F/qOaytiIR9By8gQtqauvB9TJKyUf992M+yFu2LNQ0QAAAMweQct0f2bkU1z/csGAf3cs5E/5jlPH4xTIs630YRhtR/IUgpaTJ2hJHS3s1L1+dfKlCd4TPygaAACA2SRome7znLx6sc+/2d71v1+owTVPC4LaAABHa0lEQVQIWk6eoCV19PqA+vhVyceNH3vuh9GX3gAAAGBKCVqm252TV3t7/j6uY3m7879dC+WNnhyGoOXkCVpSRz/3qYux/VpW8nE359wPWxQNAADAbBK0TPd0Tl593fP3Fzv//V4rPV+TaxC0nDxBS+pmU5jcBjgfZdwLcQTmAsUDAAAwmwQth/NHRl5d7fq77qmWb9bo/AUtJ0/Qkrq53KceflnRsS818B4GAACgAoKWw/km5O9yu7KV7nb+27eyjB6CltTJrtD/A8yiCo4d28uHGffCe4oHAABgdglaDmdfTn7FkYxz08Jj8GmVLKOHoCV18VQrXe+pf3da6dmKjr895154QREBAADMLkHL4byQk1/fd/3/78gu+hC0pC6OhSdHi2+t8PgfZ9wHdxQPAADAbBO0HN79hHy7KpsYoIlByxNhutc/XTSD9bDf5jtVr797JaNMTmsqAAAAZpug5fDOJ+Tbi7KJAQQtBS0nbWkr3ejJg8MVn8OS0B7ZOahMXtdUAAAAzDZBy+EdzMmzE7KIDIKWgpaTdr4GbdbunDJ5RlMBAAAw2wQth/dKTp7tlEVkELQUtJyk3o8uZyZ0Hp9nlMdfmgkAAAAELYcXAxxZ0xrfkkVkELQUtJyUHT3XfWGC5/JHMFodAACADIKWo/k1I89Oyh4yCFoKWk7C+k7dmrvm71pp4YTOZUVOeezWTAAAACBoOZqsIM5vsocMgpaCllV7tpVudV3vT620eILnsyejLOIo9qWaCQAAAAQti3/pjulpWcQATQxa0lzLQ3uNyLn69XNo79w9Sd9k1P+rigwAAIAQBC1HtT/YjIfRCFpSlThisXspi/j/L6vBed3KqP+fKDYAAABCELQcxTNh/tpw/dJx2cQAgpZUIY6mvNxVr+LGN8trcF7P59T/HYoOAACAEAQtR3E5Id8u1/TcXw7TvTZhdzpX0zIQtKRscY3O77vq1I1WWlmTc3sro+4/DJPbHAgAAICaEbQczsEwf8OIrM0k6vjyLWg5eYKWlGlBK13oqk9/h/bo8Lo4k1H3Lyk+AAAA5ghapnspPA5UxsDSvpy8217DaxC0nDxBS8p0uqsu3Q7t6dh1krW0xkHFBwAAwBxByzRPtdKfXfmyN7RHND3MyLtDNbwOQcvJE7SkLCe66tHdVlpXs/N7Kafub1SEAAAAzBG0TPNVV56c6Prv32Xk3Xc1vA5By8kTtKQMx3rq0IaKjhvXyoyjzhck/O2BjHp/P/E3AAAAmBGClvl2deXHtVZa3PW/HczIuwc1fAkXtJw8QUuKdijMD/5trvDYc2tUrk/424sNvF8BAACYEEHLbCta6U4nL+6FJ9eH25qTf5tqdj2ClpMnaEmR3gvzd9/eVuGxX+0c97eEv81bTuMdRQkAAEA3Qcts33flxb4+//vCnBfxA7KQHoKWFOWNnrqzs8JjPxfa62bG476b8Pd5H3jWZvzbp1vp21BtQBYAAIAJE7QcrHsE06mMv/sxI//OJh5rdWhP8VysSk49QUuKsLun3uyt8NjLW+mv8Hh059KEf3M4o87fzvm350P6FHQAAACmhKBlfy+E9pqUMQ/iruFLMv72aMjeXCLPolb6tfP3u1TJqSdoybheaaVHXXXmrQqPHXck/6vr2KcT/13Wx52sj0Ifdv7mqGIHAACYLYKWT4qjHX8PjzfTWZcQQMjKw7x//0XCizvT40IQtGR0cZr1/VDdEhRxLco4EnxPaI94fNRTX19O+I2Fff5dd3otp22N7fEiRQ8AADBbBC2fdLLr+vcX8EKetd7b3s7f3AztdduYfn8EQUtGs7FTP+qy2dX1xPPenvM7q/r8mxc61xrb1nWKHgAAYPbMStByaefFeU3O333Ude1nhvj9nzLy8PKAfxPXZ5sbMbVVVZwJT4XsAPd/nf99gayiRwzc3Q31CVjGdDDx3A9m/MY/ff5+ZSv9HWxmBgAAMNNmIWj5dpi/w3ecathvDbgDYf4IomFGPh7LyccNPX8fp1veCtZqmzVvhrRgkCA2ve3F7VCvgGVMzyae/8WM3/ih529jwHJuNPJFRQ8AADC7pj1ouSnj2uKL8futtDO0N5Ponp77wpDHeTknH2+00trO3+7uCkD8oArOjLiZ018hLRj0veyiI06d/jvUL2A5TB29n/E7cd3g50N7dPGr4fHHnHivLFX8AAAAs2vag5Zfj/Ay/soIx4kv3MNO3YyjOZepgjNhRcjePblf+jyYJj7rlof0QHfVac8Q1zDsb99ppecUPwAAwGyb9qDlqSFfll8b41jHhzjObS/lUy+OEtsR2sHHe2H0jU4OtdK2YPfkWRM/aPwW6hmwjB9oUgPqG0b47ZcUPwAAANMetDyQ+KIc17zcO+ax4jTOlOBUnP5oN9zps6lTtjHo8iCUEyx60Pn9eJxXZfnUigHBK6GeAcuYPh3iWhaG7Onhg5bRAAAAYMZNe9BycSv9nPCivLmg4+3NOVbcZXylajeVXg7VBo72yfKptSjUN2AZ07Br/r6T8JtfBWtYAgAA0GUWdg+PI33iiMvLoT3iJ45Wi5vtxI0k3g3FT7uN0yHPd44xd6yzob3hD8AsikslXOxqF+Oo9PgR52grrZE9AAAA9JqFoCUAAAAA0CCClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAAC1ImgJAAAAANSKoCUAAAAAUCuClgAAAABArQhaAgAAAFCYQ+FxYOmDGp3XfxWkR630oJXutdKdVvq+lU630mettLeV1qkehZUXAAAAACRZ1Ur3w+PA0ukandupVrrQSn+FdnDxvwmle5182d1KC1SZgQQtAQAAAChEDMZ1B5Z+rfG5rm2l91rpephcAPNWKx1spcWqzhMELQEAAAAY25bQf7p03UcTLmmla2G4YOMPnetd1PNb8VqfbqVXWumdVroY0kZ13mylbarQPIKWAAAAAIwlBusGBf7WNuD894f0gOWfYbiRkStCe03LlN/+SFX6f4KWANA88ePtTtkAM2epex+AujoQBgeXdjfg/HeF9KDlOyMe4+VW+jfh94+oTv8jaAnlW99K74b2mr9xBPnd0F6X+GF4vKlYXAf4XCsd67SVi2QbDbewlXa00iedun29U9cfdOp+vAfi8i3nW+lz9X4ouzt5F/PxOdkBM+V8p48e9xBYJTsAqIvlrfRPaHYQbndID1qO8xDenniMPaqVoCWUJLZhh0N7WYpR1uKNwYgY6NkiK2mYOPPjRGgHJ0ep9ydbaZ1s7GtZK53tyq9LoT3qCmapb1p2mvugGAdB3Ajt4GBsl+LgkfghZsmE8+f9rnON74Z7VRkA6uCrnAfsmQZcw+uJnYVfK8ivmO7o7AtaQsHilM1jnZeeol6gLrfSi7KWmouB+tMF1vuvQztIR1ucSXK7K3/iyO2FsoUZ7JvWIV0N7QEjk1qeKw7Q+LenvbThKAAT82JIWwOy7lICiTF9UsCxVice65COoaAlFCSOihx1ZGVeeqS9osbi1O5/Sqj38X5aL3vD0Z58+VyWMMN907qln8NkRjvG98PuDxm/tdIzqg9AtviVfaVsKNzVxBfauu8g/kPiw//lgo73S8KxbukYClpCAd7otMNlvxzFaWpGU1AnH5Zc5+Nooo0zmrdxpOmlnvw4rsox433TuqbfQ3v6eJVikPJG1znEIOYmVQigvziy7e9Ow2lR4OK8NcTD8qUaX0cMqKZMl7wfigu+nkjMt40zXL8ELWF8b1f8YvRdMC2UejhcUZ2Pm1c9O2N5GzfYud6TD8dUOWawb7ov5+8v9vz9iQLOIW4K9kpoTwH/KQz3UTIu2VXl0hYrw/zAZVyP0+7iAD1ikOlaV2P59wx2LssQ11u8M8RDss4by2xOvIZzBR5zX+Ix39MxFLSEEe0MkxnRcVLWM2GDgvWPOkGE+L9vDPN3BI///5pOfyXW4XtD1PkrM5S3G8L8aZ9FBWKgiX3TSQQte73S57yuhfosbbGy8/7dfQ426AHoEYei3w/zh6evlS1jOT7kS+wnNb6W1NEY+ws8Zupu5bP88i9oCaOLMwz+DYPXGY7r0MW1/laE+SPIF3Wej7GN+iw8OZoqNb2hCJhgn69fsDKOBBxmts1Tob1Wa+pO43tmIG+39mlXzqlyzHDftK5By/gsfzXjGR7v4w0V5lv8IHRnBttMgKH0jjiJ03k2ypaRrA3zpyKkTK2uc6f2SuILSZELSO9KPOZ5HUNBSyioXYsjL0ZZlzdu4vNzGH7KrN2VqdqSMH8q4twoyDVj/GbcUOJWQp3/ZcrzNrYD9/rkrXVsmeW+aZ2DlnNt4qAlqW6HajfH2RSenMq+Q5UCmK93Dcb7nYae4fwY5m8WczCk7bJZR08nvoAXvQN6atDyoo6hoCUMaX+f+yWOmlxQwO/eD+mBS2vcUbXP+gQIiliLOn6sTZkuvnpK8zWOyPq3T8BjhSrHjPdN6x60nPNmqMfHlv193sXXq1YA8x3q02C/KVuS7Q1PTgHckfgCW8fNGfYknvunJeejoGV+x1DQEvLFKa29U7COFPj7cYbC3cT2K76MLFEkVGRtifU+ej+hzr82hfka14HvXcMyjpbarMqhb9qYoGXWu0fV6+ef7jl+HACzUtUCmO+L0Kw1F+v0MnwzPPl1bmniC2wdO7gnE899e8HHPZh43LM6hoKWMIQPe+6T0yUcY2tI363UR0Gqcq6r3n1ewu/HIMA/OfV92jakif27P/tc52HVDX3TxgUtQ+i/jv/tjL8vq13p3ZgnLjWxUPUCmO9U6B8gsjbPYEd78uvFrv8tZdpUHXeKS1mnKq7ZuaDg455JfOE/rmMoaAmJYjvV/WEpLsBf1kjHQ6H+H17iGnxxXeBpGREWX+g+H5BenfG6/3xXnfu+xOPkfeg8NWX5eqHPNV6d4Xo2bW0K4/dNmxa0DJ17uPfv36o4H/vN0vtU9QLIf5DMjR60Rs+TngvzN9w5kZCXvemLml3Ti4kv3RdKOPadxGPv0jEUtIREvRvObSvxWPGF6EbCffrvhPIibi4wNypu/5SU76KMfP58xuv+8U4+xNE7ZW4AtS+nvp+eojz9IPTfhX3tjNaxaWxTGL9v2sSg5cY+f//jBPLyfJ/z2KaKAcwXR1Ve6tNgxk6vRYEHP3T/6fNS8EVo3g7iKetTxfR2wcfdGtLXgytjusaqzgteHIX1oBNUiKNDXqx5x1DQErJ1T489X8HxDiS2ZYsqzoc44vRy1/FfmJLyFbQcXN5zHwK3l3ysvDW8p2Wk5brQfwmIT2e4jk1LmxKvZVunD/xNK30b2usU3+/0Cf+bQGpS+zUNQcvop/DkB4mq16Be3aedie/gT+vOAcwXG+ifQ/+A0auyp28n/Z0+f/NaQqfkbs2u61JiZ2pNwce9ECa3827WJhqx4/B6jTuGgpYwWJw6/LDrXl5TwTGXh7S1LbdWnBdfhvlrdU0LQcvsPsqZCo71ck5dn4b10WNQ61qfa4vLAC2b0TrW9DYllmlcoul8mD9rqi5J0HI8owQt3+jzb3ZM+N6aS1/q0gH0f/EatCbjUS/C4a+u/PhtwN9tDPUccZN1XSkv238VfNxNifn0T6deFikue5AyLX1LTTuGveuMAo/t6ro/TlZ43CsJbcorFZ5P7wj6k1NUxoKW/cWPz7tDNbvP5gUtd09Bfh7SH56aNuXpTnmmLkkkaDl837SpQcsVff7N+xPIz+cH1ImXdOsAnnQi42Eap04sndF86d3lelBAKzUIuL0m17UrsSNV5Dqc8cXqz8TjvlbCNX+ceOxfalA+i3PO8ZYmC+Y5HsobHZ7lq1CfoOXbfY69Z4rKWNBy8rKmhz+cgr5iXLfxwYBrm8X13pvcpsRZUXdDvYOVgpbFGCVoGd0O9QjIfxds+AWQ5PWcB2oMNr0wY3kS1z7sHoGat1bTHwkdk7pMP/48VLsRzsIBD+Uqp5ddCekdyCUTLp+8dcPOarJgnh8798Z3FR/3rVCPj1WD1tecpumsgpaTl7URz5kpuL5Bu6OfmsGybmqbsnrI/p6g5XCmKWh5viZ960FLjL0WAJjns5C2McosNaCnwvy1jFbl/P2ZhDw8UZNrSxnxGEcWLCzgWHHkxfdhsgHLaJgv7psnXD6fhGo3R4Km+zq0l7OoeufNVxPak7I/+B0fcNxpG6khaDl5WZsOrmv4ta0N9Z8lU5WmtinxQ/u/oVkBS0HL8Y0atDzV828uTvDZ1m+t1dinWeCxA9BuDN8d8uEaHziLpzxfNvdc8wcJ/+ZQQt59V4NrW51Yzt8WcKw4nf56SAuIlz0KdZgv78smfE/eDNnB5OWaLqjNS3JWW/KoxJeOpX1eCKdtU5TeFztBy8n6I9T7g+w4Tg+4tnszFDhocptyIDQvWCloWYxRg5Zfh3oELaPzA+rGWx47QNEN9yylX0M7+DWNeneO/COxw5qyTuS/Nbi+txLL+L0xjrE+4wHcLzj6XAXXfTjxfH6fcPm8kXN+n2p6oTby2v2y2pO4+VveB6FtU5bXgpaTtT4MXj5oScOv7bmMunV6Rsq3yW1Kav+uO8X1DONIuziDLA5UeMotPtK7b5ODlr3LQUwyaPlmRvsKUGjDPWspBuD2TmG5Hhixk/ZsYr5NeqH6c4nnuXbI342bX8Sd935J/P1LodqduuMukjdCdet4jmJxzjmWsas6MLrdOe1J0Qv7x+DQ8ZC2vMe0jQ4TtJysUwMCP89NwbUdC/Vfi7wsTW9TPhjy3SXOeNrudi7s3bfJQcveZb0muV78czV9LwGmsOGe1RRHfi2ckjKNAaHutQ+H/er2INRnJ9l+FoT+66b0pr87HdneFNdmezm0N4rZ1+nonw3p60XGgObBCb7kPN+5tkHn98GE61/e2rKvz3ibu6bTeYvB8W9a6XLnnvu+wGPs6dTTeJ/EaYFxxPCLHncMsC/nni1qp93lnfbpTmJbe2EK81rQcnL6jbK8PSVt48Kc++q5KS3TaWhTXg3p7ypxiaCX3MqFv/s2OWh5OdRj9/A5twbU3R9VO6DIhnuWU3zJf3YKyvREmP9VedjO6qWEvNo/wevbWmGdeNTpJH7e6VjWZcfJONL149Ce9h/P8X4nMLVhwue1Myc/v5mhtnVRpxP6Tue6r4b8YHsRwaF3Mn5/X4AnHQnZI5PGWf95eef3f+m0VUW2z4cb2i4IWlZvSXhyLcs4ZXFalgjKGi19Z8rKcpralBc6/be884ofNt91G5f27tvUoGW/QRzvTzhvszZ0fV7VA4pquGc9xdF2TR7C/mIBHbCvE/Jpkl/yjlZYHy53gkDLNBW54iiWf3Pycto3v4qjXeKo3b/D6OvsjmNBThnEF7y1qio9TmfUmVNj/O4zoT2Sraz2uYnPakHLybjYp14vmaLry1oy5+wUXec0tSmxP/RnwjndDGZKlP3u29Sg5ZY+/2bHhPP2o4y6fFTVA4pquKV2+iw0c7r41a5ruD5ikOiNhPz5oSbXWFWKXzJjMHeNJqOv53NeJGKZLZ2BfIgdzDhq4vvOS+S5zr3yYIi6tmmM469N+P2vVFd6/J5RX8ZZs3dvye3y2oa2EYKW1QaGujfUix+UXp2ya1wYskfxfzxF1zpNbcqxhPP5rZVWuo1Lf/dtatDyeJ93lUm/u2Zt7Hdd1QOKaril5k4X7921bfeIv7M9pE1VmYQViWV3pvOwX9R5aYkjKmLAMW5IFL9Cxmm4cbOiOGL00pBBpRj0MfLysXUhO2D5c5iNgGWWBZ06l7KJ0tdjHGdJwu/fUWVJrDNXSz521jp0n05pfgtaVieOyrsSnhy19kGYrlGWecuy7JmhMm9Km7IupM28sGlhNe++TQxaLupT37+tQd6uyqnX1mQFGFLsDJzKaVzjTsdNmIIWg0LdgaNxNvVYFNKCd5P4+pv6lf2NIX83BpXi5jzfJf5+zOttbqH/rS+atYFR7Og9JZv+Xwx2540Ufjhmnv2Y8PtlejnMzoetc1NQJ7PWwivz2Zf30r5jStsAQctqvB2yl8qIz60PQtpGF3WXt/nd5hkp8ya1KXlrx8cPnCvcxqWZhqDl+6G+Hyiy1po9rPoBjCYGn/LWyKn77uLd00yKWLfuVsIL+yQ6gKcTgwnPjHGMV3NedrrTLC+M/k5Ox8TaNf09k1C/3hjj9+PHhKx1su6XfH2Cls0yaA3jKyUf992Qvfbqwim9/wUtyxX7Jb8NcQ9fD83/APlrzjUumpGyb0qbsimnvO6FdgCW8jQ9aBkH3dzt05YtqEn+/hWyZzECMMaL/u+hmdPF1/YEj44V8JvnEjr7ByZwrXcTzuvPAo6zMaTt6BjTWzN2rzwdsoPHcbrKTk1Kpvdz6tS4U3ziyOuToZzNfvIIWjZHfIkfFEAvewpX1jPmhym+9wUty6nHb4b84F1WOhGaGdxbFLI/Hj6YoXrQlDblYk5d3O+WLl3Tg5bnQ7Efu4t2PmR/QFisCgKMLn65yltz7m4NAzI/dJ1fHCFZxFpNHyd08r+p+DpfSnz5+KKg4+0b4oVnVqZfbc65R+L0elOa0l40b+d06opYN3VHeDLQf6rkaxO0bI7Xw2Q2a4qjQbI+Ch2a8ntf0LIY60N7Fszdgu7ny6F5awjmtbc3Z6QuNKVNeSanvH5yW1eiyUHLw6H+H/pOhtlc/gWgNh3A7unidRiGv3fIB2+qV0PaRkVV+iixbIpch+1SSJ9iNu1TsJ4L7TVeB+XBtWD9ymEcyalTbxZ0nN5NGsoexSFo2Rw/h/7r9Za90djmnHzdMsX3vaDl+GLb+GdJ93Qcrbm0YXmRdT0XZqRONKVN+SDUZ/fyWdbUoOWB0H8wzTM1y9+8gS+HVEGA8f2R2LmNL3yrJnieMUB0s+d8ivJCwvVXPe3oh4RzKnraQerozpjen4F7I3aMsjZ6+TPYGTDVs6HcKeJzFvT87pqSr0vQshkGratWxQiIrA9Q90N91uUqg6Dl+OJo8biswb1OP6To+/p8g/Iib0TTmRmpE01pU65knOdpt3Zlmha0jO81Xw54D6vjTK/Xc9qls6ogwPhS1nMs88GV6kiY/Ev76oquNQZoHyWcz48lHDt1naybM3SPHA7ZgeP3NCNJsgLA4+4iPqc7aPlXBdckaNkMl/tcz5cVHftSmO7NjbIIWpaXr893XvxjACIG866PcW/va8h1X8i5jq9npPyb0KYsySmr9W7jyjQpaLk99B9MEz/c1HUTsbzZejdVQYDx5a1r2b3+0aRGWsapumWMMBg27aroencnnk8ZUw4ODZEfW2boPtkRsnfBjqMGLLadbX9OfdpTwDGe7/q947KcTrvdW9euhmqWuIibpjzMqPPT/sFD0LJa6zvt3r9D9m1uNeT5lddf/WIGyrgpbcqujHP8za1aqToELWO9jbPaXun09b7oc16DRubGDzIv1vz9IG9W3ALVEGB0byd2aA9P+DwvhHqMNPqoous9ESa3Ic72IfLj8IzdL+s6L3fTtLFBlZbn1KcipovtCUZy8NhT4ckRaHdCe7mCKuS1py9Mef4LWk7G0610NKTN2JhLBxpwXXkfr2fhQ1VT2pSsGSrW+KvWuEHLSab4nFjS8Huyypl6AFNnY8jefXDu6/ukR9O9UqOHZ1Vr8PyVcC5lrVu0KMzOxhyjiOtcZo32iNNaVmpeBsqaIn6vgDp9OhjJwWPHwpMjHrZWePysBfrvzED+C1pO1guJ/YmYfq/5tSxIuIY3Z6BMm9KmnM44z41uzUo1LWgZn9PfhPLXJC/K1oRr2q4aAozWwP6T08B+HyY/amxhT4c7Tokp62vV4ZC202bZ1iQ+1Mtc2PlhSN95dBbFZRL+DtmBSyMu+zsQyltyILYX90JzRg1Rrk01CGrUdSOKWVqL9cSM3wfLQvpa1XUe+ftUwvm/PgPl2ZTNbQZ9oIz9S1Nlq9WUoOXt0F7eoGn955UJ17ZbNQQYTlxXLm/K0Ic1OdfeHRLLnPqzJ6R9/Su7s/VO4sN9f4nnkLoe1t0Zvo+e71z/oLyJa+Yt0dw8IS8of3SM336966XoaVk905aGJ0dEV72cxZKcZ+0kAyyClrNlRche2qQJU8SXhunZUGga25Re/0x5u9KkkeKTDFrG+hqXdbjfqRNxU5pvQzvAfrPP37/c0PsyLx9e8xgCSBO/tp/NaVTjS96Gmpxv/HJ1r+vc/ulcQ1leSnwAry35ulPX7yxz2oSgZZptwfT5UWRNV7wyxu/+FKrdFZr6Oh8mH7jK21DtmQnmj6Dl7Ekp8zM1Pv/NQdCyzm1KrwdB0LIuyt6Ip986/N8knFd83+wNwsfRlqsadl+mBC3f8AgCxmm4pccpvuQtrVFZneo5vw9KPt6CxHwqc4h/3q6Qc+lmyXlxPzEvbmpSnlgzr8oRsU2VtdFU7MCOMkryxVDdhwXq7WBNAjGfZ9TzvxoQwBK0nD55H0Wv1fjcU+rstAct69ym9HoYBC3r+u5bdNAyBu3+7HOcvQnn1m/JoJ9Ds5YQSFm6YhbW2wVKbLildsfi3ZqV0+Y+wbFFFRz3ZkJ+HS3x+Kk7d58s8RwWDFF3LmhSwuLw5O7E3SmOWrUxz3y7QvEfBuYW/b8ke2fajhq1UX+E+gbSBC1n06acvHpQ43NP2exi2oOWfzSongta1vfdt+igZbQuPDlqMs6QSxn92286+vEG5W/KBqZHPH6AcRruWU/xy+z6mpVRDJpdC5MZVn8uTHb61PHEcttT4jmsGaL+nNSk/M++KercVmFhyF6X68sx6uwW2Tuz4rOse2mL7zp1bRJWhHovyi9oObuu5+RXXUc4rQ2zHbSse5vS634QtKzru28ZQcuo36jJywn/Li791W/QyM6G5O/iYKQlUHLDPcspBt/quFHIez3n+VuFx/4ipAV6y/JbYtmVOY1/zxB1yNTntgUhe5RuHHFgN/H5fsjIr2Hv+bmlJK7I1pn1bJi/0chPnReJSclqRx+FyS/FImg5u77Kya9FNT3vlHXjpnn38Lq3Kb3uBkHLur77lhW0jL7rc7yUTfD6rW95t/NsrztrWgKlN9yzmOL0n7dqWj4xsNO74+C2Co+/LyH/ytpBfGVi+V2d8AtNd1qnSfl/H+fk1duyaJ6DOfmV+kGle/TNDtk6k+Jzo3tzp5/D5D/IfTPBNrxOFgUj0OvmtdDMoOXCMNujmZrWplwKgpZ1ffctM2gZn8e3+xxzY8K/PTCgbi+qef7aPRwoveGetfRnzQNNX/ec7w8VH/+VxHwsY4f1NxKP/UmJ1x+DsXcSz+O65mSeHTn5dVYWzZO3E2xqAHJuY4lfZOlMiqOLfu2qN/H/X1aD87o1oTa8bgQt6ydv7ew6b4DxKMzuUixNa1NODzjXW27Bib/7lhm0jLb1OeaNkLbJYr/1Les+Wn5pwjvTbtUQGKfhnqUUp1AuqXHZbAyTH8n3VJjcmpKnE4+9vcTr3ztEfTqoOZknb00bHfX54ovxg4z8OpTwG92bSmyTpTMnPs8ud9WBuElFHZZheD4UE5CfBoKW9bMqNHMjnuh2zr315ZSWWRPblEMZ5/us23Ci775lBy2jT/sc93TCv1se+gfo99Y4f/M+wpf97gZQS3GKzDshPbj0sPP3dQ9g9G6+M6lNXu4l5OmxEq7/38SyLHNjidQ1NWMeLXMr5nYMe8uO+S6E8UamXg2PpwNPyiytDXiuRnUnBsO+D/NHcaysybm9NcE2vG4ELesnayrjtZqf+8WcNurrKS2zJrYpuzLO+R234UT7plUELRcOeKdI2Sxry4D3judrmr/bEvpPq1VDYFZ9ltBIxs1BXmrAtXzYpxM2qS+x30/g5X1TYtDg+xKv++0hghcfuf2SOoa9ifk+yMir2zn/tntU8MYJXoOgZfXiR57ugPffrfRMjer1mYw8vDRj97igZf1kzSg5XfNzPxnyN5icRk1sU2JwfNB0/p/dhhPtm1YRtIxikLF3IEgcoPFcwr/9KPT/qPJUDfM3b3mosvZCAGiE13MaydiRacKOxTE4eT/UZ4pPXqc4pjsFH/NQYtDgUEnXvDakjTCd6zRU/fCN09mOh/Y6mg86nZ643MGLNe8YClpm25CTX09nBEJudP7mwoSvQdCyet1LadwO9Rt9kTVqftaW1RC0rJ+s6eEHan7u7+a0Ud9OaZk1tU35KeO8X3IrTqxvWlXQMnqzz/GvJL5H9BtEcqqG+ftqTrt0WxUEZlnWGohfhOZ81en3UHphgudzOPEFvsiA8JXEY75SwvXGKZU3E49/dwIBgo2d4w76evl6jTuGgpbZ8ta1HLRO16Gu8l874WsQtKzWiZ72qG4by72Uk4cbZ+weF7Ssn6wNBzc0+NznRl1Pmya3Ke9nnPdFt+LE+qZVBi2jfiOFjyT8u0HrW75Zs/zNG0R0ThUEZtWa0H/aRfxvbzXoOvb3uYarEz6n1F28i9oJbuUQQYOlBV9rnKJxPaSvY7m54rJYEdJ2M99S046hoGW+rHUt3+/z93GU0NzI7DpsuiBoWZ1jYf4Us6oCLCs7L3kpHwIPZOTf/TB7U8QELetnXxi8nFDd5W2W+GAKy6vJbcrKkL3j+8tux4n0TasOWsZ3lxsj9t23DLjP6/TBMm+wy3FVEJhFcZ2YX0P/KctbGnQdq0P/KS8f17RD35u+Kuh47w8RNChylGNcE/CfkD7CchJf8z9OPL9fatoxFLTM91EYbn21U+FxEL0OG68IWlbjUM+LepUfUOZGiaxP+NuLwWiLboKW9fPNgPI42pDz/z2nnVr0f+3dD+RV9/8H8LckMxlJMjORZDIZmUkmkSRJYjKTmTGTmcmY+UoyY2ZmZsYkk0nMJMmMmWRmYmYmmZEkSUYmk3yM/c77d+/H535u55x77v3ce+77nvN48Ob7p88997zO+5x77vO+z/vdsOM169eUsqfCrne/01DvvWndoWUI+Stsxx9KqgzGyJtC689QPIVQ3QZNK/aCLgi0zSNZu1hw8V4/Q/sRfy3/LUx2BOOojlb8Ah/nKFnqL9zx768NERq8O4b9i/NAfjvENn+bYt+6PMT7TOHGV2g5vB0l9bpWctObymJQQsvJeyssXqRtV43bnp+r6veK1/O5YMXcXkLL9OQ9bhlHw62bkff/xYDr1I4GHasmXFO2hHYunpSSFELLKG9E4jcV//aHkG5of25AH39cFwTadvP/XchfcGfVjO1L2S/H+6f83n4c4kv8K0vc1jCjLOdHGI0yr+Uj3ZuUi0NsKz5+cSxM99Gju0O83+cT6NdCy+EtD+WPj63o+fJ2JSyMzlihdK3QP13Hvhq3vb7nGvRmhX+/Y8D5Xzb/ahwxEn9M2tWw4ye0TEvRjywnZmgfDgw4zw426Hg15ZpyPkxnkUny702nFVpGP4XR5qgsmt/yrQTqWzbN1jXdD2ibvA/9L8NszZG1ssLNyzR/dX0tDBcixtGWTyzhxnsujDbiKYbXL4XO3Ka9xz/+50e7X0zijXucA+6HIbcz1/0y+WQC/WWYkZarE7wxFFpW83NJzea/cPXO67VPyVqhP5x4scZtrwkLo+DjNbHKD4PHw+irh86P1NjSsGMotExL3g+XcZqeWRoJ9MiAe5oPGnS8mnJNKZqHv7cddnrWdm86zdAyfrfoH5AQp/upMv1V3vyWsV9NcwGxZQP69ue6H9Amp3MuhEdn6P3Hi3pcXa3qoi/xcYFna3xvO7vbHCVAjDeOcTTQ8orbiiHM2ZDeo5/Xun0qpS8vVVdy/y3RG0OhZTWfhfLH39aGhflvv1OuVtjT90WgzgXmNofF03acqfh3l0r68emSv3s3zNacgsMQWqZjd2jOtAVtmTu2SdeUKvdzR52mtdybTjO0jF4I+YuwVvkelTe/ZVzkZ1oDFzYM6NO7dD+gLT7OuQi+NCPvPX4AxTDwfhgtSIu/vn3bvTl7aYzv6avujW0Mu0Yd7Zg3QvGX7hfcbX3bfLv7/41rW+N6vz90bwBSHd3zWMhfcTDVmwKh5fhuYOdbPFdP9fTZDcrVeDv6PjOOTHh7y7r9Ko5Oj6OT+kdNVFnhdtA0B0WfX3u6/39cXKSJUx4ILcvFaU3iyMAvukHCExPaTtHqvRdmtG4vl/SrvxrSN5p2TVkWiuey73+C7BGXhonem047tAzd1+x/Xx9W/NuLCV3LyqaruBdm62lIgJG9lXMBnKVfbVaE8YVsnyX4noraoQE3AJNuD7rt7+6Na3wk/0z3y1H8Yr5lhj5I4yMjt8JsTEQvtBzN+pKa9R7740rVeFvDwqjaFNr1iu9794DXyQujnu7uawwmNjf0eAotiwOpvKc7Yl+IP6huGvP2LhT07dUzWr84Dc7ckOfbrGniNSX+OFRlrvIrDb4mpnBvmkJoGacL+zPnvVX5kTBO33InpDFS9/2SfnxC1wPa4GB4+DHkZ5WFFoqjRN7L2h+hE8bGm/I492lqI0SFlqMbNBo7Pq5r9EWzbQ7DLb5VR6v6JehoyWv8nfPv4zQc84H8kQYfU6Hl8P1lPrz8MIxnpNypkP9j0PoZr+HJ0OzFeJp6TdlV8dobz4FPQiegYrz3pimElvOf+f2jieNiO1V+TNle0G+211zbskEpW3U9oOniI0NzfTeYTykLzNSNodByPDd+5gVqvjgC505Ib67fdWPovxdzwoU/wmw/nluV0DLf1Yr97+oSvoTH6VXyFj78c4h+nbItofwR4yZ/Js76NeXlIa7B8QfNT0NnFCnjuTdNJbSMjuS8v/MV/zZvfst4H7G2prrGJ9YehLTn2geY6EXwSlg8wfCTygIzd2MotKyubDGe08rTaPExx1shvcDy+yH2oWykcPxSs7H72R7nb70dFkYPr2r4sRVa5ht2RHH8Ej/MkwVxpOHNkL/IYZP63M8F9brdgH1r+jXltRGuyTFw/7y7z1tDM+cBruPeNKXQMvou5z2+XvFv8+a3vFhTXbeV9NVXdDugDWJIeaPbHlcOmMkbQ6FldS8W1Cz+ar5aeRprTVi8UndK7eAQ+zDsa8fFQta34PgKLfOdHbFPxhV23wmdkecr+uoc50B8r+B8utW9xjbNvpJaPTPj18U2XFNin0xpgcppzLOfwr3poHaihv4+7ict6pgD/XjBtuMPRhbgAVrj8SCwhFkitBxd0aIDLypNY8Uw+vdEv5DeHeJLx3MjvHZb5qcWWg53vRt3i0HA/0Jn4ZqmKrqGvD/D+9Sma0ocrXY7CC2neW867dAy2jWBY7RzSteeN93eAQCzemNIsVU59TqnLI0VA8HLCX8h/WSIfYkrQd+v+Lrx6YlNLTrOQstiRyfYf+PjkS93+2bT7Q/Fo51mVduuKWu6n/dCy+ncm6YQWobu5+44j1EcfTyp6dU2F2zzejDKEgCY4RtDiq0MD48cWassjbUi8S+kwy768EaF14yrHa9ynIWWPeKIy1/H0F/vhc58la+29LpZ9API3hnepzZeU+Lj/qlOFyK0nLwY1o/76Ys47+0kQsSigPWAjzUAYJZvDCm2p69WLygJMyYGJHEBgxggxYUy/snaj6HzmOpTLa2J0LKa2D/iwhOnsvZt6IwQ+qfbjx709Kf4GG1clOdM6MxfGb8gb1C+/5+/ssoq264p6YsB0+HQWXRHaEmKHuuei/194gelAQBSJ7Qc3ac9dfpKOaARhJbU5URBP3tOaWbW893j+lcQWpKOYzn9IYaY65UGAEid0HI0q8LCr9Y3QvseoYWmElpSl7iwV94KxJeUphHiHIKHQifEjPNfXg8Pj0aus33ikLTSmpA/yvKw0gAAs0BoOZrTPTXaqhzQGCt86adG+wo+e/cpDTAGeSO6LygLADArhJbDe7mnPseUA4AlyAsV4qi8lUoDLMG2nGtLfDpotdIAALNCaDmcuJDA/GM2F5UDgCV6NOSvQGw6AmBU8UeP633XlPuhM20BAMDMEFoOdwM4vzponIdsrZIAMAZxQYy8xVt2Kg0wgtM515O9ygIAzBqhZXXfdGvyb9a2KwcAYxQ/V+b6PoP9QAYM63DO/fyrygIAzCKhZTVv99TkTeUAYAIO5nwO/5y15UoDVLAjdH5c772GvK0sAMCsEloOtrunHl8qBwAT9HrOZ/EZZQEG2JS1u33XjiPKAgDMMqFluQ09N4A/BqNdAJi813I+j99XFqDAuqzdDh4JBwAaRmhZLM4jdqNbh2tZW6O7AFCTF4PHPIHBnszarbB4lfB9ygIANEFbQsu48vfRrJ3P2tmsHcva6pJ/HwPKq2FhIYR1ugoANYvz0/U/7vmWsgBdMbC82XN9iKMttygLANAUbQgtYzh5NWffYhi5teAG8I/uv4lfFp/RTQCYko09n0nz7R1lgdaLc1j2PhJ+KXgqCABomDaElh+X7F98hCaOWlnRbYfDwqiWeyE/1ASAOsWnBU71fX59pCzQWtvD4lHYx5UEAGiiNoSWdyrsZ3+LN4LbdA8AEnIwLA4q4qriK5QFWuVQ1ua614A49/p2JQEAmqoNoeWDMFxgGUNO8wEBkKK4SNyZsPBEwAYlgdZYFhamPPo8dEZhAwA0VhtCyyuhemD5e+jMaQkAKYuL9OxVBmidncHTQABAS7QhtHw7VAssTwe/WAMAAADA1LUhtIyP0nxbso83s3ZAVwAAAACANLQhtJwXVwb/MXRWDI/tUvd/s4gBAAAAACSkTaElAAAAADADhJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBShJYAAAAAQFKEljBey7O2N2sfZu1s1q5n7Z+sPcjaXNbuZ+121s5l7bOs7c/aCmVjRFuy9mbWTmftYtbudvvYXLfPxb53rdsXP9LfAAAAmBVCSxiPTVk7ETpB0X9DthgwncraZmWkgieydjxrN0foa/P9LYaY25USAACAVAktYWligHQmjBYe5bUvs7ZaWcnxWOiMlpwbY3/7KWvPKC0AAACpEVrC6OKjtn+H8QVI8y2OoNuivPTYHkYfWTmo/Zu1Y0oMAABASoSWMJp3w2QCpPl2L2tblZnMK6ETLP434XY+a48oNwAAACkQWsLwjofJB0ixxUVV1il3qx2uqa/Nt+9CZzEpAAAAmCqhJQynKESKI+EudP//OEKyd4Xm+J+fytrB0Flw559QPUS6rOSttS/UG1jOt1NKDwAAwLQJLaG6bSE/rIyLozwxxOs8GjpzCFZdafyg0rfOhtCZIiCvP/yZtfdDZ07VtVlb1vN3MSCPK9kfyNqnWbseRgsuX3EIAAAAmCahJVSzMms3wsOjIJ9awmvGVZtvVzgPf1H+1rmc0w+uZG3nCK8VF/H5OQw/NYFV7AEAAJgaoSVU82nfuXEiLB7hNqo4Kq7K4+IbHILWeD3n+H86hv4WX/d+qB5cfuRQAAAAMC1CSxhsU9958d6YX//tCufiSw5DK8SpA/6aYH+L863eDdVCyxhwrnRIAAAAmAahJQx2tuec+GwCrx/nIfx7wLl4wmFohXf7jvuZCWxjR+jMxVoluHzVIQEAAGAahJZQbmPP+fD9BLdzasC5eLpBNV0eOuFvXnuhxX0tPv59s+eYx0V0JjXS8VioFlp+M8V6xLk4z2XteZchAACA9hFaQrmPu+fCrTDZhUkODTgXzzSopitK9vOzFve1fX212DXhY3CjwmfAvSnV4smwMPr4dZchAACA9hFaQrE48m1+fsHdE97W3tCekZZCy3y90xCcq2F7R0K10ZYrpnDe/dSz/addigAAANpHaAnF5oPEr2vY1s4B5+KHDaqr0PJh8ZH5uW4N4nyTT9WwzTWh2tyWO2quxRc9277jMgQAANBOQksoFucTPJC1x2vY1qDQ8kCD6iq0fNj+nhqcqnG7lyt8Duyp8f283bftUwEAAIBWElpCGsoeD48j8FY1aF+Flg/7uKcGT9W43ZMhndDycM62D7o0AAAAtJPQEtJQthDP1w3bV6Hlwy519/+7mrf7WoXPgd01vI+i+TVXuzQAAAC0k9AS0vB5yXm4uWH7KrR82JdZuxYmu2J4nhcqfA5MeiGcjwu2+6vLAgAAQHsJLSENfxScgycauK9Cy3TsH/AZEBfqWTahbccpDy6Ediw+BQAAwJCEljB9WwrOvz9DZzGgphFapmNQaHl1QtvdmrXrA7a9y+EBAABoL6ElTN/pnHPvTtbWN3R/hZbpODDgM2Dcq3fHEP7jCp89cfGpZQ4PAABAewktYbryRlnGwPKZBu+z0DIdhwZ8Boxr9e41WXsna39V+NyJ7bxDAwAA0G5Cy8Weq/iFepztrG7YWnHUWf9clvGR8A0N32+hZTreC+WjHR9Zwmuv6b7+L6EzN+Y4r5vHHToAAIBmE1oudizUH1q+qBu2Vv8iJPEx8ZUt2G+hZTrOlByL00t43SdDZ8TwpK6b+x06AACAZhNaLnYx1BtYHtUFWymOXjvX0w9uZe2FFu2/0DIdV0uOxfYlvO6LE752bnLoAAAAmk1oueDRMP5HGMvaad2vleIItMt9feFm6Mz3t7IlNRBapmFlyXH4dcLbLpvb8hOHBgAAAKHlggOhvsDyx6wtr2Gfdob6H3efVpuFuUEPZ+1eyT7cDZ3wckXDzzWhZfrXvEk+fr15wLm816EBAABAaLngRKgnXLuetdU17ZPQMg0xhPl9yD6yq8HnmtAyDV8WHIPLE97umyXHP452X+7QAAAAILRccC08/Ph2HIm0YYlfol8Ji0fS1bkytNByemKfeTVrvy1hn2KQ3sRRl0LLNPpn0ajfZye87bMlx/+iQwMAAEAIQst5G3v2+XbWtozpdZ/P2lxYGEG0o+b9ElrWL/adOCff3THt109ZW9Ow801oOX0vF9T/5IS3uyxr90uO/zGHBgAAgBCElvNe7+7vP2F8q9Kuy9qdnlq+MoX9ElrWJ46q/HNC+xZHa65q0PkmtJy+n3NqH69Xk5664vkBfX27QwMAAEAIQst5848rvjOm14ur8l7pqeMHU9ovoWV94nQC8XHbGHw/mMD+nWvQ+Sa0nK5tYXoL4Pyv5NjHEZjLHB4AAABCEFqG7pfkGDLFx8LHNX/ghZBG2CS0nK7Yn+LUA3uydihrp0JnkZ1R9/FQQ845oeV0/ZRT9y9q2vYPYTYX0wIAAKBmQstOqBRXdj46ptf7MCxehfcR3Yw+cd7Lj0PxQihF7XZD+pPQcnr259T811DPgk9x8Z+5kmP/lsMDAADAPKHleB3qqd2trK1VEko8lrX3Q2eRpqrB5ZEG7LfQcjoeDQ+P9P0rdObfrcPuAX37aYcIAACAeULL8YnzxM2PIooj6DYpCRXFsOZaqBZaXm3A/gotp+OjvlrHsHxHjdv/oOS4/+XwAAAA0EtoOR5PhMUrhe9WEoYUV23+LVQLLic1Iq1Nc6CeaFn/ylt859Wa38PlkuNxxiUAAACAXkLLpYuPXPaGTW8oCSOK0wncDtN7RFxo2Uyrsnajb/+P1/weVobyaRBedvoDAADQS2i5dOeCR1sZnyrB4ddT3LbQcravUdPa9wMDjseTTn0AAAB6CS2X5nhPrb5VDsbk/IDz8sqEtiu0bJ6joZ7Ae5DPSo7FNac8AAAA/YSWozvYU6ffQ+fxRxiHbQPOywcT2q7Qsln29u3z+Sm+lz+CABkAAIAhCC1H82zW7ndrFBfgeUJJGLPrA87NZRPYptCyObZk7V7P/n6XteVTei9rBxyLA053AAAA+gkth/d4WFgs5X43HIBxOzng3FwxgW0KLZthXVi8oNOPWXtkiu/nYMlxiIvzrHK6AwAA0E9oOZz4xf+XnvrsVxIm5KVQf2hZlxUl+2Uxq6VZEzpzRM7X8+cw/akrvio53r86ZAAAAOQRWg7n657avKMcTNDuUP/j4XURWk5GHLH4W08t439encD7ul1yvD902AAAAMgjtKzuWE9dTioHE/ZEqH8hnroILccvjqb8qaeOceGbNQm8r40DPmP2OnQAAADkEVpWs7+nJhfD9Ba0GFab5ig827A+t7JkX6/M+L4JLcdfz+97angjdObeTcFrJcd6boaupQAAANRMaDnYM2FhpfA4emmWFo0QWs6uR0v29cyM75vQcnziNAHne+p3K2tPJvT+vi451j84fAAAABQRWpZb0w0BYi3uZG39jL1/oeXsKns8/MiM75vQcnzO9NQuXqM2Jvb+7pUc66MOHwAAAEWElsVisDI/R1ycQ3DbDO6D0HJ27SnZ1+cacG4JLZfuRE/d7mZtc2Lv79kB5+xWhxAAAIAiQstiX/XU4aUZ3Qeh5ew6VLCfNxuwb0LLpfuop2ZxNGNdQfbj3b5ZZfX6IyXH+X7F1wAAAKClhJb53gnNeIRRaDm7virYz/cbsG9Cy6U5FhaHf8/XuO35OSq3VPi3F1p0vgIAADBmQsuH7Q3NWfBEaDm7bufs479ZW9eAfRNaju6tsHj17V01bvuF7nZ/r/Bvl3XfX9FxfsOhBAAAoIzQcrGnw8LCEXE+yxW6CFNQFDafaMj+CS1H80pfrfbVuO24CNnd7nbfrPDvdwz4bNlU8rePZe3bUG8gCwAAQGKElgviSuE3uvt9vfvfYRou5pyLMUx/vCH7J7Qc3oG+Or1Y87XxWlgY3bmqwt8cLznGdwb87blQ/RF0AAAAGkpo2bE8az+GhVV4n9I1mJLdofmP0wothxNXkv+3p0av1bjtuCL5tTD8lBmXSo7x6ZK/ezc0Z+5WAAAAlkBo2fFlWJgzcIduQZ+40MkHWfsidFZOfmJC24kj2G7knIcXGlZPoWV18Xp0v6c+Rya8vTgX5YasHQydEY//9h2fnRVeY3nO3/W2lwr+bk/3/78aTM0BAADQekLLTgjQO4popW5BVwxfvgn5C+LEhX82jXl7eastx6kKVjesrkLLaraGhTl2U2jXK77v3QNeJy/0n59POJ5bmx16AAAA2h5a5n25jl+afwmdOdk26iKtdnTA+RH7yodhPKPCTuW8/q3QWQClaYSWg8Xg7m5IJ7D8r3s+LPW8+Tvn3z/e7et1jCQFAABgRrQ5tNzY/QI9qAY/ZO0ZXaWVroZqYU78d9tH3EZcKfl8zmv+mbV1Da2r0LJcfDz7TkgrsPxviP54oeQ1Lvb92xhY/hGaOQ0CAAAAS9DW0DLOHXhtyC/sx3WX1hl2pFsMH4dZ8TjOG3gz53W+CdVWaJ5VQsti8dHpWyG9wPL7IfbhfsnrPAidH4zi3JkvZO1293+/1vA+DwAAwJDaGFrGL8s/jPjF/Wz370cNI+KiGst1u5lxdsR+8mvW3snarrD40fH4n+OUBO+F/NA8hlUvtqCuQst8a8LwP6bU1Q4OsQ/DvvZfoZnTIAAAALAEbQwtv1jil/fTQ24vLuzzdc/fz4XOStSkb3eoJxCKjwL/L2uPtqSuQsuHxcWWfg9pBpZxxHHVH2ueG+G1n3WpAQAAoF/bQsvDY/oS/84Q2/ym4DXe1f1mwtEwuTAozu/3cmjf6Fuh5WIxELwc0gwsY/tkiH2Jffl+xde9kbVNLjEAAADkaVNoubNnvy5l7fOsvZG1E1n7NnRGQA7zRb7KwisbS/7+mu43M+KIy1/D0sOfe6ETYr+atbUtrqfQsno9UmhPD7k/b1R4zZPBHJYAAACUaFNo+V3ojGYq+gIeRwjFedsuVfwiHxdQeWzANveU/P2c7jdznsra61k7FTpBd5yL75/QWVxkvsX/HhcXiYvynAmd+SsPhM6K0HQILZtvb+isBn6v57z4MWvvd88jAAAAKNWm0DIGjFXnZXum+4V7UH3ODHid1SV/e1v3o6WElgAAAECpNi7EM4zns/bbgBq9NuA1isLPk8pLSwktAQAAgFJCy2riHG1/F9To36ztKvnb7QV/YwEK2iqGlg8K2ifKAwAAAAgtq4sLp5wsqFNcLXd/wd8tC1YOBwAAAIDKhJbDiwv5nC+oV1wZekfojCSL1oeHg85jSggAAAAAxYSWo9uctS9DZxXwKquNx7kxn1c2AAAAACgntFy6lVl7KWtfZe1K6DwqHufmu5e1i6EzR982ZQIAAACAaoSWAAAAAEBShJYAAAAAQFKElgAAAABAUoSWAAAAAEBS/g1CSwAAAAAgIXGV67LQcpkSAQAAAAB1uhfKQ8tHlQgAAAAAqNPVUB5a7lAiAAAAAKBO50N5aLlfiQAAAACAOp0K5aHl20oEAAAAANTpSCgPLU8rEQAAAABQp32hPLS8okQAAAAAQJ1WhfLQ8t+sLVcmAAAAAKBO10J5cLlHiQAAAACAOp0M5aHle0oEAAAAANRpfygPLS8pEQAAAABQpzhn5Vwon9dypTIBAAAAAHX6OpSPtjygRAAAAABAnfaG8tDyKyUCAAAAAOq0LGs3Q3Fo+Xf33wAAAAAA1ObdUD7acpcSAQAAAAB1eixr/4Ti0PKsEgEAAAAAdfsglK8ivlGJAAAAAIA6rc7avVAcXJ5WIgAAAACgbkdC+dyW25QIAAAAAKjb5VAcWv6ZtZVKBAAAAADUaV3W7gaL8gAAAAAACdkVyh8T/0yJAAAAAIC6HQzlweUJJQIAAAAA6nYga3OhOLj8NmurlAkAAAAAqFNcMfxOKA4ub4XO4+QAAAAAALVZm7XvQ/nj4t9kbYNSAQAAAAB1ei2Uryz+b9a+ytoWpQIAAAAA6rI6ax+HTkBZNvISAAAAAKBWT2btk6zdD0JLAAAAACAhK7P2ZtZ+D0JLAAAAACAxT2fteOgEmAAAAMCU/B8xLOG1H37+6AAABk90RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWk+QTwvbWk+PG1pPkI8L21pPjxtbz46PC9tbz48bWZlbmNlZCBjbG9zZT0iIiBvcGVuPSJ7Ij48bXRhYmxlIGNvbHVtbmFsaWduPSJsZWZ0Ij48bXRyPjxtdGQ+PG1pPiYjeDExMTs8L21pPjxtaT5pPC9taT48bW8+JiN4QTA7PC9tbz48bWk+cTwvbWk+PG1pPnU8L21pPjxtaT5hPC9taT48bW8+JiN4QTA7PC9tbz48bWk+QTwvbWk+PG1mZW5jZWQ+PG1yb3c+PG1uPjE8L21uPjxtbz47PC9tbz48bW8+JiN4QTA7PC9tbz48bW4+MjwvbW4+PG1vPjs8L21vPjxtbz4mI3hBMDs8L21vPjxtbj4zPC9tbj48L21yb3c+PC9tZmVuY2VkPjwvbXRkPjwvbXRyPjxtdHI+PG10ZD48bW92ZXI+PG1yb3c+PG1pPkE8L21pPjxtaT5CPC9taT48L21yb3c+PG1vPiYjeDIxOTI7PC9tbz48L21vdmVyPjxtbz49PC9tbz48bWZlbmNlZD48bXJvdz48bW4+NDwvbW4+PG1vPjs8L21vPjxtbz4tPC9tbz48bW4+NjwvbW4+PG1vPjs8L21vPjxtbz4tPC9tbz48bW4+NDwvbW4+PC9tcm93PjwvbWZlbmNlZD48L210ZD48L210cj48L210YWJsZT48L21mZW5jZWQ+PG1zcGFjZSBsaW5lYnJlYWs9Im5ld2xpbmUiLz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4MjFEMjs8L21vPjxtaT52PC9taT48bWk+dDwvbWk+PG1pPmM8L21pPjxtaT5wPC9taT48bW8+JiN4QTA7PC9tbz48bW92ZXI+PG1yb3c+PG1pPnU8L21pPjxtbz4mI3hBMDs8L21vPjwvbXJvdz48bW8+JiN4MjE5Mjs8L21vPjwvbW92ZXI+PG1vPj08L21vPjxtZmVuY2VkPjxtcm93Pjxtbz4tPC9tbz48bW4+MjwvbW4+PG1vPjs8L21vPjxtbz4mI3hBMDs8L21vPjxtbj4zPC9tbj48bW8+OzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1uPjI8L21uPjwvbXJvdz48L21mZW5jZWQ+PG1zcGFjZSBsaW5lYnJlYWs9Im5ld2xpbmUiLz48bW8+JiN4MjFEMjs8L21vPjxtaT5BPC9taT48bWk+QjwvbWk+PG1vPjo8L21vPjxtZmVuY2VkIGNsb3NlPSIiIG9wZW49InsiPjxtdGFibGUgY29sdW1uYWxpZ249ImxlZnQiPjxtdHI+PG10ZD48bWk+eDwvbWk+PG1vPj08L21vPjxtbj4xPC9tbj48bW8+LTwvbW8+PG1uPjI8L21uPjxtaT50PC9taT48L210ZD48L210cj48bXRyPjxtdGQ+PG1pPnk8L21pPjxtbz49PC9tbz48bW4+MjwvbW4+PG1pPnQ8L21pPjxtbz4rPC9tbz48bW4+MzwvbW4+PG1vPiYjeEEwOzwvbW8+PG1mZW5jZWQ+PG1yb3c+PG1pPnQ8L21pPjxtbz4mI3gyMjA4OzwvbW8+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPiYjeDIxMUQ7PC9taT48L21yb3c+PC9tZmVuY2VkPjwvbXRkPjwvbXRyPjxtdHI+PG10ZD48bWk+ejwvbWk+PG1vPj08L21vPjxtbj4zPC9tbj48bW8+KzwvbW8+PG1uPjI8L21uPjxtaT50PC9taT48L210ZD48L210cj48L210YWJsZT48L21mZW5jZWQ+PC9tYXRoPpT6WHAAAAAASUVORK5CYII=" style="width: 210.67px; height: 165.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="A B colon open curly brackets table attributes columnalign left end attributes row cell đ i space q u a space A open parentheses 1 semicolon space 2 semicolon space 3 close parentheses end cell row cell stack A B with rightwards arrow on top equals open parentheses 4 semicolon minus 6 semicolon minus 4 close parentheses end cell end table close space space space space space space space space space space space space space space rightwards double arrow v t c p space stack u space with rightwards arrow on top equals open parentheses negative 2 semicolon space 3 semicolon space 2 close parentheses rightwards double arrow A B colon open curly brackets table attributes columnalign left end attributes row cell x equals 1 minus 2 t end cell row cell y equals 2 t plus 3 space open parentheses t element of straight real numbers close parentheses end cell row cell z equals 3 plus 2 t end cell end table close"> Vì Gọi là vectơ pháp tuyến của Với nằm khác phía so với cắt tại nằm giữa hai điểm Thay vào ta có Với nằm cùng phía so với cắt tại điểm không nằm giữa hai điểm Nên loại trường hợp này. Vậy chọn C.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>B</mi><mo>:</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>&#x111;</mi><mi>i</mi><mo>&#xA0;</mo><mi>q</mi><mi>u</mi><mi>a</mi><mo>&#xA0;</mo><mi>A</mi><mfenced><mrow><mn>1</mn><mo>;</mo><mo>&#xA0;</mo><mn>2</mn><mo>;</mo><mo>&#xA0;</mo><mn>3</mn></mrow></mfenced></mtd></mtr><mtr><mtd><mover><mrow><mi>A</mi><mi>B</mi></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mfenced><mrow><mn>4</mn><mo>;</mo><mo>-</mo><mn>6</mn><mo>;</mo><mo>-</mo><mn>4</mn></mrow></mfenced></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#x21D2;</mo><mi>v</mi><mi>t</mi><mi>c</mi><mi>p</mi><mo>&#xA0;</mo><mover><mrow><mi>u</mi><mo>&#xA0;</mo></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mfenced><mrow><mo>-</mo><mn>2</mn><mo>;</mo><mo>&#xA0;</mo><mn>3</mn><mo>;</mo><mo>&#xA0;</mo><mn>2</mn></mrow></mfenced><mspace linebreak="newline"/><mo>&#x21D2;</mo><mi>A</mi><mi>B</mi><mo>:</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>=</mo><mn>1</mn><mo>-</mo><mn>2</mn><mi>t</mi></mtd></mtr><mtr><mtd><mi>y</mi><mo>=</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>3</mn><mo>&#xA0;</mo><mfenced><mrow><mi>t</mi><mo>&#x2208;</mo><mi mathvariant="normal">&#x211D;</mi></mrow></mfenced></mtd></mtr><mtr><mtd><mi>z</mi><mo>=</mo><mn>3</mn><mo>+</mo><mn>2</mn><mi>t</mi></mtd></mtr></mtable></mfenced></math>

Gọi  là vectơ pháp tuyến của

Với

 nằm khác phía so với

 cắt  tại  nằm giữa hai điểm

Thay  vào  ta có

Với