Square root
VBT
Calculator
magnet

Câu hỏi

Trong không gian với hệ tọa độ cho điểm và là hình chiếu vuông góc của gốc tọa độ xuống mặt phẳng số đo góc giữa mặt phẳng và mặt phẳng là

Trong không gian với hệ tọa độ cho điểm  và  là hình chiếu vuông góc của gốc tọa độ  xuống mặt phẳng số đo góc giữa mặt phẳng  và mặt phẳng  là

G. Giáo_Viên

Giáo viên

Xác nhận câu trả lời

Giải thích

Vì là hình chiếu vuông góc của lên Nên có vectơ pháp tuyến là n   → = O H   → = 2 ;   1 ;   2 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAA0EAAACbCAYAAACksJANAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACJVECpGgAAHPRJREFUeNrt3Q+kVdnbwPHHlSSJJEkSuZIkkZGRkUuSXLkiGUkSSX5yJTJGciUykjFGJEmSGEmSRJIkiYwkSVzJSBJJkisx737m7Pu27+mcs551zt77rLX398Pi9Xubu/dee6111rP2+iMCAHE7k6RZZAMAAACAuvg3SS+StJKsAAAAAFCXIEjTRJJGyQ4AAAAAdQmCJtP1JM0jWwAAAADUJQjS9CZJQ2QNAAAAgLoEQZPpWJIGyCIAAAAAdQmCND1I0mKyCQAAAEBdgiBNH5L0M1kFAAAAoAq2Jum9MRjiTCEAAAAAlbBIGtPeLIEQZwoBAIBK2ZCkp8L2uEBdjRkDIc4UAgAAlfE87eA8Eqa8AHW1LkmvjMEQZwoBAIDorUnS17RzcztJM8gSoJbmJOmKMRDiTCEAABC90Uzn5kaSppElMPiXFHWayKRPSfqYJp+/wZlCAAAgauczHZtrBEIgCCIZE2cKAQCAaGnQc0emfhFiahwIgkicKQQAACpNN0Z4lOnY3BU2SwBBEMkWBG2jSgAAgFjp4ujHmc6N/t8LyBYQBJGk/XS4RVQHAAAQO93+9kmmk/M6SavJFhAEkZrSUWFjBAAAUCFL5NvW2ZM7Se0mW4DKmpmkM2LfInsdWQYAAKqo1Xa5l6QxZQ5AdaxK0gtjAHRVOCwVAABUkG6GcLpDJ0inx20mm4BK+EWmfvVtl74kaT/ZBQAALK5LddcD6HlCS3nFQJQWSmMHSEtdf56kFWQZAAAgCGokHUHWdQSDvGogGluT9N5Yx89KY70QAAAAQVCL9COvG4gCZ/8AAACCoB6TLpRmC22gOkEQZ/8AAACCoDbpoTR2lQJQnSCIs38AAEAtaQdoZ4dOkq4l4MwgoFpBEGf/AAAASOOA1OaO0q0kzSdrgEoFQZz9AwAAII1pbs0dpYNkC1CpIIizfwAAAFJzkvQ001F6l6QhsgWoVBDE2T8AAACpWdLYGWoyABpP0mKyBagUzv4BAABITUvSbZm6Te5csgUAAABAVV3JBEA3hZFiAAAAABX2WyYAupGk6WQJAAAAgKra2RQATSNLAAAAAFTVavl2HpCuB5pBlgAAAACoKv3iM54GQH8naTZZAgAAAKDq9iTppXBaPAAAAIAaGSALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8J/ZSdpMNiBgc5J0NEmnyQp0KCO0YwAAwGRLkt4k6UuSlkT8HKuTtD9JF5N0J0nvk/Q5fa6JJH1K0niSriTpRJJGkjSd1x9FgH4kfX//JukjWUJ9a+NqWkauJWkhrwgAALQyN0mX006DptvSGEmNiXZ0xpL0T+Y5fNKXtJO2juIQnFlJOpykD03vjCCI+tbOwcy1tNz8zCsD4DKQNkp7k3ReGqMo2sjpSM6EfBvZ0R+f52kjdipJ26S/oy0fu2yIu0nrA7s3OgLohZbnt5nypKO50yK6f/06cCJtm/KqU/eTtIqi0Xczk/SrNL4s0PZR33xtbPr9PZekGbxCAFmLkjSapFs5NGzPpDFit6jkZzibBmwvk/S1gEBDg8DrSbqUpOVd3turAu5rPA1WgW4caypPf0Z2/+uk+5FoV9J25AhFpC+0o6oj+e8YAKK+9WhV0yDPkz70TwAERr/4bJfG/N2iGrQL0p91BQNpw3dAGl+regno9uf8DDqyuVUaI1/d3tfV9G/MpBijSzr97XZTuToZ2TPsKmjAozldE0aPyzI9bbffCF/BqW/50aAnOwipQdFaXilQP9q4HErSa0dDdE8a0xCGkzQ/DSwmA4y56f9+XBpfIlzzfo9k/vt+/KjeE/+5yvtLuLcjnvelDfcaijB6pEH9y6aydSKyZ9gn5U1/1XRT4poiGBvN21GP4IcgiPrma0FTIKTT+tk9DqhZQ/bG8YOi02MWe/5d3enlmaNRe5gGU/2wRfy+YG0o8d5eetwbI1fo1RqZOjVE05nInmFzyR2yycS00/zp4Nj/pPspVgRB1DffQKh5AJgNE4CK+0Ea82A7dfx1JLiX3aD0i8spR6Omjc/SPjz/eo+Gt+w1AFeM93WZYoweDcn3m3RciewZBqX9RiMv0kGcEZn69XqyfVqeDoj84Tn4kE27KEa5BT+6+c6rzG/QvTQg198i63RhgiDqm69l8v1as228aqB6pqU/KJ0amadJWpnjNY86rqdfohaXnA8bxT7drOy5/9eM9/YTxRk90AXNn+T7r7OxrXV52KYNW99lnjzw7JTpLmVzKU49m5w58EgaU4/ntfg3ZwmCqG8F1be18v36pmFeN1AdS9PGqlMDc06KObDsouO6ulnBrBLz4mdjg3u8D+/pg+G+XlOc0YM18v1orgb88yN7jr0t6oaOMg/k8Hc/e3TMTlCkeqZf3F27bM4nCKK+FVjfmp9P72k1rx2I37C4z6YZLfD6s8S98cKFEvPDNU1vMpW96cCg8b7OUKTRpcXy/RogHQGN7cui7oTYPIXlaI5//0dpfxbNvy06S7MoWqVwrTUlCKK+9eKSfD9TZQGvH4jXIUOjsr2E+9hjuI+NJeWJZXe49314V7uNPwIjFGt0Qdf4vWhRnsYifJZfmp7hUgHXGBL7FsC7KV6luEoQRH0rsL5pG9k8YKtTANkJEojQH4bGZGtJ96KfzN+K+xyeorfOnmZsaC/14X1dFttudZxRgm60Wm/2d4TPoW1EdvcwXWRd1Miwddt6Nioph2vjGIIg6luvhltc73eKARCX8xLe6OVJwz3tLPgeNhkb2e0l543+0Hwy3Nddija6cKhNQL08wmdp3qK3yC3sdY3kK2EtCkFQfdWxvrX64riBogDEwbKLTj8W/Vu2pi56ZNoSiGkqex7wOuN9HaZ4w9NKaf31M9bRzWxH+GoJ1ztgrJvTKWoEQRXP87rUt8EWbaZOk5tNcQDC9ruh8bjRp3sbENtUtFUF3sMTw/Uf9yFvjkmYmzUgblrnWu0KqV8dY9zaWaezfpFvX7KWlXDNecZ2a4jiRhBUMXWub6dbXPM0RQIIl2UTBP3UPKeP9/jCcI9HC7q2ZYtVTb/1IV/+NtzXB4o4PLWbY38s0ucZkWJPkG/noaF+bqK4EQRVTJ3r29I21/2BYgGEZ6vYFtX3+0vCFenflxjr+UBlz/1dYLyvSxRzeFiUpIkW5eiLxHcm0KTsdNZlJV7XMsWYIIggqGrqXt9uSjU2kwEqbYXYDhsLYSvcC8YOfxG7z1wS2xkEAyXniXVr7O0UdXhotznKxYif6W76DDdLvm5IW/wTBBEEUd/KqW/b+S0GwqbBgmWK2dM+dO5bOWfs8A8XcO0Phute6UOeXDbmyUKKO4yWV7Szru3HuJT/tdbypX0FxY4gqGLqXt9084UvLa49Hkh/Cqi9i8YOdCjzWK1B0GjO1/3BeN29JeeHNqSWr3hPKerw0O6r5yd+vLsyIu6pxuQrQRCqV9/aHdC7h9cE9NcOY8f+bED3fN54z3kvwvzVeN2lJefHkPG+OKwNVkuEdWVld8qe5Xgt3Z5Xd6HSLXl1Tdc7aQweDfIagg6CeG9x1jeXdtPVX/CagP7RxfTvDZ3nT1L+mTed/GXs9Od9HsEdwzXH+5AfJ4z5waJr5FGmdpI9Xdki5QzabJL2hyZ/oh0INgjivcVZ3yw6DSqNVDHzB9MXcDytcFqpfBdp63zso2nHS/97nVOoU17uS+Oww7mUcfToqrHzPBbYfV8z3vfdHK+pZx1Yzh041Yf8sJxb9CV9BsBS1t91KEtLyKKuuL66b8vhGkvFPTV2Iu1fEASFEwTx3uKsbz7elNBPKZ0ueNKpKLukMV3ojrTeTvS+x9/UhVo3DJ2at8Khh+jesDGQeC/F7LLWi2fGe3+b4zVHjNcse1THujX2dYo8jDqNoL4je7p21DFIMSOHa5w1tgdXavweQgyCeG9x1jcfnWawLI0hQ+elHZwj6cO8MhZaTYcMf19H3/Twua8ef1c7qPMp6/CkiwHHjWXs1wDvf8J473l22E6J7Qyl6SXnhXVr7FGKPXLoJF4me7rWaXv9vLYcf2tsD75QvoMKgnhvcdY3H53WFAd/8PRWsQcmrZLrgCgdzX3Y5d/+jbIOTweMZUvnIc8O7N5neQ4S5MWyhfidPuSHdWtsplHAYpq03s51Mh0ni7rW6Qv2upyu8cWjfZxe0/cQYhDEe4uzvvnoNJvkZeiZqdPO9IBG/QKk00o+eBRY1+4PKzxGAdj2FnkEEe+MZetEgPe/yaNu5PUlaFDy++KbpwHjj+dbij2MNktY8+ir1O62y9M8T49/I3xRiDEI4r3FWd98LJQ4jiAxW5oGRL10JDW4yu7OpVOU9sm3nbj0C5Jr0fNERQvxeunt61tMqcx5vtZtnnVq1+IAy8UOj3x9lNM19xivtzrQOnJeqot2Il9/OO7hJ/pXXem0zirPdYSnjGXpJkFQUEEQ7y3O+uar03KXsRgzut1JsNm0ts1/q1Ff9ouSLuKa1iZQIgiic5NXebV+dQy1sT3nka/XcrqmZcpZPxaMnzTmQ5VH72kn8vVYmIpTZrv1MOfr6Giz69gD7YitIggKKgjivcVZ33x1Wov9KNbM/thFx2hppjOq6y6GO/z9AQlzT3s6N/EFQfs87mlzoOXCZ+1cHl9AtP59jrhs6Q/nHIIg2gnjIMnXGg64FW1ah35CEVNg1nboUGtbtqXm7yPUc4J4b3HWNx9XHb/VM2LL7AHHj8bZFv+N7jI3ubOcfgn60XCNOs73p3OTP+vW0u/Schdi4+aze2Ien5d/irxsPaj4Dx7tRHl5+Q/9q67s9Ogf5EWn1OvUxtdpm6mdax0dX8brCDYI4r3FW9+szjvK3nBsme2aqjbSYqTtXiay/8lYKTpd4zWdGzo3xlEm6/38EWiZGPLM1zxGzsYiL1tHCYJoJ4xc261fE3TjQZvBSw48JwhCverbcUfZOxJbZh8RvxPas/MUNxmv4doN6w2dGzo3Bmc87mco0DJx2DNf8ziA7GHkZWudVBvtRHmjlH/Rv8pt8GmYrCEIQu3q205H2YvuHLY7Hj8Y2VE2n4ML/ydsjEDnpjc6tc26rfuHSOtbqznUvZptvFbZB5FapwV+ljCnNdJOhNlOXHNc/xx9LG/3W+TjabKFIAi1rG+uM0ejmnI809ER2ZH5tyvl2yn3Fzyvc0F6O4cI8OkoXgj0GVyLtosYUdlmvNaKkvNiRMJaa4ZqeOUoT6fIop7r6d/CDnsEQahrfRsW90ZG0QxcbhHbjkwaLD2Xbweb+u7+4Don6A/KPhxcZ3/EsJ3yVvEbNd+bwzUt23G/C/h97qXow8OEozydJIvM9Hf/ZYu2YjFZQxCE2ta3jYbf7cFYMr3TGou7Lf6dboW9tIsX68ow5hbD5alH8BDqYt0L4hcELcrhmpZTvC/1IS+eG/NgkKIPowFDedpNNpmdkO8HRofIFoIg1Lq+WTZ32hhLpr8Q9xqB7Oe5HV1cwzXtpdXmC0DWLI/AIdSplQPS+TyuIg4dW2a81vaS82KB8b7GKfrwYBlw20k2mawlgCQIAvWty9/vKM6DGnQ8xBJpnAc0eSBqt6PFrmkvtyj/6DGQjmE90LD4fQU6kMM1R43XWlhyXuww3hfrN+BjjqFM7SCbTPnYvLZqjGwhCAL1TWyD0ttjyPg9HR7gcfpvLsu3c3y6nWLkmvZykDoAh0MewUOooyd/eTzDl3QAolfXJcwvZ5eM+TBC0YcHy6HABEFuzSfCnyFLCIJAffMIgnbFkPGXpfPhhNldpTZ0eQ3LZ7MV1AHk1GkO9Xyg2WlgY32G8zlcc5rxmv342vLOcF86H5odqODDsoMkQVBnzeeYca4SQRCob1mWacfBT53V9QmfOjzApkxHpZdO0i5HRr2lDsDghkcAEWLHeb/4TYVbmcM1N0qYX1tWGe/rDsUeniwLdgmC2muesnuNLCEIAvWtyXRDO3s09IfoNG1Ap75dTP9v3a5vVg/XcY3gn6cewMDy5SDkhv+ZRwB0M6drnhTb15aZJefFQWM+HKbYw9NygqCurZapG7doO8SGRQRBoL41myEV+BI01uHmswu0et3m7oPEeZ4LwvLZ2HG+G+C9rxO/r0CrcrruE8O17vchP24a82ENxR6eLHPV2R3ue3oOSXYr/XvifxYgCIJQj/pWiTVB96T40+p/EPco9BzqAwys62lCnE9r7fTnUecmzTder+xP1tZ1Su8p8uiyfHFOkB/dgGU8kz8PpLfZHyAIQrXrW/S7w81KAxDX7lS9nlL7i+MaD6kPMLIGEWcDu++VHvc+IfmdDP2zhLmJhHWd0iWKPLrk+m37kyz6fzoI+Vim7go7l2whCAL1zfEcUZ8TtMXwACdyuM5tiXzhFIIxIXGeK3NF7EFQnmtgLLvpaZ4OlJwfJyXMw1tRHW8dZes0WfQfHQy9n8kXPcpiHtlCEATqm4PlKIKNIT/AWXF/BZrf4zV0WoJrRG5dDQq+ZcvWqqQrBebjR+M9hDTK6/MV6Jnkuyjyg+Ga/diJ5rExPxbU7AeSdiI/rrOxztEf+293p1sydR3wArKFIAjUN4MNhnZ+MOQHeFlCR3Kz4xq60H2gBoWfzk0+HkUYBN0y3rMOFqzO8bo/GK87WnJ+WNcpPanhjyTtRH7OS3zrBss0kA6AZHeDXUQ/lSAI1DejYUOfJtj+/VLDj9SyHK7zOz9EdG5KbPBDC4I2eeTbwZyv/auUdxaRj23G+/qdIIh2ogeuM7lu1LxTlp0q+zbtE4AgCNQ3q60S8fmf+6ScAwqfOq6zh84NnRsPfxrvIYT5/jqt7YXxfq8XcP07huu+60O+XDTmyUapH9qJ8gYgXte4Q3ZGpu7AuFJAEATqm5+dfW7jC604eeztvcDwQ1iXz+90bvJh3e3sYgDvfMx4rxoo5b1FvGUtXr92X3tjuC9djzgg9UM7kZ+Z4t4QpI5ONHWQyzqHS/sDO2parwmC6qvK9c3VxzkZ6ksZkM67bOn/L48Dm7YbOn90bujc+Fgi/fuy4mOFMQh5nz5T3kaM+VT27mvLI3l/tBPxB0HqmeMeptesfB2Rqetxfyrx2n+l110tIAiivlWhvrnWXW4N9cUMSTmj6K7tef+gc0PnpgvjhnvoZ8OvHaunhnssslE8ZXxXC0vOm/0S5mYNtBPVDIJOS1jnY/XTqEz90rqhxGtPrh14IiAIor5Vpb5dlUh3dz3muPGRnK7zpsfr7C45ckYcrGfM9Gvv/dNim+5VZKNoWYvUjy+xV43vbjnFHDlwnYW3rSb5sKvpuTeXeG390v0+ve5+iiRBEPWtMvWt0w7T4yG/oIeOzlke55TMMnQCO11n8muVnnMygzqFDOu5O/3o4OwU2xegIhf9Dxrzp+wDZQfSeu+6rzcUceRkhqPMHa9hIPhzideeJ9++3Ot7mEORJAiivlWivunv+deA+hdms6WcLatd+4ff7vDfLpbGrlV12j0Ofu5JeJsjDBk6+R+l+Ck4e4xB0EjJ+WOd6nWe4o0cdTo09UrFn31TU0elzN/TlTJ16nIvm7DoBkq6wPxF2sbqQJJO9dEp9ctqXr5DDoLq9t6qUt8sXIOtG0J9Sa4zOvJaKH3AcZ3Dbf47/YL0NOeADNXjWtc2ORIyu6T7+SH9sXF94ShjUfA1Q958TetamX6TcL/gobo6fZ19V+HnHko7nZPPeqDg6w2kHSOtv1fl+1Hi9V3+XZ1K9MnRlh2rcfl2tff9CoLq9t6qUt+stjjKXLC7QJ5zFMq8Pp+5NkVoFyVOjtqNl9iBRZyuGzrUv5QUAL133McjKWeR4EyxTTl73If3ZT0ziVPrUWadWFjBZ/7RMChTZnrZ5XOsNLZnoRyL0A/PAwyC6vbeqlLffHTaW+BMyC+r02YFd3K8ziPx35p0ckH5Z+HwNrgtMjQ8uqasyA0SNhju4bSUtxXvXglnZ66snzwacCBvZ6U+Xx5XGgZlyk6Hu3yWy57Xqduukhrgu45i0P9/2aPydXpvVapvPjoNQv8Y6staVmJB/Oy4VnOlzG7pu10AG8vhqVcLuvao4wdIp9qUvU/+M7E1kldLvq+HBEHoo9Udytu5Cj2nTo95K+Fth764oH5Ec9LpV3WaQbLbmC9lbwVfl/dWtfpm1ems0cchvzDXGR15HtroGp04lP47PVTybuZ//43fa3g6YmgU8px7PF/cWz1fTv9dSPW7X9tjHxO/BnwZRRoFeCDV3o1Qp/W9DrBDdquHZ/rSxfX21qQ865rO8RLeAe+tPvXNam2H6+8K+aV16rg9y/laH7p4eWyEgG4dF9uW0L1s/66jHwccZVvnZ2/qw/Nv6eKHZ3cJP9JnumgHbgjb4iN/mzuUuVWRP9s8jw5x2amX6YbPhX5Eu4G4u5758qeUNy2u6u+tqvXNaqzNtf+RgDdEcJ3RkfcXGN85oTckn/OJUF/aqZ9wlDMN9n23bpybpINpBW/3d3VEaH8fGoA1SbrQQ4N5UxrTT/NcN6UbRejXn3c93Nc/aUO7nnYBOXoixX8pLtvcDs/V7/S+xzZxrItrPq5o2dVNq4bTYOaTdL9g/kj6G1jkOtUqv7cq17de29GgD0N2ndGxLufrbfB4cefp6CAnK9LG1FXmnqcN9XCLAEAbuU1p4KPB+VdHULWv5PJ7MA1efOddu9LH9HlHu2hbdBTvviEI7SZp/uu8a90K9jRFHD0Y6RB0x0g7PA8lzA6Zpt97fL6Zabvi2xGsAp1y9CZ9nomC3s9E+vf1OnmuX63qe6t6fbNY2SHAHgj55XWaLvSpoGueNnS6OAwVRdCvQq8Kami+pIH7uj4923UptiH13TluX4mNPKefo1ftOjHDET7L9IA7ZP+mg1J5dDz3pQM0H8W93rgqZz+tL/ld7SggYKjae6tDfXP5vc21t/DT0pru3qVzVz+now66nkJHdHW0mXOAULTNaaf+S4+Ni45y6Da7OpLMV0sgXquk+CMiUJ49Te/xNlnCe0MhtM/eaiom7w4InAYuOkVTdyW8lHZ4PmSC84m0cuu0q+vpvxlLg555ZB9QKe027FhD1kSpqlue894QklY78Wq/aQlZAwBAHHTdX6vzPe6SNdGZI9U+/Jb3hhDMk9ZfgfaRNQAAxKXdltmbyZqobJWp6zVnkSW8N+Su1dfz62QLAADV+WF/SYcsKrdk6llw4L0hX60OR9WNp+aSNQAAxEm38m115sWfZE0U1snUrwmLyRLeG3KlA0Ivm9pHXUu9kqwBACBuuqi31cG+68maoOmakuwxCIfJEt4bcndRqnGcAAAAaEFHppu30deNE+aTNUHS81ruZN6VHsw5QLbw3pCrVmcA7iZbAAColm0tfvAfCOeChWaGNA7gnHxH/xCs8t6QuyH5/oDbg2QLAADVtLdFIHSJbAmGbtN7P/NuXgtnlPDekLflSXrf1A4eIFsAAKi2PS0CoWNkS9/pQbZvMu/kaZIWki28N+RqcdP7YgocAAA18rMwFSQUumZkrOldXBC2Mee9IW+LpPGVLrsLHOemAQBQMzonvnlKyCjZUjo9i+SjfJtGtYUs4b2hkADon0xbp1+DVpMtAADU09IkPW8KhA6RLaXbn6RfpLG4Hrw35Gu5TJ0Cd1ca67gAAECN6fSd802B0AmyBUAF6PEA2S/eY2QJAADI2tbUWdBd46aTLQAitUO+nY/2Kg2IAAAAvjM/DX6006DrHQbJEgAR0o0rnqVt2SlhwwoAAGCgmyYMkw0AIrY+SWur/pD/B8NDp5fHGWx7AAABWXRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtb3Zlcj48bXJvdz48bWk+bjwvbWk+PG1vPiYjeEEwOzwvbW8+PC9tcm93Pjxtbz4mI3gyMTkyOzwvbW8+PC9tb3Zlcj48bW8+PTwvbW8+PG1vdmVyPjxtcm93PjxtaT5PPC9taT48bWk+SDwvbWk+PG1vPiYjeEEwOzwvbW8+PC9tcm93Pjxtbz4mI3gyMTkyOzwvbW8+PC9tb3Zlcj48bW8+PTwvbW8+PG1mZW5jZWQ+PG1yb3c+PG1uPjI8L21uPjxtbz47PC9tbz48bW8+JiN4QTA7PC9tbz48bW4+MTwvbW4+PG1vPjs8L21vPjxtbz4mI3hBMDs8L21vPjxtbj4yPC9tbj48L21yb3c+PC9tZmVuY2VkPjwvbWF0aD58iP9wAAAAAElFTkSuQmCC" style="width: 132.00px; height: 24.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack n space with rightwards arrow on top equals stack O H space with rightwards arrow on top equals open parentheses 2 semicolon space 1 semicolon space 2 close parentheses"> Vectơ pháp tuyến của là n '   → = 1 ;   1 ;   0 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAlgAAACbCAYAAAC+heXvAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACJVECpGgAAE8pJREFUeNrt3Q+EVtkbwPHHSEYSI8lIIhkZSSRJkiFJRhIZSdaKJCtZkayMkchKVhJJMlYiSZK1JEnWipUkSSRJRoYkyVjR7z6/977b29u995z7zjn3PefO98Nh/9R77nuee+8577nnPkcEJheSMpdmAAAAcOdLUp4nZSVNAQAA4G6ApWUqKYdoDgAAAHcDrGa5lZQFNAsAAIC7AZaWiaQM0TQAAADuBljNciIpPTQRAACAuwGWlr+TsoRmAgAAcDfA0vI+KbtoKgAAADs7k/LOcqBFziwAAABLi6XxKNBmkEXOLAAAgBLGLAdZ5MwCAAAoYWNSXlkOtMiZBQAAYKkvKdctB1nkzAIAAE58qVmZaikfk/IhLWU+g5xZAACAAZaHQs4sAADAAMtDIWcWAABggOVhgDXCKQIAABhguXtEuJjTAwAAMMByU44Li9wBAAByzZHGtji2aRo20mQAAAD5VkljOxybwdUNIdEoAABAoaNJ+WwxsPo3KQdpLgAAgHyLknJP7GatniVlBU0GAACQb2dS3lkOri5KY30WAAAACpDbCgAAoOIBFrmtAAAAHA6wyG0FAADgaIBFbisAAACHAyxyWwEAADgaYJHbCgAAwOEAi9xWAAAADpHbCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA585KybYZ8176kHE/KecJO3FC7c2QbzTAzDCblRlI+JeXfpDxKyo80CwKzIykT6Tm6tOaDyNGkfEzKl6R8IPTEDU76uYNJuZyUf5LyPilT6f1E+763SbmelF+TsikpPR6P5UZ6jtxMyiJCU19r0hvBl4xyhOZBAOYn5VrLeXkn/QVYN3OTciy98bdeh3TUxA2dD3q1H3uW08cVlcmknEhKv4fjOtxSj543uwhVPT0uOMF0dD+HJkIXbUp/WTbPSf31Oatm31GvsV+S8i7nOqSjJm4o70jGoPdL28DmtjRms6YK/tyndADtekZrS9vkxqWk9BK2+lhoMYrfQjOhS060nYtna/b9etNfspOGa5COmrjB3oA0lrlkxWQijd3CjL+3MimnCgZbD8X90oRVbT8gdcJjMSGshyGLAdZWmgkV00eCd9rOw9M1+n6zk/JzerO3eVRBR03cYKd9Vqi16Honm6UFOoh6kPMZOlu5wfEx64DqVUsdOuBaTyjjN8/iJrGZZkKF9Ob2su0cPFWT76aPNg+V6KDpqIkb7I0k5XNOLMZLfpbOUv4p+Y8Mhxwfe3/bIEtn0XjLMHI9BSdksyyjmVCRtfLtdLmWCzW5zn5Kymspv9CWjpq4wWx7QRzudfiZ+vLC44LYrvYwyHrTVg+L3yP3znCT6KGJUIEh+X5q/3oNOuj9Lb9M9cfM/XTQqLNyf9FREzdM2zppzCplxUBTZkwnDcJyaaRxyPpsHQwtcPxdtL72tX0jhDhet7hBoMs2ytfcQc2iayBif6Pmafpd9C2lgzk344t01MQNHdPYFD26dZFq6HjB5//p4Tutl++fLA0T6jiNi/upVcDWWvl+5kofEy6swXfTpJODhj9j8yYvHTVxQ/kJgglHP9L0UWFRuod9Hr7Xfvl+3ddqwh2fgwUnzhWaBx4tke/XXOkvtw0zrB2e0lETN5S2y9D+ow7rOllQjy6zme/h+13JGDD2E/a4FC0OHKN54Im+Lv2cc+7/btBREzeUojNTRS8f6A81l1vQLDHE2se+k3qPbF/0rksnZhH+eCwtOGl20jzw5KZkJ/Kbia7TURM3lHLU0PZ3PNR5zzCgG/BQ53BGXb8R/rjkvSXBM1/4cCTnBjU4Q9uDjpq4wZ7O4Lw1tP1+D/X+ZKjTV0qZrJlS8lNG5GFOh0eKBri2UrJzr83kX2V01MQN9n4U8wsGizzUu8xQp05ULPRUb/s9Ux8dzuNUiMOVjJPlOc0Cx3TA/kSyc9XMn8HtQkdN3GDvvqHdX3is+5Wh7mOe6j0v1az7gge/CG8Qwr/RnJvSCTpqOmriBguLxTx7Ne6x/suGun1NTAzk1LeGUyJ82ysciWPm3hizdqn3Na1ORw3iVj+mdVBafvBY/z6L+n0NerL2RnzIKRG+rDcJt9MscCgvoe1lmoaOmrjB0k2LAc56j/UPWdR/3FPdu3Pq281pEb722YXFNAkcGSy4GW2heeioiRss9Ej2LHiVL2fNthhg/eOx7qw3/l8IL6QFr3Xh4CeaAw5dkfyNWLkx0FETN9hYZzG4eVPBcby3GOTN9VR3XnLbfZweYWt9hHOb5oAjRYlseZEi/I5aXxE/n3ZcOnswmZRL6X8nbsStSgcsBlg3KziOWxbHsc1T3Xul2sX1cKR1c8lzNAccOSXdWYxKRz19W6Uxy5g3+7iVuBG3Cpne4PP9BmHT79K9dVhFP1hruW5afxHskMZmkNfTi6rs9OBgGpC76d/X56z6mO4vabzNN7+ii7IZqF30eXBgVvrLOe+GsJQmCrajHkjvQUXHNSUzN/s+cave3xYDm9EKjuOkxXFc91j/RE6d92K+mHSBmb5BoFlkL6aDoawFd3+V+MwVSfnDIli6LcBaz9+vt6W+VfR5cGBHwTk9SfME3VFftLgv+e5IiBtxazVl8b2qeKNuj8VxvPZY/9WCegdiCOQCaUy3jaZf5pXlSavliOUve02u+LnE574T8gWhPh3QNZon6I7atNdbax4z4kbcfJtj+b22VXAsOyyOw+fbjL8U1Bt80uadJQY9WWW54fP7k/Kgw8/+lb4IkZgl+ZuIazlJEwXdUf9b4r40m7gRN882Wn6nKtK+bHU0FujU9oI6X4YeSH0Up4vYdOZK3xZ4X+KENa3kX1HiF0ZWeUJfhEhsM5zLIzRR0B31hDCDRdzCsd3ye22YAYO9RdKdTPLeDIjdq5mnDAO3d/JtcjB97bQ//f862n0s5sWJ8GOTTG/mMqZSxfqLMwHcCOmoO3fO8lz6k7gRtwrstvxecys4lnmWx7LT4zEULS8ai/FiysuiapOif03bTJi+MTgrZxDGAIsBVh0GWI+Ex0oxd9SL2n4Q5q0zWUXciFsF9ko4jz17LY/FZxqaF1J9JnnvPkj5t6J09qv5WFBzkAwXfH6PkBmYAVb8A6zZhl9Y/FAIv6OW9AdjXmetqQB2EDfiVpHTlve2KnaGmG15LMc9HsMNwwC6N7YA9xg6jYsZf0ffRmy+gagzWOss6jClawADrNAHWKa2fM3pFkVHrXQJgz7ufZPe/7Tj1ozgywkbcavQBct7W1VsjsVnwu5xQ93DsQXY9Phue8Yo937Lr4YNlhdFt/dZYoDFAGu6TNP5NzndoumoQdwYYHU2wLrgsX5TstPR2AI8KsVvZLSvqbrU8v9ttyYwvf45wXXGACuCAZbp19VVTjc6auIGBlgd+8FQd3R5Bu+W6DBaf8EfKlHHT8IidwZY8Q+wbhrqv8TpRkdN3MAAq2OmfJ1RLcPQLLJF66/2tPzZlfI1pf/vJesxbSLJjtmIgWnnAzYTp6MmbijjPAOsbwxL9zLJO7fD8EX6WgZiz+RrUtCyK/lNebDOcJ0hAqY9w07TRHTUxA0lnI1wgHXWY/1bLOpfFktwi6Yn72X8OU3HUHbTRZu9loa5zhC4HovzeC/NREdN3FDCvggHWD4Xmg9Z1L8lluA+L/gSzTVWran893RQh2krgKyF9EBobH4o/EAz0VETN5SwR8JJNGqbB8vnfa7fov4o8p0tM3yJpdLId9VMJnqlw3pMW4vc5hpDBPosLvw9NBMdNXFDCTssBzVzAvkR6XurnLkW9e+OIbBFU5OP0j9zTb7mqZrfYT3PDI11mGsMEdjAAIuOmrgRN8ds1hxpGajgWBZYHovPR3Q2A6wfYwjsNSlOhT/S8u+bO6zDZrpvBdcYImCT7oIBFh01cUMZNjPj0+mDyxiyPJalHo/BZhYt+LWuumD3Y8EX0MSgkzL9V89/FLbIQT3Y3HwYYNFREzeU9VnCeBFs2OI4fKdJsFkHdjz0gBY97tDHgZfTf34pjSm7Tl0xNNQ41xYiMcgAi46auBE3D55Y3FtGKjiOnRbH8crzMfRKDWawxgwN6OpZ6/sAThrABZu1AbxFSEdN3OB6IkLLgQqOY6/FcfjeqqYWa7DuV9CQa8Q81djHtYVIzBLyYNFREzfi5t6odDd7epPNtj1jAQywgn6LcK6Yn/lqbqol06znqKGOB1xXiIzpujlLE9FREzeUZLP26UoAca9iLZjNov+g82DZ5N045aCeOxL5QjWgzVvDOX2eJqKjJm7oYNLD1Cc/rOA4/hHzUyff+bhs0uEEncn9ophnrxZOs45ZFr/2N3JdVcImvUBdynXPbXnLUP8lTjc6auKGDpj2652q4BhMe61WMcjbLJHvRfhS/D/m2Gao45NEtCM2AywGWKlxQ/1XOd3oqIkbOnBaupt/aqlF/ScraAfT41LfaSKmZcCiEZc7qOc3OiIGWDUcYB001P8HpxsdNXFDBzZKd9ce2aRoWFdBO5iOI+jcmQcMB3/XUT2mvB77uJ4YYEU4wNpqqP8NpxsdNXFDB3RWZlL8r43udFKkqnvbD12+x3u9cFzkl7DZHmcx1xMDrAgHWKZtHKY43eioiRs6dMbQ7vc81v13Fwd3rcYMx3E65BHylKFz6HVQz25DAz3nOmKAFekASz01HMNsTjk6auKGDqwS8/ojH/cXm9RNgxW1gWmd685Qg2faS+2yo3pMWWnPcB0xwIp4gHXecAxDnHJ01MQNHXpoaPvtHuocMdR5v8Lvf8NwLP2hBu5ERYGbmGY9mg17A9cZAmXKI8f2T3TUxA2dMq1BGu9CvKtM7FmU5eBFyIF7IMW5r2Y5qMOUMM1UT3OWTfcw7OVaQ4B60/O4m68y01GDuNWTLuV5LcUpjlw+JpxvuJ89q/i7Fz2qPBdq0OZJNWkTTDks7hT8Xd2ap/kWBW8ZImRFCUev0zxRdNT6oo0u3H2edjDacWmyR13CsJy4Ebcu2m9o//0O6zpsqGtXhd97meFYNocaMNMzVlebJ/5sqOdYzt/Tma8nQo4sxKFoGn+S5vnPzUA7ak2E/FGKFxOfIG7ErUt0JueR+J9V0qdJrySc/YJ3GM65YBOMXjKclH2O6jEtcN9smBHQZ6zz6JcQuDlSPK2+iCb6v2cBdtQrDbHz8eIPcSNuZa2S4sdlLlIqFc1eaVsPVvydi9aJXwg5WEULz+86rMe0WWTWs+PmW1mf0osIiEHRnp4sdG8MQk2vfndj24trUu7N1EPEjbh1ySEpzmg+fxqf3Z8OlENqv6KlF+tCDdLyCk/ET4a62i/Kc+L+MSVQhdXCps9F9lp2hFWntfgk5TpqfSQ1j7gRty4pevp0s8PP7EknVvI+92IXvmdRns5HIQfItH+ayw0kTb98jqR/boU0stI2//uv9EeIUF7244kZ3i66pvKFZUd4u+Jjs33M5GtRMXEjbmVdLfiO5zv4vKKlPNe69B3Xi9/Hod4UJe566riu9x1cBCxqR6y2FZzXq2Zomyxs+/FkU85KdY+cngn3KOIWnzOGQVGfZYz/NMSzW/K2yHktAS9u7zGM/F3PHJV9Tv6HuMm/BXTL45xzeya9haY39+H0Bv1ROsvCrwkGR6XxIozP7YbGOji2R8SNuAVgV8Ekhr69fFSy9/ldmsYo7+/qWqxuL9HJu48eDDkgpm1SNjqub3OJk3+cwRVqYHvBL6+60ul8fQz6Tor3N51OmUo/X+txuf+YLuL+q+SxvCNuxC0Q/WLer08HTHfT8sHwZ/VxYbffel5ZMHjvCTkYJ6V4EaAP5y2CTyJR1EneLgnDNf2+Ve9vucfx8etN+4A0ZtD1fmRaOzpJ3IhbYPTltXMWA6i8bPDaT68I5Lv8Jt3foicqOpV5Lw2k/qLRqUl940HfWCTPFepmlfhPgYLq7BP7HShA3LpJB5365EiXJGgG/ufp5MlUWvSfX6T/72T6Z0OaFZon2Y+nueYA/OdCziBrLU0TJdJuEDf4NyrZT9eW0jQAmjTp39uMm8U9miY6fULiWOIG3xZI9uzVAZoGQLu8tA3baJqo7JRvtwyZS5MQNziXNet/i2YBUOam8ZKbfVRut8TuHM1B3OBcVmJR3Xh6Pk0DII++Tp6V0+UsTROFjfLtLMgSmoS4wam56Y/O9jcb2YsYgJEu0JzMGGRtommC1pf+im7G6xhNQtzg3GWZOSltAHj6Rd2+i4Iugl9I0wRJs5C3boCrSS17aBbiBqcOZAyu9tIsAMoaybiZ6AbR7GAQll5pJK9szcLPQJi4wa0h+T457GGaBUCn9kv29hQIg74q3roFyxshBw9xg2uD0ti6qPU++DPNAmC69snM3gw6VJoEdqIlJk+k+/uygbjVzZK2ePFYEIBTun0U0+Nh0DU6Y22x+F1IpUHc4Npiacwutr4tSF5AAM7pGoT2afJDNEvlNNdOc5NcvfmzqSxxg5/B1euWe53OYq2mWQD4MpCUZ22DrCM0S+UOJuWoNBZKg7jBrUH59rGgbhm2gGYB4Js+0hhvG2SdolkA1ICmqGmdqR+jSQBUbaTtRqRvF86mWQBEao98zf/3Kh1sAUBXLEwHVnpD0vUly2gSABHSlxCeyte9IHn5AEAQdAE820UAiJluB7a+7l/yf59CIimGDICOAAABCXRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtb3Zlcj48bXJvdz48bWk+bjwvbWk+PG1vPic8L21vPjxtbz4mI3hBMDs8L21vPjwvbXJvdz48bW8+JiN4MjE5Mjs8L21vPjwvbW92ZXI+PG1vPj08L21vPjxtZmVuY2VkPjxtcm93Pjxtbj4xPC9tbj48bW8+OzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1uPjE8L21uPjxtbz47PC9tbz48bW8+JiN4QTA7PC9tbz48bW4+MDwvbW4+PC9tcm93PjwvbWZlbmNlZD48L21hdGg+3TjrpQAAAABJRU5ErkJggg==" style="width: 96.00px; height: 24.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack n apostrophe space with rightwards arrow on top equals open parentheses 1 semicolon space 1 semicolon space 0 close parentheses"> cos P ; Q ^ = cos n   → ;   n '   → = 2 . 1 + 1 . 1 + 2 . 0 2 2 + 1 2 + 2 2 . 1 2 + 1 2 + 0 2 = 2 2 ⇒ P ; Q ^ = 45 ° " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABfYAAAKTCAYAAABb41lKAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAFRxVPCvQAAgABJREFUeNrs3Q/cXeV9GPaniqIqTGUwomGGGYxqskYJpcUUM0KBjjFNUanCTGWCGVBSpnqMUaYUezLBlFAzTAlVGIxqiqYRqpYwmQmGyZhHmeoR1y4mmGJKxojGGNWUAZUpqEIJe57d846rV/fcc973Pefe8+f7/Xx+H/+RdM+5z5/z/LnPeZ4QAAAAAMp7OMbRkgEAAAAAANrh4xh7YpwnKQAAAAAAoPk+Hoo7YyySJAAAAAAA0Fwfz4oXY6ySLAAAAAAA0Ewfj4gDMW6UNAAAAAAA0Dwfj4lnYhwviQAAAAAAoDk+Loh3YlwmmQAAAAAAoBnWxngrFE/wPxzjaMkFAAA01aIYJ8e4O8bfiPEr2X/enf3/iyQRAAAdsizGQ6F4cn9PjPMkFwAAULefiLE8xr8V42djrItxXYxbYnwjxq/H2BXjOzH+SYzfj/EHBQOaP8j+3j/J/t2u7HPuzj73uuw6P5tdd3l2HwAAdUn9jc0xFksKFiBN2r8Wiif47wwWuwAAACWlgWo6vOu0GH82xs/H+Msxvhzjnhj/TYwnYjyfDUjSfqB/WGJgMon4w+x+Xsvu74nsfu/J7v8vZ9/nz2bf73gDcwBgDrZnfY5HJQULtCTGXTEOFfRvX4yxSnIBAEC//GSMT8U4PcYFMf6DGNfH+M9j3JsNTv+HGL8d43+L8W5oziT9JH8MeDf7/r+dpUdKl7+ZpdP1WbpdkKXjp7J0BQD659QY+7M+xAOSYyra3O88MCvej3Gw5L+7UdYDAEA7pVU9/1qMn4lxUYzPx9gQY1OMXw2Dg7aeivEPY7we45+Ffk3QTzr+WZbO/zBL94ezfNiU5cvns3z6mSzflijCADTYbTnt3c2S5giXDaXPfZJj4vrc/3wmDN44rdItOdfapKgBAMCRlsY4McafjPHnYvzFGH8lxq0x/laM34jxdIzvxXgjfLIyTLQ79mf5+b0sf38jy+9bs/z/i1l5+JNZ+ViqqgAwAffktFsbJE2u24PJ/Wnpe38ybTt5WcVpujHnWrcqbgAAdNlPxTgpxpkxLo6xPsZ/HOOXw+Bwtb8T47di/KMYvxcGr9z2bQCS9g79v2P8KMbuGI/H+K/DYDugdBhuOhjsV7L/TP/7V7M/fzz7+z/K/v2hHqbd+1m5+UdZOfo7Wbn65aycrc/K3ZlZOfwpVRKAObg3p/25XtIU2j6UXtskx8T0fWJ/X4zLa0jXO3KuZwsgAABa4V+K8a/H+NMx/t0YV8S4IcbXYtwfY0cYvAL7Qoz/I8Y/7+Fg4qMYe2P84xj/S4ydMbbE+HqM/yzGNTHWxjg3xr8Z49gYf6Si/Emf869kn3tudp1rsut+PbuPndl9/ePsPj/qYR7986x8vpCV1x1Z+f1aVp6vyMr3n87K+1GqPkAv2X5n4XYOpduTMZZJktr1eVI/vfF5Qo1puzXnuusVOwAAJikNrE6JcVaMfy/GL4TBipP06vR/GePvxfifYrwY480YH/ZwcJAO63o7xssx/n6M/y7GQ2Gwcj4N6v/DGD8X45wYK2IcE6qbpJ+UP5Ld94rse/xc9r1uzr7nQ9n3/vtZOrwdyh1i1rX4MKsHL2b14u9l9eT2rN78QlaPzsrqlYkLgHa7Lqc9uFfSzMnicPjkfvpR/UTJUqs+Tuh/EAaLMybh2zljhvMUPQAA5uPoGP9GjLNjrI7xxRj/aRi8MvpgjEdj/M8xfifGWzEO9LDD/y9i/F8xXorxbIzfjPFfhcEWNzfFuCrGvx/jz8Q4NUtT8v3LWTr9mSzdrsrS8VeydP3NLJ1fytL9X/SwzB3I6tvvZPXv0aw+3pHVzy9m9fXsrP7+McUKoBEuznmu75I085Im918YSse9WRrDOIvCYA/7onFLWnSxaoL3ld62fX3EfaRy7UcrAICeSxOmfzwMJkzXhMGE6V8Nn0yYPhYGE6Y/DP2eMP0/w2DCNK2aSROmD8T462EwYXplGEyYfjaYMG2SP5blx2ez/Lkyy6+/nuXfo1l+/k6Wv33+AeqHWT1/LHzyA9RfzZ4Ha7Lnwx/PnhcAVCe9wfbOiOdzemvN21jzd9OINL0rDCb9YbazszpX1G9KZWjRFO7vjDB4S2D2/XxXmQYA6Ia0xcmx2QDxc2GwxcnVYbDFyd+I8bfDYIuT57KO6z8N/dzvPHWK0xYnPwiDLU7+bvhki5P/JAy2OLkkDLY4OTkM9vmnP5Zl+X5WVg5+ISsXM1tG/d2s3PwgK0cfhH6e6/BPs+fIc9lz5W9nz5mbs+fOz2XPoRWh2nMdALpkaRi8aTb7Obs/e34yP2dkbfSoNuyVMJjEhZl+330l+j57wvS3vsnbrus+2QgA0Cwzh5KuDINDSf98GBxKujEMVoqkQ0m/GQaHkqYBSnoV81Do56GkqaOdXrf+H8PgUNJfC4PD59K+l18Ig0NJ/1RwKCn1OSorX38qK29fyMrfbVl53JGVzxey8trHQ54PZc+pV7Ln1jfDJ4c8b8yeb38+e96tzJ5/fgwAum5LzjPzigbf87qOtEvbw+CHfPprbcj/AWh2WWnK2zOP5tzjGtkJAFCf1Bn8TBis9Lg0xl+K8Usx/osYW2M8HuMfxPhRjH0x/iD0b+LvxzF+L8b3Y/xWjEdi/K0YvxzjSzHWx/h3YpwZ49NhsMoN2uqnsnJ8Zlau12flPJX3zVn5/62sPvxeVj/6+GPAvuy5+A+y5+TW7Ln5S9lz9NLsufqZYMsKoF0uz3n2bWv4fXdlYn+mnUk/rtinvJ+Kyse+rJ42yXFhsFBi9r2+lf0ZAAA1+KXQrwm59Ar5/x7jezG+FeM3wuA10a/G+CtZJ/nPhcGr0mkw9UcVESj0R7P6ckZWfy7P6tNXs/r1G1l9+15W//b37LnzS4oINU7yQJVOCKP31X8jNP9Hyi5N7Kd4Mli575l/ZDyd1dMmuiznnh/WJgMAXWjoFxJ1+UstHvC8F+P1MDic6akY/22Me2NsivEfxfh8jAtj/EzWAV6ieEJjLMnq5c9k9fTzWb1N9fdXs/r8VFa/X8/qe1ufVddqczCJQEs8nlPOLmnBvXdlYj+1facpip754cizuG5owb3vyrn/i7XJAEDbG/omTrJc2oABzB/GeDfG78b47TBYoZT2jPybMb4S4/owWAFyQYw/EeNTMX5SUYPe+cms/v+J7HlwWfZ8+Er2vNiePT9+O3uevJs9X6b9jLtUm4NJBFogb7XtdklTmbQlyfMh/xBU+5Ez6pn/YoxVLbn3k2IcGPEdXouxSJsMALS5oW/iJMt5ofpJ+v8n67z9rzGeCIM9Wb8R48sxfjHGz8c4PwxWI/2rMRYrNkBNFmfPmdOy587PZ8+h9Dy6J3s+PZE9r17Lnl9V/xjwb2tzMIlAw6Vtdt4aUb7Stjz2x67WvSPS+aHgPBZGP/PvCu2bEL8tp726RZsMALS5oW/iJMtnxlwzHZT7+zFejfGdGP99jF+PcXeMvxbjuhh/IcbPhsEqkuUxfkIRAFruJ7Ln2ars+fYXsufdX8uef7+ePQ+/kz0ffz+MP1j8M9ocTCLQcHfklK+bJU2l0jZ0L4fDt5VcJ1kY8cxPb3Cc19L7XxpG/1CYzlg6riP5o00GgB4Ovps4yZJWB6WDHdMe0Gm7iLSy9DNZp2uR7AQoZVH23PxM9hy9NHuu/lKodxWmiX19C1ioPmyd0RQ7h9I3/TC8QpIwwvbQ/jc4NuS0WfdqkwGAtjb0JlkA0OZgEoEm2ZpTtq6QNJXaPpS2z8Q4VpLQYelHwT0jnisHY5ygTQYA2tjQm2QBQJuDSQSaYmVOuXpJ0lTqnqG0fSR4E4J++FLO8+UebTIAoKEHAO2VvIL5255Tri6XNJW5YShdt0gOeiT9gPXmiOdL2vpruTYZANDQA4D2Sl7B3J0c49CIMvWqpKnMmqF0vV9y0EO35LRdt2mTAQANPQBor+QVzN3mnDJ1vaSpRDoY950sTbdKDnrq6DD6cO69ob1bUmmTAcDgGwC0V8grpmJZGD3Zti/Y/70qT2Zp+pikoOceyGm/rtUmAwAaegDQXskrKO/mnPJ0h6SpTNrq6OEYiyUFPXdmzvPmO9pkAEBDDwDaK3kF5b2WU55OljRADV7Meeas1CYDABp6ANBeySsodl5OWXpG0gA1uSnnuXOnNhkA0NADgPZKXkGxrTll6UpJA9RkeYxDI547b2qTAQANPQBor+QVjJf2e39/RDlKB+kukTxAjZ7JacfO1yYDABp6ANBeySvId1lOOXpE0gA1uz7n+XOfNhkA0NADgPZKXkG+HTnlaJ2kAWq2POf507bteLTJAGDwDQDaK+QVE7MoxgcjytDBMNiiB6Buz+W0ZWdrkwEADT0AaK/kFRxpTU4ZekzSABOyKec5dKs2GQDQ0AOA9kpewZEeyilDV0saYELOznkOPadNBgA09ACgvZJXcKTXcsrQiZIGmKD9I55Dh2Is0SYDABp6ANBeySv4xKk55edlSQNM2KM5z6NLtckAgIYeALRX8go+cVVO+XlI0gATdkPO8+hubTIAoKEHAO2VvIJPPJJTfi6TNMCEnZXzPNqtTQYANPQAoL2SV/CJPTnlZ7mkASZsUYwDI55HB7M/0yYDABp6ANBeySt679icsvOWpAGm5Ns5z6VztckAgIYeALRX8gpCWJdTdh6VNMCUbM55Ll2vTQYANPQAoL2SVxDC7TllZ6OkAaZkfc5zabs2GQDQ0AOA9kpeQQg7c8rOGkkDTMlpOc+lF7TJAICGHgC0V/IKQtiXU3aOkjTAlKRDcg+F0QfoapMBAA09AGiv5BW9tjSn3LwjaYApeyHn+bRKmwwAaOgBQHslr+izNTnl5nFJA0zZjpzn0zptMgCgoQcA7ZW8os+uyik3WyQNMGV35jyfbtImAwAaegDQXskr+mxzTrm5TtIAU7Y+5/m0XZsMAGjoAUB7Ja/os5055WatpAGmbHXO82mXNhkA0NADgPZKXtFn388pN6dJGmDKjs15Pr2lTQYANPQAoL2SV/TZgZxys0jSAA1waMTz6ZA2GQDQ0NfDQBDUD7RXyCuab0lOmdkvaYCGeCfnOXWUNhkA0NBX58QYj8Z4SBbXbnGM78bYEgavqKJ+oB5pr+SVvGKuzsgpM89LGpi6E8LgkNj3YxzM6uUlPUyHp3KeUxdrkwEADX01rguD1V3pOzwti2u3Mgz2lpzZY3KNJFE/UI+0V/JKXjFHa3PKzE5JA1N1XIw3c+rneT1Li0dz0uFSbTIAoKFfeKfzyaH7T6tKFrU4/RcSaY/aD8LgddHvZ4PitBL4qhhn1fA9lofBauOZ698XBiuQUT+a6IysLmzJ6sYbYbACLdWbg1nd2RtjVxi81bA+DFaq1U09MjCVV/TZ+pwys13SwFTdPuaZ/ljP0mJbTjpcoU0GADT083d+GEzEzdz7PS257x0xXgyjD2KqM97Prr26wu+yNAwmQmeukSYoj1fF1I8GSD9gXJoNxvYtoN48F+PqUO8PIuqRgam8oq+uzSkzD0gamKrHxjzTX+1ZWtyVkw43aZMBAA39/GwIh0+M397CfEirctM+lVvCZCf4U+wJg+1ZqvLw0GenLUVOV83Ujyk5Nca9If+gs/nGmxXXGfXIwFReQQibc8rMdZIGpmrcxP5zPUuLNv4AqU0GAIPv1gwCuzBpeUkoP8H4dhhM3A5vE5JWE6fDN9Me3TfGeLbkZ6Ute1ZU9B22Dn3ue2GwYhz1Y1JWhfw9UFOk7XbSGyvXZWXzqFn1J9WDtCXEw9nfzfuc3TFOqvF7qEcGpvKKPmnjFhfQ57qZ4vGepUUbtwzTJgOAwXfjpBXuO2fd7+YO5ctzoXgiPk30nVjy804Og4nMos9MK5urmjwcnlhNe5ZfrLqpHzVLW9ZsHVO+Xw+DH8KWzOEzl4f8VaQzdeaiGr+TemRgKq/oizYeSgl9cOOYZ3rfzsC4NCcdHtUmAwAa+nLSpOVTodurRR4LxZPw987jc68t8bn7w+Bw0SryafhtgTQpaeW++lGXL4XBj115ZfrmsLC98Vdnn5P3BsCaGvNTPTIwlVf0wa6cMrNa0sBUrRvzTL+9Z2mxOrTvzQVtMgAYfDdGmph7ctZ9vhAGB072YXA7HJfM87M3lPjs1ypK0+PCYA//4dXNp6l26keF0jZU47abej4M3lipQlqZn3fQ9YEYF9T0HdUjA1N5RR88lVNmLpI0MFVnjHmmr+9ZWlyUkw5PaZMBAA19sYfDkdtgnNTBfHmrIG/Sqt2FrD4us9XPrRV9lzPDYNJz+LDe5aqe+lGB1WH8wbgpPZZUfM1bxlxvbzj8vIsqqUcGpvKKrnspp8yskDQwVWnMkbewoW8/vJ0Q8rd71CYDABr6MW4dcY/rOpgny0LxpPvOBV7jghLX2BcW9uPBsNmToc+qeurHAm0sKL/31Ti4fXXMdZ+p8Tv3vR4ZmMorum1fTplZJmlg6vbk1M8lPUuHZWPGTdpkAEBDn2PtiPvb1tE8uSwUT7pvqOA6b5e4ztoKv9d3Z332naqf+jFP9xeU2/trvv51Bde/osZr97keGZjKK7ot7xyTJZIGpm5nGH2GUd8sCfnnOWmTAQAN/QhpK5HZ222kLS+O62ie3BuKJ9yr2DP8kRLXubvC73XmiM93mK76MVcPF5TZSRxelgZ1B8fcwxuhurdd1CMDU3lFX7yfU2YWSxpo5PjkqR6mw+Kc59T72mQAQEM/2qiDMb/U4Tz5fig+2LYKN4f6t/yZbXs4cj/Kpaqh+lHSjoLy+nKMoyZ0L48X3MtVNV67r/XIwFRe0W0HlBlorPUj6uYWbdz/Hwe0yQCAhv5IG0bc16sdzo/jQvFk++aKrnVFiWtVvV/4yhHXuEc1VD9KeKigrKaVUpM8YHFTwf08V+O1+1qPDEzlFd1mYh+a65ww2UUMbWvjTOwDABr6WZaHI7cYSXFdh/OjzGR7VfverytxrTdr+I5PzbrGoRinqYrqxxi3lSirV0/4nsrUnxNrvH4f65GBqbyi2w4qM9BYi7K+hi01TewDABr6Ukat0N0X6tu7ugmKthpJg96q9potc0hvHXtnrg326FQ/yru8RDl9cgr3dUmJ+6rzR5Y+1iMDU3lFP8sN0AyvhcMXFPT1/ItRz6lD2mQAQEP/iZWh3m1omuq9MLkJzDJvBzxWw3dME8+jVpo7SFf9mO30GB+E4i14TpzCvZ1Uov48UuP1+1iPDEzlFf0sN0AzPBqqP/OrK88qE/sAgIZ+yMM593Ruh/PinFA8UXhThdfbVOJ6d9f0XbePuNZu1VH9GLIsHL4yLC9umdL9lTkPo+7zDvpWjwxM5RXdZiseaLbhrRF3aONsxQNAt5wdBhMsaYXv62GwyvJg1sjtj/HdMFi9mA57PHkK95cmvDZmnZDnw2BldLq3Q9l/vpf9/+keb4ixasL3d9pQ+r2Rpd+hofR7IQwmcdK+zlVutdHEhv6kcOQejine6VFnOS+q3EN7R5jcfv6z5W0D1JaJ6YvD4GDhD7I6miZTL1U/KrW1RPl8I0xv66HTStxf3au32l6PDEz7NekxzbzSR21HH9XhuTSlr8Vow+cLbdTGmdgHoP2WhsEK4ldLTHCMWlW4rub7S9tV3Btj7zzuL8VL2QBqaY33eFGM78zxvtKg9OqhwVMaaD3aoYb+rpz76frKkO+G4knMKr1dcL3UQa1r78yjc665swX59JUxaXar+lGJMvvXp7iyBfd4VI330OZ6ZGDav0mPSeeVPmr7+qgm9mlKX4vRTh7KhzXaOBP7ALTb9eHIicG0eue5MFi1sykbUG0pGBSkVT6nVXxvx8fYFo5c1Tpzf+meNmb3mO71+wUNXvqeGyq+xzRhOurwy7SCbFd2jyn97s7u8YURfzetYHlvgRM5TWvoF40Z5F7f4fp0bInB8tYKr3fOhK83yith9ArnkxqcT2eH6b3l0Jf6kSap3iiRzq9M+T7XhnKTXOeqRwamJj0mnlf6qO3so76f8x37dkBnKiPpjax7Yjwb5nZeywlhMPH97Sw902TjvuwzzmzJ9592X0t+jzfzA9xRoZ8Wh/wzn7TJALTCidnAY7hB2JcNQo4d8+8uCfmHIKYOwrUV3d8V4cgDSA9lg4/lY/7dihgPFDR8z2adryo6BE+H0fuZj0vDtLorb2/t+R6q2rSGftxk2dkdrlfrSwxiqlw9uL3E9U6v+TvnleUmr8R6pES6Pat+LEiZLammvVo/uarkfV6sHhmY9tC08koftd191P05/35Jh+vKcVnbntq+9HbDqEPRy/xwsyzLo4MF5eTaFqTJtPta8ptxluSk9X5tMgBtcFE2QBpuDB4v6OgP+0pBw3LDAu9vcxi9kmkuE15pJfOeMH5l1FkLvM9Rg7O5TFKtD0eu9HqqIw193oRz+r6LOly3iva7T9+/qtftTwuj92gfjkcn8J03hPzX+JuqzJYOH6gf85ZWnh0I5fbWn7a7QrmJ/YvUIwPTHppGXumjtr+Pui/ney3rSL1IP5qkH5E2Zv2st0q2IyeVKBdvlPysQ6H6t1C61teS34yzLCet92mTAWi6tFp49qqA++f4GUeF/BVRM3HePO9v1MRo2rJixTw+K62aemXMPe7POlXzMWoLlPlso3PdrM94rQMNfZqYfC/k7yXbZfvCZFYmpTQu2ss/le8TJ/Cd14T2rT6f5mCzD/Xj/pID1ZsacK87St7rSvXIwLSHJp1X+qjd6KO+lPOdVnSkXrwX5n6WwosFn5neHjs0x8/c0vB06srEvvzuphNz0vm1Bt+z/hMAI7d/eKymyZAXKpwMWsgWCGngNG5lxTvzHGjsDNVtsfJUWPgqgSY19OeOuZcuH5xbZi/RWyq61rYS17piQt973LkCdzQ0r8psYbRb/ZiXk0oOVtNgvgmrN18qOaBeqh61cmC6M8zvQNOmxo4O55U+anf6qE+F6bz5NCkPZWUsnVPwZsm6O+45fvM8nwd7Gp5O0+xryW+KXJSTzk81+J5N7AP03OnhyBVMbyxgYuWKEh2QubwyeF3OZ2yr4LufUzDR9Noc0yG9kjlqL8Tl87y/VWHh+/o1qaG/Zcy93NvhOlZmT/GFvlqfyl6ZPUvvmfB3P1Dh5MmknodFk8+XqR/zcnfJAepDDbjXxaHcjxAH1KPWDkxN7Lcjr/RRu9VHfTznu6zuaP/v5DB4I3NceTunRJ/gUNYPSH3FRVmePT3mMw+2YOw5rb6W/KbI6px0flz/CYAmOiobGFR5iOcJJQZN60t+1qlh9GvTh7LO0yQmmzZX0BFYyKFgT4aFvZLapIZ+3ETKVR2uZ7sL8mHvAj//zDB4tbeo3t0/he8+7nXroxuaX1ePuee71I95SRNK+0K5CcombC9zQcl7fVk9au3A1MR+8/NKH7V7fdRHc+7h0g73Ac+dR//v2nD41i2rcsrftH90bmNfS35T5NIwvfPJ2tB/AqBhRh0OWMUKwBcKGpiyh3Ttyvn3T1aYBmm10zsF93tGyc+6Muffn76A+5sZiM13NUaTGvq9Y+6lq4O6o0PxqqTt8/zsc0K5fcBTh//GKX3/XWPua12D8+3s7DnzQZZ+z03gfrtcP64K5SYnX23I/W4MzZpMbWs9anJ7ZWK/+Xmlj9q9PmredoFXhO46Z0zebR3x9y8Jh68QXjqPeri3JWkzjb6W/KbI+orHa13rPwHQIOmX/1ETjtdW8NnXFzQwq0p8xrkVDLrKurXgfsvuqZf3SvbGBdzboqFBXZsb+iUF93JJzzqHw/FANjg+Nif/l2YD9zVZ/Uwdyz0lJ3ueKVnf6vLwmHu702O4N/XjmZLl9daG3O9jJe/3K+pRawemJvabnVf6qN3so27OuYfrOty+XxbK/zCbyt7+knV6XL9hl26V/Gberh0zXtN/AqBRRq2aSStuqjoI8LmwsNcrHx/TQJ1YcVosD6P3HZ3rQC+vI5AOQDuqgrxa3OKGfnXBvZzc0XpWZkV91XEoqz/nNuD7PzTmPnd6DPeifpR5a2Uuz9m6pYmqD0re70XqUWsHpib2m51X+qjd7KO2ccJsobaE/H3RF89qK2e2niozUXteaPZZNX0lv9vvrpx0vkn/CYAmWZ4z0VLlae/p9eHN2QRJutYrofxKq+PHTATtrylNHi9oFO8u8Rnrxvz7LQu4t8uzz5jPwKspDX3RyvWlHa1reyc0qXMgK8MbwvwPwqvDuC1N3vIo7kX9WF+yDL/SkPstu79+GqQvUo8MTHuqzrzSR+1uH7WNW1ws1Ouh3CrrmTx+vmSbP+4g6Cs8ouQ389bGLcP0nwB66MacB/8dDbm/ca9JP1PTNYv2gH695EBx3MrUaaRvUxr6m3vY6Tg7FE8Obs0G5Gnrj3TI7jvhk71GZ8rSwex/pwmDN8JgP9K0OvOubJCc9sdd1NA0GHc42iGP4l7Uj22h3ET5fQ2533tK3u8u9cjAtMfqzCt91O72UdeGfr3Bt3JMel8/osy/GcovznggNPvttz6S392Qtx3jWv0nAJrk26HZh/CN29+4rhPpjw/FEzkrFnjvM4O+U3vY0I/bSuJgR+vZphJl6qyOP2uuKPj+x3kcd75+vBrKTZSvbdn9Xq0eGZj2WJ15pY/a3T7qGTnXfb6j9eSGMWl9QvZ3Tg+fLOA4Zw6fvTvM/0ce5Df5nspJ64v1nwBoirS/36GGN1jvjWmc6nxdt+hA0ssXMGiZPVF3WxgchNSXhn7c4Y8HOlrXdhek/74ePG8uD83Yo7zpulo/ig4FHl51vrgB93tGKL8NzzL1yMC0x+rKK33UbvdR89qE/R2tJ3lbKH13KD1eyf6/DRXVkwc8nuQ3C/JOTlof1eB71n8C6JmLQrNX/S0raJy21HjtopVM95b8nLJbOaRtVS7tSUP/6Jj76OKAruiV92kcdjgN6wrSYI1Hcqfrx0Uln4Xfacj93lnyfreqRwamPVdXXumjdr+PeiDneos6VkfSZGzeoce3ZX/nvjC/Nz1Wj8m3dR5P8psFGTV+a/q2h/pPAD0zbp/OJQ24v9UFjdO2Gq9dNNgpOxGbOndFq7WHI+2ZXterz01p6HeGfk3slzkwtA+HXa0tSAMDkm7XjytCuWfg/Q253zdL3u/Z6pGBac/VlVf6qN3vo34/5zqndayOjCsr6c2J88Mn+6wfO8fPvjfkv/22xONJfjNvx+ak9Vv6TwA0yZaGD5ouK2ic6nzNuehwsrkclpg6Bi/MYeCUVjDV8eqzif3pKHNgaB/2l18TTOz3uX7cWvL5t77hg/Jpv13Ql3pkYCqv9FG730dt48GU85E3GZsmdtOWHq9n//v8eXz2Szmf/axHk/ymlr7grobft/4TQM/sGPPgb8LecVeG6W1fcmnBtZ+a4+elgdNcVkXNHIJ0SQcb+r5N7L9dkPYv9OR5Y2K/3/Vja2jmCvhRnix5r5eoRwam1JZX+qjd76Nuzvns6ztWR14O+Xuiz2zJctc8PveEMflzi0eT/GZB8t643t7w+9Z/AuiZx8c8+Fc04P6KViQ9PsXJk2fm8Znplectcxw4zXzPEzvU0I/bG/aDjtWxs0rk7509ed6Y2O93/dhe8nk37b2VTw7FZ2KkeF49MjCl1rzSR+1+HzUvDbd0qH6Mm4y9PfvPl8P8Do2/dsxnn+XRJL9ZkLyzlm7SfwKgScatSlzdgkFTnSudLw7VroYallYAvDPHgdP+rEPXhYb+4TD+Fe8u2VQiby/qyfOmaIWhw3O7XT92lHzOTdt9JZ/J56pHBqbUmlf6qN3vo7Z1q4u5uG5Me/5qWNikbF67us9jSX5TW7+16Qso9J8AembcoKkJ+xxfHqY3CXRRqG7/0lGOj/FImPvKqPRvlra8oX9ozH0c6lgde7Yg3dMK7EU9ed6sC83b1qSJulo/yqzY//6U73F5Nvgu8xxWjwxMqTev9FG730ddErq/LWPRj9r3zfNzF2Xp1MatQrpMfndH3tkjq/SfAGiSXWMe/Pc34P7WlhhE1HWAWtGgqaq9Uy8I+QchjTuw8dgWN/QbQrO34qjKslC8pcfOHj1v1hekxUqP5E7XjzJ77D8+5Xu8s8Q9ppWsy9UjA1Nqzyt91H70UffmfM6yDtSN1F6/X9CeHDfPzz4vNPuHrz6S393Ky1FjuDa8Oav/BNAzjxZ0zKdtVYkBxAU1XbvoNed7K77e1THemsPAKa1snevK/aY09EWr3I7qSP26vEQ+bujR86booMFFgS7Xj9tL1Idp/tCV9sX9oMQ9XqEedW5gujPMfWVyk2NHR/JKH7UffdS8+teFbcXOL0inTQv47NvGfO5xAfnNQpwWJr/FWhv7TwA0wLhDstKv1MdO+f7yfi0fjutrunbRwWR1rI5YknX69pccON3T0ob+3IJ7Oacj9avMCuWTevS8uS40e2/1puhq/bgyNG9CcthDDb+/vtUjE/sm9vVR+9FHzfvRd2MHnmPjftB+LyzsrYTdoZlb2vWZ/O6OvLcj27DtkYl9gJ4p2vLh+gbc4/NhOnsdF62arXO7g7Ty4oESg6Y0oDy5hQ394oLB8OqO1K+3C9L8tZ49b+4dkxbPeRx3vn4UbR0xzRX7p5e4t1Rfj1aPOjkwNbHfzLzSR+1HHzXv3JBHO/Ac+26obnHOsKPH9BPu0I2S3yzY5ga3O20Z7wMwIasLHv6TeN2s6DXlewru8e2a7uvGBV5z5pf+FQtMm70F3/+Wljb0r4Zu7xV5RolB7+aePW+2jUkLB391v34sCcWrW5+d0r0VTc6lFaqnqUedHZia2G9mXumj9qOPelzOv32z5c+wYwvS5tQFfPa4s1YuCMhvFuqZnPQ+T/8JgKYpWhma4pIar39RiY5/0X6FKc6s4d62j7neQ3PohF23wPtYWTBwmssK1yY19I+MuZebO1C3NpYot2t79rx5LDR75WWTdLV+vBCKJ9An7cYSdXW1etTpgamJ/WbmlT5qf/qoe3L+/fIWP8PGTcYu9O2qvB940zkxziuS3yxMStMDI9L7YEvS28Q+QA89W9AAvFxTI5Y662lVUdpzsOjQnz0F91jHa4jjXqcs82v9+goH2JeMuZd9LW3orx5zL1t7UK8OZpMWffLcmPQ426O4F/WjzAG6k9zuZmUoPjD3evWo8wNTE/vNzSt91H70UfN+zL6sxc+wHTW2K2+H5p4D01fyuzvOyknv3fpPADTVDSUGibdVfM00CPt2KP+a7lcK7m9Pxfd3VMhfJfZiyc+YGTSlX/yrmMDNm8z5oKUN/UmheftsT6L8zMQzPXzW7K+gDPdFV+tHmS2q1k2wnr5ccC83qUcGpkw1r/RR+9FHvSrM/+2Dpsp7kyEt7FjIwc9nBm8/ym/5PY25kbu1yQA01bJQvGIxxcUVXnNL9pmvhHIrrdIKznfC5CaDxr1Oefk8PuPyCu4p7xC591vc0OftI7635XXqshL16ZaePWeWhO7+kKN+zM33C+rGAxO6j8cK7uNm9cjAlKnnlT5qP/qop4b8NzLa6KwxefTUAj/7jjGffdKYf3dfqHfrqj6T392S1z9syxaq+k8APXVviUFTWiVYxYEx9w195vlz+HdFe5Z/v8L0eDznGs/Pc+D1dAX3tLaCQU/TGvo7x9zPkhbXp60l6tNZPXvGnDsmLa5r+L1fkD0T0jMwrbxKWzM8Ggb7L6sfc7euoG6kCbK6t6kqavOuVY8MTGlMXumj9qOP+lrOZ5zYwjqxqcb2Je9H/9fG/JuZH16a/APwtPpa8pvZRr0ZeahFfW/9J4CeOj7kv94/+5XaK+Z5jaXh8MO+5roqM62aKjp4cX0FaXFyGP2Kc3pd+bR5DppSnF7ToGlbixv6cdtyrGlxfXq7IK3f7+Ez5sqctEh1rcmH491akJdpX+DF6secPV+QrhtqvPa4ff7TRMLF6pGBKY3KK33UfvRRH8r5jKtbWCeeHfOsPm4Bn7syzP1tt/Oz66YtoY5taHpNs68lvxnW9v319Z8Aeq7MPqbDr/yvnMNnp1cBXxn6969mg6j5dHDGDe5SJ2bZAtNhW6hmomn2oGmhr2LmveY8l0moJjb0L+Xcz60trUfnlaw/fZM3YH+6wfe8uuTz8En1Y85OD+PPodgzzzaiyLiVv6ldWqEeGZjSyLzSR+1+H3VNzmc81rL6MO4MhOcW+Nk3jSlfow4aTj8Epe370g8/TX1TtAl9LfnNjE0d6HfrPwH03FNzGDjNHACaOvNpe4DhlRRLs4FS2kd89sTU/jkOuGZbW3BPWxbw2RfkfObWeXzWqD1QF7Jaa9TBZC91oKHP67Q+1dI69ECJerO1h8+WvBXalzf4nh8L5Z+FG9SPOftSQZreX+G10qq1XQV18ij1yMCURueVPmq3+6jprYcDYfTho4tbVB/GnbO0cYGfvXPMZ89+ayv975ntja5tcHo1oa8lvxn3LEtxtjYZgLZIkx+vzHHgNJdIKxpWV3CfV4bqDz08IYzeQmW+q6tHDZrSgPGMigaKh7LBatsb+rR67f0ODOSSk7L7LqoHO3r2XMlbzfRmKHcw4bS8PYdn2x71Y17uK0jXGyq4xiVZ/oz6/LdCew5Da2s9MjDtvknllT5qt/uoIesf1X34cN22jMn7hb4Vtr9kXUuTvC+G6n8k72pfS34zk455fUVtMgCtkgYPb9QwYDpYccc8rVA8MOZ6t8/hs1bmfOeHFnB/63PuK70iecEcPietEHgnVLNqpakN/T0597S2RfUmTcDuLlkXPpjn4Lmt8lYz3dLw+35+js+4s9WPeSk6GPP2eX7uqpC/2u1Qlq7L1CMDU1qVV/qo3e2jjnvOPdyi+vB6znd4pYLPHreF3cxZBOnHqZkfs59sQXo1pa8lv7k+J63v0yYD0EbL59HRGhdpNca5Ndzn2WM6VB9n32HcACVN6qS99GaviE0rJK5b4L2tL0iTNCAbt5JjaTZhM2pgeFPHGvq8le7bWlBXjs7KyutzrBOpzN0ZFn5gXRuM2hP4ndD8SdW755inV6gf85bq0Adj0jYdSnlRic9ZEgYTak+P+az02v9K9cjAlNbmlT5qN/uoyeIw+i21A9nzvelWjUnTOyv4/Lmsbn8u1HNWTVf7WvKbZ3LS9nxtMgBtlV7tTyuKDi1wwJQmI46t8T6XZZ3CooMY02qftELzxjDYBz2tahg1WfZoGBw+tFDrS6ZP2oN0e9YBvCm7t505g6V9MS7taEM/atXu/tDc7UbS6+KvVFA/Zib5n17gYLip8gbpbVhlfFyY28rQ69SPBUmT7c8WpPEb2fPyxmxwn7a8uDlrZ3YX1MdUZ89QjwxM6URe6aN2r486Y2vOvVzZgrpw45i0rOLHowdK5ls6j+Koljw/mtTXkt/9tTznOf1WC7+L/hMAR1iRdSzK7B0+vM3BYxOeRDk5GxS9N4+BXZogS6uTTqvwftaHal8R3xyOPCipSw19er1+1MRVUw+AqmN/350dfH5cG0ZPzi5pyf2nAedd2eRG0TPwWvWjEmll/rcrqlNpwuyOUM1EmHpkYErz8koftTt91BnnhfzDkJsu75D2fRV9/vFhsF3SuLzY1MJnSFP6WvK7v/J+pLlLmwxAlyzLBgJpddOz2eDkQBZpwiltlfBIGKykWD7F+0yruNJhiWkl185s8uP9Wff6UvZnt2V/d1IHD6ZJmPQ63xXZIG1ndi8pLT8Yusf0318dSs/jetLQ3xJGb8FBe70wIk8v7ch3WzPre61XPyp1aoyNWXtTZtLuUPa8Tyta08rSM9SjVjMwlVf6qP3qow57Lac8nay6/X8/9D80VMZTmflOGPyIfVIHv++k+1ry23hlOFZpkwEADf3cBryvhO4eEto3q8Po7VC6WqdOVz9qM3slVZq4SwfHXZaVs5PC5Ca/1CPtFfKKet2cU57ukDS9f8acLjmo2Fk5z5vd2mQAQEM/d6NewX5J1rXSy+HIfSqP69D3OyEcfvii+lGP+0cMtJapR9or5BWdlZ7xefv4L5I8vTKNvhb9kneWwdXaZABAQz8/94y4vxtkX6uMWm13Qce+44ah73a3+lG5NLHz5Kzv+XxozqT+OTGuUo8MTJFX1OLenDL1JUnTK9Pqa9EP6fD0UT8iph+R2vojojYZAAy+py51pL476/7S3pInysJWSHujzz7odWPHvmMqo6+GTw4vO0n9qFRaoffirO/4YjYAa4L05sQ7od5tAfpQjwxM5RXkSfvpHxpRpl6VNL0xzb4W/XBLTtt1mzYZANDQL0zqvO+ddY/PyMJWDMJmTzpv7+D3vD1Md8/fLtePtNfp27O+WzpbYHlD7m9dGBweme5rk3qkvUJeUZttOeXqcknTC9Pua9Fti8Nge8PZz5fUx2vzlofaZAAw+G6M88Nghc7wfd4iGxtt86z8ejrrOHfJ8GGmaX/7JepHZS4Pn0yaD8fjMbZkcVcY7HuaJthXhsm+Kn1HmMwBtn2oRwam8gqKpGf8qFX7zl7qvqb0teiuL+W0W/dokwEADX111o+414tkZSNdHY485HRpx77jxeGTiee0Yv5k9aMydxU8o/Ii/biRVrenlZ1Xxjizhns7Lcb3w2Qm2vtQjwxM5RWUtSWnbF0haTqraX0tuictCtmT06c8QZsMAGjoq7Vh1r2mva1Xys5GuSQcvqruudCcQ06rclX4ZIV8GmieoX5UIm2x8+0wv0n9vEgHoT0V49ZsgmC+k/BpW6BHwpFbHi1Vj7RXyCsm4qQw+nDL10J7D7ekfX0tuuXGnDarCwc0a5MBwOC7ka6fdb9vxDheljbCuTH2h8NXM3dphXF6/fu+WWVvlfpRiQvCkfvp1xFpsjytfH8gDFZ5njurjKbJoaPC4FDc9BbE/eGTA/uGI22/s1g90l4hr5io23LKl+0Z9bVgro7K6Xu+F9q9t742GQAMvhsv7ak9vGqrSQdq9tU5YbBCfCZPHujY9zspK2cz3+/RGMeqHwuWJtJvD/VP6FcZm9Qj7RXyiqlIE3FvhtETcRZ56GvBXHT9h0JtMgAYfDdaWlG7Nxx+oJbJ/elIh7fOrDBOK6I3dPA7phVkb4XBK/+Xqh+VWBEGe+K3ZUL/jaysq0faK+QV03NpThl7RNLoa0FJp4bRW3ulH5a6srWXNhkAejr4XkhMWlqdtTscvs/qSbJ34gPsmYPN0iq6czr8Xc9oWWe/yfUjbRn0/tC9pTL0WIyNYfDGQdqa5+gw2Fc+/QCwOgwOxE2HJ6bDaw+FyU3opz1+7wiDlaLqUb/bHEwi0AyP5ZSz1ZJGXwtK2JXzDLlImwwAtL2hb+MkS9rKY2aiL+2VeKYsnoibhvJ+Z+jGfpRd1LT6cetQuXkyxtp5DOLTpP/lYbBCc3+ob0I/7bF/snqkzcEkAo1yQjh827LhN6uWSR5gjMty2qnt2mQAoAsNfVsnWc6K8WJ2Hy/K4tqdnaV1GlhfKTkar0n148QYW2OsrPAz0wr/9INBOmj2wAKfY8+HwWT7cvVIm4NJBBrr8tCPyTmgOmnxxN4Rz420BVTXznPQJgNATwffbZ5kSat+bw6D13ip36ZglX6b9Kl+pLcS1se4J8aOGN8Og8nztN3NgSzSVkCvh8Eq+bQy/7Iplec+1CMT+/oWUIctOeXtCkkDjLAz55lxiTYZAOhKQ2+SBQBtDiYRaLql4ZO30YYjbdG2UvIAQ67PaZ/u1SYDAF1q6E2yAKDNwSQCbZDOQRm13/6rwX77wEB6W3XUVo1p+8WuHtasTQaAng6+TbIAoM3BJAJtcXFOudslaaD30naHr494PqS99k/UJgMAAAB9ZxKBabo2p+xtljTQW2k1/rdHPBfS6v1ztckAAAAAMH23htGTWLdIGuil7TnPhMskDQAAAAA0x11h9ETelyQN9MqdOc+CGyQNAAAAADTP3WH0hN4GSQO9sCnnGbBJ0gAAAABAc90WBvtoz46bJQ102ldy6r5JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApuFjUSoAAAAAAKARTNqb2AcAAAAAoCU+FUzYm9gHAAAAAKA1rgkm7E3sAwAAAADQGs8GE/Ym9gEAAAAAaIVlMT4MJuxN7AMAAAAA0ApfDKMnsL8V48JZcYrkAgAAAACA6fpmGD2xf7qkAQAAAACAZlkc491w5KT+72Z/BgAAAAAANMgXwujV+t+QNAAAAAAA0DwPB9vwAAAAAABAK6Stdt4MtuEBAAAAAIBWWBtGr9b/VUkDAAAAAADN82th9MT+akkDAAAAAADNkrbaSVvuzJ7UfzfYhgcAAAAAABrnwjB6tf4WSQMAAAAAAM1zR7ANDwAAAAAAtMYPw5GT+h/GWCZpAAAAAACgWU4Po1frf1PSAAAAAABA83w5jJ7Y/7ykAQAAAACA5vlRGL0Nz09LGgAAAAAAaJZTwujV+t+SNAAwNx+PCQAA9KEAoCo35bSdGyQNABiUAgDoQwFA83wvp+38tKQBAINSAAB9KABolrSH/kcj2s3dkgYADEoBAPShAKB5NuS0mzdIGgAwKAUA0IcCgOZ5NqfdPEXSAIBBKQCAPhQANMuyGB+OaDN/IGkAwKAUAEAfCgCa55qcNvOrkgYADEoBAPShAKB5fjOnzfyspAEAg1IAAH0oAGiWpTHeHdFe/m6MxZIHAAxKAQD0oQCgWb6Q015+XdIAgEEpAIA+FAA0z46c9vJzkgYADEop54wYJ0sGlBVpB+hDAcAEpG14PhzRVr4haQCgO4PSc2JsCoNf81+K8X6MAzEOxvggxt4Yj8fYHGNdjCWyr7QVMR7J8nW75EBZkXZozxpscZYu98bYFWNflm4Hs3RM6bczxl0xztOHAoBGW53TVj6o7wYA7R6ULovxlTD4tf7jOUZqZB+KsUo25jo+xn0xDg2lmwlHlBVph/asidKbLvdng+m5pN9rMW6IsahnfSgAaINtOW3lhfpuANDeQem1Md6eRyM6Kh6IcbTsPKyTcnsYPTliwhFlRdqhPWuS9Ip+Wn1/aER6pHR9JKtrX8nq1is5aZf+/0mu4DexDwDFbfy7I9rJN8PgDT19NwBo2aA0Ne6PVtSIDseeGKf1PD/TasWbCzopJhxRVqQd2rOmWBnj5RFp8E6MDSF/Ff65MV7ISb+NHe5DAUCbXJjTTm7TdwOA9g1K0wrX3TU0pMMTAef0NC+vDOVeIzThiLIi7dCeNcH52fccNTgucwB1mvTfmpN+93ewDwUAbfNgTju5Wt8NANo1KE0D8KdrbEiHG9SVPcrDS8LggJ+y6WPCsb+UFWmH9qwp0or7/SO+czoo9+Q5ftaOnPS7p0N9KABoo1ELYj4Mg5Xz+m4A0KJB6b0TaEhn4tUpdBYm7awYz80jbUw49o+yIu3QnjXJijCYwB/1fS+bx+ctzdJp1Odd3ZE+FAC0zedy2sgd+m4A0K5B6cU519gbY3OMdTFOCIfvpZsawwvCYI/dJ8PoQ/XGxV0dzbNVMXZm3/E72aTFcVnapQmRD4IJR5QVaUddtGcLc1TIn4R/egGfe1HOZx6IcXrL+1AA0EZfz2kjv6DvBgDtGZSm0+5fn/XZ74fB4XaL5/A5J2QNb9nG9GCMEzuWX8uyTsVjYbCSeJTbgglHlBVpRx20Zwv3wJjvedYCP/vZnM99MeQfwtv0PhQAtFUTtuHRdwOg0yYxKL151ue+FRa2ei4dSLO3ZIN6R8fyK3U+ivbsOzeYcERZkXbUQXu2MOeN+X67K/j8i8d8/i0t7UMBQButymkfv6XvBgDtGZQuzhrP4cNkVlTwuaeWbFD39DBPlwYTjigr0o6qac8W7oUx36+qvfD35Hz+e2GwnVab+lAA0FZfy2kfr9F3A4D2DEqvnfWZayq893NCuV/KT+tZni4K/Z1w/FLOd16vqisr0k49055N1bow/nX1ql7LvydMbuWciX0AGO1HYfQ2PMfouwFAewalu4c+b2sN939ficZ0vXw14aiqKyvSTj3Tnk3V82O+15MTGminPXWXtagPBQBtdEpO2/isvhsAVKvOQemJod5X4JN0iE3RCfV3y1cTjqq6siLt1DPt2dScUfC9bqj4eh+MudaNLelDAUBbfTmnbdyg7wYA1apzULoh1Hto3YxdBd9jm3w14aiqKyvSTj3Tnk3NPQXf66yKr/fYmGu90JI+FAC01ai39D6K8Wl9NwCoVp2D0pmB9b5Q3d65RY22ycnifDXhiLIi7dQz7dkkvT7mOx2o4XqbwmT2uzWxDwCHOyU0YxsefTcAeqHOQenMq/C31fwdzg9+JZ9LvppwRFmRduqZ9mxSVhZ8pzoG+usKrnnLBJ4BANBHeRPdX9Z3A4Dq1TUoXZF9xsEYy2v+DkuDfe3mkq8mHFFWpJ16pj2blOunUFeWh8n8mGBiHwAO92xOu3iKvhsAVK+uQWk6rCbtqbupAd9jvXw14aiqKyvSTj3Tnk3FjoLvdGNN1z0w5prpoLvFDe5DAUAbpT30PxrRJj6v7wYAk2+EuvI9zpavJhxVdWVF2qln2rOp2FPwndbVdN0XC657iT4UAFTqmpw28Wv6bgAw+UaoC9/jA/lqwjGYcFRWpJ16pj2bhiUF9STF+TVde2fBdW/ShwKASn0rp01cpe8GAJNthNo0KB23r90O+WrCMZhwVFaknXqmPZuGogPlPs6+cx22FVz3YX0oAKi0D/PhiPbwDX03AKhPFwal54z5DpfJVxOOwYSjsiLt1DPt2TSsL6gnh2q89l0F1/6uPhQAVOYLOe3h1/XdAKA+XRiUXp5z//tiLJKvJhyDCUdlRdqpZ9qzadhUUE/eq/Ha1xZce78+FABUZkdOe/g5fTcAqE8XBqV5q/Jul68mHIMJR2VF2qln2rNpKdoOZ2+N174iFG8DtKjGZwAA9EVft+ExFwHA1HVhUPpcGH1QzXHy1YRjMOGorEg79Ux7Ni2PFtSTZ2q89rpQPLF/kj4UACzY6py28EF9NwCoV9sHpUeHwR69fiEvn68mHFFWpJ16pj2bhF0F9eTJGq+9JhRP7F/c8z4UAFQh7w29C/XdAKBebR+UjtpD960Yy+SrCcdgwlFZkXbqWXt0sT17uqCe7Kzx2qtD8cT+mp73oQBgodI2PO+OaAffjLFY3w0A6tX2QenuYHJprvlqwhFlRdqpZ9qzSXg5TG9i/+JQPLF/ac/7UACwUBfmtIPb9N0AoH5tHpSeOeKed8nSwnw14YiyIu3UM+3ZJOwrqCc7arx2mYn9dT3uQwFAFR7MaQdX67sBQP3aPCidfSjf3hjHy9LCfDXhiLIi7dQz7dkkTHNi/4JgYh8A6pS22nlzRBuYtuZZqu8GAPVr66D0jBH3u1Z2lspXE44oK9JOPdOeTcIrYXoT++cHE/sAUKcLQz+34TEXAUBjtHVQ+tyse71TVpbOVxOOKCvSTj3Tnk3CMwX15LEar20rHgCo19dz2sAv6LsBwGS0cVB69az7fEY2zilfTTiirEg79Ux7NglPhmYfnrumh30oAKjKGyPavw9Dt7fhMRcBQKO0bVB6Qox3hu7x1RhHy8Y55eu0Jxx3huLJljbFdmVFPVPP1DPt2UiPFeRrnYfMrS5Rri7uWR8KgHb6dGjeKvjPhclvs6fvBgAtH5Q+O3R/b8c4URbOOV9NOJpwbEtZkXbqWZfLYh/as+0F+fpkjddeU6JcndSzPhQA7ZO2jUsH1P44xooG3dfXctq/azqcF+YiAGicNg1Kbxu6t/RL+emyb175asLRhGNbyoq0U8+6Whb70p7dWZCvr9V47ctKlKtFPepDAdA+X43x0VDb8kSD7u1HYfQ2PMd0NC/MRQDQSG0ZlA6vvHs/xnmybt75asLRhGNbyoq0U8+6WBb71J5dVZCv79R47SsKrr2/R30oANolTY4/kdO+fLYB93dKzr0929H8MBcBQGO1YVB6WjYAT/d0IMYlsm1B+WrC0YRjW8qKtFPPulYW+9aeFW2Hc6DGa19XcO3netKHAqBdzgyjD6Wdid0xFk/5Hr+cc28bOpgf5iIAaLSmD0rTATVvDt3TpbJswflqwtGEY1vKirRTz7pUFvvYnh1XIm/rmpx4aAJlysQ+AFW6Jgy2sylqOz8/5ft8fsQ9pS2DPt2x/DAXAUDjNXlQemyMl4buZ73sqiRfuzxZ+6Wc76zsKCvSTj3Tnk3HBwV1ZVVN191RcN0bOt6HAqA9lsZ4MJRf8PC72b+ZhlNCP7bhMRcBQCs0dVB6VBi8Jj9zL9fLqsry1YQjyoq0U8+0Z5PyZEFdWTOl617c4T4UAO1xShi9Ar4obprS/W7IuZ8v67sBwOQ1cVC6JMYzQ/exUTZVmq8mHFFWpJ16pj2blDsL6spVNV13/5hrHgrVbAFkYh+AhUg/Mr8d5rdN4Y/CdPbafzbnfk7RdwOAyWvaoHRRjKeG7uEOWVR5vppwRFmRduqZ9mxSig7Q3VzToLzug3Ob2IcCoD2WhfGH5KZ4veDPJ31YbdpD/6MR9/G8vhsATEfTBqWPDV3/ftlTS76acERZkXbqmfZsUtJqwoNj6srOGq55bkH9vLWjfSgA2iWt2P8opx1Jk8onx/jxmLZmX4xjJni/1+Tcx9f03QBgOpo0KN0eTChOIl9NOKKsSDv1THs2SbsKJiWqdl1B/Tyzg30oANrpq7Paj3djrB3z56N+AJiUb+Xcwyp9NwCYjqYMSu8P9a7ek68mHFFWpJ16pj2bjqsL6suJFV/v4TB+W4Ou9aEAaLcnsrbjB+HIveqXxnhzTHvzYRhskVO3Y7JrjdrrX98NAKakCYPSu4eumfa0q/MQoPR6fjrIb0mP89WEI8qKtFPPtGeTdFQYvx1P1WVnz5hr3daxPhQA7Zf22/9GGEzij/LFgjZn2wTu8ZrQzW149N0AaLVpD0pvC4cfZre0xmulBvSVMDikqM/5asIRZUXaqWfas0nbNqH6snLMdQ6FwX7FXelDAdAfuwvanc/WfP0dOdf9nL6buQgApmeag9Kbhq713TBYqVCnB7Jrbep5vppwRFmRduqZ9mzSzh5TX96Jsaii62wcc53HO9SHAqBfPl/Q7jxb47XThPeobXjaPEmt7wZAJ0xrUDp8sF365fq4mq93bfhktd4JPc9XE44oK9JOPdOeTcO41YaXVHSNF8dc49yO9KEA6KeiVftra7ruF3Ku93V9N3MRAEzXNAalV4TDf+U/vubvODwJ9WSFn3tajEdi7A+DvYO/n323puerCUfaVFbUM/WsybRnc3PRmDrzWAWff1aY7EpGE/sATNLPFrQ9P6jpunnb6V2o7za1vhsATGVQeunQ578V48QarpFe518VY0OMF2Z9pzUVXSN9zoGcdNs85TxdEkw4mnDsRllRz9SzJtOezc+Tob7973eM+ewzOtCHAoBtBe3P6oqvl7bheXfEdd4M9R40q+8GAA0blKbX7A8WXLPOeKui75Fen9tfcK0rp5inJwQTjib2219W1DP1rMm0Z/N3UhjsqV91vTlzzHe4pwN9KABIPhXjx2H8qv0qJ9wvzLnONn23qfTdAGAqg9LzY3wwxYY0xR0VfZfbS1zr5Snm6WUF97ajw+XZhGN3yop6pp41lfZs4daNud5F8/i8tDruhZzP+26ob0WhiX0ApuHXCtqgX6zwWg+GybwZoO8GAA0dlJ4TilcETiJOrej7PF7yetN6NXFLwX293eHybGK/O2VFPVPPmkh7Vp2bx9SduR4stznns/aEevfONbEPwDT8dBi/aj+1pcsquE5q/98c8flpa56l+m5T6bsBwEQHpWlP23ca0JB+u8I02xWaO+F4ehjsJVx0b1d1tDyb2O9OWVHP1LOm0Z5VL29y/9Uw2LKnjLtzPuP1OXxGU/tQAJDnqwXt0FcruMaFod3b8HSx7wYAExuUroyxtwENadV7BN8TmrmH3gXZdcukR3oVsYuTcCb2u1NW1DP1rEm0Z/VJ21q9N+K6aSB+YxhsszPK6dlAedQ9PxPj2Jb3oQBgnLRi/o0x7VBa0f/pBV7j6zmf/QV9t6n13QBgIoPSk0L5ya+6Y9+YiYH5WBHjQME1b64xz5bEOCsMDgBK+xTfFfL3Fi6KV2LcFwYTcmmfxDRpeXKLy7OJ/e6UFfVMPWsK7dlk0vjJnOunSf90ZkXabueWMNgGK68uph8DNnSgDwUAZXyxoC16cIGfP+qHgw9D87fh6XLfDQAmMii9qiENaYp7a0i39WOu90jNefalCaTZkpaWZxP73Sor6pl61gTas8lJh9s9FcptdTUcaf/f28JkVulPog8FAGX9cExb9FGMM+f5uZ/L+cwd+m5T77sBgEFpBdJq3nTw4PthsOXG7hjXSpapMrGvnqGe0f56lg68Ta+tb8vuJa3aP5BFur90KO7OMJjMP18fCoAeW1fQHj0xz8/9Ws7nXSPJAaA5DErpEhOOoJ6BPhQAffJ8QZu0ah6f+aMwehueYyQ3ABiUQh3S3soHRsTlkgbUM9CHAqCDfjYMtt3Ja5O+OcfPOyXnc3ZLagAwKAUA0IcCgGo8XNAuXTiHz9qY8xkbJTMAGJQCAOhDAUA10nY7H45pl9J2PYtLftYTOZ/xackMAAalAAD6UABQnW8UtE1fLPEZPx1G/0DwPckLAAalAAD6UABQrU/F+PGYtumNULxq/5qcf/tVyQsABqUAAPpQAFC9rxW0T0X75O/I+XerJC0AGJQCAOhDAUD1jonx7pj26d3s74yyLIxe8f9DyQoABqUAAPpQAFCfGwraqG/k/Lsv5vz9OyQpABiUAgDoQwFAfdI++j8a00alw3FXjPh3D+b8/c9KUgAwKAUA0IcCgHqtLWinfnPW308/Buwb8ffeDsUH7gIABqUAAPpQAFCB7xW0VZ8b+rt5PwQ8KBkBwKAUAEAfCgAm43MFbdW3hv7uN3L+zmrJCAAGpQAA+lAAMDnPFLRX67K/98aIP3s32IYHAAxKAQD0oQBgotLBtx+Naa/SIbsX5PzZNskHAAalAAD6UAAweVsK2qyncv7/tZIOAAxKAQD0oQBg8n46DLbVyWuzRq3o/3GMYyQdAAAAAABMx9fD+B+kZ8cOSQYAAAAAANOTVu2/HcpP7H9BkgEAAAAAwHTdEMpN6qeteZZJLgAAAAAAmK6lMd4IxRP735JUAAAAAADQDNeE4on9ayQTAAAAAAA0x/Nh/MT+KZIIAAAAAACa48KQP6n/PckDAAAAAADNszuMnti/SdIAAAAAAEDznBnjo3DkxP6nJQ0AAAAAADTTb4bDJ/WflyQAAAAAANBcp4fDV+1/WZIAAAAAAECzfSN8MrG/QnIAAAAAAECzHRPj3Rg/kBQsxM4w+jTmtsYOWQoAAABAQ5mLI9kY4w7JgIeJhwkAAAAAzWcujmRpsA0PHiYeJgAAAAC0grk4wMPEwwQAAACAFjEXB3iYeJgAAAAA0CLm4gAPEw8TAAAAAFrEXBzAFHwshBBCCCGEEEIIITobmIsTwrPEw0QIIYQQQgghhBBCmIzDXJzwLMHDRAghhBBCCCGEEEKYjDMXJ4RnCR4mQgghhBBCCCGEECbjMBcnhGeJh4kQQgghhBBCCCGEMBmHuTjhWYKHiRBCCCGEEEIIIYQwGWcuTgjPEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+mZnjI87FDtkKQAAAAANZS4O8DDxMAEAAACgRczFAR4mHiYAAAAAtIi5OMDDxMMEAAAAgBYxFwd4mHiYAAAAANAi5uIADxMPEwAAAABaxFwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnfGxEEIIISoP9IOEEEII/SAAwIBWCCGEMKBFP0gIIYTQDwKAvjtdh0MIIYQwoNUPEkIIIYR+EAC0x006HEIIIYQBrX6QEEIIIfSDAKA9ntDhEEIIIQxo9YOEEEIIoR8EAO2wNMaHOhxCCCGEAa1+kBBCCCH0gwCgHdblNMBvxLhwVpwiuQAA/SAAAACYrodzBrRflDQAgH4QAAAANM++EYPZd8Pg1XQAAP0gAAAAaJDPhtGr1L4paQAA/SAAAABoni/nDGg3SBoAQD8IAAAAmmd3zoD2FEkDAOgHAQAAQLMsi/HhiMHs70oaAEA/CAAAAJpnXRi9Su1XJQ0AoB8EAAAAzfNEzoB2raQBAPSDAAAAoFmWxnh3xGD2zRiLJQ8AoB8EAAAAzXJhGL1KbYukAQD0gwAAYMHOibEpxo4YL8V4P8aBGAdjfBBjb4zHY2wOg60il0gyoMgdOQPaz0saAEA/CAAA5mVZjK/EeCOnzzku0oT/QzFWSUYgz/dGPDw+inGMpAEA9IMAAGDOro3xdpj7hP6oeCDG0ZIUGPbT2eB19gNjt6QBAPSDAABgTtIZTo+Gaib0h2NPjNMkLzDj8zkPi5skDQCgHwQAAKWlrXd2h+on9WfinTDYqx8gfCvnQWH/LgBAPwgAAMpZFOPpUN+k/vDk/krJDf2WfkX8cMQD4keSBgDQDwIAgNLuDfVP6s/Eq2Gw5Q/QUxfnPBy+IWkAAP0gAABYUN9yb4zNMdbFOCEMVvXPSBPzF8TYEOPJGIfC3Cb375Ls0F/fyHkwrJY0AIB+EAAAFFoc4/VZfcr3Y2zM/qysNPG/OZSf2D8Y40TJD/30w5wHw6ckDQCgHwQAAIVuntWffCvG6Qv4vHQ47t5QbnL/DskP/XNKzgPheUkDAOgHAQBAobQi/61w+MG2Kyr43FNDucn9PbIA+ucXcx4IX5U0AIB+EAAAFLp2Vn9yTYWffU4ot2r/NNkA/fJEzsPgTEkDAOgHAQBAod1DfcmtNXz+faF4Yn+9bID+OCbGRyMeBG+GuR3qAQCgHwQAQB+dONSXfC/GcTVcIx2oeyiMn9i/W1ZAf3w+50HwoKQBAPSDAACg0IahvuQtNV5nVxg/sb9NVkB/PJjzIFgtafh/27sfsDuq9DDsJ7KsyFShSynFlFWhRNWqBCtKMGEpJkCqEFVWFJku0cqYAqGhypZSQnFYijEQTJZihSWEsiEUq6pMlLCqQrWqFpdShSoUExMWE8ISWipTQhVVLktkIhRWNjnnuaNHV1f33pnv+2bunT+/3/O8zy4g3Zk78545Z947cw4AGAcBAECu7dk48mCMhRVuZ2MYX9jf4lRAd+wbchH4tOKLUNulY7chu5i+FuNQjM+ySP9/T4wnQm8RlXkOF3IZ5DLGQdobyGWQy9Boh7Ox5L0Vb+ey4Il9IFo24iKwzaGZ9YApXcA/CcVWKj82h+9Ghw65DHIZ4yDtDeQyyGVopCVZG0o/mJ0xgbZtjn0g3DfiInCDQzNjy2O8O4MB02DsmcDFH+QyclkuYxykvYFcRi7LZShXWjh3U4y7J7S9ce13vdMB3bBnxEXgXIdmRi4OvRXPP59jvB96K5yDXAa5jHGQ9gZyGeQyMMy4tnuRwwPt94XQm0N28ALwikMzI4tjHChh0HQs3gzm9UUug1zGOEh7A7kMchkYblSbPezQQDfcMOIicJ9DMyMvDxy/3aH32lN6DevYwkMLQu9VyDRX4d4Cg6dNDityGeQyxkHaG8hlkMvAgHFz7FsrCjpi84iLwBUOTWEb+47b/hiXFvx7l4fea42jLsRHY5zn8CKXQS5jHKS9gVwGuQz0uXhMe73a4YFu2DfkAvBBjPkOTSHpKYcPs+OWXnVcPMO/nxYieit4KgK5DHIZ4yDtTXtDLoNcBoq5ZkQ7PRiOv5kDtNiXR1wENjs0hfU/DbFylp+RBluHRpyLfQ4xchnkMsZB2hvIZZDLQJ+HRrTT+x0a6Ib7RlwEbnBoCnu1pCLA3WH0UxGnO8zIZZDLGAdpbyCXQS4DmZfC8EVztVHoiD1DLgKfxviCQ1PIedkx+yz0FiGai3ThPTpi4LTKoUYug1zGOEh7A7kMchmITh3RRj2tDx3xxRg/HHIR2OPQFHZzdsweLenzXhoxcFrnUCOXQS5jHKS9gVwGuQxENw5pm2l9jUUODXTDDSM66fscmsKezY7ZeSV93lMGTmSWxzhHLoNcxjhI36G9GQfJZZDLwIC9Q9rmeocFumPziE56WQ339eLQm+NvW4w3Y3wS40jovWKY5g87EOO5GI9lg4wFE9qv9Gvo8yV+3teCVx27bkmMZ7LzvmWC25XLuC7LZeOg+o6D9B0YB8ll6md+NsZ5JMbOGAezMdBn2ZgojYV2hN7ilpfKZaBEK4a0y50OC3THwhg/CPVe4T69PnRXtk+fzzDSYOrJCdycp30s82mi60Z8nzOlbOulc5xeme2fI2/LhNubXMZ1WS4bB+k7tDfkslxmvJQrj4feQw0zGQu9G+OWGPPkMjBHzw60yQPaJXTLFSM66M012b80V9j+MPPC0bB4IvQWFWmCm4bs/0Hp2mpp8H3/iBuDLQ3+XnK5fVyX5bJxkL5De0Muy+UuSz8Kp6fvhy1WmcZIz2T5fFeWv2+P6GvSv79ULgOztHxIu1zjsEC33Bfq+UpdGiw9G8opHPXH+zHOb8B5eXjIvm+Vrq2UntS5PYwvlDb5hlYut+sm1nVZLhsH6Tu0N+SyXO6ypTHeGnJeP4qxMYx+Cv+SGK+PyPE75DIwC4OLWj/okED3vDKkg/409Ao405Ke2Nkbyi8e9Q+6Lq75edk2ZL/XStfWuTYUm8qkyTe0crkdXJflsnGQvkN7Qy7L5a67LBuzDHtIoci0N6no//SIPH9cLgMzcP1Ae3zBIYHuOXfEoOK7U9ynNNh5PlRXPOovIi2t8bl5Y2B/PwzVzsHIZF0VeouMFs3XJt/QyuXmc12Wy8ZB+g7tDbksl7suPXF/KAyfjmamc9lvG5Hrm+QyUMBZ4cQfGd8JzZneFCjRDSMGFDdMcZ8eCdUXj/ovfnV8Iu+UcPJ8jXdJ11a4MJz8ulybb2jlcju4Lstl4yB9h/aGXJbLXbYk9Ar4w/Lz6ll83sJszDPs866Xy0COPeHEdT3Odkigm0Y9KXDulPZn5Yj9Sat6PxZjXej9MjlvYFB0eejNZ7grDF/AaFw8VMPzsj6c/BTIIunaaMti7MjO58vZgP30LJfTzcDhlt7QyuXmc12Wy8ZB+g7tDbksl7ssFbVHFeGfn8PnXjniM4/EuEAuAyPcG0584/kChwS6KRVePh0ykPj+lPZnfoz3Bvblk9BbSGj+DD4nFZgeC8ULSJ+F+v26+dzAPt4iXRstDXpTYXN76D2pltc5t+mGVi43m+uyXDYO0ndob8hludx1T4zJzQvn+Nl7RnxumvZmnlwGBqweuC+71CGB7rpixCDivintz+3h5Dn75vLLY1qE8UAoVkR6oEbnZXE48enWN6Rq46UCaN684Ze08IZWLjef67JcNg7Sd2hvyGW53GWXjsnLvSV8/soxn3+nXAb6nB+Or/OR3uy5yiGBbrtvxADiiikN+D8MJ75OtKSEzz0vFCsivV+j87Kpb7/SAMprVd2wsIU3tHK52VyX5bJxkL5De0Muy+Wue31MXpY1F/77Iz7/49CbskouA+kN6A/62uJahwT4/pDBww/CdBYtvHFgP1aX+NkXh2JPh55fg3OSnoY40rdPdzQ4v7424jiv1/SGmteyG1q53Hyuy+3LZeo7DtJ36DuMg+SyXK6fdWH8tIFl9RebQn3fYDQOguk7LcabxhJAv3NHDBw2T2l/9vbtw9MVfP6jIb+AVIeLY//chTsbnmNuaGeuTTe0crn5XJfbl8vUdxyk79B3IJflcv28MiYnd5W4nXEPPKQ5tBfJZeistHj3S33t8GaHBEhuGDFwuGEK+3J2qP51w/Ta0tGcG4aHp3xOrunbl3dinOomwA1tQ29o5XLzuS63M5ep5zhI36HvQC7L5fpZnpOTZS8ee3jMtm6Vy9BJC2K8ELwxAwzx3SEDhh/G+OIU9mVjmMwCQTtzBmfTfEovFdEOZvuR5p4+rwU55oa2mze0crkdXJfbmcvUcxyk79B3IJflcv1sysnJC0ve3vYx23pdLkPnpCnqdof6TMsF1EiaC/DTIQOGPVPan2ODmIOh2nltN9b0hiFdsI9NeZFWOL+oJXnmhrZ7N7RyuT1cl9uZy9RzHKTv0Hcgl+Vy/bw3Jh+PVLC9u0N91h0yDoL63I+leNzhAPpdMWKwcN+U9ufYa4f3Vrydy0I9nwx9IhxfgOmqFuWZG9ru3dDK5fZwXW5nLlPPcZC+Q9+BXJbL9bI0Jx+r+CF4Xc4275TL0BlbQnPXmAEm4FsjBgtfnsK+LOkbNJxR8bYWhvrN5Xxr3/avblmeuaHt1g2tXG4P1+X25jL1GwfpO/QdyGW5XD83TyEfzwiT/zHBOAjq5/G+NrjD4QCG2TdkoLBvSvuS5u5L8xfeXYMbhkkPTq8O7V7Z3A1td25o5XK7uC63N5ep3zhI36HvQC7L5frZlpOPVS1me2TMNo/GmC+XodUe7muDuytu85fEeDD0FugFGuTcUL8FCutywzDJuQPTK42fhclMdeEmwA2tXJbLrstymfaOg/Qd+g7jILksl8v1fk4+rqtou2/kbPcquQytdW9fW38pVLvOWSrmvx2a/WALdNbXRwwSvtrxG4bDE9yH9MvooWy7j7X4WLuhbf8NrVzGdRnjIH2H9qbvkMtyuU0W5ORiissq2vaOnO3eJpehlW7ra+evxlhU8faOraNxt0MPzbNnyADh01Dtr4F1MW4u520T2odlMQ5OeJtuAtzQymW57Losl2nvOEjfoe8wDpLLcrk8l4X8wn5VfcbmnO1ulcvQOjf1tfH0FP3pFW/vxnB8eq+zHH5oloXZzeu0FuKZtovHDJImsTDQ4hj7w/H50ua5CaChN7RyWS67LmMcpO/Q3vQdclkut9H6nFw8WuG2H8rZ9qtyGVplQzhxvaczJ3g93+XwQ/N8dcQA4esd+f7XjPj+BycwiDkjxnvZ9l4O5TzlsTTGCjcBbmgnTC7LZdfl5uaycVA7x0H6Dn2HcZBclsvluTsnFz+ucNs35mz7kFyG1ljb17Y/jHF2BdtI91PprZyNMV4fuJ6sdgqgeUa92nduR77/qCcg7q94u6eF4wshvZX9cxleC/Ve2MgNbftuaOWyXHZdbnYuGwe1cxyk79B3GAfJZblcfV9xLA5UuO0NIX8aoHlyGRqvf7HqacSHTgE0074hDbpLq2C/FIYvzljlHGYL+7Zb5qtV94Tea6DnuAlwQzshclkuuy43P5eNg9o5DtJ36DuMg+SyXC7Pszm5+EKF214X8gtyi+UyNNpl2f3O51OMB5wGaJ4vj2jQmzvy/U/NBhqTfCo0PU3xfDj+ZMd5JX3usXkfd9f8mLuhbc8NrVyWy67L7chl46B2joP0HfoO4yC5LJfLszMnF6ucl3p1yC/IrZTL0FhpfbFDYbpF/c9LbPvABN03okGv6sj3HzZfYXr9aFGF23wmHJ+H8cI5ftaC0Htdq//V0LVuAtzQTohclsuuy+3IZeOgdo6D9B36DuMguSyXy/N8Ti7uqHDbq0J+QW61XIZGWh7jozD9ov6LTgU0054hDfrTUM4iOU2wd8KD0cdC9XOizav5MXdD244bWrksl12X25PLxkHtHAfpO/QdxkFyWS6X560wvcL+ygI5s1YuQ+OkhaUPhOkX9VNc63RA83wxxg+HNOg9Hfn+K4Z8950Vbu/eCVyM72/AcXdD2/wbWrksl12X25XLxkHtHAfpO/QdxkFyWS6X52DOOdtW4baLFPbXyWVolLQuxoehHkX9dH3zAxzk+DdjbKzZPt0wolFv7Mg5GVwAKf1SemZF27plQhfkJixK5Ia22Te0clkuuy63L5eNg9o5DtJ36DuMg+SyXC7PNAv7l4fyC/tyGabrulCPon6KR5wOGC/9wv5B6D0VtqRG+7V5RKM+twPnZPmQ772mom1tmNDF+PmGHHs3tM29oZXLctl1uZ25bBzUznGQvkPfYRwkl+Vyed4O0yvsXxbKLezLZQAo6BdCb67WY53b5prsV5o79gdDOt99HTkvLw187wcr2s78MLlfWdc15Ni7oW3mDa1clsuuy+3NZeOgdo6D9B36Drksl+VyeV7IOW/bK9x2mVPxyGUAKOALMb4zpHNLT6stq8H+XTGi8/1GB87N9QPf+QXp6ibADS1y2XUZ46CWjYP0HfoOuYxcLs+uUO/Fc1dLSQAoR1r8b9+YTrcOT6vdN2Lfrmj5uTkrxkd93/edGKdK2ZPsCPWZ762MaPpNnxtaudzm8+26bBxkHKTv0HfoO+SyXK57Lm/P2bedFW57VYFjs1K6A8Dc3RBOfOV8WNRhjtnvD9mvtN8LW35+9vR93/0xzpaybgLc0Mpluey6jHFQC8dB+g59h3EQcrk8W3L2bVeF215d4Ngslu4AMHvpRvBbMxiUbJ3ivp47Yp++2/JzdG/fd01Ph14gbd0EuKGVy3LZdRnjoJaOg/Qd+g7jIORyeR7M2bd3K9z21QWOzTzpDgCzv0F8ZYaDkmk+rbZxxD7d0OJz1P+UwycxLpW2bgLc0Mpluey6jHFQi8dB+g59h3EQcrk81+Xs20cVbntDzrYPSXUAmJ00l93+WQ5Mtk1pn/eM2J9zW3qOzs8GO+k7HolxlbR1E+CGVi7LZddljINaPg7Sd+g7jIOQy+XJmw7nSIXbviln2y9JdQCYuUVh/OJwKf5pqNfTaulV+WFz336/pecoLcr4Qd/3XCtt3QS4oZXLctl1GeOgDoyD9B36DuMg5HJ5Ti+wf/Mr2vaT2gEAVGNldmM6rIN9IMaFY/77NJ5WWzViP+5r4bk5Lcabfd9xvXStha+NyEHnxw2tXG4/12XjIOMgfYe+Q98hl+VyUx3OycdlFW13W852b5GOADB7vzDQsf4gxpq+/z5uMbl0s3vuBPd184j9uKJl5+SU0Hsl8dj3u1mauglwQ4tcdl3GOKgj4yB9h75DLiOXy7crJx9XT2m7K6UjAMzNd7JO9XtDblCXhfFPq317gvs57JX59Er6whadiwUxXuj7fndITzcBbmiRy67LGAd1ZByk79B3yGXkcjUezMnH6yra7qEx2zwaqpsCCAA6I80z+8tjbgy/mTMIOHcC+7gs1GvxuirMi7E7nDgNAG4C3NAil12XMQ7qwjhI36HvkMvI5erkLaD7WAXbXBAsnAsAU5f3tNokbirvG7HtG1p0nLf3fa/HpZ2bADe0yGXXZYyDOjQO0nfoO+Qycrk66cn4z8bk444KtnlJThu4RyoCwGR8K0xnsZ1j9oTpPSU3CVsM8t0EuKFFLrsuYxzU0XGQvkPfYRyEXK7ezjH5eLCC7d2U0wZWSEUAmIy8p9W2VrjtL4TeHLKD23ylJcf28VDtkxK4CXBDi1x2XcY4SN+BvkMu0+1cvj4nJ88ueXtbx2zrPWkIAJOV97RaVb+43zBie/e14Jg+3Pd90jzOVS4elF6FTIsmLZDKbgLc0Mpluey6jHGQvgN9h1yWy53K5VPC+Ol4yv7+74/Z1r3SEAAmK+9ptacq2u7mEdu7ouHH895w4sJBCyvcVioavR1jnzR2E+CGFrnsuoxxkL4DfYdclsudzOXNE8rJpWO2czTGOdIQACZv0nPMpiclPxiynQ9CtU9RVu22vu/yaoxFFW/viWxbd0thNwFuaJHLrssYB+k70HfIZbncyVy+aExOfhRjXknbuWPMdp6TggAwHXlPq32r5O1dMWI7mxt8DPsXEUpPa55e8fZuDMefjDhLCrsJcEOLXHZdxjhI34G+Qy7L5c7m8t4xeXlVSdt4Y8w2LpGCADA9417fSze7F5S4rW+M2M4NDT12G/q+Q5p+4cwJDlp3SV03AW5okcuuyw1xfoxnYhwKvfmAX8vOlXFQs8dB+g59h3GQXJbL03flmLzcXsLnXzjm8/dIPwCYriVh/NNqf73EbX1vyOd/GuMLDTxua/u+w4cxzq5gG+nVyfQ04cYYrw8ct9VS103AhC1wQyuXXZddl2chHZcjI3L0MeOgxo6D9B36DuMguSyX62NXqG7++21jPnu59AOA6ZvE02pfGHHj3MRf+dMrjZ/lDO6rjA+lrJuAKTjLDa1cdl12XZ7FdeNQzrG71jhI34G+Qy4jl+dkcejNqV92bq4Yk/ObpB4A1EPe02plzDH7cyM++76GHavLYhwO0ysepXhAyroJmIKrc/Jym0Mkl12XGXB/gWP3lnGQvgN9h1xGLs/ZujH5eeUsPi+9pfj6iM97NbR70XcAaJy8p9WWzfHzR73Ct6xBx+jikP/k4STiPOnqJmAKnsrJy/0OkVx2XWbAcwWPXx2KA8ZB+g59h3GQXJbLTXf7mPw8a4af9diIz3o/VL+GEQAwQ3lPq22ew2enG/bfGfKZ+xp0fNL8gR+F6RePXpSqbgKmIE1DcbRAfl7nUMll12X67AzNKewbB+k79B3GQXJZLrfBqOL+O6E3ZU8RD4/4jPdm8BkAwITlPa22ZJaf+5MV3CRP0tIYB8L0i0d1mYvYTUC3XB5684cXyc/Djp9cdl2mz6bQrPUJjIP0HfoO50Iuy+U2SFNHfTzkmKQHIm4NvWl2hkk/Yr044ni+EOM06QYA9ZX3tNrWWX7uAyM+b1UDjsniGQzmq46DYwZhuAmYqwUxLgy9RUjTHJ0PhdHzaubF2zEezY7lquym+BwpJ5ddlzs5rjiScwxvNw7Sd+g79B1yGblcyXhp14hjk4r+aYq4NN3OnaE31dSofE8/BmyUZgDQDFU8rfa9IZ/1aYyFDTge14V6FI9SPCI93QRM4XiUGQuknVx2Xe6c9WOO3zPGQfoOfYe+Qy4jlyt1WYzdodh0Uv3xQYx7g6f0AaBR8p5W2zbDz1s24nP2ONS4CQC5TCekp2DTQrqfhN5UFXtj3GgcBPoOkMsTkxa8TdMHbs764fTU/pEsUt+cFsXdEXrF/MscLgBorjKfVts44nO8zoebAJDLYBwE+g6QywAAJSnzabVtIz7jXIeZKUtFlSND4hqHBrkMxkHGQeg7QC4DADRR3tNqXyzwGfNj/M6Qv7/P4QUAjIMAAACgXHlPq20t8BlXjPi733B4AQDjIAAAACjfuKfVUqzI+fvfHPH3rnBoAQDjIAAAAChf3tNqT+X8/X1D/s6nMRY6tACAcRAAAABUI2+O2QtG/L0LwtwXnAMAMA4CAACAGZrt02q3jfjzNzikAIBxEAAAAFRrNk+rfXfEn/2iwwkAGAcBAABAtfKeVvv2wJ9fNOLP73EoAQDjIAAAAJiMcU+rpVjR92d/bsSfuc9hBACMgwAAAGAyZvK02rdH/JkvO4wAgHEQAAAATE7Rp9X2D/lv+xw+AMA4CAAAACYr72m1bTF+csR/2+zwAQDGQQAAADB5eU+r/Y0R//6rDh0AYBwEAAAAk5f3tNqhIf/u0xgLHToAwDgIAAAApiPvabXB2OOQAQDGQQAAADA9eU+rDcbXHTIAwDgIAAAApmsmT6ud63ABAMZBAAAAMF1Fn1bb51ABAMZBAAAAUA9Fnlb7lsMEABgHAQAAQD0UeVrtCocJADAOAgAAgPoY97Ta78ZY6BABAMZBAAAAUB9fHHND+4rDAwAYBwEAAED9bBtxQ/sNhwYAMA4CAACA+hk1x+wKhwYAMA4CAACAehqcY/aDGPMdFgDAOAgAAADq6YJw4tNqTzkkAIBxEAAAANRb/xyzX3E4AADjIAAAAKi3Y3PMev0cADAOAgAAgIZIc8x6/RwAMA4CAACAhkhzzK5xGAAA4yAAAABoDq+fAwDGQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXTUvxjkxHo7xV2L8Uva/D2f/fp5DBAAAAAAA1fiRGGfE+Pdj/FSMdTFuinFnjF+O8SsxdsZ4OcY/ifHbMX43xudj4nezP/dPsr+3M/uch7PPvSnbzk9l2z0j2w8AAAAAAOiU+THOjHF+jD8e42di/PkYX4+xKcZ/H+M7MV6J8W6Mj2L8XhhfpJ9U/F62P+9m+/edbH83Zfv/57Pv88ez73dm9n0BAAAAAKAWfjTGj8e4IMblMf7jGDfH+K9jPBJjS4z/Ocavx/i/Yvwg1KdIP8kfA36Qff9fz45HOi5/NTtON2fH7fLsOP54dlwBAAAAAGCsBTH+7Rg/EePKGF+JsTHG3TG+GWNrjN0x/kGM92L889CtAv2k459nx/kfZMd9a3Ye7s7Oy1ey8/QT2XlbIIUBAAAAAJprYYyzY/zhGH8ixp+N8Rdi3BPjr8X41RjPx/iNGPtiHAoK6W2IQ9n5/I3s/P5qdr7vyc7/n83y4Q9n+bFQUwEAAAAAKN+PxVgcY0WMlTHWx/jPY/xijMdi/K0YvxbjH8b4rRifhO4VtI/G+P9ifD/G3hjPxfjvQm86oLQY7oMxfin73/TP38z++3PZn/9+9vePdvDYfZLlzT/M8uhvZXn1i1merc/ybkWWhz+mSQIAAAAAXfKvxfh3YvzRGH8yxoYYt8S4L8bjMbbFeCHG6zH+nxj/InSv0PzDGAdi/OMY/3uMHTGeivGNGP9VjBtirIlxSYx/L8ZpMX5fSecnfc6/kX3uJdl2bsi2+41sP3Zk+/WPs/38YQfP0b/I8vP1LF+3Zfl7X5bPG7L8/qNZvp+i6QMAAAAAdbAoxrkxLozxp2L8bIxbY9wf47+N8Xdi/K8x3ojxQYxPQ/cKwJ/F2B/jrRh/L8b/GOPJ0Hty/vYY/0mMn45xcYwlMb4QyivST8rvy/Z7SfY9fjr7Xrdn3/PJ7Hv/vew47M+OS9dy4dOsHbyRtYu/k7WT+7N287NZO7owa1eLXGIAAAAAgHFOjfHvxrgoxqoYPxfjv4zxQIxvxXg2xv8W4zdjfBjjSOheYfZfxvh/Y7wZY0+Mb8f4G6E3xc1tMa6L8R/F+GMxzsuOKaP969lx+mPZcbsuO46/lB3Xb2fH+c3suP/LDubckay9/WbW/p7N2uMDWfv8uay9XpS13z8grQAAAACgmVLB9A+GXsF0degVTP9iOF4w3R56BdN/FLpdMP2noVcwfTH0CqZPxPjLoVcwvTb0CqY/GRRM6+QPZOfjJ7Pzc212vv5ydv6ezc7nb2bnt8s/QP2jrJ1vD8d/gPqL2fVgdXZ9+IPZ9QIAAAAAKEma4iTNn56mOPly6E1xcn3oTXHyV2L8zdCb4uSl0Jvi5J+Fbs53fjj0pjj5XuhNcfK3w/EpTv6L0Jvi5KrQm+LknNCb55/uWJSd9wuzPPjZLC+OTRn1t7O8+V6WR4dDN9d1+GfZdeSl7LryN7PrzO3Zdeens+vQklDuug4AAAAAUFvHFiVdGnqLkv7p0FuU9I4YD4XeoqR/N/QWJX079BYlPRq6uSjp+6G3KOn/EnqLkv71GPeG3qKkXw29RUn/SLAoKdU5JcuvP5Ll21ez/Ls3y8dtWX6+nuVrFxd5Pppdp97Orlt/Nxxf5PmO7Pr2p7Pr3dLs+ufHAAAAAACmKj0F/KUYl8ZYG+PPxfj5GP9NjKdjPBfj78f4foyDMX43dK/w9zsxfivGazF+LcYzMf5ajF+M8bUY62P8hzFWxPhijIXSigb7sSyPV2R5vT7L85Tvj2X5/2tZe/itrH108ceAg9l18e9n18mns+vmz2fX0bXZdfVLwQLCAAAAAJQsFaG6VJA7FOP/jvEbMb4b41djPBrjF2L8hRjXxPgTMZbHODvG75cikOv3Z+1ledZ+rsna0y9k7etXs/b2G1n7O9Sx687PSxEAAACAequqMFSVPxeaWyz7OMZ7MV6NsTvG/xDjkRh3x/jPYnwlxhUxfiLGWTEWSE+ojQVZu/yJrJ1+JWu3qf1+M2vPu7P2/V7W3pt6rbpRnwMAAABQb00rsqwN0y96/V6MH8T4P2P8eoxdMbbE+Ksx7opxc4yrY1we4w/F+PEYPyrVoHN+NGv/fyi7HlydXR/uyq4XW7Lrx69n15MfZNeXaV/j1upzAAAAAOqtaUWWS0P5Rfr/P8a7Mf6PGN+JsTnGL8f4eoz/NMbPxLgsxvkx/q0Y86UNUJH52XXm/Oy68zPZdShdjzZl16fvZNerd7PrV9k/BvwH+hwAAACAemtakeVLY7aZFsr97RjvxHg5xv8U41diPBzjL8W4KcafifFTMZbFOCPGj0gBoOF+JLueLcuub38mu979pez69yvZ9fDl7Pr422H8wuJf0ucAAAAA1FvTiiyLQm9hxzQHdJouIj1ZmopQp8eY53QCFDIvu25+KbuOrs2uqz+fXWf1OQAAAAA1psgCgD4HAAAAoEEUWQDQ5wAAAAA0iEIJAPorAAAAgAZRKAFAfwUAAADQIAolAOivAAAAABpEoQQA/RUAAABAgyiUAKC/AgAAAGgQhRIA9FcAAAAADaJQAoD+CgAAAKBBFEoA0F8BAAAANIhCCQD6KwAAAIAGUSgBQH8FAAAA0CAKJQDorwAAAAAaRKEEAP0VAAAAQIMolACgvwIAAABoEIUSAPRXAAAAAA2iUAKA/goAAACgQRRKANBfAQAAADSIQgkA+isAAACABlEoAUB/BQAAANAgCiUA6K8AAAAAGkShBAD9FQAAAECDKJQAoL8CAAAAaBCFEgD0VwAAAAANolACgP4KAAAAoEEUSgDQXwEAAAA0iEIJAPorAAAAgAZRKAFAfwUAAADQIAolAOivAAAAABpEoQQA/RUAAABAgyiUAKC/AgAAAGgQhRIA9FcAAAAADaJQAoD+Cqp3pkMAAABAWdpeKJnnFIP2gf6Kxlg3cG4PteR73RnjNacXAACAsrS1UHJ2jGdjPOkUV25+jFdjPBXjNIdD+0A70l8xS+mJ9oOhXYX9ZTEez77LnRV8/soYj8XYkx2rz2IcifFxjF0x7o9xgdQCAABonzYWSm7Kbm7Td3jeKa7c0hgfZsc7/e9qh0T7QDvSXzELu4ec20kX9l/KybXZRiq4n1rift4YY98Mtv9ijPOlGAAAQHu0qVByeug9nXZs/7eE+k818nlFkZ7WOxzjo9B79X9H6D0JfF2MCyv4HmeE3tPGx7b/aOg9gYz2UUfLs7bwVNY2UnHsk6zdfJa1nQMxdobeWw3rY5w1gf3SjrrTX3GyjSPO7SQL+ysq7JfLekMqvdWwd+Czj4Ze4T5d026J8UjovZV1cMifu0uqAQAAtENbCiWXhV4h7ti+b2rIfm+L8UZ2s/35BOOTbNurSvwuC0OvEHpsG68GCwVqH/WQfsBYG2NzOLnQNZNIT/JeH6r9QUQ7an9/xcmWhN4PatMu7D9TYb+7vIT9S9P6fDjwuU+E3vRqo65914aTn+zfIuUAAACarw2FkvSUX39h/P4Gnof0VO5Vofe03ecTjvdDb3qWsmzt++xUgDC3r/YxLeeF3pOrH5XcZj4ouc1oR93przhZKj6/NubcTqqwf06o7kf2vSXs3+IY+weOy5qCf3dR6L2d1L9Pj0s9AACAZmt6oeSxgX1uQ9HyqhkUC9JNfirc9k8TkookafHNNEf3raG3oF6Rz0qFlSUlfYen+z43LeB3maamfUxQeqr12TB+ruv0xspNWW6eMtB+UjtI0+9szf7suGLd4gq/h3bUrv6K4e7PObeTKuw/Eqr7AX39HPctXZf6p+k6MsvrweAbCRukHwAAQHM1tVCSnnAffPrssRadlyKL96VC39kFPy89ibitwGd+FMorHvYXVtMUCys1N+2jYmnKmqfH5Pd7ofdD2IIZfOYZ4eQfSAbbzJUVfiftqPn9FaNdXKBfmkRh/7QweiqgMt7wmev0XbcNfObGOfQNrw5cv06VhgAAAM3UxEJJujHdPbCvz7XsvGwvUCx4ZBafe2MoVkRZXtJ56n9bIBVNPLmvfVTla6H3Y9eonL49zK24tir7nFFvAKyu8HxqR83trxgtTQ/zXqhHYf/eUH5BP03r83aY+49x6brVP6/+q3P8vPMH9vNeqQgAANBMTSuUpBvcXQP7+XroLTjZJjsLFA2umuVnbyzw2e+WdExPD705/PufDjxfs9M+SpSmoRo33dQroffGShnSk/mj5uBOU2NcXtF31I6a2V8xXv+aMvvC9Ar76cez/sXF36nZcVo7cDzWlPCZ/W90vS8VAQAAmqlphZKt4eRpMBa38Lx8mHNu0lO7c3n6uMhUP/eU9F1WhF7Rs7+IcIamp32UYFUYvzBuOh4LSt7mnWO2l4qDZ1X0XbUjhf02WTNw/i4J0yvsf21gezfV7Fg9WWLff8zVA9/ZD+4AAECr3drS79WkQsk9Q/ZxXQvPyaKQX3TfMcdtXF5gGwdLKiAkg8XQPS4p2scc3ZGTv49WtN3UJt4Zs90XKvzOXW9HCvvtkH6Q6n9C/oGc81t1Yb+/PZcxH37ZdpfY9x9zWih3cV8AAIBaSk97HpsWZVsLv19TCiVrhuzf5pbm3NUhv+i+sYTt7C+wnTUlfq9XBz77QZcX7WOWHs/J28cr3v5NOdvfUOG2u9yOFPbboX+6sDRV2Lyc81tlYX/dwLbuqOHx6n8r6ekSP/ezmn9vAACAOUvTKvRPi5IWoZzfou/XhELJ4nDydBvpab/TW5pzj4T8gnsZc4Y/U2A7D5f4vVYM+XyL6WofM7U1J2cnsVBw+sH3szH7kOYLr+qp3y63I4X95utf4yVNLbW0wPmtsrD/Wt920uLbi2p4zPoX7S7zR8tPwuR+DAUAAJiaNPdof+HsxZre/M1GEwolwxbG/FqL8+21kL+wbRluD9VP+TNoy8DnvxfavbCr9lGubTn5+laMUya0L8/l7Mt1FW67q+1IYb/ZloQTi8m3FDy/VRX2Lx3Yzv01PW4Hgyf2AQAA5iTNSd6/cGEqvrZh4cK6F0o2Dtmvd1qcZ6eH/GL7YyVta0OBbZU9X/jSIdvY5PKifRTwZE6upoLhkgnuz905+/NShdvuajtS2G+u9AZL/zRSz8/g/FZV2O+fEuizGo/p+vezrB/bzwzm2AcAADpmbTh5uoXzGv6d6lwoSTfZHw3Zr5tanGNFiu1lzXu/rsC2PqjgO+4e2MbR0HsrBu1jlHsL5Or1E96nIu3n7Aq338V2pLDfjjacrltnzuD8VlHYXzawjb0xLgr1Wzg3eayCYzE41lguRQEAgC64Ppw8l/WlDf4+dS6UDHtC92BNb7zLkjfVSHqqsKw1Hoos0ru7gu+4ZkLbabuutI9rCuTprins11UF9qvKH1m62I4U9pspFcyP9p2rq2d4fqso7D85po9NRf4nsv2sw1P8g9ealSV8Zv8Pgx9KUQAAoEsG5yZPU/Rc29DvUtdCydJQ7TQ0dfVxmFwBs8jbAdsr+I6p8DzsSXML6Wofgy6IcTjkT8Fz9hT2bXGB9vNMhdvvYjtS2G+etObFu33nacsszm/Zhf2zwok/NOTFO9m1dXWYzg+naZsfhBPfLpjrdbUJawsAAABUZtjUEA828HvUtVCydcQ+XdLinLq4QIHhthK3d3eB7T1c0XfdMmRbe11WtI8+aYHydwvk6J1T2r8i62FUvd5B19qRwn7z9D8Zn6YvPHUW57fswv7DoXhRfzDSgxzpB7tVEz6Ot4VyFudOPxK8NnBsT5emAABAFz065KbvudArSDVFHQsl6UnYYU/TfdTyfCoyj3iZc2hvC5Obz3/QqGmAmlKYTlMhpIWF09PkqdCTiqlrtY9SPV0gP1OhcFpTD51fYP+OVrwPTW9HbeivGG11mNnbJJMo7C/KPu/zEuL90HuDc8GEjmd/QT69qXRxCdfVm6UpAADQZc8Mudl7M/SKb01Qx0LJQyP2Z1vLc+nVkF/ELNP+kP9k4vyKvuupI7a5owHn6a4xx+we7aMUReavT3FtA/bxlAr3ocntqC39FcOluekP9J2fh+Zwfsss7N8RyinqD/bNqydwTBcPHNP0Y27R+fbTjw+bB/Z7szQFAADcvPYWWxu80Us3X1c2YP/rViiZN3Dj2pUny04rUDx4usTtXTzh7Q3zdhj+hHOdfxS7KEzvLYeutI+FoVcoyzvOb095P9eEYkW/S7Sj1vZXjPZc37l5IxT7kbjqwv7gXPVlx1Ohuh/Dj1k+pA94Mqe9rxpynXhWigIAAPS8GCYzJ3oV6lYoGVcsu6jFObS+QNFgXYnb21JgexdU/J1HzRN/T43P0zMFjtse7WNOikxJNe2n9ZPrCu7nSu2otf0Vw90YTnzza+kcz29Zhf2Vobqi/rF4KfR+qK/SeTFeDyf/mJe2/VQ27nwguzYM+yHjXikKAABw3Js5N3rpyai6zrtft0LJqIJzummd1+IcypvvPn3/hSVt6/wwfI72ST/Nt3HEtt+r8Xl6J+QXdg5rH7N2VugVAotMfTFtD4Vihb4rtaPW9lecLBWd++ewv62E81vmVDyXh94PpOmH8g1Z+0nF8DR91cFQTnE/zYVfdXE/Xe/T/P4HZrBf6SGU5VIUAACgJxVaNxW8oXo3VP8E9GzUqVCSblQ/HrEvb7Y8l/IKCntKPMZ5c/mnIsrZE/jOq0Pznj6fZmG/C+3j8YLX0zq8CbWt4L4u1Y5a2V8x3CvhxEJyGef30AT3P/24uD5r33NZZHdvKO/H+HHS1D9p4fbNWd9+ONt+miIyzcG/M/Te3lkqNQEAgKoVLZQ0NdIN100KJSNdMmZf2rxwbpF52+8saVubC2xrw4S+97h1BR6o6bkqMoXRXu1jVtIc0UdDsetoHd6AejMUu+4v1I4a2V/taNn4YxLXiHvCiQu7nlXS+T00pXxLP6ZeE3pT3NT1mAMAANRG2wv7/YuSLqzJMa9TYf/OMfvySIvzvsic4hfOcRvpqb4i88NvmvB3HzXtyus1PVfprZu84vPV2sesPFzw+vlkDfZ1fij2I8QR7aix/ZXC/sysGGgT60s8v4dqkHupD949i+N+q6E9AADQFV0p7Kd4K9Tj1eg6FfbHFVKua3He7805Dwfm+Pmp4PJGgZx8fArffdzUNqfW9HxdP2afH9I+ZiUVyovOb12H6WUun8F1XjtqZn+lsF/cwoEc3Fry+T1UoxxcFXrrVxQ97ulHt/MN7wEAgC7oUmE/xScxru1QoSTPuEXg1rY051PRLe/J3y2z/OyLC7apVHiY1lOFO8fs17oan7dUXN4VetPCpOP30gT2t83t47qC18x3arK/d4R6TcXR1HZU5/5KYb+4/rUx3g+z/zGpCYX9JP2Q8eQMjv3LhvcAAEAXdK2wX4epeepS2F+Qsy9XtTTn1xfIjydC7ynB04b8/XlZ7iwPvUU0bwxH9XQeAAAPNklEQVS9HwLeL5h7L8RYNsXvv3XMvj3oktiZ9vFCwXy9pyb7u73g/t6lHTW2v1LYL2bVwHYuq+D8HqppPqb1aA4XPP6XBQAAgJbramF/mlPz1KWwvypnX86R86VFekPgudBbjHXaxj31uMMlsRPto8hbK8diWQ32N/2YVrSYd6V21Nj+SmE/3+kx9ofy1mhpWmE/ZP3oRwWO/zO6MQAAgOa7PbtJrcvUPHUp7Oc9ub6wpflwIEymqJOmi0nF/I0xzqjR9x83pcmHLhedaB/rC+bw2zXZ36Lz638Wej8CaEft66/o6X9zJT2cML+i83uo5sfhsqy9510P5ksZAACA5ktP145bzHSSU/PUpVBye+he0eaiUGyapodDr4CSFtlNTwYem9f9aF/BIP1zKn7sC72539PTmWkh11Q0vSBMrsA4U+MWoj3qUtGJ9rE5FCuUP1qT/d1UcH93aket7a84MefKWiC2qYX9ZGOBa8IqaQMAANAOi8L4eaUnNTVPXQol46aS+KylOXB3gULAhS1vBxtyvv/pLhWtbx/vhGKF8jUN29/rtaPW9lddtzic+ObhbRWf30MNOS4v5uTo3VIHAACgPVJx/92cm9kNFe9DXQol4xZ/PNLS87835/gf7EAbuCbUY47yumtr+8hbFLj/qfM6TGOxPBSfhmeRdtTa/qrr+vuuPRM4v00p7J8fprOAMQAAAFOyNuQXiZ4KvQJYFepSKHm2BTf1M5GKfnkLhnahCLAu5xisdolodfu4MhQrlL9ck/19sOD+Pq0dtbq/6rK7+o55mhru7Amc3yZd43aP+R67pA8AAEC7zAvFCkVvhGrmSa9LoWRH6FZhv8iCoRs6kP9rco7BOpeIVrePDaHY9e/xmuzvBwX39yLtqBIK+9OV3ljp/0F6/YTOb5OuceN+ZPtACgEAALTL/FCsUJTmdVbYb48iC4Z2YX751UFhv8vt456C17/1NdjXVaG+bxd0pR0p7E9Pemvw7VDtG2VtuMalMd1nI77HR9IIAACgXW4JxabiOaWi7SvsT8f+nGP/ekfyX2G/2+3j6VDPJ+CH2VVwX6/SjiqjsD89j4YTnzw/bYLnt2nXuBeCwj4AAEDrLclu9CyeG8L2MftxuGXn/cKQXxx8sCNtQGG/2+1jSyhWLJ835f08J+SviZHiFe2oE/1VFx0q2FanGQtqcqyeHLF/B6URAABAOyyO8X4YP6f+kgnsR10KJVvH7MeRlp37u0N+geLKjrSDvMWjLZ7b7vaxrUBbqMPTuo+GYoXFS7SjTvRXXaSwX9yNI/bvNWkEAADQfKn4c2DMzWkqIs2f0L7UpVDy5Jj9ONqy878n57inJ7DndaQtrAv1m9akjtraPoo8sT/tYtgZoffjSd5+PqMddaa/6iKF/eKuGbF/O6URAABAs90eRk/pkKblWTvh/alLoWRjqPdUHGVZFPKn9NjRofawPudYLHXJaHX7KDLH/nNT3scHC+xjunafoR11pr/qIoX94kb90LZFGgEAAG1WZFqGtsbLoTc9T1cLJdfk7MspLcnxawrkwsYOtflrQzd+0NE+hru/QHuY5g9dZ4XeGzR5+7hBO2pdf7WjZWOMbXM8Hgr7xY0q7N+hKwMAANqsq4X9h6dYeKlLYf+SnH25uCU5XuQJ5cUdavM3hXrPrV4XbW0f14bqC5Jz8WTN969r7UhhX2G/CYX9DSP2b42uDAAAaLOuFfbTPPsrO1QoGSetKTBuippVLcnx/TnH/N2OtflHxhyLl1wSW98+rgz1fWL/ggL7ltrrqdpRK/srhf36nN+m/Th1bxi+FspCXRkAANBmXSrspwVUz+xYoSTPO2P2ZX0L8nt5gbx4rGNtfvOYY2E+4va3j/SEbd6aE3umtG+v5OxXKjaerx21tr9S2K/P+W1aYX97ja5jAAAAE9OVwv69HS2U5HlmzL7c3oL8vqNAbnTtVf3tY47FzS6JnWgfr4f8Avqk3Vqgra7SjlrdXyns1+f8Nq2w/3Ho9to5AABAR7W9sJ+m3rm8w4WSPNeP2ZenW5Dfe3KO92ehN+VKl7w05nhc5JLYifZRZAHdSU53szTkL5h7s3bU+v5KYb8+57dJhf3Lh+z/JzEW6cIAAADqJU0j8Uho1tQ7RW+kp1HYXxzqN892WU4J+VOOvNDBNjRqQcbDLi+daR9FpqhaN8F2+lbOvtymHemvmOj5bVJhf+uQ/b/fqQUAAKivN8P4gsOmBt5IT6tQMmoe8QMNz5GrQ37x8s6OtZsFob0/5GgfM/NaTtt4YkL7sT1nP27XjvRXTPz8NqWwf144+Qf8D4On9QEAAGpt74ib0fT69TUNvZGeVqHkwTH7s6DBOfJ0yC/sX9ixdnPJmGNxU833PU238FzoFZzSFEppTuVnY1ypfczKupy28VGofpqqvLevbtSO9FdM5fw2pbD/XKj3WhwAAAAMGPaEVor3Y1zQ4BvpaRVKxk3LsbrBebI/51h/0sG2c+2IY5Ha0xk13u97cs5lWuR2vvYxY6/kHNcqF58cN89/+tFmpXakv2Jq57eMwv7y7Nr9VIwns3Zzdon7vmHIfj/klAIAANTbC0Nu5tIT/E0pqNSxUDJqaqN7Gpojl4b8p/W7OPXMkyOOxfM13udVodiaGru0jxlLP4SOW4ci/Vi6sILtjntSP019tEQ70l8x1fM718L+HWH0j1/pTaulc/z8peHkdS62O50AAAD19uiQG8XNofopIyZxIz3NQsltI/Znd0Pz5ImQXwh+uoPtZ9QT2nWevmp7KFbYr/IJ87a1j35fyzmmj5e4rdNi7Mxpk6doR/orpn5+51LYT/Pb5y1cn6ZTm+36GWfF+GDg855r2DgQAACgczYNuTm8o0U30tMslKQb8U9G3Hw37WZ5cbbfeUXgbR1rP6lgOqzYkgok82q83/tD8cL++9rHrDyac1xvKWEbV2XnZ9jnp8Uu12hH+itqc37nUthfOYNrdvqh77QZfPayGPvCdBb6BgAAYJbuHbiROxxjbctupKddKNk0Yp/WNOjYpgLs3oIFhZRDyzvUhq4ecRzurPl+vxKKF4lSXKR9zEreQrb3z/JzUyFuRxg9LcemrN1qR/or6nN+51LYP2uG1+z3C47nNoYTp99JffhNTiEAAEC9DU6DcSBUV7yb5o30tAslo55039yAY3pqdoP/3gwLCukp7AdDMxZdnqvNQ77/R6H+RdWHZ3hON2gfs5ba0OExx/b1GFcW+JwFoTctzfNjPitNsbRUO9JfUcvzO9c59p+d4XU7RfoR9/oYZ2afkd6AWRF6b2a+E05ez+I8pw8AAKDe1g/czKXC7TktvZGuQ6HkkRE3+HWdbiRNp/N2yJ/Pt2iRPxULbmthO5ofhk8l04SnjE8PJ0+9MC5u0j7mJBXb9+Qc43Q+tsS4NfR+SLk29ObLTkXvvTntMbXZ5dqR/opan9+5FvbTD107S+iXByNdX6502gAAAOovzdPa/4TsqzHOaPGNdB0KJekV+mGFqxsbeCxnGzta2JZuDMOLswsasv+puP9QjDdD/voJN2ofpUjFsxdLalNpqo0HQvN/lG16O2pbf0V15/dQSZ9/TTZ2m8v1493Qm7LrAqcLAACgGS4MJ86l+kJoz1QHdS+U3BmGT8FBc70+5Jyubcl3Wz3wvdZrH6VK012kqTDSU/xFFqVOT+unYneaiiO9/bJcO9Jf0XnpR700zU5602dXjIOhN+3Xkb74OMYboffjeno7Kv0osNihAwAAaJb0VOz+cLx48Fxo11QXdS+UpHlt3w7tXSS0a1aF4dOhhJa2qQu0j8rcOvCdU7E/FeuuzvJscXZ8tCP9FQAAANBBqYh/bG7W7S38fk0olFw6ZN/elJqN9NbAefww9Ka2aYuz+r7bfu2jMo+Hk+e6XqQdtZ7CPgAAADBjt7X0ezWlULJpyP7dIi0b5fYh5/Dyln3HjX3f7WHto3SpeL9r4Hu+EupT1L84xnXaUef7KwAAAIDKNaVQkqbUGFz0Ls2Be7ZT2AhpbvTBhV7vaNl3TDn6Tvbd0vzvi7WPUqW3Id4Y+I7pn0+ryf6lNyc+CtVOwdSFdtSG/goAAACgck0qlKRC6YGBfXzBKay9YUXnLS38nvf3fb8HtI9SpQXM9w98t7S2wBk12b91obf4Ztqvu7Uj/RUAAABA1ZpWKLks9J6G7t/PO53GWnts4Hw9H9q1AHXSv5hpmt9+gfZRmmvC8aJ5f6SFzJ/K4qHQWzg3FdiXhskumvtAmMwCtl1oR23rrwAAAAAq08RCyfoh+3qlU1lL14eTFzld2LLvuDIcLzynJ+bP0T5K81DONWpUpB830tPtm2NcG2NFBft2fozXwmQK7V1oR23trwAAAAAq0dRCycaBfU1zWy91OmvlqhhH+87RS6E+i5yWJS2UeuwJ+VTUX659lCJNsfNimF1Rf1QcibE7xj2h92PMbIvwaVqgZ8LJUx4t1I70VwAAAACT0uRCyc0D+7svxplOaS1cEuNQOPFp5jY9YZym2nl0IPeWaR+luDycPJ9+FZGK5enJ9ydibMhytj9H03Q+p4TeorjpLYjHw/HFkfsjTb8zXzvSXwEAAABMUtMLJWlO7SOhngtqdtXFofeE+LFz8kTLvt/iLM+Ofb9nY5ymfcxZKqTfH6ov6JcZd2tH+isAAACAaWhDoSQ9UXsgnLh4qeL+dKTFW489YZyeiN7Ywu+Yntb/MMa7MdZqH6VYEnpz4jeloL8vy3XtSH8FAAAAMBVVFb4mLU0xsrdv+6noutjpnahU5D62iOwHoffEcVulufTnNWh/69w+0pRBn/TtW8qh7THuCL03DtLUPKeG3rzy6QeAVaG3IO5Tobd47dEwuYJ+Wk/hgdCbokc76nafAwAAADBVbSuypKk8jhX60jzdK5ziibit79zviHG6Q1JLdWsf9/Tlza4Ya8LMfzBJRf9rQm9B20OhuoJ+mmP/HO1InwMAAABQB20sslwY441sP95wiit3UXas03zg1zoctVen9nF2jKdjLC3xM9MT/ukHg7TQ7JE5XsdeCb1i+xnakT4HAAAAoE7aWmRJT/3eHnpTplC9tIiop/Sbo0vtI72VsD7GphjbYrwYesXzNN3NkSzSVEDvhd5T8unJ/KunlM9daEcK+wAAAAAlUGQBQJ8DAAAA0CCKLADocwAAAAAaRJEFAH0OAAAAdNi/ApJQ7cC51yu5AAAFC3RFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtaT5jb3M8L21pPjxtZmVuY2VkIGNsb3NlPSJdIiBvcGVuPSJbIj48bW92ZXI+PG1yb3c+PG1mZW5jZWQ+PG1pPlA8L21pPjwvbWZlbmNlZD48bW8+OzwvbW8+PG1mZW5jZWQ+PG1pPlE8L21pPjwvbWZlbmNlZD48L21yb3c+PG1vPl48L21vPjwvbW92ZXI+PC9tZmVuY2VkPjxtbz49PC9tbz48bWZlbmNlZCBjbG9zZT0ifCIgb3Blbj0ifCI+PG1yb3c+PG1pPmNvczwvbWk+PG1mZW5jZWQ+PG1yb3c+PG1vdmVyPjxtcm93PjxtaT5uPC9taT48bW8+JiN4QTA7PC9tbz48L21yb3c+PG1vPiYjeDIxOTI7PC9tbz48L21vdmVyPjxtbz47PC9tbz48bW8+JiN4QTA7PC9tbz48bW92ZXI+PG1yb3c+PG1pPm48L21pPjxtbz4nPC9tbz48bW8+JiN4QTA7PC9tbz48L21yb3c+PG1vPiYjeDIxOTI7PC9tbz48L21vdmVyPjwvbXJvdz48L21mZW5jZWQ+PC9tcm93PjwvbWZlbmNlZD48bXNwYWNlIGxpbmVicmVhaz0ibmV3bGluZSIvPjxtbz49PC9tbz48bWZyYWM+PG1mZW5jZWQgY2xvc2U9InwiIG9wZW49InwiPjxtcm93Pjxtbj4yPC9tbj48bW8+LjwvbW8+PG1uPjE8L21uPjxtbz4rPC9tbz48bW4+MTwvbW4+PG1vPi48L21vPjxtbj4xPC9tbj48bW8+KzwvbW8+PG1uPjI8L21uPjxtbz4uPC9tbz48bW4+MDwvbW4+PC9tcm93PjwvbWZlbmNlZD48bXJvdz48bXNxcnQ+PG1zdXA+PG1uPjI8L21uPjxtbj4yPC9tbj48L21zdXA+PG1vPis8L21vPjxtc3VwPjxtbj4xPC9tbj48bW4+MjwvbW4+PC9tc3VwPjxtbz4rPC9tbz48bXN1cD48bW4+MjwvbW4+PG1uPjI8L21uPjwvbXN1cD48L21zcXJ0Pjxtbz4uPC9tbz48bXNxcnQ+PG1zdXA+PG1uPjE8L21uPjxtbj4yPC9tbj48L21zdXA+PG1vPis8L21vPjxtc3VwPjxtbj4xPC9tbj48bW4+MjwvbW4+PC9tc3VwPjxtbz4rPC9tbz48bXN1cD48bW4+MDwvbW4+PG1uPjI8L21uPjwvbXN1cD48L21zcXJ0PjwvbXJvdz48L21mcmFjPjxtbz49PC9tbz48bWZyYWM+PG1zcXJ0Pjxtbj4yPC9tbj48L21zcXJ0Pjxtbj4yPC9tbj48L21mcmFjPjxtc3BhY2UgbGluZWJyZWFrPSJuZXdsaW5lIi8+PG1vPiYjeDIxRDI7PC9tbz48bWZlbmNlZCBjbG9zZT0iXSIgb3Blbj0iWyI+PG1vdmVyPjxtcm93PjxtZmVuY2VkPjxtaT5QPC9taT48L21mZW5jZWQ+PG1vPjs8L21vPjxtZmVuY2VkPjxtaT5RPC9taT48L21mZW5jZWQ+PC9tcm93Pjxtbz5ePC9tbz48L21vdmVyPjwvbWZlbmNlZD48bW8+PTwvbW8+PG1uPjQ1PC9tbj48bW8+JiN4QjA7PC9tbz48L21hdGg+PEUE0AAAAABJRU5ErkJggg==" style="width: 272.00px; height: 116.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="cos open square brackets stack open parentheses P close parentheses semicolon open parentheses Q close parentheses with hat on top close square brackets equals open vertical bar cos open parentheses stack n space with rightwards arrow on top semicolon space stack n apostrophe space with rightwards arrow on top close parentheses close vertical bar equals fraction numerator open vertical bar 2.1 plus 1.1 plus 2.0 close vertical bar over denominator square root of 2 squared plus 1 squared plus 2 squared end root. square root of 1 squared plus 1 squared plus 0 squared end root end fraction equals fraction numerator square root of 2 over denominator 2 end fraction rightwards double arrow open square brackets stack open parentheses P close parentheses semicolon open parentheses Q close parentheses with hat on top close square brackets equals 45 degree">

 là hình chiếu vuông góc của  lên

Nên  có vectơ pháp tuyến là <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>n</mi><mo>&#xA0;</mo></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mover><mrow><mi>O</mi><mi>H</mi><mo>&#xA0;</mo></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mfenced><mrow><mn>2</mn><mo>;</mo><mo>&#xA0;</mo><mn>1</mn><mo>;</mo><mo>&#xA0;</mo><mn>2</mn></mrow></mfenced></math>

Vectơ pháp tuyến của  là <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>n</mi><mo>'</mo><mo>&#xA0;</mo></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mfenced><mrow><mn>1</mn><mo>;</mo><mo>&#xA0;</mo><mn>1</mn><mo>;</mo><mo>&#xA0;</mo><mn>0</mn></mrow></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced open="[" close="]"><mover><mrow><mfenced><mi>P</mi></mfenced><mo>;</mo><mfenced><mi>Q</mi></mfenced></mrow><mo>^</mo></mover></mfenced><mo>=</mo><mfenced open="|" close="|"><mrow><mi>cos</mi><mfenced><mrow><mover><mrow><mi>n</mi><mo>&#xA0;</mo></mrow><mo>&#x2192;</mo></mover><mo>;</mo><mo>&#xA0;</mo><mover><mrow><mi>n</mi><mo>'</mo><mo>&#xA0;</mo></mrow><mo>&#x2192;</mo></mover></mrow></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><mn>2</mn><mo>.</mo><mn>1</mn><mo>+</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>0</mn></mrow></mfenced><mrow><msqrt><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup></msqrt><mo>.</mo><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mn>0</mn><mn>2</mn></msup></msqrt></mrow></mfrac><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac><mspace linebreak="newline"/><mo>&#x21D2;</mo><mfenced open="[" close="]"><mover><mrow><mfenced><mi>P</mi></mfenced><mo>;</mo><mfenced><mi>Q</mi></mfenced></mrow><mo>^</mo></mover></mfenced><mo>=</mo><mn>45</mn><mo>&#xB0;</mo></math>

1

Câu hỏi tương tự

Trong không gian cho điểm . Mặt phẳng đi qua , cắt , , tại , , sao cho là trọng tâm tam giác . Phương trình mặt phẳng là:

1

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG