Square root
VBT
Calculator
magnet

Câu hỏi

Trong không gian với hệ tọa độ cho hai mặt phẳng Khi hai mặt phẳng tạo với nhau một góc nhỏ nhất thì mặt phẳng đi qua điểm nào sau đây?

Trong không gian với hệ tọa độ  cho hai mặt phẳng

Khi hai mặt phẳng  tạo với nhau một góc nhỏ nhất thì mặt phẳng  đi qua điểm nào sau đây?

G. Giáo_Viên

Giáo viên

Xác nhận câu trả lời

Giải thích

Ta có: n 1 → = 1 ;   2 ; - 2 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAApwAAACkCAYAAAA6/f5MAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAB6cPQKvAAAE+tJREFUeNrt3Q/kVef/APDHxySTkSSTRJIkicxMkpjMJIlkZpLI5GsyX2a+kiQymZlEMskkJklmxkwySczXTJJIMkkiM0kS/c7zvef+up/bveec+/ncc+45975ePHz/fPqcz30/zz3nfc55nvcTAtGppM0TBgAAyvIyabeTtkYoAAAoK+GM7VnS9gsHAABlJZzt9mPSFgoLAABlJZyxPUjaJqEBAKCshLPdjiRtSogAACgr4YztWtKWChMAAGUlnLH9nbSPhAoAgJnYkbTHBRNPNTsBAJiRJaH16rxI0qlmJwAAM3aoYNKpZicAADO2MWn3CiaeanYCADAj85N2oWDSqWYnAEAJXo5Ze9bRniTtn7QN8jvU7AQAkHCW3tTsBACQcJbe1OwEAJBwlp5w7jREAAAknGW9Ul9ieAAASDjLaIeDRUMAABT0ZmhtY1m0LNJGIQMAoKi1obV9ZZFk82JQ+B0AgAF8mbQXBRLN50n7TLgAAChqcdKuhGJPNW8lbbWQAQBQ1I6kPS6YbH4XWvM7AQCgMLU1AQAYacKptiYAAKUlnGprAgBQSsKptiYAAKUlnGprAgBQSsKptiYAAKUlnGprAgBQGrU1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnsraVsn5LPOT9rhpJ3U7QCvnR+3CgNQhu1Je5C050lbNuZJ9cGkPUnay6T9o+trYV3SPkva2aRdTtrjpD1Nx+OztL/uJO1C0o4lbVvS5ggbxn4pLqbnx0tJW6yLgGFYkLTz6ckltl/Tu9txMy9pB5L2d8dnlXCOVryQHUraX119UrQ9Ty/CG4USY3+o/t1xrHjO/EiXAbPxftIedpxY4h32G2P2Gd9M2n/Spwa9TtwSzurFp8zH0ovmyyG1q0lbK7QY+0PzQXp+bB/ndNLm6kJgUEe6TlrHx+zzzU3v0h/lnKwlnNWKT2Rm+lQnr70IrekSYOwPx9quhxJ/Jm2JrgSKiK/Qf+06WX09Rp8vzm36PLTmoxY5UUs4q7M7vTC+LLldCp7EYOwPS0ww73UcIyag63UpkCUuBrrbdYI6NiafLU4F2D9AoinhrNa+Ci62ne3nMH7TQzD2RzX23+5KOuNiJqvYgZ7eDdNfjcR2agw+11TS/hVm/qpKwlm+rRVfcNvtjNBj7A816bzfdRyLiYBpNoXpk79juzAGieanHXfd8XXVb2kSHZ/aXpVw1sLyHmOv3W6H1lziWOZlUdqnbXFqxKrQKtf1bXj9yXzRtlsXYOwPzcrw+rz4nboaiOJE9SddJ4jroflz3G6mn+X30Kpht7DHz3wn4Ry56z1ifiO0KiTMZCxfG/CiG6sTLNANGPtDsz68Ph91i+6GyfZujzvsh+kdddMdTJ8CZFkk4RypT3vEOz6xmRrC7306wIX3mK7A2C/188W/aZ1uh8m0NLw+ZzPelW6YsDjclHCORKx/2v3q7fAQf/97oX9t1Zc9LobzdAnG/lCd6zpWXLD5tu6HyRJ3Crrd4+RzaAJjcVHCORJfdsX5XAnH2BSKl5rZo0sw9od+neleRBSnEagOARPkUo+Tzn8nNBYXJJyVi68NO6sGxEUPZT1lOVjwontet2DsD92WHsf7xjCAyfBF6L0LxaoJjYeEs3rdpWA2l3isuKL3XjBXF2N/VGO/11ukzYYCjLc1ofdrlkm+45RwjjbmFys43ueh2JOeOboGY3/olve47sRX7W8ZDjCe4qucGz1ONLEk0iSXhZFwVivO33oeXj1ZX1nBMReGYvPZNukejP1SnOxxzJOGBIynfvN5jnjiIOGs0LYwmp1+rhe46H6oezD2S7Giz3HfMSxgvCwJrb1tu7/s8W570YTHRsJZra87YruywuMWKfIv4cTYL8/PwWJVGHtn+pxkzgqNhLNiV9K4/lzxcfcWuOh+oHsw9kvzcZ9jf2xowHhY5QIr4ayR00m7E6pfpbqjwEV3te7B2C9NXJj0vMexY0ymDA9ovnN9TjBPfMklnBNkW04/v/B9wNgvXb+NNvbqJmi2ZRknmXPCU/uEM5YTiSs5YwmROAc3bod3Ov3fGe5F96Z+w9gv3Z4+f8Nt3QTNdizjJLNLeGqdcMZJ/E9C/6fTFrgMZntOP5/Rbxj7I30Ism0cg7887YCj6cUmXlAG3Voqzos7nLTL6b+P8xKeJu1q0g6Eya5rSD3Emm+PMr7cy4SotgnnivR8kvV3PQuTuzvUTHySE8+d+g1jvxIP+vwdV5oc5DhBNRYz3R1aZQEuh96lYa4O8DvjxNqfQv4E3IdJe9c4p6Z3tY+Ep9YJZ5EyJi/Tv51iDmfEMT4wmKvfMPYr8UPG37OiCQGN1fTj49iD6Ye5V/CLH9sXBX5/fFoUC2S/GOD3Pg5qHFLPROq88NQ64XxY8BzzXPcVdi4jjmf1G8Z+Zf6T8ffUfiOSHaF4Etir5RVgfTsUq9Tfq31lrDMCnVuo9WpHhajWCefzAc4x9v8u5mZGDDfqN4z9ymQtYrpb92DGV9ffh9aTzR+T9vcAX/q8lVGrB7hr7dVuGOuMwNZQrzk7Es7BPAielA3TvIwY/le/YexXanHO96Nx212uSJPPvC/+sZxE9nGYXpx0X2g98Yzik9E/Q/4EcfK9H2b3lLpJrYr5W9/m/A0bDLlaJ5wnCo6ln3VfIVnzmbfpN4z9ymVNTzzUxED3q2rf2db3+bcxw+58Uhon3b7RJymVcEo465Zw/hG8zmtywrm462a3X7HmtbqvkNN9Ynhdv2Hsj8SdjO/I700N9j9h8JW68elo+zV6rJu2JeP3TwW7lEg465Vwzsm5e3QTVP+EM6Q3w/2Sl6fpkwvyvZFxHXhHv2Hsj8TFnJuyuU0L9lTOhfe7Hv8mrnZvr3CPTzjfK3CMvPJISDirTDjzYvmX4daIhDOK03fi9Ij76bnscfrEYqVuK2zXAOd//YaxX40zOefdLU0Ldt7r7m09ngz91nEnuqHgiSXrGPeNeQlnxQnnnpzjXzLcGpNwMnvX+jwIsDkHxv7oHM057x5sWrAPhuxVgt1zMjvnOhTdfuzDnKA9MOYlnBUnnHl3jj8YbhLOCbF+XJ6ewJiN/V05593G1Yq+PMBFt/Op0P4BjvGvYNGQhLNeCeelnOOfNtwknBPiao/+PCksGPsjl1c/vVFTv94M2fM3P+n42TXh1ZaX3w94nO/D7Op8wrDl7bJ1QogknBOgV3HpWHdQhQaM/dHbEvKrOUw1JeDbcz7I/I7E9FZ4VaR90JVReXU4vzX2qdiznDH5tRBJOMdcPK/fDa9XJVkqNBj7tfBByH8buLwpQT+V8SGu9Pi5WP5oxQw6Ni9g5gpRpakCY3KPMEk4x9yxHg8ZNgkLxn5tbCpwrfqgKUG/nfEh2nM0Ox87fzKDY2wL+duXvWH8U/Hdbd6XeJcwSTjH2Ho3WYWcCuM9V36OsV/rsf92gT5sRM3a5TkfYllo1dtsF3c/N8Pj5G0f+ItzGhWbX+BL/IkwSTjHePx3z2E+JCwSTmO/duYV6MOPmxD4vRkf4I/0Z86HV3UyZ1qT6lZOsP7tnEbFNkg4JZwTrHv3klNCIuE09hubcO5uQuDPZ3yAuCf6zo7/vnmGxyjyOHi1cxoVK1JeSsIp4RxHB4J6sxLOyUw4mzj2i0z/qv1UmLho4knGB4iF2h+F2ZeH2R1saUn9FJmILeGUcI6b7hIrdtOScM4x9mttToE+PFz3D5H1SjG+Pj+b/udYNmDeLI5zLidQZ5zPGIFVEk4J54RZl/ZRu79+DhZrSjgnI+Fs8tifG8bgCeehjD++c0LtbJfb/50TqJ3OZ4xAkXkxVqlLOMdFrC34oKOvfguD11KWcEo4jf16XqtqP4fztwIfYrZ7dL4T8ivkz3c+YwTeCOpwSjgnQ6w0cqejn66F2b21AmO/Xgnnx3X/AC9Cfm3M2Vbc/zLnGNd9HxihvO/AcSGScDZcvKH/I0yvPrJAWDD2G/U5Gl2Hc3uBD3BsCMf5NTR8oitj7WHO+DwpRBLOBosPFq529E8sT7dQWDD2G6VICb9a7zT0Xch/urlolseIryzzniBt9L0YWJFyPuPSLpQcyx9zjn/acJNwNlScl/dLmD4v/21hwdhvnM2h4Xup3w3lv0rcmnOMp6FVmgkJ56gSzjM5x1efUMLZRPG8eilMrzqyRFgw9htpS8hfC1PbXGpFgQv9yiEc5xsXcwlnzRPOz3KO/5PhJuFsoM5SdA/Tcz4Y+820IzS4lvm+nD/+8pCOcyPnOHt9NyScI044P8w5/n3DTcLZMJ0lfB4nbY2QYOw32q4RXydLvWgMo55Tke0sveKRcI464czbMuyZ4SbhbJBjXX3xbkXHjef7uEmCKVIY+8N3KOe8+3VdO2UqvYhmXWCHURD145wA3fb9kHDWIOGMbga7cEg4m+9gmD4/fkOFx/4hPe463YCxP3R5aw121LVj8vaPPjuk4+RtZ/mt74iEsyYJ58mcv2GTISfhrLn9YXqFkc0VHrs9v+xP3YCxX4qLOefd2q7AP5Lzh28b0nEezPI4eyq+S2Fy5dWktfWqhLPOdnf1wdYKj70stObKxeN+pisw9kuRVVXoTp076HrIrr05jM3s87ZhyjtO+yls3IPdXr+UbW46JvuN16NCJOFsyM3SRxUeu3PLwPj9sUUxxv7wxWmQWfXMT9S1g94K1ZQpyqsZ9WvGv41baT4K9V7FviLYh3jcZBWAvyA8jUg44yLEuHDgdnoRiHO54quuOH1n5Rj2xYddF6Iqz5drwvT9qc/pN4z9UizPOedurmsn7QzVbP7+ec5xDvT5dzGJuxHqW6Mz7sF6PB3on/jOj5WsshOPhOf/XappwhlfpT0J2YWRj4xRP2xKE7P25/u85ONNpRe+eA252OOJy/v6DWO/FNtzzre1rQxxOueLPazHwnkLhvpl5O2nTPHu4a0axS2+/v8itF7xtz+DhHO8vBmyX6svFqL/uVXDhHNNTt+VsShylN5L41yXhX139RvGfmmy1t2cqnNnZS3kuTzE4/weBi8z014p/DTUq1jr9tB7wq6Ec/x8FywcykvKX4T6bbF2fsCLxP4G90E8Nz4O9aokcUC/YeyXJmu613t17ayVFX6Zn+Ycq/uCdCIM/7X+bMWaWlczPoOEc/ysy+jv08Lzv8oRRU7CVZeRehoGu0jEV7hvNTD+8bXew1C/0mVL9RvGfimy6qb/UecOy9szetkQj5X3FOSL9OdWJ+1Kx//+VQ3itDhkTz2QcI63a336+8GExyXOr75T8CT8S8V/W9HXsp3t04bFP56X7tfwgvuLfsPYL836UO6OkKXJKhx6c8jH+nsGnTfqRUKxNM7BAe66JZzjaWtGn6+d0Jgs6roxLNKOh+perd9q4PlmEAsHSParbjv1G8Z+afptaflXqPFioamcu8lhP1kcdG7OT2E49T9nand6BxUXO20Kr1al3ZZwTqQ/+/T5JK2WjQsIt6SJ45Mw8wn18SYuLhIsc3vQQzP42/5oSD8syBiPo26PZ3nRG+d+w9gv81pU600W8rZC3Djk420eoOPOjDjZjIuVYm3BVT3+v50Szom0LeOuclzFVzcP0hPps5JO0s/S3x+PM8y9f+NipqszuGDUXbygXa/pBTe2b/Qbxn5p1mTcyE/VufOOhuyJ2GUlcnnlU+pQ2H1BzlMeCedk6ney2zKmnzfvpnTYbdjfn3gC3hdab0viuSVvHnkTaqvOqfEFN7bV+g1jvzTf9Dn2dsOjt7jVVJz79TR9uhHndsbC0XFFfFNWG0o4J9PaUH75MKqzNxTf7Qz9BqMU86NeU5mM/zEn4Zxcp/r0/btC0/jvsjJX+g3q6mDo/TZ6mdBIOBlPcbpFr9pvV4Smcbqnxyjkr9+gjhaG3k839wmNhJPx1q9M0lahaZQdHX0XK3bMExL9BjXU683aj8Ii4WRyTwB3Xfwa5ZeOvjshHPoNaqhXofd7IXtxMxJOxkgs39KrHtpxoWmEjWH6U7KlQqLfoGbiA4y7XdeYuOB6jdBIOCWckyVO1n7UYxy8LzS1Nj99QtDurwNCot+ghs6GySnDh4STHPGJS/eOXXFR0SKhqaVYy+9yR1/FIuNTwqLfoGb29cgx9giLhFPCOdl67T51LYx2tyxeNze0iol37hLlxkC/Qd3E7bS7Nzz4t7BIOCWcRJ/2GA/nhKU2YlmRzi0T7wf16/Qb1E/cUvtx17Xkc2GRcEo46bS3x5g4IiwjF4vyP+jokxtJWyws+g1qZmnXmPcaHQknfcWtW70KqYc4x+9QV198H5Su0m9QP0tC6wl+52p0tZ2RcJIpzr/pfiWyX1gqF+vU/RNevYrdLiT6DWqabP7Vcb2ITznXCQsSTopYkbRbXePjC2Gp3GdJ+zK0Fp6g36BuVoXpr9HjNskLhQUJJ4OIrwDPdI2RY8ICQGiV1et8G3ZISJBwMhs7u04qcfX6HGEBmFgxX2jXcL6XJp8g4WTWFqWJZhwncX7aciEBmEhxYdzN9HpwIlgQh4STEsQFRbYmA5hscQvk9cKAhBMAAAknAAASTgAAkHACACDhBABAwinhBABAwgkAgIQTAAAknAAASDgBAJBwAgCAhBMAAAknAAASTgAAkHACACDhBABAwgkAALMyJeEEAKBMizISzl3CAwDAbO3MSDiPCQ8AALN1JSPhvCU8AADMxlcZyWa7nQiteZ4AAJDpvaRtTtq2pB1N2t0CyWa7xZ+Nr9e3p79jQ9LmCSkAAG0LBkgui7bjwgoATIr/A4UtMNBoTrIJAAAA9XRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtb3Zlcj48bXN1Yj48bWk+bjwvbWk+PG1uPjE8L21uPjwvbXN1Yj48bW8+JiN4MjE5Mjs8L21vPjwvbW92ZXI+PG1vPj08L21vPjxtZmVuY2VkPjxtcm93Pjxtbj4xPC9tbj48bW8+OzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1uPjI8L21uPjxtbz47PC9tbz48bW8+LTwvbW8+PG1uPjI8L21uPjwvbXJvdz48L21mZW5jZWQ+PC9tYXRoPmbz5HIAAAAASUVORK5CYII=" style="width: 105.33px; height: 25.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack n subscript 1 with rightwards arrow on top equals open parentheses 1 semicolon space 2 semicolon minus 2 close parentheses"> là vtpt của n 2 → = 1 ;   m ;   m - 1 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAx8AAACkCAYAAAD2QZOOAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAB6cPQKvAAAGI1JREFUeNrt3Q/kVef/APBHkkwiSZLEJMnMmMlkEjMzSSKZTCZm8pVkZGaSxMzMzIwkmSSSyWTGZDIzYyaZSXwlkyQySZLY7zzfz7m/brd7z3Pun3PvOfe+Xjx+v+/32+ecc5/nOc9z3uc8f0IgOp6lRbIBAACo2r9ZupalF2UFAABQdfAR08Ms7ZcdAABA1cFHK13I0jLZAgAAVB18xHQrS5tlDQAAUHXw0UpHszRPFgEAAFUHHzH9mqXVsgkAAKg6+Ijpnyy9LasAAIBh7MjS3ZJBiD1BAACAoawKc8OrygQg9gQBAACGdrhkAGJPEAAAYGibsnSjZBBiTxAAAGAoS7L0bckAxJ4gAABQoX+nLD1sS/ezdC9P/RzDniAAACD4GFuyJwgAAAg+xpbsCQIAAIKPsQUfO1URAAAQfFQ97GqV6gEAAIKPKtORYMI5AADQp+eydDyUX2p3kywDAAD69VKWrpUMPM4HmwwCAAAD+DBLj0sEHY+ytE92AQAA/VqZpUuh3NeOq1l6QZYBAAD92pGluyUDjxNhbj4IAABA3+zdAQAA1CL4sHcHAABQefBh7w4AAKDS4MPeHQAAQOXBh707AACASoMPe3cAAACVBx/27gAAACpn7w4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJiIxVnaOiO/dUmWjmTpmGIHQP/V81xbZTlQhe1ZupWlR1l6fsoDrENZup+lf7N0T9EDoP/q6nx+ru+ytFIRAKOwNEvn8sYlpoth7k3HtFmUpY+z9E/bbxV8AKD/6u2DtvPF87+tOIBhvJ6l220Ny+kszZ+y3/hclj7K0t2ORlvwAYD+K+3N/Fyt857M0kLFA/TraEcj9tWU/b7YMMY3Nnd6NNqCDwD0X+W8FJ5+WXklS6sUFVBGHGZ1saMB+3yKft+CLB0Ic/NX/i2RBB8A6L/SYrBxo+38MRjZqNiAInEi+fWOxuuzKfltcbjY/j4abcEHAPqv/qzoCEAeBqthAT1sCE9/Mo3p+BT8rnlZ+k+W/u6z0RZ8AKD/GiwAudlxLSaiA0/ZHJ6eLBbTt1PQaL8fnryBeZyln/OAKn7N+UXwAYD+qxLrwrNzUnYqWiDaFJ6sCd5Kv4Xmr1TxV/5bfs/Sviwt6/JvTgg+ANB/VWJjHji1X9MWxQuzbUN49otHHHq1fAp+W9xoaX3i3ywXfACg/6rM+x3X9CBLLytimE2rw7NzPOIbitdmLB/+EnwAoP+qzJmO64oT51coPpgtcYfya10aqsMzmBfnBR8A6L8qfebonIAeh3fPV4QwO77r0kj9MaN58a3gAwD9V6W2dLm+LxQhzIaDXRqAONxq/Yzmh+ADAP1X9bp9qXlDMcJ0ezE8u/LErL99EHwAoP+q3pouzyBxONZiRQnTKa4b/meXxikus7tU4y34AED/VbFjXa7zmKKE6XSoR+N0VOMt+ABA/zUGa3tc6yuKE6bLqiw97HKzPwrTsaeH4AMA/Vcz+q8fgkVvYOp906NhOi1rBB8A6L/GaFeP692lSGE6rC9omN6UPYIPAPRfY7QgzI286Lze/4a5+alAw53p0Sjdd5MLPgDQf01Arw0S31Os0GzPFzRKZ2RP7RvvuCxhXAUkLkUY5+zcydLJ/L8H9QT0X00NPvb0uOZrihWa7bOCRmm37Kl14/1WmPs61eur1VuKDvUE9F8NDT6KXo5um8bCim+Dtmfpk7zgYuEs6vMYcRz9kSz9lP99HLv2IEu/ZOnjMNv7JlAP88PcG9BeN/fzsqi2jffavD0puq6HYTZ2pV+Rd0SxXT2bpeuh/0mJsX2Pn/LPZemftvb6zzxAXz3kNcbhizvD3NfEG3nZxHNcy4+/Qj1RTyZYT9B/1dWtHtd9qcmFEie0bM7Su1k6kQcK3ZYb/aWPY76Qpe8ThR3T7SxtcF8wQdsL6ucd2VPrxvtEiTbm3/zap8W8vM18O8wNIfox9H6jX/YhcGGY29/mfiIfH4TB3rTFaz5Q0IG20t0sbVRP1JMJ1RP0X3V1tuDa1zahAJbljcKh/MfcKNkox3SwxPHjW+S4GdvjPo4bG5Ll7g1q2Cidkz21brxvl2xjHjU0zxeHueFA8YEsLvd8pY+2tex44NfC3Nvvsu11v18IXs3S1T77g6XqiXoygXqC/quuPiq49tpvgLyjjxu7W1qXOH78FPrbgMf+1L3BBMwP3Zexa6VPZFGtG+9HfbQxCxqY5w+HaK+/LHH8Dwc89vGS139owOMfUU/UkwnUE/RfdbWt4Nqv1z3z4yfYU2Hui8eFMDdWs+xNnno78kIfb5e6pT/dG0zA1kS93CmLat14p4ZnNP2N9hdZ+ipPcehM/BL3oORv3pI4dtmhSN3SjcSxF+TXOujxL6sn6skE6gn6r7pambj+V5pWIGvzQCR1k3+WCGruhqc3P9kbnkwKi19MroT0J1rSXg/Dfb1qUhrH+OsvE9fwmipX68b765J16YcpKoclWfqjxEP0/B5/P79Lm382r+txzH0cAntxiIf0hV3+Ps4X3JGf+7n8JVhqzoB6op6Mu56g/6qzoqGUh5tYKL12UGxPvSZ3xWir/QvKkR6N2QbBh+CjhsHH5TB9QzBmqfFe2fHio1uKDfZLU1YWuxO/+ULB37ZvWHWjR9v+/IAPffPzB/j2OvFOjwfjcX6BUE/UE/RfTQ8+/ltw/b83tWDuhf5X/IlfTVpDreLqF0Wfb+cFuyMLPuoVfCxIvEkQEDej8d5Y8GAZH362T2FZ7E2Uxf4ef9f+Jvli/nDXy78DdHSnw9NfwNcMePw76ol6MqF6gv6rrs4nXp4sbFqhzEs8hJ3o8jfLwpOVsuKXj1dLnCO15C6Cj3EGH6m8/Ft1a0zjHYd4xiF0N/O2LD5kxp2r101pWXyTKItuqwwdbvvfz+Rtci9LE8c/2eVv2icN/xaKVyJakDj+efVEPZlgPUH/1cT7eUvTCiU1JGpblwbh57Y3RmXGxa9InOOme0PwMebgY0/i/N+pblPXeE+LS6G/Sb5vt/3vp0ocf1uirHd3/Pst4elx+6nNaF9NHP+wIlZP1BP0X0/5JPEbDjWtUIqWues2Ie1k2//+VslzvJXItFvuDcHHmIOP1FuEs6qb4KOG5oXiOXqdX6pfCk9WPiq7b01q6dP2YTKrwpPhTHFhkSUjCPwt9KCeqCfov56WmsPVuH3JfurjAay9Mdjfxzn+E0w4F3zUK/j4LvQ/ZEDjLfiYtJdC+S/V8QGvNTz2Uui9slE/ZX294wH31/Dk63XZzWLPhOJJyvMUs3qinqD/ekpqr75GDRWPy9kVzfdoX4HixfBkM6NTfZ4ntWTeNfcGY3YjUSe/lkWCjxraFcpPOjzf1r72sxv0/VDujfknbQ+CL/dx/KIFTs4oYvVEPUH/9YwtIb1iX2MC8u2JH7KkLUi5Gp5sCNjvrPrUPh9fujcYs9SuwJ/LIsFHDRW9yPmp7d+931Yua/s4/vpQ7o35xrb/blcfx38lcfz3FLF6op6g/3rGmyE9YmRNUwrkeMGPuNTl393vs4FqBS7D7rIKozSvRJ3cI5sEHzX0V0EZHMz/TeyAHoTuC4akFI0rjnMIFuRtemvN+RN9Hv/DRD1apYjVE/UE/dczNpd4bnmzKQVyLaTXAG9f0eKdAc6RWhGjaJdVqEKZgHi3bBJ81MziRBm8nAfWv+f/+YsBzlE0zr61Alxrx/D4Nbzfr+BFu2Ibfque1LmeHA/TPc9ymjfVnYb+a0WJMmzEfkVrEj8i7l4a9/NobSQ46BjLLxPn+VFfwZgtKXETvyObBB81UzRMtrVXUuuN8ZUBX+rcTATkrUUvHof+xu+H/HqKVmAyz0o9qXM9EXzovyZpUYky3NWEwniv4Adczv/NufBkhYqlA57naiKzPtBXMGavCT4EHw30VUH+x6Wj1+UPbXE+0/oBjr8qFH+hjm/eWsNoPhzg+Kkl17cpYvWkxvVE8KH/qnvw8W4TCuNcwQ84kqWdbf/5jQHPUeYz0Qv6CsaszJLFgg/BR90ULdwR2+vfh3yh804oHkrzRXiyM/UgPg/FC5wsUMTqSY3rieBD/zVJZYaL136uahzvWbRMXnzzcCcM/4nz3URG3dZPMAFlJm4JPgQfdbI48UB2OP//fx3iHKdD8epvrT2Z1g54/Muh3ApMqCd1rCeCD/3XJC0oUYZH6v4jioad3GxrXOJGQYuGOM+ZREZ9o69gAtYHwYfgo1l2FuT9jTz/H4fBhtG03Aq9h9K0Fif5eMBjL0vUn4OKWD2peT0RfOi/JmlhmIIvH4cTDdSolu36J5FRO/UVTECZsZNWuxJ81MmJEnX2syGOv7bE8ePLqEFXJtyZOPYrilg9qXk9EXzov+r+3FL7OR8/l/gR54Y8R2qToPZNDGGc5k/DGwSN90y5kcj/u2FuyM2g9pS4J3YMcfxTiWtHPVFP0H8NF3zsqvsPeBzSe2+sHvI8qU2CfnM/MEGpe+ArWST4qIl1JTqdj4Y8x9nE8a8MefxbBcc+o4jVE/UE/VehMlsE1Hqfj+2h2s+yLRdDwyfGMNVuJ+rnMVkk+KiJfSH9NnvRkOe4lzjH1gofincpYvVEPUH/VajMFgG13uE8NSY0fvVYPuQ54rCW1JvlTe6HvpVZInZa0rcV5+WFxPlPqm6Cj5pI1dVhX+RsSBz/6pDH/0/i+CsUsXqinqD/KvRGieemNXX+AddD9cNNtibO8SDMLfeL4GNSwcc3ifOfVd0EHzWQ2u05vuRZNeQ5PkqU7d4K685lRayeqCfov5K2hPQ86to+V5dZqWLdCM7zhQc7wUfNg4/UEIXvVTfBRw2kXuRcGME5LiZeFC0c4tjz8mP0Ov4Xilg9UU/QfyXtCA3eN29v4uJHtYHPn4nzvOdeEHxMOPh4K3H+m6qb4KMGjoVqJximhsgeH/L4qXHKbypi9UQ9Qf+VtHvCz0yVFsAo1gheUeLBcpV7QfAx4RvpucT5H6pugo8aKFr9J04gHvYz+7ZEub425PGL9pR6FAy/VU/UE/Rfw94jMX1e1wuflz9QFT1sLRzBeXYlMuia+0DwUYPgI/orzO6mS4KP+ns5VD8/76tQvOHssIr2lLqgiNUT9QT9Vympeao76nrhmxMXfnpE5zmTOM+X7gPBR02Cj9RQhc2qnOBjgj4O1b5tDvnLoKrepMWvi0VDdfYrYvVEPUH/Vcr50NDV4I4mLnzbiM5za8jz7BlRYwkpqT1vdsoiwccE/RqqnZOUWoDk1SGPnxqqs77EQ7Ul2dUT9QT9V/FKtf+t84X/ForHVM4fwTlS27+nztP6OvNPGM0QMCiyMBQvT/mJLBJ8TMjSRH6PYvWf/aHalVOKhurcSvxta3JlnK9g+KN6op4wy/1XnDZR9HXw67pe+OIwnqVvU+sQXyz429VZuhOshsV4FW3M9a3saUTjHRew+CzMDQ2JwWRcsvNKmBviua6h+f12qH5I4A8Fxz8xguMXrXp4quDvNra9FNipnqgnY64n6L/qZk3i+t+o64XvTFz4rhGd50DiPB/3+LtFbQ3QpPYAiZ3PwSydyzunB3nD9jCvmL+EuV2v386vl+lQtHzdHdnz/76raeMd9ze4H4o3XjrawPw+U3G9TG1KN+ww3OVhsOXW40uo22E0y7eqJ+oJ1Ln/Kmt74tpruxrcyUSju2QMDWFRdNZ6+xzHrS0ec968kQcW/UyGjo1x/My10j3deM8lOldlPOdqDRvvFxNlV8WCGuMwL/GgPIq3zdtCtcNwUxtidRujH/uh1gp0v4fRDb1VT9QT9F9NDj6K5mzXOvgumgT+0wjP83vof+nS1opDD/JOYlxiA3Y2DLciU2z433dfN96JYNJ5KkB7nLgXHk/g7cu5Pu/Xpqyak1qZcMsIznG84Pg/juD4X/fZF8SXTq2J07dHHPSrJ+oJ+q+69V/9KBoe/mpdL3rdGBvaB4lzzStoeHaNMU9WlIiE+0nH3N+NVrRO/knZ878V6MrcB+NemvhB6P9lweIG5PfnoXg/plF0kjcLzvHBCI7/U6Is2sWhN3+0ldEr6ol6MoF6gv6rjor26Ltc54zfl8jw50d4rlR0eTD/dy9k6VLbf//pGPNjWZgb3jXqfSm+co83Wq/lKm/NeL4s6uN++XHM1/ZogPu0CV8qi16MjGJO3PpEHo3iC3TqgT++FItvteOY/tbY/Vieb6gn6smE6gn6rzraWHDN79Y584s2JvlrxOf6Z4BGftwTzC+G6jbG2+1eb6ytBeX60ozmyfKOlwRlg/Bxfb6+2oD2pl+pVU1G8YX4g1D9IguP+yyX+GbvLfVEPZlgPUH/Nc7+q6zDPa7171DjoWLzEm99Rv3Fod+xtd+H0ewvUla39cp/z//7DeHp8aVxElvc7PBASM9laaUYfC11zzfWlR7lenSG8iDOhdqSN8L3BwzC42ZIh8Lc28kq194/PMC1Xa55/hd9qR7V4iBFQ13OjOh33O6jTOKD7Cb1RD2ZcD1B/zXO/mvY55J9dS6I10P/K0kM440+CvibMQceMQq+F57eHGlrH3+/ueQbtCPu/8baVvCGYVrFT7pxaFncpOthqOaL4MP8+PE8O0Z47XEiYb8r1d2teXkU7anw04jyrOht86g+458sWR5xuOOqivNUPVFP0H/Vrf8q48WCAKnOE+T/t0Nz0aS6KhwL6SXNJrGJYPvkvDiJbvUAx4jjB78v8XZmnjahsX4L1a0c08QXFKNO74z4+uO9tje/L++F9DCOOu/dMj9x/aOY4Jta2nRUD3hrOl72dHu4PzDGtlI9UU/Qf9Wt/0r5osd1bFf03cWN+OJYuwd51BiHI8VNXuLwpkmsIrKoLSqO/3eYMfxxOFZqGJZPw831Uqh+SWrG572OcrwoS8YmTlj+Nn+4jO1ufHMYh+bGt+YL1BMaWE9gXOKzcrehY9qmBmkfH3twBMeLK3BU/eaJyem1tv0GWdNIlk5GPQGa5FDoPmLpeVnTHK0VD+LqXqP6fFs0VvUbWd5ocdGAbhMhL8maxlkSbBqJegI0x7LQ/avHXlnTHIvbCm7bCI9bNNbwnGxvvF5L726VNY3SPnY9rvy3SJagngA11m30xQXZ0izbQzVLJ8YvKI8FHzPXAFz3YNIoP7aV3deyA/UEqLFumwreCLZxaJzWagFVbAD4V4/g47Rsnwpxuclua2zbzb4ZNoWn32avliWoJ0BNxReb1zueN+LCTS/KmuaJS6PFLxFVLNX3XRjP5o1MTpzcdadLGb8ua2otjuG/0VZeH8sS1BOgxk6H2VnmnyF82yP42CFrpkp8M/qoo4zjhPTlsqaW4vKc7bsz/xLsE4B6AtTX3i7PkntkC91c6BF8rJQ1U2dn6L7r7nxZUytxH572jUD/FiSingA1tjk8O4fYlg301G037MuyZWq936W8z8iW2ojLE/7SVjY3gzXRUU+A+oqbbN7teK44IFso8rDLw6hKM93e61LmR2XLxMUNIG+1lcmfwRdI1BOgvlZ3tEeGWpG0tMtDaJwXsEzWTL23g0+kdRHH6B/uKItTwXLIqCdAfa0Kc19d21e1so8YSdu7BB9fypaZEcdodn4q3S9bJvIS4F54MnxmuyxBPQFqHnj83fbsEL9+vCxbKKNzA7r41cPn+9myNktXO+rBQdkydvuy9GGYm0QM6glQV+vD00OtLgUjZigpfsK/3fHQeVi2zKQ4bOObjrrwmWwBANrEZfvvem5kUFs7HjbjjpTeps22nR2NSlwFa4FsAYCZFze8bu0XdiMPRKAvlzqCD5WIaHkedMQ6EceXr5ElADDT4miZv/Jng6+DhS4YwKvBEBuKxcnoW2QDAJB5PUsbZQOD+iPY4RoAAKhY+wZzccL5clkCAACMWlyXubVOfNwM5hVZAgAAjFqcLPRrePLVwy6UAABAJT5vCzx2yw4AAKAKu9oCjwOyAwAAqEJcFu1BsBMlAABQoXVZupMHHl/JDgAAoAors3QzDzxOyQ4AAKAKce+O63ng8Z3sAAAAqrA0S1fywONisHs5AABQgcVZ+i0PPH7J0iJZAgAAjNrCLF3KA4/LWVoiSwAAgFGLQ6t+yAOPONdj2YiPfyZLm2UzAABwPg884upWK0d87D35sdfKZgAAmG2n8+DgdgUBwgthboPCn2UzAADMtmN54PFPll4e8bHXZ+lWfvw9shoAAGbXZ3lgEL9MvDaiYy7I0qYsfZqlh23HXyi7AQBgNh3KA4NxpGOyGwAAZtO+MQYeMb0qywEAYPbsHnPg8acsBwCA2bN9zIFHTAdkOwAAzJa3svRozIHH4zD6zQoBAICa+zGM/6vHedkOAMCs+D/erNiNTOlUUwAAAQ50RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bW92ZXI+PG1zdWI+PG1pPm48L21pPjxtbj4yPC9tbj48L21zdWI+PG1vPiYjeDIxOTI7PC9tbz48L21vdmVyPjxtbz49PC9tbz48bWZlbmNlZD48bXJvdz48bW4+MTwvbW4+PG1vPjs8L21vPjxtbz4mI3hBMDs8L21vPjxtaT5tPC9taT48bW8+OzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1pPm08L21pPjxtbz4tPC9tbz48bW4+MTwvbW4+PC9tcm93PjwvbWZlbmNlZD48L21hdGg+3bQN4gAAAABJRU5ErkJggg==" style="width: 126.67px; height: 25.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack n subscript 2 with rightwards arrow on top equals open parentheses 1 semicolon space m semicolon space m minus 1 close parentheses"> là vtpt của N ê n     cos P ; Q ^ = cos n 1 → ;   n 2 → = 1 . 1 + 2 . m - 2 m - 1 1 2 + 2 2 + - 2 2 . 1 2 + m 2 + m - 1 2 = 1 2 m 2 - 2 m + 2 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABgIAAALaCAYAAADz8UgMAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAFqdFgrmQAAgABJREFUeNrs3Q/0HlWfEPZrjDHlZNNN2YjIUpRDI6WUYillU8QsmkaMMc3BpTHNsiymIodSlmIq5bCYNyJnXzkRKaUcaRrTiJguYpZGpFSKOSlSimLMoUgxW5pSRDamsphNszEbpff6zO/Nkycz8/x/nvnz+ZzzPbsvSWbmuXPvzPfembk3BACg6n5zjOXZ/788+98AAAAAAECF/cYYvyXGvxljTYy7Y/yRGP9FjGdj7InxRoz3YpyN8V1XnM3++xvZ33s2+3d/JNvOmmy7vyXbDwAAAAAAMKJFMS6PsSrG6hi/P8ZPxfjPYvypGC/F+PkY/3OMvxvj/4lxOlw8sD/tOJ3t9+9mx/Hz2XH9qew4fyo77tXZ77g8+10AAAAAANAoy2JcE+PfjvHvx9gc46EYT8V4PsZfiPHXYvxvMX4xxj+O8c/DbAf1ZxX/PPt9v5j93r+W/f7ns/J4KCuftVl5XZOVHwAAAAAATN2S0JlH/9+I8btibIqxLcYfj/GnY/y3MQ7EOBzjkxhfx/inoZkD+rOOf5qV5ydZ+R7IyvtPZ+W/LTsfvys7P785O18AAAAAALTQr4uxIsZ1MW6LsT7GT8b4mRh/MsZ/HeO/j/HXY/ydGP93jF8JBuPrGL+Snb+/k53P/dn5/ZPZ+f7J7PzfltWHFVn9AIC62R1jqWJw7gEAAJroshhXx7g5xu+J8R/GeDDGkzGei7Evxl+N8b/G+Psx/t8Y/yw0d9qdX47xf8b4MMZbMf5ijP8yxp+I8Z/E+EMx1sW4JcZvjfFDWTn+UPa/b8n+/A9lf/9PZP/+L2bb+zDb/i+H5k5f9M+yevL3s3rzV7N69FxWrx7M6tnvyerd1Vk9BIB5SvewT2PcqCicewAAgKpaHOM3xfjXY/zOGP9BjD8cY3uMn4vx38T4KzEOxfg4xlcxzobmvsn+/8X4MsbRGO/GeC3Gn4vxTIzHYtwX4w/E+Pdi/PYYPxLj18/4nP36bL+/PTuOP5Ad12PZcf657LjfzX5H+j1nGnzOzmb18uOsnv6VrN7+XFaP/3BWr39nVs9/U1bvAWASuu9HDyoO5x4AAGCa0rQqPxzj2hi3xrgrxtYY/2mM78X4r2L8pRj/U4y/HeP/ivFPQnMHh38txj+K8X/E+Jsx/ocYfz7GrhhPxHggxh+McWeMm2JcFZr/affS7HfelP3uP5iVwxNZufz5rJz+ZlZu/ygrx6bWkX+StYO/nbWLv5S1k+9l7WZr1o5uzdrVDwfTFwFwqd77y+uhM+Udzj0AAECpfynGj4YLA7Y/EeOPhgsDtntjHIzxfrgwYHs+NHfA9ttwYcD27RivxnghXBiw/Y9i/N5wYcD2Xw4GbCfl12XlufCA6fdm5d39gOnV7LwsPGD6tsF18Xy4+AHTwaw9Ljxg+qNZe114wPSjWXsGoLny7hdfhM46ODj3AABAC6QpXFbGuD5cmMLlp2P8sXBhCpe/HONvhHZM4fKrMf5BuDCFS3pr6uVwYQqX+2NsjHF7MIVL3XVPOXV7dl7vDxemnHo5O/8LU079g6x+NLXunwkXppz6G1m7X5hy6o9l14XuKadWhtlPOQXAaMoeHj+meJx7AACgXpbH+G3hwqKuW2I8HGNHuLCo6/8Y42+F5i/qmjo3J2N8Fi4s6vrfxfgz4cKirvfE+N0x/q1gUVcG170I9e/O6tHCItR/JqtnC4tQf5bVw6Z+DdO9CPXfyq4vC4tQ78iuP1vChUWof1t2nQJgttK1+FTJ9fyd0HnAi3MPAABU0G+O8WmMX4pxLjT3TeXUeTke4+/E+Osx9sd4McbOGD8T4ydj/L4Y/26M60Jn3lPT7lAlvy6rl9dl9fT3ZfX2Z7J6/GJWr/96Vs+P9+m01z3OZdetT7PrGADTd02Mj0quzSdirFVMzj0AALTVpAfAJml5qNfg3z+N8Q9j/O8xDsc4EGN3jO/H+M9jbIuxKcYdMW4InQHC36AK0mK/IWsHN2TtYlPWTv541m52Z+3ocNau/mHWzup0XfihllyvAapgUeisGVN27Xsm+3s49wAA0CpVH1iax5cA/yzGP45xLMYHMf5ajL8Q48/G+NkYD8XYHDpvFv2OGP9qjGWqEszMsqzd/Y6sHW7O2uXPZu30L2Tt9oOsHf/jrF3P48uANl2vAaoiTdl2ouT6l+4PVysm5x4AANqk6gNLvzTm8ZyO8UWMI6EzR+jPx3gpxtMxHo3xUzF+f4wfi/GvxfhXgjeFoIlSu748a+c/lrX7n8quA09n14Wfz64TR7Lrxukxrz+/1LLrNSBfnGec7YozWZT9/W9ibHRqnXsAAJDcV2Ng6dNw8Zzbfy/G/xLjF2LsifFsjMdj/Mcx7o6xJsaNMa6M8RudXmBMvzG7ntyYXV/uzq43j2fXn3QdeiO7Lv29cPGaJn+vZddrQL5Yx0jr2Cxxip17AACQ3M93YCnNH/5DThNQMz8UJr9QsAcBQFPyxarFfqfYuQcAAMm9gSUA12vGPU/g+lPNSFPDeSvcucf9DABAch8MLAG4XjPueQLXn2qFeeKde9zPAAAkeJI8ANd4JlrmwOzcEePLkvb4QYyrFZNzj/sZAIAET5IH4BrPJMscmI2dfa59T8dYpJice9zPAAAkeJI8ANd4Jl3mwHSlt7zfL2mDX8dYo5ice9zPAAAkeJI8ANd4plXmMIjHC+rPU4qm1OYY35a0v3dirFRMzv0EbW9BW3U/AwBoGINEAK7xTL/MoZ+HCurOs4pm5HZ3PnQGbHHup+Gxgn3vcD8DAKBOCZ4kD8A1nsmVOZTZXFBv9iiakdvdFzFuUzTO/ZTtKDiGx9zPAACoS4InyQNwjWdyZQ5FVsc4k1NnDsVYrHhGanevx1ihWJz7GdldcN3f4n4GAEAdEjxJHoBrPJMrc8hzRegsZJr3RvPlimfodpceqGxTHM79HLyT047Pxbjd/QwAgKoneJI8ANd4Jlfm0GtRjPdD/uDhzYpn6Hb3WYwbFIVzPyfpK4TPc9rziRhXuZ8BAFDlBE+SB+Aaz+TKHHo9XVBXHlU0Q0tTs1ymGJz7ObspxtmcNv1h6Dz4cz8DAKCSCZ4kD8A1nsmVOXS7raCevKtooNYeKmjbz7qfAQBQ1QRPkgfgGs/kyhwWLAmdqUx668jpGNcoHqi9twvuA3e4nwEAUMUET5IH4BrP5MocFuwsqCOPKxpohCtjnMpp48djLHU/AwCgagmeJA/ANZ7JlTkk18U4n1M/PlE00CgPFtwLdrmfAQBQtQRPkgfgGs/kyhySgwX1405FA41zJKetpweBN7ifAQBQpQRPkgfgGs/kyhzuLKgbBxUNNNItBW3+sPsZAABVSvAkeQCu8UyuzOHDgrpxo6KBxnqtoN1vcD8DAKAqCZ4kD8A1nsmVOe12V0G9eF3RQKOtCvnrgnzsfgYAQFUSPEkegGs8kytz2u2Dgnpxk6KBxttT0P43u58BAFCFBE+SB+Aaz+TKnPa6vaBOvKtooBVWFVwDqv5VgPsZAEADSfIAXONR3kzHgYI6sU7RQGsUrRWw3v0MAABJHgCu8cqbers65M8PfkzRQKusLrg3HHI/AwBAkgeAa7zypt52FNSHxxUNtM6RguvB9e5nAABI8gBwjVfe1NcXOXUhfSFwhaKB1nmw4P7wnPsZAACSPABc45U39bSmoC68pWiglS6LcS7nmvBNjEXuZwAASPIAcI1X3tTP7oK6cK+igdbaV3BduNv9DAAASR4ArvHKm3pJb/d+m1MP0tvASxUPtNZdBfeIA+5nAABI8vpbEuMap3EsNyoC9Vcdd41HeTMxawvqwUFFA61Wp4eE7mcAAA1U5yQvzb97LMYRp3FkD2fn+6UYyxSH+quOu8ajvBnbCwX14AFFA623t+D6sMX9DKDZ3iy5uObF+RhXTHD/a4fc/yzmt0xPwQ/37Ge/qgKSvJxrxYvZcZ6OsaEix7VtzOtqb5zNIr059HHofDac5hy+L8YtEzrmdF/5MNvfFzFu1yRaW38n6ZYsT9id1dvPs9+a6vO5rnp9KOsQb41x1ZSOpe11XEdeeTN7nxfUgysVDbTepoLrQ9XGPdzPACbssRivhc7gzqCDQk9NcP83dO3/fBhucCr9mzsmXB7pM7m3C/Zn2gqQ5C24Kcan2TGejLG6Qse2ODu+Tdn1+v0w2QcDvZF+f3rLedyHAmlg+kC48ND5Uc2ilfV33Hv4xhivhPxP3geN1Ga2TuH42lzHdeSVN7O1qqAOHFU0QNZfyBt/Oe1+BtCuhPG1ATrIX2ad7WncjNIbpl+H8gGn7WGyXyV0e71k3+bTBElesiVLktPxnYhxfQ3K96Ew2ABougau7rnGp2lM1sd4IsZHff79WzGuG/NYX+ra3ivZvYF2199+Uk7wdJYj9NbJr7M6dXeW5yzu+Xfpv+8Jna8Dev9teliybgrH28Y6riOvvJmtBwvqwHOKBsi8U3CdqNJXi+5nADOwM/QfLNo0xf3fWLDPr8J0FzPcPcDvvlX1gFYned3XxxOhXl8Kne5zfXt7wO2kKd2OlWznTBh/ftHnu7b3brBugPqb7/LQGdQ6l1MPP4mxOQz+4kKaKqPoZYgXwuRfgGhbHdeRV97MVtH1bKOiATKPF1wndrifAbTPW6F8wOjdKe//s5x9rp/i/naFwd6WPaRqQGuTvD1dx3UqTG5+/Fk52ef6Nswc8StC/ymHxn0Y0P1w9oNsn7S3/vZKb7t+E/IfRD02hU5xemtu0oP1barjOvLKm9nKmx4tTQOyVNEAmdVhPmM97mcAFbQq9B8UXzXF/fcuYvzRFPe1o+D3fZjdBHv/+x2qB7Quydvf05FeV8MyPlNSzumN6mGnJ1kZOm+Vly0yfMOYx9z9UPp9Axitrr8Lrii4N6f4fAJ1LnmxpGM86Wl82lLHdeSVN/Pvx32saIAui0L+1IjnwnSmgnY/A6iwq0L/BwG7prj/wz37emBK+3mk4Lc9m9380tt5x3v+7APVA1qV5O3tOaZHali+K/pcz9+Z8DV0UmurpDewjwVrtbS9/i5ID+KLHj6lh/crJ7SfJaF4+qvdE/5NbanjOvLKm9nZUnD+9yoaoEfRTBB3up8BtMu20P9BwDdZZ3kaup9MnwvTmTv33pC/qOCanr+X5lA+1fP37lJFoBVJ3tM9x7O/puW7sc/1fPuI210S8udn745x13a5oeeesEtzaV39TTaX1LX0EGD5DHKEac2x3YY6riOvvJmdlwvO/72KBujx/YLrRVVeHHE/A5iR18Ngc+ZP4039W3v28eYU9rEp57e8EYrfJrw7+LQW2pbkbe05li/D5Acb553kL8Q488UfnMF9YnuY7PoDbdCk+vtASf06Hib3JUC39FXgNyX7nPQn802v4zryypvZOVxw/m9VNMAA4yJVennE/QxgBlLntnsu6bMlF+AjU9j/kz372Dbh7ae3+c/1/L6HB/h3z/Qc1z2qCjQ2ybshXDqnfp2/BHqvpIxPjrntZ0L5g4B9E/oNR8PFX6Rdrdm0ov6WPQQ4HSazJkCRV0v2/dAU9tfkOq4jr7yZnby+2/lQnTm/geoomhL6mPsZQHvcGS6eluehUD7IM+m3Sw71bP/KCW779nDx4MinoTP1z6De6vm3QPOSvDTdzcc9x3GgxmW7OBsAKCrjcd/42Rqmu07AgjU92z2s2TS+/m7uU7em/dZ82fRA0/gysMl1XEdeeTMb1wULBQPDORPyHx4udj8DaIdd4eIFJNOgwjclF+FJLpzXO2A1yS8Obo7xbde20/yZS4fcRlpws3tRv/tUF2hckrczJxFeVeOy3RTKB1O3jrn9e/psf5LTu/V+2fCgptPY+psWBi5bf+LVGRzDXX3q9s1T2GdT67iOvPJmvvf8/YoGKPB2wXXjDvczgHbofpPw8ey/7Sq5CKeO+qTmHe5NXp+e0Havj3EiXJgGY9OY21pYPPjz4DNbaFKSl9r3+YZ1nl8O5YOZ43511e9BwMEJ/pYN4dJF6y/XfBpXf6/uumfnxYkZnffL+9TtHVPYZ1PruI688mY2His4908rGqDAnjCdl4XczwBq4MqQv4DkdX06w9sntP8Xe7a7ekLbTXMI35HFJBYVvK5reytUG2hMkvdmzjGsrnnZfl5Svp9MYPv9pgaa9ED01z3bf07zaVT9TQ/XP+xTp+6d0bEsDbP72qXpdVxHXnkzG/sKzv1mRQMUuL/guvGS+xlAu24C3/T82dslF+LPJ7T/YyX7B5qrCkne6lDdhbJGtSqUD2Q+P4F97AyzfWv6uXDp1DfXaEKNqb/f71OfPprhsfR7EHBqSvttYh3XkVfezMabBef+TkUDFNhQcN2owhpT7mcAU7Y/FL/F2W+u3LVj7rv3qwNzWUJ7VCHJezdn/8/UvFwf7nPd3jCBfbzWZx/rJvyb1ubs40VNqBH1d3WfujTr+WqXDXA801hIr4l1XEdeeTMbpwrO/RJFAxS4Nkzvy2H3M4AKS5/jnw7lc8KVTTEx7ifyD/Rsb4tTwgykQaX0BuobofMVytnQWffiTIwvQudNiKdi3DqD9pcGTJ/J9nk8a4/nskj//6cxXg+dtTtumvLxLMna4CsxjnYdy9msk5mm7nhhguUy7yTvxoL9r6l5/X4jlK/vMolBzLK53L8Nk19HZVG4dBHZ9L+vqFjZb8vazrns2pLaywr1t/S8fhrKB90PzfiYbg79HwRcO6WyqEMd15FX3nKrauVW6feezznvZzWJ1pplLkK9x4Gqeu2QPwBM0Zqei+tVOX9ne8nFeNxP11/v2daskpSU9D8aOl8gfNKVlJ/JEqdnw/w/yU+d/41Zpym9ffvVgJ2VdNxpcbCPst+Tftex7L8ta3FdX5rV5eOh/yBPd3yaJdSTlM7Rc1ly/t0Ix/NwmOxA6+Ksnn07xHGkh4Dpk/O0oOVbMXbXMMl7MeQPlNd5MfDF4dLBxO54Z0KDPWV144Up/ba3cvb1VIXK/vlQ/GbVCvU31+MDXGtmvd7B+gGOaW1L67iOvPKWW1Uvt7qiYFvHG1S39Ymqm4s49/VW1a+J5A8AU/RM6P8Z2PJQPrC0c8R9L8puzAvbeW/KvzUl1U+Ei9ckKIv0NPyeGZyDVA7pDcS0oNdLWScg76b8VZ/tLM86QOdLftPRliY/m7Py637odDDGg6EzTUoa1FmX/b1DJWV345jHkcp+V845ejfrgK7PjiVNyXV/doxF5/Pz7O+NKy0WfqRn2+nNvTTH+6ausrk7q19Fb4Lvq1mSt6igc36o5nW933Ruj09gH2VfHKT6et2UftvTOfv7siLl3m96mxfV39x78qk+5fb+nO4X83oQUOU6riOvvOVW1cytiu77B2tYh/WJ6pWLOPf1905BGd0ufwBoru4ktWwByd0lF+QTYbQ3aHrfKp3WW2/Ls871mXDpegSpo7LwxPuG0Pk8t3dQ64YpHVd6gyq9pXAuDPZg4qWSbd0SBn8b65kW1e+U5L2ac96v7vPv9hWU3Zkw+vzqN4VLp9n6LEt6y1wbiheBG3fh1xU5x/RCn/a8NFy6qOV3WTnXKcnbWLDvl2te55/r0/5vGXP78/oaIGSDJ7MclB3GC33K5Yz6e4l+CwR/lw0IzNrTYX5fKVS5juvIK2+5VTVzq3sKfsMrNaq7+kT1zEWc+/orWvNro/wBoJl6PyXd0OfGWnYz3TrC/nf2bOO2KfzGNCfn1z37+bikg5D3O/dNqfyfDJ03a98Plz6kGGbxzY0D/vvut53aUr+P9vz2+wf8tytLEtKzI9TVNIjT+1ZLOu/Lh9jGUyXnNL31Ncq8770d+deH+LdP9Pzb12qW5O0p2Hfd1ykpm2/9mzG3ndrFFyXb/3LIOj2s6wr2u7sC5b5/gGvvEvX3orp0tk95pbf+5jHN0WsDnMvLWljHdeSVt9yqmrnVfaH+D4b1ieqZizj39bdngmM78geAGrg/DLeA5AclF+VRpvXp3t7JCf+25QXJUFo0bGnJv1sU8he+nIVNJQMjZwoGRLqnMPgw28biLMkrevPqXAvqdups9k4Bde8Ek+mPh9jO7TmJaRowvXyE37W9T4d1GDflbGPYhere6mlbdUryvg7NevM2ubJPp2f/GNtO9fWjUL4I8bTnci9a1OxkBcr++dB/qjn19+KOf1Xf1vu8z3Gdb2kd15FX3nKrauZWuwqO/ZEa12V9onrkIs59/RXlY/Nen0j+ADAl3cn4uwP8/a19kothptBZ3tPZneRb99eG/HUABtnHojknCgfC4AN4G7r+fHvOn6+ocRI4jpT09Q5YjvJW1JY+9X2QN9euzgZwev/thjF+36slx/T9IbazawL1fFVXO36zRknetSX7XlHjur8tTP7LrSQN8Pf71PruGf3Goi8Sbplz2d/cp3x2q78DncfuuHYOx7V0gOP6qqV1vEod+bVh+MVgqxKbajpwIreqbm61NzTzC0d9omrnIs59M1T1iyIPAgCmIA14d39O+/iA/+ZEmMwCRJunNIiUBqy+CaO/0XN9zr89NcPzUrQI59ac33kmS2I2DHkTPdnwuv1iz+9Nb86OMl3JFWH8QdX3wmS+nulNaL8uOa47BtzOuxOq5wsPFN+qUZJXtBjo+ZrX/X6fhF815PauLxlg6B4UneVb6AcLjuPRCpR/0VtV6cH0SvX3BwYZxP1gTse2YYBjO9DiOl6Va7wHAbO/p8qtqptbVXWOb32iZucizn0zVHWNEQ8CAKagd8HHQT9b3RnKFyBaNuB29vYMXkxiXunbw6Vzhab4ZIjjejTn3789w/PydcHgTnf5pOk/TmT//a6SbS0vOE9vNbhe357ze7ePsb3DJfX9nj7/tugLmnsn8DsfLDmuTwfcxqmcejbKvKF3htHn2pxXkle0mNo3Na776UHt6ZIyTVOcrc8GYRbl/Ns05/narF6nNxqP9BmsSR2oHUNcWyfllYLjea0i5+GerOzOZfUp1bXL1d/C+39RPDynY3tmgGPb0fI6XoVrvAcBsy1vuVW1c6uiQdP1Nc/p9YmqnYs4981Q9ALE63M+Lg8CAKZg54iDB1eH/PlrF+KhAbfzVde/OTyB35Pm5Pw25H/2t2qI7XwW5vcW3o0FZXqo6+90f5rd762p9QXbe7XB9bp3AbuUAI8zVcYdBWV4IpQ/vEoDq8cLktilE/idaftflrTD+wbYRt78mw+OeDypPEZ5s2ZeSV7RJ8cf1Lju3xGmP4CVHjSktxTTdAOL5/Q7Xy44ti9adP+uc/1dVHCv7o2r53R87w1wbOvU8blf4z0ImG15y62qnVu9GZq35pE+UXs597O1rqB83pzzcXkQADAF3fN8DruA5BthvIW+eqffeXzM35I+c/yq4HiGeWMp702gb8NkvlYYxKOh/2Jfu8Pg85U+EMaf67Tuicwk3vZIi2p3v2n9SVaHy2wK0x+oK/s6Z5D95A3GpQ72KG947wmjff4+rySvaDHQgzWu/2X1YWGNlIPZOT6dDVac6xlIOZvVi8+ztrM/u15szjpmVfBIyW9cHNqhzvV3deg/UHp0Tse2IpS/6LAwALpIHZ/7Nd6DgNmVt9yq+rnVR2H8tduqRp+ovZz72Sp68PJhQ/MHgNbqnZ9z2AUk1/Tp5Nw+ZCd33AGmQ2H0hxILri5I3h+a4XkpeqNnYcHEhXmhDw24vaLpBdY1tF7nPaB6YkLbToMvdw3QSV1QNFf7JBfFvr5PO+z3JczroXgwcdiBrrTGx5kaJXlnQ3Om3ug3EDDqtE1VdW8Yb5HJJqhz/d0e+g+UPjunY9s6wLG9oY7ryLesvOVW1c+tThbsc1mN67I+UXs597NVNHXSCfkDQLNsCeMtIJl8WnKB7veFQfdCeF+P+VueKjmOQT+JTYny0TD7BQF7O0PnQvGbkelBRZrCKX35MOhCT8fCfN5mnIclBeW3aQ7Hksq3aKBu0m+ffF5S/x/p82/vK/m3h0a8LtQhyVtcst+6fia8os/AxUsNauubS37nxtB8da+/r4f+g+0b5nRsBwY4tnvVcR35FpW33KoeudWpgv0tqWk91idqL+d+9i4L1Vx3Sv4AMGHdb9R8MuI2Hiq5QKdP668Y8Aa/Z4zfcX0o/ox/0HUHloX8RcveDZOZb3RQRZ+5P539+bvZ/14z4PauDNWc729aij4Xn8d0JreF8eaXHcYrJfvq93bwoj6d3fTJ/lNT7kjOI8lbFsqnz6mjsoHDeQ3azLqtp9jSgvt33evv533q6vkwn+lvLisYfOiOM2E2A2tNquM68vUub7lVPXKr06FZ0+XpE7WXcz97SwrK6NScj0v+ADBh3W+OvDBGp/l0yUX6qYJ/d1eY3ADVoZL93znAv09vFeR9CZAelCyd8Tl5NhRPA7AwldIwbzwVTS3waEPr9K6C37t0DsdSNq3DpN8mfbBkX4MsLHlX6P8GbOrQTusN3XkkeTeU7HdPTev//lA+sLq0QW19Y8lvvb8F9+86199Fof8c/J/M6di2DXAtfFEd15FvWXnLreqRW51tWDvTJ2ov534+uVnRyw/yB4CG6F2ob5wk9PmSi/SXA3Qq0tt3o74RU5ZkfzbAv09v1X2Tc8N7eE7n5UjO70jTJl0TOg9c0noHw7zZUzQweEND63XRlA7z+Cz6+Rl2VjeE8gHgQewIgy1wmN6eubYBSV7ZIpO7a1r/T5T8psMNa+vrS37rE6H56lx/lw9wnXllTsf23gDHdr06riPfsvKWW9Ujt2ragwB9ovZy7qtz7zgrfwBojp3h4oH4cT4b7begVt5Dhu438N8dY98fluz3sZJ/t7qgw38gTH6Qc1ArSgZ13sk6HcMmLN8WJFJNdbxCndWyT8on/fn6qj5tcNDf//yAHdazWed2Um8DehAwvlv7nLMdDWvrZYOkL4bmq3P9vXOAa8w83tK7foDjOqiO68i3sLzlVvXIrc41qJ3pE7WXc1+te4cHAQAN0j2A/u4Etne45EL9ds/fvaLnz7ePuM/VJftMyfDlPX8/zamcPvv/IOfvvxU6nxvOU9H83q+F8mmWihQNDO5rcL0+U/CbL5vDsbwWZvc259I+nctlQ2zriQE7rN9lgwOTWLRyHknezSX73VvDuv9kn3O1umFtvWyQ9PkW3MPrXH/XD3Btmcd6Fi8OcFw3quM68i0sb7lVPXKrJrUzfaL2cu6rde84X8Fjkj8AjKD3SfvjE9jm3X2S2uu6/u6WMJnP8naX7G9/9nfS/P8PhM4nt71vynwVOvMLrqrIedlX8FvS1EWfhuG/2ni8YHubW9j5vXMOx3Kg5HhenuFvH7azmqS3jU8M0WlNb8leVbMkr2x6kjp2DsrWSjnTwLZeNmXDthbcx+tcfwd5EHD7HPKis32Oaa86riPf0vKWW9Ujt2pSO9Mnai/nvlr3Dg8CABqi90n7rRPYZlpg5suSi/Wurr/bPU/f8TH2d6pkfx+E/E+ZP86OZU0Fz8vXJb/nrhG2927BzXxFCzu/98zhWMoWbt0/487qKFN/pS9qXh2iw5oS9I0TPvZpWjzj8zNNl4XyxVf3N7Ctbyr5vVtbcB+vc/1dN8D1ZNZvGvebxzvlG1eq4zryLS1vuVU9cqsmTQ2kT9Rezn217h2mBgJoiP09CeakPNUnkV2YS/Nk139/acR9re2TOKcb/Beh8+bQ01mHenmFz0nZ3MSjLPK5OOQPDH7Y0s7vrjkcy94w24Vbx13Qrkh64++TITqtT03w2Ket6A3g12tW7/t9kfVAA9v6PaFa08rMQ13r740DXEcWz/B4lmU5StnxPKyO68i3uLzlVvXIrZqyWLA+UXs599W7d3gQANAQ3QvmTPLtmZWh+G2UhU/Zb51QZ7bs7b09ofPFQJ08UvJ7Rvl6YWPBtp5peN0umsf2/Tkcy2OhfEG4WSVKX01o+9uybU3jYcC8kryjBft9s2b1fk+f83FNA9v61pLfu7Yl9/K61t8lA1xDZmlnn2M5rI7ryLe8vOVW9citmvIgQJ+ovZz7+VkUqjm9qPwBYAJu67mI3jvh7b9ScsH+KFy8WFZ6aDDqW39lc4RuqOF5eaPgtxwdcXsvhOrM5zpLn5XUi6tmfCybwuDrZoyrbJqQAxPcz9KsI3pqgA7rMAn7vJK81wv2e6xm9b5sEOHzhrb1+8Pk5m2uqzrX3zN9rh+zepifpvs5Hcq/ZrxKHa9sR77f16FVjk01Km+5VT1yq6Jr2eKaXS/0idrLuZ+fopc0TjU0fwBolR1TTuBX90lgu+ftH+etxbJOyeU1OydpwKPoS4oHR9zmpyH/if6ihtfvsgdEO6a0z6I5Jq/o0xYmuUjVtWGyU/X0k9rYy31+3wc1SPKK3gQ+XaM6f32f8/BSQ9v6c6E9CyM3sf6+HaqxRkC/ubrvUscr3ZH3IGA25S23qkdu9W3Bv1mqT9TKPlHdOPfzdVkofiGiifkDQKt82HUB/WRK+zgyYCfooTH2caZBN4aijmxKhkZ56+/KMP23l6qqbMqolMhMep2INOVKelNifcGflz2wemWCx7G+ZD+r+/zbk2N0aDf1aYuDPmicV1sue7OwLp2ER8P8BpvmaV/B7z3Uovt5nevv9/vU21lMfdNvEPlxdbzyHXkPAmZT3nKreuRWJ0P9vyDSJ2ov536+lheU14mG5g8ArdH7Fs0LU9rPAwN2gq4fYx/nG3Rj+P6EE5Wi6QQebEEdv7NPnXtugvtKn1Ae6dMJLpt7OnVyJzVY91DBPr4c4N+mjuM7Y+z7rgkMdMyrLS8v2feqmtT5sjer03VyaUPbetEbqs/rtNWi/va7Vm+Z8v5XZNfHsrWG1PHqd+Q9CJhNecut6pFbvV/w92/WJ2pln0h/2Lkfxi0F5fVeQ/MHgNboHaDfOKX9LMkS+LJOw7jzVp9t0I3ho4LfsXXE7e0Pwz14WdGgOr5ogLo3qXkhXwv93xq9bkYDAUXnfOeAndX0ts04A8Z7C/Z/fw2SvI9DfdcaWRzKF2h/PzRX0Zdnd7fsvl7X+puu1V+X1N19U97/G2E2c3+r49O9xnsQMJvyllvVI7d6M9R/cXF9ovZy7udrXUF5HWxo/gDQGu+Gi98UnebiUbv6JOnjfo1QtjjmpBYKe2oGyfOKUPwZ5KhzJOfNEfpFwd9ND23SAkw7GlTPn+9T91Jn9oYx97Ewd/Nnof+bZ6+XHMvbE/rNJ0L+HJiDrJex8Cn5fWPs/46C37dtjARvVkle0bXqoRrU9Y19ym9naK68h8HpvtaWhYKbUH/L3ur9aor7fTKUPwRYpI7PpBOvI1+vgRO5VfVzq6IHnOtrUm/1idrLuZ+/DQXn4PUG3s8AWuPqnovnkSnvr9/bOuMuwFe2cNm4n/ylZORgtq1HplxOmwt+w6gLKd8ahnu7cmEO4ibNI35NKJ86amG+w9tH3P7uru2sG+Dvr+pzPDeO+XuLPtkfNJld6KyO8+nn4jD6on3zHiS6PcznjeRJ6Dcwc2doppUFv/dwhY4xvbGZFnU8k0V60y0NQC9Vfy86j6dL6u+aKexza8n+dqvjM+3E68jXa+BEblX93Kpo8fO6fEWkT1TfXMS5r797wvTXXanK/QygNXbM4aL+Vih+uj/uG3fbS24MH4+x3dtiHJ/hoEDRZ7+jPsx4fIhOw2PZn73cwPr+Yuj/WX7qQD4dBn+7MnUquxfb3jtG+5vkm2t5n4J/Egb/4qd7cblbJtxZHaQjXoVBoi9y9n2kBvX8WJ/6vSg0U9FbS1V5C35vyXlJ52yV+vsDZW/nT3pR3M2hugsD162OT6ITryNfv4ETuVW1c6s9YbJTq1Tl3qlPVI9cxLmvt/sKymze5SJ/ABhR+qSu9/PWl2aw36KFriYx11y/N5OGnRIjDZg91bXNWX0GVzRH8tUjbq/oU+lrCs5N6tQ0cTHRFaF8/uneheVSe0jTrFzRUyduCp21Nd7p+TfpYdHyIY/pcMkx3DPi77w5Z1vpDdthPs/v7qyO+uZa3ps3gz6Qq8Ig0dMFgxmLK1zHb+lTdl+F5nqy4HytrMCxrR/gmvNFmOxctHWsv93X2aMlZTWpN1kfLdj+yTD+F4ptq+OT6sTryNdv4ERuVe3c6qmCcniiJvW2rX2iNNXUM9n5q3Mu4twXS9N8pa94D2XXxnNZnMr+W5rm8bY5n4NnC8rskTkfl/wBYER58/DO6hP4z8Pkp+5ZsK9PgvN0GOyN2JQEfNr17/aH2bxJe33BcR8dY5vfDnCzXJN1aNJ8rtc2uN6vCdNZ4O901kkc1spw4WuTvLl1h012l/bU21Hngj3Z8+8fHuG3PRdGH8CrwiBRKvu8B4tVXnD11dDeBwEHQ/XmMB30vrQQz7a8/vYe/4lQPNXINWNse3lJW0mDkFep43PrxOvI13PgRG5V3dzq3lD9ac/0iS5IX82kwf9TYfJT+s0jF3HuL3VHKH/ZoTfSNE43zuk8FNWZzXOuH/IHgBEUvZX/eZjNWw95U/hcPaFtX5XdvMtuqJ9lyXe6qS4M7qf/m96yeSzn5jzLhOiRgmN+ZoxtFn0lsS773emtyIUFCO9qQf2/f8Id1XNhsLlri1wZ8h+OLdTVKwfcTnrT942cYxvl7dnezmqqQ8PMkXl7Tr3bX8NBotdy9v98Rev1xgHr6+0NbNOLsrre+1tXV+T4Xg2Dvy3b1vqbJ70hXPQwIL21eN0I20zTYXwV8gcHH1DH596J15Gv78CJ3KqaudWmgjLYX4M626Y+0ZKsD9pbRyb5IGBeuYhzf8GTI14P07Fvm8N5KFp/cd4vlcgfAIaQ3pDZEcqnzznadUOcluU9HdpPJrz9QT59HCS+CbNfTOuNgmMZp7P/7YC/98EWtYX7Q/8F7gatI2sn1DYPFewjfRq7sc+/TwNi7+X8uztGPJ6TJQn4ZX3+7d05dS79tmEeMlZlkChvqp0vKlaX00PUp4eoz6ez+8A1DWrP63J+5/sVOr6nhrim3Niy+ttPeiPvWMlgxfZsAKXMiuz+9nFB5/qF0JmGQR2ffydeR77eAydyq+rlVkULHL9Vgzrbhj7RomxfX4bhFrKtUy7i3HfsmMC1cdYPAz6saP2QPwAMYFvWYRwmOT+bJb/pjZFpzCm8O0z3DcWN4cJnlaNEWjj5yhmfp6I3/r4dc7v7B/i9j7ewXaTPP4+PUUdS+7h6wsf0RLjwNkreQp/pPK3POshpYCi93Xogp23vG3Ng62SfDnpafG5zdgxrs2N6tCBhfDUM/6VRlQaJ3grVfAt3/5j197us45nqz001b8u7c37bHRU6vpVh8Dm017ek/g4jXT92leQw32T37AeywbI0B3iaDuPl7Dqd9+/OZ39+rTpeqU68jnz9B07kVtXKrZaF4rVQqqwNfaJUz471OZZJPgiYZy7S9nPf/dXu6SynSdfKJV2/+aqs/b8Vyr8MmOUg/OmC45j3elPyB4ARO5DDxJIpHFP3olvrpvS705s8b4fhPkNOSfi8BsXWhul8vntzQUK18Ebllha3jfQG1lN9Omd5n5TfO8VjujJLEE+H4T+j3zehBPFkGP+tldS52TTi/qs0SHRTqObcupOcgmF9jdvwkpy28mYFjzN18F4MnTfyz8/wXFS1/o5iVXaPPjfmdempUN11AOpcx+t6jW+LWZa33KpauVXRw9Aqa3KfKNWlo1m9Sr8zDQKnOfHzprbdN+F9zysXafO5T18lLkxz+NGA+Ud60P9VKF4zYFa5R1WnjpI/ANTY4dB5uj/tRXhTwpU+u30r29/ZLFLClRYGTG8FpjcIlza4rNMboOktqzNZpAQ0TSdyhWr4LyzKOlapLhzqqSfp/08PlJ4Ns30DMx1TeoPk+azufpOdu7PZ/z2RDQalhP7uKdfftO00X2aas/PVrIy6j2fhmNKbdXvC+HNrVm2Q6OWcgQFtpxp655FNdbFOC55fGS6eB/8G9bev9IbrvdmgQNnAWhrwez8bSNmWDbSo49XgQUA7Bk7kVtXIrYrWSriypW1h3n2idP1emfPfXwrTfxAwz1ykref+mXDhId6KIf5d+jKq6AuOW2dQVreG4q+22ng/AwBgDgnevJK8NBVA74Djc07T3KW3lXrn1d1ew9+xMIf1GfV3KOmtuk+7flN6uWBd9t8XqeOu8QxU5jRf0YKf6xVNpeQtuL1vhvufdi7SRunrqIWpim8Z4d9vLGi7s8jhqrzQuPsZAEDDVHGQ6J5w6VvV1zpVc9W78NqhGv6GRVmne9qdq6bV39Sh7n57Mc2hvWyO51Adr/81vq33VZqvaIrYexVNpdwb5vcgYFa5SNvcl5Xpy2Ns40hOvXhnBsf+RMF1Y4f7GQAAs0rw5p3kvRqaNU93naVB7O7FH9OgcB2nu9kSZrf4a1Pqb5oe41TX7/gkjLeA5zjSugVpbvO71fFGXOPbeF+l+e4tOPcvK5rKn6dZPQiYZS7SJq+HzosX46xLtD1MfuHkQRQtrrypAuXqfgYA0DBVHSRKbxwf6zmeLU7XXHwQLp4z/fYa/oY0P/TC3M2H1N+BPNhz/MdD/lzLs5AWYk6D82nBxdvU8UZc49t4X6X51hec+wOKplLm9SBg1rlIm6SvLPZOof3OYsHeowXXjVXuZwAAzCrBq0KSlxLgb8LFb+Vc45TN1Pd76sTmmv6OfV0dumvV375eDJdOb5Q+u1+bRXogMKu1ATaEC18lPKSON+oa37b7Ks23tODcf6NoKmVeDwLmkYu0QfqCLy32O+7CvleG2X8RkHKp8zn7Pet+BgDALBO8qiR5d4bOIOTCMR3JOtpMX+9c9w/W9Hc83/UbNqi/pVaEzny43w0QqeP6Rei86bozdD5hXzHBY1nac+5eUMcbeY1v032Vdvi64PwvVzSVMY8HAfPMRRjMspx6cXjK+7yt4HpRlS9G3M8AABqmDoNEm3qO6zWnberSvLXdc6Y/XMPfsDSrKwu/4X71t1SafufzMNhDgLJIDwdezcr7uhGOY3HovPn/Zdc2d6vjjb7Gt6XMaYfXC86/wd/qmOWDgKrkIvS3Mqde7JlDXazSuiLuZwAADVOXQaKN4eJBu+ecuqlJA8ILU9qkt77ruDbD9aGzsO3CJ/gb1N9SD/Yc3yQjvR2bBkHSQHuafzd9NbAwrVD6v5eFzqD81tBZMO9Uz79/Vh1vxTW+DWVOOzxVcP6fUjSVMasHAVXLRSi3Lqde3D3lfb5ScL24x/0MAIBZJnhVTPLSNCvdc64/7fRN3M2hsyjrwpzGa2v4G9K8uwuD2odDdebhrWL9TfPqvhmm8wBg3Ejz8m5Rx1t1jW96mdMOGwrO/+uKpjJm8SCgqrkIxbaES+fpXzLlfX5acL2oyppS7mcAAA1Tt0GitADrsa5j3OkUTszqcGGgOnVMrqvxb9kXqvmWd5Xq7z3h4gcTC2/Hp0Hyt0LnAcHbMU6G/IXsphlvxLhKHW/lNb7JZU47LCm4Zp5WNJUxqy8CqpqLkG9PT514acr7u7zgXvGl+xkAALNO8EaNWUgL7u0P050/vG3SG4xnusrTgszNrb9pDtyF+YrTYNW7oTMn/y3hwpQ9vdJ/TwvaPZgd++kwnQcA78dYo4436nrtvqq82+jDgjpwo6KphHksFkz1HQ8Xvxgx7a84NhdcJ6pUF93PAAAaps4DS+ktq4W3e99wKkd2f1aG6U3wexRH4+tvGgA/GjpfI1w94jbSg4E0YJ+mN0oPEs6Ncc1I8yanRfFuVccbfb12X6VNdhXUgYcUTSV4EECv1WG2XwMkewuuE5vdzwAAmHWCV5eBpfRZbfqUd5tTObK0UOurWVmi/o5i4YuB9HAjDeofiPFR6Mzzf7Yr0v9+L3S+Ktie1b1F6nhrrtdtv6/SHncV1IEDiqYSPAig176uuvDNjPKFrwquE1XKVdzPAAAaxsASgOs10z9PtMfikP+lVJqebJHimTsPAuiWpgDqXtdj6wz2eVPBfeID9zMAAOaR4BlYAnC9ZnLniXY5WFAP1iqaufMggG4HuurBazPa546C68MT7mcAAMwjwTOwBOB6zeTOE+3yQEE9eF7RzJ0HASzY0FUHjsVYPqP9Him4PlzvfgYAwDSdnXAA4HrdZgZOSFaGi6cbWYgvFc3ceRBAkubi/zpcWBdg1Yz2e13BPeJj9zMAAACA+jBwwoJ3C+rCHYpmrjwIIHknO/dpPY87Z7jfommBHnc/AwAAAKgPAycs2FZQF15QNHPlQQBPd537TTPe9/Gc+pe+HrrS/QwAAACgPgycsOCy0HnbuLcupGlIFimeufEgoN22dJ33B2a87zsL7g9vup8BAAAA1IuBE7rtLqgPWxXN3HgQ0F7rwoWHc0/OYf9vFFwP1rqfAQAAANSLgRO6rS6oD4cUzdx4ENDetngqO9/PzWH/V4f8BcSPuZ8BAAAA1I+BE3odKagT1yuaufAgoH1uCJ0pudK5fmVOx/BswXXgYfczAAAAgPoxcEKvrQV14mVFMxceBLTLNTG+DvOdi395uPA1QneciLHU/QwAAACgfgyc0CstDPxFTp1Ic5VfoXhmzoOA9lgZ4/PsHB8O8xt031FwX3jc/QwAAACgngyckOehgnqxS9HMnAcB7bAixsfZ+U3Tcy0fY1s3hc6DhFFcHvK/BkhfKSyteBm6nwEAAAAUMHBCnvRVwPGQ/1XAVYpnpjwIaL7LQmfg/rus3a0cY1uLYxyN8diI/76OawO4nwEAAAD0YeCEIvcW1I2XFM1M3Rc8CGiy9NDt7XDhrftxH7SlxYXTA7tRvii4Nvu3vfXt0+w43c8AAAAAasrACWWO5NSN8zFuUDQz80TOOXhFsTTG/uycfhPjxhG3sSTG+hjvZtvaM+J2DhbcD+50PwMAAACoNwMnlLm1oH4cVjQzkzc4+7ZiaYSXS67B48StIxzLxoJt7Xc/AwAAAKg/Ayf0s7ugjmxRNFOXBnTPB19lNNHOMJ2HAEdGOJZlMb7K2Vb6SmFljcrU/QwAAACggIET+lkR8gcJT8S4XPFMXJqL/ebQmRLo25I2msr/kRg3hXrM384Fj4bpPARIsW2E49lXsK273c8AAAAAmsHACYNYX1BPXlM0E3U2jD4AnBZ5vUsRVt6tYXoPAdIb/EuGPJ4tBdva7X4GAAAA0BwGThjUiwV15T5FA7V0bYxTOW360xhL3c8AAAAAmsPACYNKbxofzakrp2OsUjxQK5fF+DinPafpqK5zPwMAAABoFgMnDOOaGCdz6stnMZYrHqiNgwXX/nXuZwAAAADNY+CEYa0Jnfnoe+vMW4oGauG5MLmFht3PAAAAAGrAwAmjaNICo9AmTxa03SfdzwAAAACay8AJo3qkoO48rWigkh4taLM73c8AAAAAms3ACeN4PMbZnHhS0UClPFbQVp9yPwMAAABoPgMnALifAQAAADSYgRMA3M8AAAAAGszACQDuZwAAAAANZuAEAPczAAAAgAYzcAKA+xkAAABAgxk4AcD9DAAAAKDBDJwA4H4GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3wXUEAAADyegAAQIcBAACQ1wMAADoMAACAvB4AANBhAAAA5PUAAIAOAwAAIK8HAAB0GAAAQF4PAACgwwAAAPJ6AABAhwEAAJDXAwAAOgwAAIC8HgAA0GEAAADk9QAAgA4DAAAgrwcAAHQYAABAXi+vBwAAdBgAAEBeDwAA6DDoMAAAgLweAADQYQAAAOT1AACADgMAACCvBwAAdBgAAAB5PQAAoMMAAADI6wEAAB0GAACQ18vrAQAAHQYAAJDXAwAAOgwAAIC8HgAA0GEAAADk9QAAgA4DAAAgrwcAAHQYAAAAeT0AAKDDAAAAyOsBAAAdBgAAkNcDAAA6DDoMAAAgrwcAAHQYAICZWhLjGsUAE3OjvB4AAGijKncY7ojxQYxnnSbl0lC3x9gZ40CMr2KciXEuxtkYp2J8FOOVGNtiXKG4oHVta02MYzGOOKXIdSbi4SzPfSnGMnk9AADQJlXsMNwS43DXsexzmpRLgyyO8ViM4yXtLy/Ox3gjxs2KEBrftpbGeDE7vtMxNji9yHUmIj34+zDb9heh89BQXg8AALRClToM6VPtgznH0vYBb+XSHKtD5+3e78aM9CbjUsUJjWxbN8X4NDuek9lvA7nO5KQ2fiBceBD4qLweAABogyp0GFbF2F9yLG0d8FYuzXJ/6Aw4fDehSFObrFSs0Ki2tSV0vgBIx3EixvVOL3KdqXmpaz9pqrDF8noAAKDJ5tlhSIsf7g79B3DaNuCtXJrnvjC5Qcru+Cx4GIC21ZS2tbNr/+khwI1OL3Kdqec6z3ft691Q/3UDPAgAAAAq1WG4MsYLobNw4yADMm0Z8FYuzbQmTGegciEOK2K0rdq3rT1d+02LGd/i9CLXmVmus7trf2mB4hXyegAAoIlm2WG4PMYzMc7G+Dp0PsPeFeP90O4Bb+XSXCuyc9q7MGmam3hz6EyJ0D0VQXoTcX2MJ2McDYMPWG5X1GhbtW1b+3t+wzqnF7nOzHOdt7r2mY6pruvweBAAAADMvcOQpjhI8x6/HTqDMYt6/vy90M4Bb+XSbC/1nLNDMa4d4t+vDRcWDS2L9AbxcsWNtlW7trW3Z3+POLXIdeaS66SHhd0Ljh+U1wMAAE0zqw5D+hS8bJBmc2jngLdyaa5VPedr74jbSW8lvhH6D1g+rsjRtmrVtp7u2c9+pxa5zlxznRtC54uFhX3vktcDAABNUpUOw9pgwFu5NEv3m77vTGB7b4bywcojihxtqzZta2vPPr4MvupBrlOFXGd7z/63yOsBAICmqEqH4Y5gwLuN5ZI62C/2xL0N+F0rw4WFEL/J/ve40vzKJ0P5gOXSAM3WhLaV3jo+07P9u5xa5DqVyXW61xFJ15mr5fUAAEATeBCgczxPuxv6ux7p+j33T3C720P5YKXBRJqu7m1rSYyPe7Z9wGml5aqW66zpOYbD8noAAKAJPAjQOZ6npj4IOJT9lo8nvN0VMc6X1Il7XNJouLq3rZ092037XOW00nJVzHV6FzB+UF4PAADUnQcBOsfz1MQHAYvDhQHFu6ew/UMldeLeAM1V97Z1fbj0YYMFgqGauc6GnuNIUwRdLq8HAADqzIMAneN5auKDgIXBg2NT2v5LJXViS4DmqnvbyluUeLXTCpXNdb7uOZbn5PUAAECdeRCgczxPTXwQsCP7HQ9Pafv3l9SJTS5pNFid29bqnG0ec0qh0rnOc+HSqbyukdcDAAB15UGAzvE8NfFBwJUxNsdYNqXtbympEze4pNFgdW5b7+Zs8xmnFCqd66zNOZ4X5fUAAEBdeRCgczxPu53voRUNVp6NsUjxQOXa1o0F212jyKHSuU5q9+d6jif97yvk9QAAQB15EKBzPE8eBAzvvoL68GYDftvyGOtjPBbj1RifhMGmgVka48EY78Q4FToDNV+GzpubK0c4jjQX/f6ubZ3ItnW56qdtjeDFnG2merVIG9VGqXyu81bOMT0lrwcAAOrIgwCd43nyIGB43y+oDw/U7HesinF39nsOxPim4Hfd2Gc794ZLF3Tsjq/C4G9v3hbjaMm2Pg3Tm5aGZratNNj/bc42D2mj2ii1yHWezjmmL+X1AABAHXkQoHM8Tx4EDG9/yH+7eEUNjv3O0BkAPVtSr7vj65JtpTeT3xhwO4PM6bxrwG3tVAW1rSFsLKhHL2uj2ii1yHU2FRzXWnk9AABQNx4E6BzPkwcBw/ssp8z21OTY12TnN8VrMT4P5QN6RXUhLRr7SRhsUHDhjeMiaZD30BDb+kwV1LaGsKegHm3RRrVRapHrXFdwXLvl9QAAQN14EKBzPE8eBAznioK6cH2Nf9PzJXX87py/f1WML7I/Px06b/+mQcdFJds6W7DvNDd59zQjaeDz5uzPHirY1jnVUNsaQtGUOGu1UW2UWuQ6qd6ezzmuk/J6AACgbjwI0DmeJw8ChnN/Tnm9WvPftKGgfqeBl94pWdKg4MIbyh/EuKbnzxcXbOtUzn7TthcGGNNCo+t6/nxRwbbOqIba1oCuLbl+r9BGtVFqk+t8UXBst8jrAQCAOvEgQOd4njwIGM7b4dIBr6tr/pu2FtTvD3r+3mUxPsr+7PUYS3K2taRgW+/2/L00GHk4+7NPCsqwaJDxc9VQ2xrQ5lA8gK6NaqPUJ9c5WHBsj8rrAQCAOvEgQOd4njwIGNw1OWX1RAN+14thsAU/X8/++ysjtJfne/7evnBhILPozexVBdvarypqWwN6oaAOfaONaqPUKtd5peDYXpPXAwAAdeJBgM7xPHkQMLjnesrpo4b8rrcL6vfqrr/zeLjwlnGZB0P/ecwX5hX/MMbykm0Vvc19v6qobQ3oQBjsTXptVBttu6rnOi8XHNsX8noAAKBOPAjQOZ4nDwIGkxbaPNtVRmkBzlUN+W1nQ/kc3wttIE0TsqTPtvaH8vnY03zOaSHRNHXIyj7b2luwrWtVR21rQJ8X1KGD2qg2Sq1ynUdKjm+xvB4AAKgLDwJ0jufJg4DB9E5LsLUhv+uGUD61Rxoc/DJ03rpcOcD28hZ0PJL92bIYx0Jn0dFBBgrzBnGPq4ra1hDOhvpMJ6KNItcpdm/J8d0mrwcAAOrCgwCd43nyIKC/NT3l82KDflvR4MoD2Z+nAdM0mHrzANu6qmBb38/+fE/oLNJ65wDbutq1SNsa0+KSa/er2qg2Sq1ync0lx7dRXg8AANSFBwE6x/PkQUC59IZs91uv7zTs9xUtwJgGDO/J/v8HB9xW0UDN7aEzUJP+/0cG3FbR4OdmVVLbGmL7Tbh2a6PIdULYVHJ8W+T1AABAXXgQoHM8qLUlx1L1WF/T8/9q1284GsoXzqyj4znn6pPQmWLkZOgstjqovPnC0zYuj/H1kNsqmsf8yimXx6mataslNa57025bN5SU2x5tVBvVRmuVA24sOb6qLU7tQQAAAFD5DoMHAdUvFw8CZmtbuHje6ysaVrevKDhXz4fOIG2aJ/zyIbZ3LOQPuL4ywra+ztnWZzMoE4OMzWlbZdfL3dqoNqqN1ioHXF9yfE/I6wEAgLrwIEDneFAeBMxOmirjXHbsX4XOfNhNUzRNyAvZ/900xLauDMUDlun/3jPEtlYVbOvlGZSJQcbmtK0mPAjQRrVROWBH2YOAqq3b40EAAABQ+Q6DBwHVLxcPAmbjmtB5O/a77P+uamjdLpp7/IsYbw65rbwBy7ToaBrofXvIbW0rOK67Z1AmBhmb07ZuLim3vdqoNqqN1ioHLHsQ8Ly8HgAAqAsPAnSOB+VBwPSlebcXFjD9JnQGE5vqy4Jzld7WvnbIbb1asK000HjDkNsqmnt8xQzKxCBjc9rW8gbc07RRbVQO2LGh5Pi2yesBAIC68CBA53iedjvfP5AGDj/KyuB06Exh0lSrSur1cyNs7+uCbb0ywra+ydnOEbcKbWtIi0vq+H5tVBulVrnOppLj2yqvBwAA6sKDAJ3jefIgoOOyGO9lv/9sjHUN/70Ph+K3g4eds/36kjZy/ZDbuinUY+oH6tG2zhbUp9e1UW2UWuU695Qc36aKlaUHAQAAQOU7DB4EtLNcPAjoTN3wdrgwyLahBb/5jTC5N6WLBizfnuC2NrpVaFsjOFpQn97URrVRapXrbC05vrXyegAAoC48CNA5nqe2PwhYFDqDggu/fXMLfnOaMuVcQZ2+Y4TtFQ1Y3jPCtl4P+W9ALwloW5OpTymOaaPaKLXKde4vOb5l8noAAKAuPAjQOZ6ntj8I6B7U2taS37yxoD4fH2FbabA3b8Dym+zPhnU6Z1vvu01oWyPaWVDXT2uj2ii1ynWeKzi2M/J6AACgTjwI0DmepzY/CNjb9ZsfncL2F1X0d79cUJ93jrCttQXbemmEbd1asK1n3Ca0rRHbVtkCo4sqXH7aKHKdi+0rOLZD8noAAKBOPAjQOZ6ntj4IeLHr9+6YwvavjPFtGG0aj2n7Ikxm0dBkV5jcnM2PFWzrLrcJbWvEtrW85Pq9qsJlqI0i17nYgVCfRao9CAAAACrfYfAgoJ3l0sYHAc92/dZdU9pHWoRz1Kk3pumGgrr88Yjb+zTkT7syyu8+mLOtcyXbWuH2oW0N4OOCOl/VRcG1UeQ6lzpScGx3y+sBAIA68SBA53ie2vYg4Kmu37l7SvvYkW3/uQr+/u1hclOOXFWwrf0jbKtoHvN3Cv5+eps5zQ292i1E2+qj6I34hypajtoocp1LnQ35i1Qvq2BZehAAAABUvsNQtU7gLdkAw5ksXo1xtXKZuDY9CHg0jDcQNojuQbxVFWwDhwvq8o0jbOuBgm1tGWFbtxdsK29qmWtC543wL4M3jrWt0etWVa9z2ijzUOVcZ2XBcR2W1wMAAHVTlQ7DnRXqBK4PnTe9eo/jRIzrWlwu09CWBwHbun7fmxPedpqzfGuM97v28V4F28Dygm1+PuL2Xi9oF5ePsK2iucd7p2+5LMbR7M/WuH1oWwPKm3P/SAXLUhtlXqqc62wI9fqqx4MAAACg8h2GTSXH8soMjyMNIpwsOZYPWlou09KGBwFbSs7htOK+CraBzWFyiy2maULO5Gzr6IjHVjRgeUXP31tYMPJJtw5tawhPh/xpRRZXrDy1UealyrnOkwXtd6W8HgAAqJuqdBi+X3Iss/z8+p7QfyBoVQvLZVqa/iBgY5j9QGWaEmNxBdvA/oJtrR1hW0XTSIy6LsIXA1wHF+rqG24b2taQ0pRaeW/aV23BYG2UealyrpO3SPXr8noAAKCOqtBhSHP4nig5ljSAMqspebaF/oNB61tYLtPS5AcB60L+4pbTjucq2AbS28GncrZzOvuzYe0Mg00TMqjzofht42tDZ8qZha8hLnPb0LZG8FqYzJv206KNMi9VznWKFqmu8iLUHgQAAACV7TCkuYLfDf0HYNJ0AlfO4HgGeRv61haWy7Q09UFAehv2TJj9QGWKGyrYBtYUbGfUhV0/CPmDRUtG3N7ZAdva5QFtazS35GzviwqVqzbKPFQ911mXcyzvy+sBAIC6mmWHYVk22HBX6CzAmOZ9HWZA51w2KPFA6LxVmBaXu2bCx5gWSzxVcgyftrRcpqWJDwJu61OHphnvVbQN7CrY1pYRjy/v7eBx1u/4sE+5poGqFW4X2taY3grVfbNYG2Xa6pjr5OUod8jrAQCAupplh2F/mM4AzbIJH+fWgv18Gzpvdba1XGbVya77g4ADYT4DlSnur2gb+DTkvx28fIRtFS1oOs60LY+G4ikp0hQniwLa1vhuytnu7oqUrTbKtNUt10lfr5zu2deb8noAAKDOdBjypTe+DoXO22rpDdRXQ2ceYiar6YsFawP18UzoLAabpiD5JHQWr7xGNWDCXg6XvuV8hWLRRqmcR3ra6tma3APl9QAAgA4DleRBANAmaU70k2GyC3wDk5W+Bviyp51ul9cDAAB1p8PAPHkQALRN74Lc6asAX5xBdezoaaOH5PUAAEAT6DAwT2n6mW09sUaxAA33aqjf3OPQBumh3Nmutnki1Gv6Lnk9AACgwwAAFZEWOD3Wc9/dolhg7j4IF68LcLu8HgAAaAodBgCYvVWhs/jtwn3322DxW5in7/fkwpvl9QAAQJPoMADAfNwZOmsELNx7j8RYqlhg5nrX7nhQXg8AADSNDgMAzM+mnvvva4oEZiqtV9S9LsDD8noAAKCJdBgAYL42hosHIp9TJDATN4ULU3SdD/Vfq0NeDwAA6DAAQIWlaYK61wx4WpHAVN0c40TW3lLbWyuvBwAAmkyHAQCqIS0gfKzrXrxTkcBUrA4XHrx9GuM6eT0AANB0OgwAUB3LY+zvuh/vViQwURtinOlqX01aoFteDwAA6DAAQI2kucoX3lh+Q3HARNyftak0JdA98noAAKBNdBgAoJouj7EnxjZFARNxR4xXs7YlrwcAAFpFhwEAAOT1AACADgMAACCvBwAAdBgAAAB5PQAAoMMAAADI6wEAAB0GAABAXg8AAOgwAACAvF5eDwAA6DAAAIC8HgAA0GHQYQAAAHk9AACgwwAAAMjrAQAAHQYAAEBeDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADB1a0Pxyu9Vj01OHwAAAAAAlPMgAAAAAAAAGsyDAAAAAAAAaDAPAgAAAAAAoME8CAAAAAAAAFrjOyGEEEIIIYQQQgghhBBiDoEHAUIIIYQQQgghhBBCCCE8CMCDACGEEEIIIYQQQgghhBAeBOBBgBBCCCGEEEIIIYQQQggPAjwIEEIIIYQQQgghhBBCCCE8CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZaG+O7msYmpw8AAAAAAMp5EAAAAAAAAA3mQQAAAAAAADSYBwEAAAAAANBgHgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV9nSM70rie4oIAAC5KQAAQH190KezJYQQQgjRxkBuKoQQQgghhL4BjfDDMX5NYxZCCCGEkOzLTYUQQgghhNA3oJn+kIYshBBCCCHZl5sKIYQQQgihb0Bz/VUNWQghhBBCsi83FUIIIYQQQt+AZloa41c1ZCGEEEIIyb7cVAghhBBCCH0DmunHcyr1r2SdMAAAkJsCAADU3NM5na1fUCwAAMhNAQAAmuF4Tmdrk2IBAEBuCgAAUH/X5XS00pysP6xoAACQmwIAANTfwzmdrUOKBQAAuSkAAEAz/EJOZ+tnFQsAAHJTAACA+vuRGL+S09m6WdEAACA3BQAAqL+fyOlofR1jsaIBAEBuCgAAUH97czpbexULAAByUwAAgGY4ntPZ+knFAgCA3BQAAKD+rsvpaKX4EUUDAIDcFAAAoP6+l9PR+kCxAAAgNwUAAGiGv53T2XpQsQAAIDcFAACovx+O8Ws5na0fVTQAAMhNAQAA6u8ncjpav6hYAACQmwIAADTD/pzO1p9VLAAAyE0BAADqb2mMX87pbG1QNAAAyE0BAADq78dzOlq/mnXCAABAbgoAAFBz38vpbL2jWAAAkJsCAAA0w9/N6WxtVywAAMhNAQAA6u+6nI5WihsVDQAAclMAAID6ezino/WBYgEAQG4KAADQDH85p7P1s4oFAAC5KQAAQP0tjfHLOZ2tf0fRAAAgNwUAAKi/n8jpaJ2MsVjRFLojxvMxDsU4FeNcFqey/7Yrxm2KCfUOwDURuan2AOozAO4dUAV7czpb+xVL4YXlaMhfvC4v0ly2FrVDvQNwTURuqj2A+gyAewfM1fGchvHTiuUSTw5xYemO8zG2KT7UOwDXROSm2gOozwC4d8A8XJ/TIH41xg8rmovsGPHi0h0uMqh3AK6JyE21B1CfAXDvgJn7Xk5DOKRYLrKxq2xOh868YmtiLMn+fFGMq2JsjvFWKH/i6PMj1DsA10TkptoDqM8AuHfATB3KaQjfUyw/sCLGiaxcPsouJP2k+cm+CsVzkYF6B+CaiNxUe0B9Vp8BcO+AmUifWP9qTiO4XtH8wDNZmRzLLjaDujrG1wUXmVsVK+odgGsiclPtAfVZfQbAvQNm4adzKv9xxfIDl8U4lZXLLSP8+40FF5jnFC3qHYBrInJT7QH1WX0GwL0DZmFvTuXfq1h+4L6sTF4eYxtHcsr4HUWLegfgmojcVHtAfVafAXDvgFk4nlP571IsP/B6jHNhsPnGimzPKeNvFS3qHSNICx9doxgYQJMWvHJNlJvKTbUH1Gf1Wc4L6Bu4d8AYfiyn4qc5WZfW4NjTIh9pMY9np7yfM2H8t9DW55TzKdWvkm6PsTPGgdBZROZMdoM5m52ztAjNKzG2xbhCvWPG1oTOHIhHFIVrSh8PZ23+pRjLGlCOrolyU7mp9kAzqc/IeWH6uYS+gXsH/Avfy6n4hyp+zGn+r8Ndx7tvivtKgzJpEZFxFwy5MnjSWGWLYzwW8t9ALIvzMd6IcbN6x5SlAbAXs3N4OsYGReKaMsB15MNsu1+EzgOJunJNlJvKTbUHmkl9Rs4Ls8kl9A3cO+BfOJRT8R+s6LGmz5gO5hzvvhqU87Kc4z6s+lXC6tB52+S7MeOlUL23FdW7ZrgpxqfZ+TuZ1VlcUwbtTB8IFx4yPNryc+OaKDeVm2oPuL4j54W25hL6Bu4dtNyPxvi1nIr/Wyt2nKti7A/FgyV16GytzDnuParg3N2f3QC/m1B8lJ1r9Y5J2RI6b0Olc3cixvWKxDVlBC91bTNNQ7S4pefHNVFuKjfVHnB9R84Lbc8l9A3cO2ipn86p9McrdHxpYaDdof+gSh06W+tyjvtuVXCu7guTG6zrjs9CdR4GqHf1trPrvKUO0Y2KxDVlDM93bfPd0Iy5QV0T5aZyU+0B1Gc5L9RJVXIJfQP3Dlpob06l/7kKHFeap+uF0FlMcZBBkjp0trb0HHNaJHKJKjg3a8J0Buyq9jmZeldfe8LFCxbdokhcUyZgd9c20yJkK1p2nlwT5aZyU+0B13fkvCCX0Ddw76B10txgv5xzsfnxOR7T5TGeyRpfWvgjfaK0K8b7Dehs7QmXzv3MfKzI6lfvAp1prrzNofOJXvencenJeFpN/skYR8PgA3fb1TtGtL+nbq5TJK4pE7ymvNW1zfdD9dY2cU2Um8pNtQdQn+W80BRVzyX0Ddw7aIkfz7nQ/OocG336/C/NCfh26AyQLOr58/dq3tk63pPkXKsKzs1LPfXn0JDnY224sIhVWaQ3Wpardwyp923YRxSJa8qErynpQUT3YsYHW3SuXBPlpnJT7QHXd+S8IJfQN3DvoHW+l3Oh2T/H47myT6PbXOPO1urgKWNVrOo5F3v///buB1Su4l4c+BBCCCJiiGKDikEkiEgRqlSpkghBggQJosRgpVdSRIoUEaE+9GFERHmKT1qpiEjwBQlYsdLKU5ASREooigYrKoovhFCCCLHEoCEK/s78di9Zd2fO3d27/87s5wND9P6Z3Z3znbnfM3POnCHriZMSr4alJ+5+J+4YwMMzNCZT9phySWhdlbRY7xNzcKyMiXJTuan+gPEdOS/IJZwb+NvBXNqfGGgWZvj9bm7wydYLHe/1aGjdGsZ0dF558uYI6nst1E/avSfu6NOtXbFzOEz/jhLKHlPu7ap7R+HHypgoN5Wb6g8Y35HzglzCuYG/Hcyd9YlB5ruqnDfD7/mahp5sxdXfzqfB39qA+IgD/tNd5bYC4v7scOrBPEfb/79c8Y/Fl6F+4m61uJvruOtHvALjm6642eJPlTFlAmPKga4E+PxCj1UTx0S5qdxUf5AjIJ7lvFC2WcslnBtAoRYSg8w+A+RYvNLxPl9qSHw8F5q51+1SftvxeW4fYb33hvpJuy3ibq7jbimrqvJB1+d+xZ8pY8qExpSNXXW/VeixauKYKDeVm+oPcgTEs5wXyjZruYRzAyjU3sQgs8sAOXJbO95jfPhKU255LDU53df+LB+MuN414ceryd3lZnHnpKjGQ12fOcbSBn+mjCkTHFO6H1J2Z2HHqaljotxUbqo/yBEQz3JeKNss5hLODaAwcUuBbxODzJUGyJGK2zscCaduqWpSklNicroynJpYu3EM9e+ric/bxJ2TooyLQ++Er4elGVMmPaZs7aq/pD0ymzwmyk3lpvrDfOcIiGc5L5RvFnMJ5wZQmE2JAeagAXLk3my/t7h/9LUNi5ESk9PFP2afjqn+P9bE5w5x56QoI/Vg2Kv8mTKmTGFMOdL1Gk8WcpyaPCbKTeWm+sN85wiIZzkvlG9WcwnnBlCQXYkBZrcBcqQe7nhv2xoYIyUmpw+2P8ddY6r/9pr43CbunBQlXJX4vJ8GjCnTGVOeDL2361/Q8GPU9DFRbio31R/mN0dAPMt5YT7Mai7h3AAK8nFigLnFADkyOzre1x0NjZESk9N1VdleldMncNy7yyXizklRwt8Sn/cRf6KMKVMaUzYnXufpBh+fEsZEuancVH+Y3xwB8Sznhfkwq7mEcwMoxPpEZ457sq42QI7EdaF1i1F8T/c3OE6cbC3vD0tnOVGVFeJO3HW5NBMvG3UlpjSmrOgYRxZL/P9zGth2pYyJclO5qf4gN0U8y3mhbLOaSzg3gEIsJAaXfQbIkYi3PB4LZeyf5mRrcL/KxOZr4k7cJTyd+Kwnw/gXjTCm1PnfxOv9Z8ParaQxUW4qN9Uf5KZnVOX6qtxTlRer8mHob0u6uJB2Z2jthXysnWMcbucfZw/xPuJzcfZ21PVFu6614lk8z1HOqz8yb7mEcwMowOuJjnyfAXLZ4jYNR9vvZU8BcWIhYHCPZWLzDnEn7rrEE59/h+ZOfFHumPJw4vUON6jNShsT5aZyU/1hvnKEDVW5sT3+v9Jx/LrLpUvUc1vofchjZ/lX6P+Kzp9X5UBNXR+F8W2RJ57lvPrjbPZH5ieXcG4ADRdXor9NdOT1BshluaDjj/trhcSKhYDB7Q3pq13WiDtx1+WGzDj2rG7EFMeUaFsmNjc3oL1KHBPlpnJT/aH8HOHa0JoUPVETS53lSE1d8WrlV/usp599np/os66HxLN4LiTn1R+RSzg3gKJsSnTggwbIZYm38n3efg9vhWbsZys5HY9PEm32vLgTdwnPZ8axHboRUxpTFl2Uic3nZrytSh0T5aZyU/2h/BxhY/tzxPJSx7EbNK7iA+w/DP1NFC5ehZwTF5z3DVDXJ+JZPBeS8+qPyCWcG0BRnkl04GcMkEOLf5Q/aL/+e6G16j+sn7YHKMlpM52TicuLxZ24S8jdHrxZV2IKY0qneAv/94nX/XKG26rkMVFuKjfVH+YzN32qJq5uTPz8uVU51P7+8dC6Inhde0zP1XWiZvKkc+uROBl6Wft7v8nUdVI8i+eCc179kXnLJZwbODegIAcTHXiTAXIop7UHhMUr185eRl0r23/g75GcNtbtifZ6UdyJu4QLa8axNboSEx5TUg5l4vNnM9hOpY+JclO5qf4wn7np1kxMfZ/IFTqvetwfWlshdB/LVF3HMpMni5OO8eGj13V9f0Wmrm/Es3guOOfVH5mnXMK5gXMDCvKTRMeNe7I26RaZWRkg4x/dN8KpfQHPXWZ98aElceX+jBlqawsBg3kjkYCdL+7EXcL2mpMJmOSYkvOXTIzePWNtNA9jotxUbqo/zGduemsmpvYnJjzebX/v5aqsStS1KlPX3xITHouTJx9m/ubkJh4/F8/iueCcd977I/OTSzg3cG5AYe5MdNy9BsihLD7AMT59/NIh64hJwPXtP/qT2PdZcjo+FyTa6j/EnbjL+H1mDDuqKzHhMaUu6U3F6Esz1k7zMCbKTeWm+sN85qZPh/4eAvpy++t7hojRp7p+7oVwanIzd7X2hkxde8WzeC445533/sj85BLODZwbMCJxNfe8GXgff0103AUD5MCeDf0/qGeQcoXktLGe7Gqnd8WduKvxSujvqiKMKeMcU4YZbw7NUBvNy5goN5Wb6g/zmZu+kTkmV3X8zO/CqSuP69wZlt7bfHGv8X+E+isfc1d43y6exXPBOe8890fmJ5dwbjDf5waM0OlV+XNVXp/y+4i3WH+VCOr1BsiBPDSmweW9GWxrCwH9iQ9+OtHRRvGBUBvEnbir8XnmePxFd2JCY8pSflszbqycgTaapzFRbio31R/mMzc9Eer3/V6Mu7h1yKol6tob6vdoj3s8n2znJ0vtpbw7U9eF4lk8F5zzzmt/ZH5yCecG831uwAjFE5n3O4Jo8xTfy+ZQxtWn0xwg7x7T4BLLTslpY3XfJneruBN3Q5xMzOKtlZQ5pvTjtppx4+dTbp95GxPlpnJT/WH+ctNLQv12H3HC8HBoXYnZz0MQD9VMbsSFwU9D60Gk/UwepiZ2D4pn8Vxwzjuv/ZH5ySWcG8z3uQEjdGVoPZyiM4jiide0VsseTwT1LgNk364Y4+AS9y9bNYNtbSFgaRu72udpcSfulrCy5pi8qEsZU8Y8pvRre02c3jDF9pnHMVFuKjfVH+YvN81NuNzR/n6cRI0TrJf1Ude5mboea38/7n0cH9x6bR91nT/GOBfPcl79cXb6I/OTSzg3mO9zA0bopqp8nQmmhSm9p4OJ97LJAImTraHFKzY6r8J4U5OIuz7jxhjGrI8p22ridIdDJTeVm8pN5QhjlXsoY5xEvLn933f2WVdu8uYXoTV5E//7t33WlZsQ3S40xXPBOa/+iFzCuQHUurcq39V0kn+GyV95dWnifRwOs7GXl5Ot0dgcxrcSOu5yfUPb/MWOz3Ag1D/ISdyJu0WX1Lyn5xty3I817FivMqYM7Iaa9vQAOrmp3FRuKkcYr9Qi2Yehte3Il6H1ANZ+pfYQj3WsDa07hAapK7e3+TrxLJ4LzXn1R+cBcgnnBpAVT1ye6XMwWpjwe7sv8R52N7SdnWxJTmfBzvDjfRjPEXfibgRt9lxDjrsTgPLHlOtr2vM/pHxyU7mp3FSOMDbnZN7TU6G1YBz3Dl87QH2fhvQk7J4h6jqSqOsT8SyeC8559UfnAXIJ5waQFG97e32Awehw+3cmZV+YndvAnWxJTpu+EBBv3TzZfu//Cq39GcWduJunkyInAOWPKXXJ/tMBuancVG4qRxiX3NYhv2//u22AutaF/CRm/PfmAerakKnrWfEsngvOefVH5wFyCecGkPT+EAPSryd4Ith9O/i3VTnTyZbk1MnWwC4Iras1fmj/u2HOxz5xN7jLat5TU66GdQJQ/phSl+w/Je2Tm8pN5aZyhLHJ7Ud+qCqvDVhXahIzPog0Ljq/MWBdOzPv60bxLJ4Lznn1R+cBcgnnBpC0ENJ7r/5PTWc5GCZz5dVNidfe1+C2drIlOZ2WuA/k4oM8j7aT23kn7gZ3RgFjmBOA8seUrTXtudPQJzeVm8pN5QhjczjznuKdYxcOWNeLmbri5OMlA9aV2498jXgWzwXnvPqj8wC5hHMDyNrV0RG+C6dub95X02EemMD7Sj2QZpeTLfrwnDb+USL7brsNjofWVh6Iu2GsrBnD9jr8xpQZsa0mTm91+OSmclO5qRxhLDbUxNKTQ9R3JFPXniHqOpqo5z0hKZ4Lznn1R+QSzg1gSfGBbPGp71d3fO3qkL4ia/EJ8eO88mpl5g/OxQZIJKd9O60qb7c//4mqXCc0xN0ynciMYS87/MaUGXFzzd/abQ6h3FRuKjeVI4zFXSF/xfCgz4+5uCYuB+1vPw22gxDP85fz6o/IJZwbQF8nNxclvr6nptPcN8b3c2VI3/ZtgERy2p94K+EbHUnfVmEh7kbgQGYMe83hN6bMiFtr/tZudhjlpnJTuakcYSxeDaO7ejo3ifnGCOu6QUiK54JzXv0RuYRzAxja+qp8nek08evnjel1Hw3NfTCPky3J6bStaCepi599u5AQdyPycmYM+9ThN6bMiNtr/tae7lDKTeWmclM5wsjFRbuTmTi6Zoj6cpOYN48ob4mL2auEpHguNOfVH5FLODeAZXu8puM8OqbX/GfitbYYIJGcDpxkeQCOuBulhzJj2HGH35gyI57MxOg3DqPcVG4qN5UjjMUNIf8Q70HFhefUJObR9vcGdTxR19+Fo3guOOfVH5FLODeAZftJyF959VX7+6MUr+Tq3v/126qsNkAiOV1S54MM7x5D/SuE11zHXd3DlsSGMWUWxpQXMvG5z6GUm8pN5aZyhLF4NhNDDw1R1+ZMXX8coq4rMnU9IhzFc8E5r/6IXMK5AYxE3ZVXz4z4tX6deI3XDZBITpf0dMfnfXAM9a+ryr/DcLeVirsynFEzjm0QAsaUGRhTXgkeRCc3lZvKTeUIk3QojOZBotETYXT7ON+TqWuLcBTPBee8+iNyCecGMBJ1V17FK6QuGuFr/SnxGgsGSCSntf6r47M+MabXiA+FGvZWUHFXjg8y45gHUhtTZmFMeS8Tnzc6pHJTuancVI4wcpdk4ueDIev7KKS3Yhnm78RfEnWdrKlrjTCV8zY859UfkUs4N4CRerSmg/9hRK9xZmjdat1d/3oDJJLTrP/s+JzPjek1HmzX/6Twmvu4y10d9BshYEyZgTHlREg/iM7DwOSmclO5qRxh9O4No9uG5NxMXXuHqCu3t/mbmZ+PVzjH/aKvEqpy3gbnvPojcgnnBjBS8UToq5C/8urSEbzG1kTdHxsgkZxm3b3MxGzQpNL2L+LuF8axojV5TDk7E5tvOawj97P2Cfw37fJiVc6Xm8pNmbsc4a1M/AzT9+7I1LVjhLlKapu7C0Lr7rTDwVXIct5m57z6I3IJ5wYwcrtqOvlfR1D/M4l6dxXSdtc62ZKcjtjOjs/32ojrjnt331qVv3e8xttCS9y1pfYffU8IGFOmPKZsDe5WmYTrQ+tKqu52/iKMdjseuancVI4w287IjAWfD1nfy5lYXDtEXbn9yLu3dDmtKgfa39soTOW8Dc559UfkEs4NYCzqrrwa9iE0nY4k6txUSNttq2m3PUJLcjqgHTXxNK7yK6HlpKjt4ZC+xXKlMDCmTHFMuT8Tl2c7vCMTT9K/rDmm++WmclPmJkfYHkb3AMa4dcg3iboODPnecpOY53T93OJDJO8XonLehue8+iNyCecGMDYPhPFceXVxor54Yre6kHZ7rKbd3JokOR3EDWHyE3ZHg0leJ0WnnB/SVx15YLAxZZpjSupBdC87vCN1cx/HdhpbyMlN5aZyhMnbm4mdzUPUldtaYtjnyBzK1Jc6Jq8KT/FcQM6rPyKXcG4AYxNPfj6r6eybhqz3vkRduwtps7i/3Rc1bRaTi4uEluS0D9eF9MOWxl08JNhJUbeXwmiuOsKYMgq5B9F50Nxo7ezj2F4vN5WbUnyOEMfcY4nPdLz9vUE9FPrbOqRf34f8FcgXhtb2d4t3MZ0mPOW8Dc959UfkEs4NYOy21nT214es8/VEXQsFtFXcR+9vfZw4x1vt1gktyWmNeHXGN2HyE3axXCKsnBR1+Vni8x4SBsaUKY0p1yVe4+8O8cj1c0fAFXJTuSnF5wgbMzEz7EPm94f0BNKqIes70Wd8rxWa4rmAnFd/RC7h3AAm4p2azj7oLWhnVeW7rjri/5/XsDY5vf2HeEtoPRRxz4CTLCfbf7DvaJ/QxgevXCDUJKeVn4f0lR6TKB4S7KQo53+DqyyMKbMxpqT63zUO88idsUTcfCQ3lZsyFznCE5l42THkuJK6Yng5zxz5xxJxHSev1ghL8VxIzqs/IpdwbgATUXfl1fthsL1/FxJ17Gtgm+wd06TJ6cJt7pPTV8J0JuxiuV1IOSnK+GniMz8nFIwpEx5T4hVqx7te4zWHeGxuzRzXf4fWVZNyU7kp5ecIH4X0FcNnDFFX7iGny9lC7u6Q36YibnuyQkiK54JyXv0RuYRzA5iYt2s69ZZlJhO7NC+SU8TdzHs29F7xcY5wYIJ+2xWD8Rb0CzXLWMUrquKkeLwaLN4h8OIMtbncFDkC0SOh9WD6+Dfhw9B6oKW7WcSznFd/xLkBsAybak624u3Z/Vx5FX/mq8TvX6l5kZwi7mZe3B/yy+Dh0kxHvOLncFf83atZ5KZyU+QIIJ7lvODcwLkBjN6+mhOuW/r4/csTv3dQsyI5Rdw1RvcDROMVUq66YBIeDM3fugW5KXIEEM9yXsC5ATRCPFn6LnOy9XFY+sqrBxK/94xmZRnilgU7u8pGzYK4G6sXg30Ymax44n2iI+a+CG7RR26KHAHEs5wXnBs4N4Cx+nPIX3n1yyV+953E7yxoUoBGiQ97+rRrLN+hWRij/eHHe3/+QpMgNwVAzgvODZwbwHhdFvJXXsX9uVZnfu8nmd87S5MCNM6G0HoQ2OJY/u/gQWCMx2NdecN2TYLcFAA5Lzg3cG4Ak1F35dXdmd/5deJn39aUAI11bWjtl7o4pr8X8hNuMIzu/Xnv1CTITQGQ84JzA+cGMDnrQ/7KqyOZP4p/Svzso5oSoNG2dY3rL2kSRiTuS9y59+ddmgS5KQByXnBu4NwAJu+Z0P+VV/Hk68vEz12pGQEa74aupOxJTcIy/TScug3/+2A/XuSmAMh5wbmBcwOYmvUhf+XVV+HH+6tuCumrs1ZqRoAiXBt+vH/qw5qEIcX93r9ox1GMqc2aBLkpAHJecG7g3ACm6w8hf+XV4x0/93ji+7s1H0BR4sPUPu0Y5x/SJAzoqo6T64+qcpEmQW4KgJwXnBs4N4Dpi1dWfZ052fo2tK7Mij5LfP+Xmg+gOGdUZW/HWP+cJqFPW6vyTUfceAgfclMA5Lzg3MC5AcyQR0P+yqv/Dq0Vu+6vfxd+fHs2AGWJ+zYuXr3xquZgCbe3YyXe9nuz5kBuCoCcF5wbODeA2bPUlVePJL6+X7MBFG9tVZ6vyk5NwRKuqcqL7ZgBuSkAcl5wbuDcAGZU3ZVX/5f42gOaDAAAuSkAAEBznF6VIzUnXN3lck0GAIDcFAAAoFnu6/NE6+OqrNRcAADITQEAAJolPsH7cB8nW49qKgAA5KYAAADNtNDHydbVmgkAALkpAABAM8Xbqj+rOdE6Htx6DQCA3BQAAKDRbqo52TqgeQAAkJsCAAA0W7yq6uPMydaC5gEAQG4KAADQfLkrr87TNAAAyE0BAADK8H7XidY7mgQAALkpAABAObZ0nWw9rkkAAJCbAgAAlOXNjpOtzZoDAAC5KQAAQFkub59oHQ6tB7UBAIDcFAAAoDBvV2WvZgAAQG4KAABQpqurcotmAABAbgoAAFAut14DACA3BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYG9dUZX9V/ktTAAAAAABAOX5Wlbeq8kO7vKBJAAAAAACg+S6tyl/CqQUACwEAAAAAAFCADVXZG3oXACwEAAAAAABAg11Qleeq8n3ILwJYCAAAAAAAgIZZV5XfV+VkqF8AsBAAAAAAAAANsrYqj1TlRFWOVGVPVZ6oyt+DhQAAAAAAAGi0+CDg41V5oyrXV2VF1/ffDhYCAAAAAACgseJ2QBfWfH97sBAAAAAAAADF2hwsBAAAAAAAQLGuCRYCAAAAAACgWBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYBYCAAAAAACgYNcGCwEAAAAAAFCsbSG/ELBH8wAAAAAAQLM9FvILAW9pHgAAAAAAaK41Vfki5BcCvq/KRZoJAAAAAACaZ21V/hbyiwCL5UBV1mkuAAAAAACYXadXZWNVtlTl1tDa+/+bsPQiwGI5WZW9VbmjKltD6wHDF2hWAAAAAACYDXES/4cxlNM1LQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJzYXJUfGlq2OXwAAAAAAFDPQgAAAAAAABTMQgAAAAAAABTMQgAAAAAAABTMQgAAAAAAADA3flAURVEURWlYAQAAAAZgMkFRFEVRFAsBAAAAUDCTCYqiKIqiWAgAAACAgplMUBRFURTFQgAAAAAUzGSCoiiKoigWAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAObC5qr80NCyzeEDAAAAAIB6FgIAAAAAAKBgFgIAAAAAAKBgFgIAAAAAAKBgFgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAZ9nBVfqgpuzQRAAAAAAA01/5QvxCgKIqiKMrgBQAAAGAmnFmV74LJGkVRFEWxEAAAAAAU6ZZgokZRFEVRLAQAAAAAxfprMFGjKIqiKBYCAAAAgCKtrsq3wUSNoiiKolgIAAAAAIq0KfROWnwdWgsEAAAAAABAwz0cehcC/qxZAAAAAACgDAdD70LANs0CAAAAAADNd1HoXQSIzws4U9MAAAAAAEDz3RV6FwL2aRYAAAAAAChDfBZA90LAA5oFAAAAAACa76yqfB16FwIu0zQAAAAAANB8N4XeRYAjVVmpaQAAAAAAoPl2h96FgN2aBQAAAAAAynAw9C4E/FKzAAAAAABA810UehcBYjlL0wAAAAAAQPPtCr2LAPs1CwAAAAAAlOGd0LsQcKdmAQAAAACA5juzKt+F3oWA8zQNAAAAAAA0302hdxHgM80CAAAAAABl2Bt6FwL+W7MAAAAAAEDzra7KV6F3IWCrpgEAAAAAgObbFHoXAb4NrQUCAAAAAACg4XaF3oWANzULAAAAAACU4f3QuxBwr2YBAAAAAIDmuyj0LgLEcqmmAQAAAACA5rsr9C4C7NcsAAAAAABQhj+F3oWABzQLAAAAAAA03+qqfBV6FwIu1zQAAAAAANB8N4XeRYAvq7JS09Dlmqo8VZV9VTlWlZPtcqz9tSeq8nPNBAAAAAAwW3aH3oWAvZqFDnEB4EBIP1A6VeLzJTxoGgAAAABgRhwMvRO5C5qFtvtD/wsAneX7quzUfAAAAAAA03Vx6J3A/bYqZ2oaKg+G4RYBOovFAAAAAACAKdoVeidu92kWKjd0xMTx0Nr/f2NVVrW/v6Iq51Zle1X+N9TfGWCbIAAAAACAKYmT/t0Tt7s0y9xbU5Uv2vHwbmhN+C8lPkfgXyH/zAAAAAAAACYsbv8TtwHqnrS9WNPMvUfasfBpaC0K9Ov8qhwJ6cWAKzQrAAAAAMBkLYTeydqDmmXunVaVY+14+NkQv39DSC8EPKlpAQAAAAAma3fonazdrVnm3q/asfDsMup4LxFbb2paAAAAAIDJilf/d0/WbtEsc+/lqpwM/T0XIOfeRGz9W9MCAAAAAEzOlaF3ojY+L2D1DLy3X1Tloaq8EloPn/0mtCamT4TWljXx4bV7qrKzKuc4lCMX23u5d4Zcn4ivY5p2JulviHExDgAAABRqV+idqN03xfezsir3hPRdCnXl+6q8WpXLHNKRiJNg8WG/y32w77rgjoBZpr8hxsU4AAAAMAfipH/3BMidU3ovV1Xl0zDYZE2q/DHMxh0NhHB64vi8pVlmgv6GGBfjAAAAwBw4ryrfhd5Jj/VTeC+3h9YVmD+MqMQtHs52iKfu7MSxeV6zTJ3+hhgX4wAAAMCcWAi9kx0Hp/A+fhVGN1nTWT4JJm6m7brEcblRs0yV/oYYF+MAAADAHIkPgu2e6Hh0wu9hYxjPhI1taGbDjq7jER/KuUqzTI3+hhgX4wAAAMAcifsdfxV6Jzk2TfA9rAmtB9J2P6Dxlapsr8qG0HrQ46K43/z1Vbm/KgdC/xM39zrcU/N86N1rm+nQ3xDjYhwAAACYM5tC7+TGt2GyD0T8Y9frxwcXXzjA72+uykdh6UmbY1U5wyGfioPhxxNyF2qSqdHfEONiHAAAAJgzu0Lv5MbeCb7+hq7X3j1kPXHh4tWw9MTN7xzyibsquBtgVuhviHExDgAAAMyh/aF3YmNhgq/f+XyCN0dQ32uhftLmPYd84l7oaP+jVVmrSaZGf0OMi3EAAABgzqwPvZMa31XlvAm9/tlVORlOTRCfPYI64yTzl6F+4ma1Qz8xcTuO7zva/lZNMjX6G4viw7uf7iq3iXExDgAAAJRpIfROaOyb4Ov/tuN1bx9hvfeG+kmbLQ79xLzS0e4vaY6p0t9Y9FziOL0gxsU4AAAAUKb4LIDuCY1dE3z9fe3X/GDE9a4JP74Kvbvc7NBPxNaONv80eKjmtOlvLCp1IUCMAwAAAHSJWxl8G3onNK6c0OuvDKcmVm4cQ/37Qn7S5jaHf+zidhpHwqktOjZokqnS3+hU4kKAGAcAAABI2BR6JzMOTvD1F68W/3RM9f8x5Cdtdjj8Y/dmu63jft3Xao6p09/oVOJCgBgHAAAASNgVeiczdk/w9R9sv+ZdY6r/9pCftNnm8I/Vw9p65uhvdCpxIUCMAwAAACR8HHonM26Z4Ouvq8r2qpw+pvp3hPykzSUO/9h0tvsdmmNm6G90KnEhQIwDAAAAdFkfeicy4vMCVhf0GXOTNieqskIIjMV1obUVUGzn+zXHXNHfmqXUhwWLcQAAAIAOC6F3MmNfYZ/xVyE9afPaCF/jjKpcX5V7qvJiVT4M/W1LERdc7gytffSPhdbk+eGqPF2Vs4d4H3Fv7L0ddX3RrmvtBNv7qvbrxzZ+UhebO/rbZPvbclkImM0YBwAAABip10PvZMZ9hX3Gx0J60mbY7Wo2VOXGdr2vVOVopv5Ll6jntqocCfktJv5VlXP6fE8/r8qBmro+CuPbJqPTJR3tsUf3mkv62+T62yhYCJh+jAMAAACMVbw6Nm4D1D2Zsb6wz7k38Rnj1btrBqjj2tC6U+JEyE/+dZYjNXXFq5lf7bOep/t4b0/0WddDY27nC8KpiVZXxs4v/W0y/W1ULARMJ8YBAAAAJmZT6J3MOFjg5/wk8TmfH7COjaE1ORbLS1X5PNRPAuYm0uJDLD8M/U0kLl6lnBMnnfYNUNcnY2zjszva5K1Q1jMm0N9mrb+NkoWA6cQ4AAAAwMQ8E3onM54p7DOeE9KTdBePoO6nQn4S8MbEz59blUPt7x8PrSuG40Tlipq6TmReO068d25NEidLL2t/7zeZuk6OqY3jBOkH7dd4L7SuwB7WT0NrIQH9TX+bDAsBsxPjAAAAAGMRr/7vnszYVNhnvD3xGV8cUd1bQ3pC6PvQu0VE5xXz+0NrG51OKzN1HUu8bqx7cVIyPpz0uq7vr8jU9c0Y2ve00Jq4X7yb5Oxl1LWy/bnu0TX1N/1tYiwEzE6MAwAAAIzcT0LvZEZ8XkBpW7q8EXon584fUd23hvQE4P6un4uT5e+2v/dyVVYl6lqVqetvXT8XJzAXJ94/zHyW3MTk5yNu2xUd7Rv3aD93mfXFhwvHq6jP0D31N/1tYiwEzE6MAwAAAIzcnaF38mdvYZ/xgsRn/I8R1v906O8hoS+3v76npq5rMnU91fVzL4RTk5+5B1NuyNQ16uO7+MDMo1W5dMg64oTs9aE1AWufbf1Nf5s8CwGzE+MAAABAQeIVpufNwPv4a+id0FgorK2f7Pp87464/jdCegLwqo6f+V04dWVynTvD0nufL+5F/o9Qf9X89kxdt4/wsz8b+n9o6iDlCkOE/qa/TZSFgNmJcQAAAKAQp1flz1V5fcrvI27/81XonfxZX1Bbx4eCnuj4bPFhoRtG/BonQv2+4ItXHcetRVYtUdfekJ5MXLwK+WehtW1O3G5kqX34d2fqunBEn/uhMJ5FgPcMEfqb/jZxFgJmJ8YBAACAAqyvyvvh1CTC5im+l81h6X22m25P1+e7dcT1XxLqtwOJE4qHq3Io9PcA3UMhPzEeF5A+Da0HlfYzufh5oq6DI/rcd4fxLALEstMwob/pbxNnIWA2YhwAAAAowJWh9TDVzkmEuCiwckrv5/HQO/Gzq6D23tj12Z4ew2vcFtITk3e0v/9SaF09elkfdZ2bqeux9vfjvvnfV+XaPuo6P1PXKCb2rgjjWwSIzxlYZajQ3/S3ibMQMBsxDgAAADTcTVX5OqQnixam9J4OJt7LpkLaO17N23mF7ptjep09mWMaJxlvbv/3nX3Wldtj/BdVuaH937/ts67chOl2XRH9TX9LsBAwGzEOAAAANNi9Vfku5K+C/meY/F0Blybex+EwvbsTRu3Fjs91INQ/5HM5UospH4bWtiRfVuWVAepK7TEe61gbWneSDFJXbu/zdXPU746F8d25MI6ySn/T3/q0uWGx3VmuF+MAAABAaeKk+jOhv8mRhQm/t/sS72F3Ie2+M/x4j+5zxvQ652SO5VOhNWkU9xZfO0B9nybqituT7BmiriOJuj6Zs/5nIUB/K7W/WQgoM8YBAACABorbCLwe+p8cOdz+nUnZF2Zni6JRitt6nGx/nn+F1t7d45LbWuT37X+3DVDXupCf5Iz/3jxAXRsydT07Z33QQoD+Vmp/sxBQZowDAAAADRQfAjzoBMmvJ/Te4oJD91ZF31blzIa3+QWhdSXvD+1/N4z59XL7lR+qymsD1pWa5IwPKo0TT28MWNfOzPu6cc76oIUA/a3U/mYhoMwYBwAAABpoIaSfC/A/IT9BErccmMRdATclXntfw9s77hG++CDHo1W5bAKveThzHOPVoxcOWNeLmbri5OQlA9aV2698zZz1QQsB+lup/c1CQJkxDgAAADTUrnBq8iMuCiy0v57almexPDCB95V6SOauBrdzfGjju+3PcTy0tnIYtw01x/DJIeo7kqlrzxB1HU3U857uiP6mv9V4LvE5XhDjE4txAAAAoOHiw4K/rMrVHV+L/526W+CH9s+O866A+ADj1CTYxQ1t39Oq8nb7M5yoynUTet27Qv6K4kH3kL445Cc5Bz0uPw35vc9Bf9PfciwETDfGAQAAgIaLE+8XJb6e2+86lvvG+H6uDOktiZoobqXyRjg1Ibh1gq/9aubY7R2irtwk5xsjrOsGXRH9TX+rYSFgujEOAAAAFGp9Vb4O6Umk+PXzxvS6jyZeb3cD229FaD0gdPEzbJ/ga8fFnZOZY3fNEPXlJjlvHqKul0P6qulVuhz6m/5WY94XAqYZ4wAAAEDhHg/5uwIeHdNr/jPxWlsa2HadE3A7J/zaN4T8w54HFSefUpOcR9vfG9TxRF1/19XQ3/S3Jcz7QsA0YxwAAAAo3E9C/q6Ar9rfH6V4l0H3swm+rcrqhrVb58OO7x5D/UtNCD6bOWYPDfFamzN1/XGIuq7I1PWIrob+pr8tYZ7flejHAAAFr0lEQVQXAqYd4wAAAMAcqLsr4JkRv9avE6/xesPa6+mO9/7gGOpfV5V/h/otRw6F0TxoNHoiU9fmIeq6J1PXFt0M/U1/W8K8LgTMQowDAAAAc6DuroB49f5FI3ytPyVeY6FBbfVfHe/7iTG9RnxQZN02IZdkjtUHQ77eR4m6jofhriD9S6KukzV1rdH90N/0t7Z5XAiYhRgHAAAA5kjqAb6L5Q8jeo0zQ2sboO761zekjf6z4z0/N6bXeLBd/5M1P3NvGN02Jedm6to7RF25vc/fzPx8vAL6m6pcpfuhv+lvYf4WAmYlxgEAAIA5Eifp4zMBcncFXDqC19iaqPvjhrTP3WF5k3b96Jxw3FDzc29ljtMwx+iOTF07hqjrF5m6UltdXBBaV6geDu4KQH/T31rmaSFglmIcAAAAmDO7Qv6ugL+OoP5nEvXuakC77Ox4v6+NuO64d/OtVfl7x2u8XfPzZ1Tl+0Q7fj7k67+cOd5rh6grt1/51q6fO60qB9rf26jbob/pb23zshAwSzEOAAAAzKG6uwKGfTBmpyOJOjfNeJvsqGmPcZVf1byf7ZnfeWqIzxa3FvkmUdeBIdsqN8l5TtfPvdL++v26HPqb/tZhHhYCZi3GAQAAgDn1QBjPXQEXJ+qLiw6rZ7gtbgiTn7CJ23esrHlPezO/t3mIz3dNpq5h95I+lKmv0+JE36u6Gvqb/pZ5v6UuBMxijAMAAABzKk7Mfxbykwqbhqz3vkRdu2e4Ha4L6QdxjrvUTQrGK4qPJX7nePt7g3oo9Le1SL++D/krlC8MrS0w4v/vD63tSkB/0986lbwQMIsxDgAAAMy51EN9F8vrQ9b5eqKuhRn9/PHK3W/C5CdsYrmk5n1tzPzOsA+a3J+oK04urhqyvhN9fL64DcpaXQz9TX9LKHUhYFZjHAAAACC8E/ITC4Nui3FWVb7rqiP+/3kz+Ll/HtJXAU+iLPVAxycyv7djiM+Zewjq/mW03T+W+Hx/q8oaXQv9TX/LKHEhYJZjHAAAAKD2roD3w2B7Di8k6tg3o5/7lTCdCZtYbl/ivX0U0lcUnzHE58w9BHU520jcnakzvse4LcoK3Qr9TX+rUeJCwCzHOAAAAMD/F68mzE0wbBmgntTkzi7NW6RHQuvhlHHbkg+r8lhVLtAsoL8N+bfiBYcZAAAAYLw2hfxCQNw6qJ+7AuLPfJX4/Ss1LwAdLAQAAAAATEncwie3GHBLH79/eeL3DmpWALpYCAAAAACYkjiR3/2g38XycVj6roAHEr/3jGYFoMs1VdnZVTZqFgAAAIDJ+HPI3xXwyyV+953E7yxoUgAAAAAAmB2XhfxdAYersjrzez/J/N5ZmhQAAAAAAGZL3V0Bd2d+59eJn31bUwIAAAAAwOxZH/J3BRwJ6bsC/pT42Uc1JQAAAAAAzKb4kN9+7wqICwNfJn7uSs0IAAAAAACzaX3I3xXwVfjx3v+bQvrOgZWaEQAAAAAAZtcfQv6ugMc7fu7xxPd3az4AAAAAAJht8ar/r0N6IeDb0LprIPos8f1faj4AAAAAAJh98YG/ubsC/rsqFyW+HrcUOkvTAQAAAADA7FvqroBHEl/fr9kAAAAAAKA56u4K+L/E1x7QZAAAAAAA0BynV+VIyC8GdJfLNRkAAAAAADTLfaG/RYCPq7JScwEAAAAAQLOsrsrhsPRCwKOaCgAAAAAAmmkhLL0QcLVmAgAAAACAZopb/nwW8osAx4NtgQAAAAAAoNFuCvmFgAOaBwAAAAAAmi1e8R8fCJxaCFjQPAAAAAAA0Hy5uwLO0zQAAAAAAFCG98OPFwHe0SQAAAAAAFCOLeHHCwGPaxIAAAAAACjLm+HUQsBmzQEAAAAAAGW5PLQWAQ6H1kOEAQAAAACAwrxdlb2aAQAAAAAAynR1VW7RDAAAAAAAUC7bAgEAAAAAFOr/AYLkEU6vfGMIAAAFTnRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtaT5OPC9taT48bWk+JiN4RUE7PC9taT48bWk+bjwvbWk+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1pPmNvczwvbWk+PG1mZW5jZWQgY2xvc2U9Il0iIG9wZW49IlsiPjxtb3Zlcj48bXJvdz48bWZlbmNlZD48bWk+UDwvbWk+PC9tZmVuY2VkPjxtbz47PC9tbz48bWZlbmNlZD48bWk+UTwvbWk+PC9tZmVuY2VkPjwvbXJvdz48bW8+XjwvbW8+PC9tb3Zlcj48L21mZW5jZWQ+PG1vPj08L21vPjxtZmVuY2VkIGNsb3NlPSJ8IiBvcGVuPSJ8Ij48bXJvdz48bWk+Y29zPC9taT48bWZlbmNlZD48bXJvdz48bW92ZXI+PG1zdWI+PG1pPm48L21pPjxtbj4xPC9tbj48L21zdWI+PG1vPiYjeDIxOTI7PC9tbz48L21vdmVyPjxtbz47PC9tbz48bW8+JiN4QTA7PC9tbz48bW92ZXI+PG1zdWI+PG1pPm48L21pPjxtbj4yPC9tbj48L21zdWI+PG1vPiYjeDIxOTI7PC9tbz48L21vdmVyPjwvbXJvdz48L21mZW5jZWQ+PC9tcm93PjwvbWZlbmNlZD48bXNwYWNlIGxpbmVicmVhaz0ibmV3bGluZSIvPjxtbz49PC9tbz48bWZyYWM+PG1mZW5jZWQgY2xvc2U9InwiIG9wZW49InwiPjxtcm93Pjxtbj4xPC9tbj48bW8+LjwvbW8+PG1uPjE8L21uPjxtbz4rPC9tbz48bW4+MjwvbW4+PG1vPi48L21vPjxtaT5tPC9taT48bW8+LTwvbW8+PG1uPjI8L21uPjxtZmVuY2VkPjxtcm93PjxtaT5tPC9taT48bW8+LTwvbW8+PG1uPjE8L21uPjwvbXJvdz48L21mZW5jZWQ+PC9tcm93PjwvbWZlbmNlZD48bXJvdz48bXNxcnQ+PG1zdXA+PG1uPjE8L21uPjxtbj4yPC9tbj48L21zdXA+PG1vPis8L21vPjxtc3VwPjxtbj4yPC9tbj48bW4+MjwvbW4+PC9tc3VwPjxtbz4rPC9tbz48bXN1cD48bWZlbmNlZD48bXJvdz48bW8+LTwvbW8+PG1uPjI8L21uPjwvbXJvdz48L21mZW5jZWQ+PG1uPjI8L21uPjwvbXN1cD48L21zcXJ0Pjxtbz4uPC9tbz48bXNxcnQ+PG1zdXA+PG1uPjE8L21uPjxtbj4yPC9tbj48L21zdXA+PG1vPis8L21vPjxtc3VwPjxtaT5tPC9taT48bW4+MjwvbW4+PC9tc3VwPjxtbz4rPC9tbz48bXN1cD48bWZlbmNlZD48bXJvdz48bWk+bTwvbWk+PG1vPi08L21vPjxtbj4xPC9tbj48L21yb3c+PC9tZmVuY2VkPjxtbj4yPC9tbj48L21zdXA+PC9tc3FydD48L21yb3c+PC9tZnJhYz48bXNwYWNlIGxpbmVicmVhaz0ibmV3bGluZSIvPjxtbz49PC9tbz48bWZyYWM+PG1uPjE8L21uPjxtc3FydD48bW4+MjwvbW4+PG1zdXA+PG1pPm08L21pPjxtbj4yPC9tbj48L21zdXA+PG1vPi08L21vPjxtbj4yPC9tbj48bWk+bTwvbWk+PG1vPis8L21vPjxtbj4yPC9tbj48L21zcXJ0PjwvbWZyYWM+PC9tYXRoPtwoHDYAAAAASUVORK5CYII=" style="width: 309.33px; height: 146.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="N ê n space space cos open square brackets stack open parentheses P close parentheses semicolon open parentheses Q close parentheses with hat on top close square brackets equals open vertical bar cos open parentheses stack n subscript 1 with rightwards arrow on top semicolon space stack n subscript 2 with rightwards arrow on top close parentheses close vertical bar equals fraction numerator open vertical bar 1.1 plus 2. m minus 2 open parentheses m minus 1 close parentheses close vertical bar over denominator square root of 1 squared plus 2 squared plus open parentheses negative 2 close parentheses squared end root. square root of 1 squared plus m squared plus open parentheses m minus 1 close parentheses squared end root end fraction equals fraction numerator 1 over denominator square root of 2 m squared minus 2 m plus 2 end root end fraction"> Vì P ; Q ^ ∈ 0 ;   90 ° " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAA8MAAACdCAYAAACQGaosAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAB/AJ7+MwAAJ1xJREFUeNrtnQ+oV9lWx9e72c3EDDMRM5HEzCeTTdkgZiKGTSZmJsnFJhGfZSaTTWKIzRO5TZINNs8GM2wyuW+SS2L3mZhZ0yDmG8SYzMReNmRiZmKWmZiZWa+95rfvzL2/+/uds879nf/784FFj8b7O/vss9be+7v/rC0CAHXjG5zNcPY9zn7QWY+z33X2j87+wdkN/3//0f//e/y/+x7/d99AFQIAAAAAAEBRfJ2zb3H2nc6WOFvj7Ked7XT2prMjzr7k7M+d/Y2zu86eOftqCvbf/vf+xv/+l/zz3vTP/2lfniW+fN/iywsAAAAAAADwMV/jbLKz73D2fc5+xNkGZ9ud7XX2W86OO3vf2V9JY8X2P1MStXnbf/ry/5V/n+P+/fb6993g3//7fH1M9vUDAAAAAAAAJeUzzr7R2UxnLzn7IWc/4eznnO1x9razY87+2NlfSGM78r87+7+KCtu87P98Pd3w9fbHvh7f9vX6c76ef8jX+0z/HT6DSwIAAAAAACRjnLPpzr7L2Q84W+vsZ5z9krNfd3bU2SlnHzj7W2f/4ux/EK6lsv/x3+Vv/Xc65b/br/vv+DP+u/6A/87T/XcHAAAAAACoPF/rbIqzuc4WO/tRZ59z9ovOftXZbzv7A2fnnF11dsfZfyEkg7b/8n5w1fvFH3g/+VXvN5/zfrTY+9UU72cAAAAAAACp0+Xsm5x9u7MFzlY4W+/s5539srPfdNbv7E+d/aWzm84eIexi7X+d/auzf5ZPs0n/vXyaTfqf/X//X+oq1h55v/tL74f93i9/2fvpeu+3C7wff5P3awAAAAAACIRWV/tsdbbb2RecfdHZHzm76OwjZ/+GGDPZf3gx9qGzP/Fi7KCzXi/GftLZD3sxNsvZRLGfq/2M//ez/N//sP+9n/e/f9A/70/882/68vBd4icj/s37+UXv91/0cbDbxwVXWwEAAAAAlIwir/ap+zbdf3L219LYpnvC2WFpbNPd4WyjNLbpfr+zz0q5t+kOblP/rC/vj/ry7/Dvc9i/3zn/vv8kbFPnaisAAAAAgJwI6WqfvBM43ZNGAqcvO/tDaSRw2u9slzQSOP24s6XSSOD0rc6+Hnf8mK/39fFdvn5+3NfXLl9/R319ftnX7z0hgRlXWwEAAABAsHC1T7ZX++hZ2ku+/n7P2W/4en3V2Tpf39/r7Nv8d4D8+UZf/9/rv8c6/332+O/1e/77XfLfE//naisAAAAAKBlc7ZONPXZ2SxorY3/m7PelsTL2K85+QRorYyudLZTGytg3Cytjdedr/Hf+Dv/dV3o/+AXvF7/l/eTPvN/c8n5EPHG1FQAAAABEwNU+2Z6ZvObsvDTOTP6Os1+TxpnJn3L2Y9I4M/mCs6nCmUlIl6/zfvWC97Mf83630/vh73i/PO/99K73W+KXq60AAAAAKgVX+2R7tc/fSSOb7mlnfdLIpvt5Zz8rjWy6y5x9tzSy6Y7HHaHCjPd+/N3er3u8n3/e+32fj4OLPi642oqrrQAAAAAyRc8WcrVPea/2AQgZrrYq5mqrdbgeAAAAhMBFBoa1vNoHIGS42qozu4gLAQAAQAj8kXC1D1f7AIAIV1sN2mlcAQAAANqRx2AkL74oXO0DANAJdbvaqo++FAAAAELowL8gXO0DAJA3Zb7a6gv0pQAAABBCB75buNoHAKAq5HG11efpSwEAACCEDly383G1DwBAvUlytVVe2aQRwwAAAIhhOnAAAKAvpS8FAACgA6cDBwAA+lL6UgAAADpwAAAA+lL6UgAAADpwAAAA+lL6UgAAgJJ14AAAAEB/DOXyByZYAID2LIX2jIYSAAAAMQwMHgEAEMM0lAAAAIhhYPAIAIAYBgAAAMQwMHgEAEAMAwAAAGIYEMMAAIhhAAAAQAwDYhgAADEMAAAA9MeAGAYA2jPEMAAAANAfA2IYAGjPEMMAAABAfwz4AwBAcW0ijS0AAADiB/AHAADEMI0tAAAA4gfwBwAAxDAAAAAgfgB/AABADAMAAADiB/AHAADEMAAAACB+AH8AAEAMAwAAAP0x4A8AAIhhAAAAoD8G/AEAADEMAAAA9MeAPwAAIIYBAADo6OmPAX8AAEAMAwAA0NHTH+MP+AMA0CYihgEAAOjoAX/AHwCANhExDAAAQEcP+AMAAG0ijS0AAAAdPeAPAAC0iTS2AAAAiB/AHwAAaBNpbAEAABA/gD8AANAm0tgCAAAgfgB/AABADNPYAgAAIH4AfwAAQAwDAAAA4gfwBwAAxDAAAAAgfgB/AABADAMAAADiB/AHAADEMAAAANAfA/4AAIAYBgAAAPpjwB8AABDDAAAAQH8M+AMAAGIYAACAjp7+GPAHAADEMAAAAB09/TH+gD8AACCGU2eCs1X4VSmZyLcJBuKQmAX6Y8AfAAAQwzmyxtldZ8+czcS3SsdJ73unnE2jOmoLcUjMAv0xhOEPc51tc3bM2YfOHjp76tv/J87uORtw9qazZc66+PyF0u1stbMDvn2/67/TM//dHjm77Kzf2XZnL+F/maF9ao+zw85OODvtTb9Ln7PNzmbTJiKGrUzyjjT4bu9LY0UDysWOId9IG6x1VAlxCMQsHT3gD5XyB935s9PZdcO7NNt9Z3udTcUNckVF7bteJCb9Zrec9TqbjP+lgu62Op+gzBe9aKZNpPNti8703BvyXjo7NKaC77F+FEGd1IbO/GmdnZXG7N8hP8jVxjLrWbPl/vmDZTrqbCz9FHEYENqRr/Sduc7+6qqrzs4/lk9ntJ968fmhj9E9/m+KqFNiFvED+MMgO33b1K7s+t/e823X04h/p6t2u4WV4qyZ5exMzPd633+zB86ex3yz3oLb/yr7n67yXuhgDH9R6rtSjBjugL1N73Swwu+ySBpbOW7FNEZ5CGbdprFFspsFfLFJOF11Np0+izisMYud7fe+3ml86haq1Tl34sQsYhjC9gcdhF9pU16dzNNdJFNa/N083/a1Eya6JZfjNNmwXVqvBOt33OBsfIu/GdxGHSWgbzhbgP8lQuv0cdOztUy6GLXS1/sgg9unB1roAZ2YXkGbSOerTPIzWUPf560aOcUY7+xvx8xs5SGMdYVvTgbvON0L/8Fn3fMTAkAc1gXtvPc5u5NRfGr8bM1RFBOz9McQpj807w4ZarqzxXIcRgXHpTa/oSuSi3GL1NCV2xNt6npbgt9Z6OyjNr+jIm0T/mdic4tnHm8j3luNI861+Pu1tIlhd77q0Deb3mV/jRu1GdKY9UoySL4mjVm/5jMR4/zgVbdEH0k4SFdhPj7ld5vaNLhW4U/mWuKw6minejYmnjSmdYv0K/7fD9121uUnGnS2WFfdb8T81ldyFKXELP0xhOUPPdJ+t1rfKERau7ZRt60uxTU6Rsdp7bbijqatVqEZdb51N/4XyYoWz9o+it/Z22Iyok7xghhOgG7LuNf0Hu8E0LhtTyBaL0iy8xyrvXi2/LbOEM7KYHDdLMpJ0kMcVrVe4s4D6RGEZaP47ZVe9H61wEEJMUt/DGH5w+qIMp7vQKy1Oy6iq3/zcY9R0x0hXHs7FNhRR3y2438t0e3OD5qesaOD3+tt+i0dh02iTQyr810qI7dJDATSwK1KIIbnjeL3dSXqLePva/DNTfn9dBv2/abn9AgQh9VAtzodi4mb86OMzaHo8YmDMc85Ifkk2SJmEcNQb3/QLbJP2pTvsXR21Zq2H+2yGutE22RcZFT0tanTmyn0C7Mi/CGLbbt18L/jLfrnThlo+s3DtInhdL5LZOTBc937H0pG0zVGoXqzw+f0iv2sYtqzUbrNs3krzEr6NuKw5OiZqajMlo8k/XNVe2Li80xOgpiYRQxDPf1BxUDU8aydKTzjjYjfP4uLjKovalefr6b0jF0xfd0s/G+Y4G6un0kp1c3Q1Wbtg2fQJta/810gI1eidHVyioTDRqNIPZTCs94zPutYBu+5RUae4WDLFHFYRrRTOyn5HysY5GjMs9/NqR6IWcQw1M8fTkt0voM0JkB1u2rUROJm3MTMTGm/ivpM0sv30h0jUi/hf5/QvNuyN8Xv3Twh/gZtYr073xky8myizoKElnWwzyhQV6fwrNliv9ppbgbv2t+i4ZsqQByWBxV7tyV+W/TEDMsw3lCGbTnVBzGLGIb6+MO6mLLtSfFZ+yKeo6tfk3CVjsXjiZSftTvGP7bjfx/TnIU7zeubpjf99lXaxPp2vhOldUr3XgmPK2K7Bqk7peedMorhwxl99+bkPDrbOEaAOCwenXB6EhMXursij63jG2LKoZmeZ+fkI8QsYhiq7w/abkVNsukk6LQUnzejgDFG3VgcU4dpH9OZKtELJg87EJF18b9uSfcIo0Vsd1fcjxHDCQTZ5QAbum6xrdS+l+IzXzGK4QcZvfPKFs86QJ9HHBbMZkNMfCD5naHuEtsKdR4Qs4hhqL4/7Iop1/sZPPN8jPiZjbuMuv7Usjiqcy7mmW8E7n9LZOSdwmnTnJxrUcX9GDHcgp1tnHKuhIc1k/SOFJ85TbLNXm2h1XnMl+n3iMOSDhIHzwjnva1vv6Fcy3MqCzGLGIbq+oPu5LgXU64tGTz31Zhncm1fe+bE1N3jjJ77muG54wP2v+a7hY9mUO7mvCEraBPr1fnOk9YroaGuMhyQYs7vPjU+d01G7z2rhR/oVswJ9H/EYQmF8EPJLllWFEvEtlqdB8RsOGK4y0906CSsJmvTDOa6U+hJgr4jbTuIP3SEJVHntIzajbgjYFNoQlqyL6busrr28AWDr2wL2P+axfARxDBiOGkHe63NLFOoiRSuGr7l3Qyee9c4ANmY4bsfFs4QEYfFstUYB6sK/FaWYxTzcioPMVtfMay+psltTkr7OzqLNMRwZ1yIKdONDJ99K+bZu2lCWvKRFLeqHpc743LA/vdy09/3Z1Dm5m3Sy+gj69P5trs/c2+gDd1U4yAgiy0Y1iuWdmT4/rPbPPMl+kDiMAd6KjIItyTY259TWYjZ+onhCb5NuF9CAYwYTofphjL1Zfj8YxJ/BAWGM9PwzdZn+PwzhufPDtT/xkr2eVaaF8rG0UfWo/PVYGi1vSrkLTLW+4Wz2KpsFcObMq6Ds0ICJ+IwfxZK/Mz3YCc5tuCyDhjKeSPH8hCz9RHDep7uQclFMGI4ne8cV6YNGT7fkpyQSfDhrDPU2eoMn3/Y8PztAfvf0OSWunsrzeNCkyX73aGI4YJod5fusYAbu37Dd3ye0WDcstr0Vd8gZ0m7zNav0BcShxkxRezHBMpw1/K7xrLOyKk8xGz1+2M9R3epIiIYMdw5lusUs8xWu9Tw/DcEhnJQik2euN7w/NMB+1/zZMHWFMvbnMCsDknmEMPSSP5UdCbUsqHnsx4bvmNWV6c8Mg5Asj60r1dLtTqfdsPXERCHacfdB1Lc8YTRcNRY3p6cykPMVrs/Xp2g/UcMV98fNCbjkp49zzh2uw118iFd9DAsO4KyPEe60vD8pwa/qav/LZSRu8i6Uipr8xnnhfSR9eh8262APg548LRYbAOAXRk8e0yCAUgeW0RPtnn2ZvpD4jBl9hn9XrNHTy5JmfuMZc4zEzgxW83+eHsFRTBiuDMWGspzJ4dyPDQIovECg1iSq2YphucY43JewP7XPLGeRiK4N6SY2yIQwxkTlQSgX8Kl19jQzM/g2UuMz87rHOAmqWdSDd2KeNg39DozqglqjkoxV/QQh41tWNaB9+slKrdVDB/PsUx1jdk698e9klyA6r2geoRCt8DrBO44gar5gyVj/qkcynHaUI7RZu0vU1+bFpadg1mK4W5JZ0dSnf2v+YpK/d9LOyjjihYCfa7Ug+DF8H4p5sB82bGc17qf0bNfNzZyeV13ECXUVlf0+66I6MweS/53xoUeh9qx3zD6vZ4nHluisp8wlvtsSSZXVkt4lL0/3plQBKsvhXqEqW7+cEyKzeQ7iCX3wWjODZetr00Ly33eWceo5Vq/3sD9b1fTb+gRlNHkGtHrmpqTer5Gm1gPMTxGoq9rmBloRznROCDJqoGwJs+akWOdtEtodL6C33e2xGcq1o5uLnGYG3sTCIGydUCnxb6KJ8QsYriJtQl8XydpyepbL3+4aCjPnhzKYTmiMlDxvjZPH+pkJd2KZXW6L2D/G+SIjLydwzqO6PKCunni4RBtYn3E8BrJf9WzCljvN80iIc5847NP5Fwnx6Xzu+zKwhFjHQ8Qh7lNTjw3fpM7fvKgTNwylv0BMYv4aeIFsV0hpoJhGxq2lv5gWWHMIxO8JTvx7Yr3tWnyzPBeWd/2Ybl27WTA/jeUVtm/rzvbIq3zj0z1/+16i797kzaxXmJ4oERiq0xYr1SamMGzzxo7jxdyrpOordt7K/Z97xnr+BlxmAunxL4ytrOE5bcK+QfELOJnCLrV/yPjAPBF9Gst/WGclGOFUVljHPckSeZYtr42TSyTWFlfR3XHUIb3Ava/ZtZFTCBoAq/z3tpl89fFibW0ifUSw2NiZrb2BdxRWhrwLDLIWVeki8jauTqiPDcr9n2fiV18dROHmbIgwbfQwceEkpV/iiRLdkTMIoYH2W8ol2asnYp2ra0/WJNl5nE+fIWxLHMq2temjWVHUNbJL9/rsN+pu/+1YrJvex8n8E0Vx7oaPJE2sX5ieJWU407MsmHdptyb8nPnSHxq+cG7Qou43mBaTLmqdI7trpRntjr0ODyXoEM6UMLyr5JkSY+IWcSwMs9QpitSnuvD8If8J6yG2uIcypKFMCpTX5s2lh1NV0sghu8H7H9RjPPjKz1TfdGL4+feVPzqgtcR/2/G0CbWVwy/XQLnLyPWTM5pXrKt1wtYtrvoyliR2+We5zg5kCWHSiReQo5D68RTWjPCWfBagvKfIGYRw573Y8qjq05T0Ky194dXjG1HHhPgE4xlSbJNtEx9bdocFdu23iyF1BlDGR4G7H+AGI4lLmNxd6AOYVmpSvPs33KxJUHQRrXoKwiirr75sELfeJqhzp/nNPEQchxarnQYtAslfYf+BO/wDjGLGJb4+7R1hWIeY7Mg/GGTlGcL8VhjWZJc9VemvraoiYwsr7Kz3GRwP2D/A8RwJN0SvWLwNFBnGCe2ZDhpnAOZ7AfH1rOSZbiL72RMhza2Qt96UUQnrfW9hjjMlMliTzyltrGk73EzwTtsJWYRw4YB7BbGZcH4w1vGtqMrh7J0G8uSNClUGfraLJgjxU+CWsTwvcD9DxDDbVkm2aUvrzJrjMHYSZp5nQE9ILZMhIPb5coya9oXU9aVFfvemphGtynf8cJAO+yjkt923JDjcEcCEfmspKItSfKsrxY0oVW3mK16fzxdqrkDAn/IBuuEeFnqZbT3qxbd12bFDbHtJMxKTFrE8Hn8DxDDrYnbGnEqUGewNgyv+YHt5DaNnJ4R0VXmpdLYIqP//l2x30c6dEaxTNlz4y5F30N7QhwauZIgDvpL+g49CeN5AjEbvPjZGVOOuTSLiOGSi5F3cJ9P2CvF7myyXMV5Cv8DxHBr4lYLjgfqDHck2eA2K9OZvPklrJ8NUr4EQVUm1DickzAeyrqN7kiCd7hOzCJ+HJcqOOmDPyCGESOtmVFw+2/J1n0M/wPEcGviUsIfDdARkg7Q07anfnA9v8R1tFbYXk8cds52SbZFuqxJxJJMnh0iZoMXP+NjyjBfADGMGKka1kSQaeeMsI5ZD+B/gBhuTdx23RD35Ce5IiUtu+UFjw5Yq3CP2UqJzwrZRZtCHMZwNkGMlHWr+LyEsb6amA1e/ETd6XlVIEQxfBgxUnlmSmMxI67eNEv8rBSfe9z4vdbjf4AYbk1c4L4VoCOcMQaingPWs559fqCuCRQe+Tp9JsNXejVJlt7xpklRBvzfbPODokkVrKPlhvqZRZtCHEbQ1RQncVbWzLp7JNmujzHEbPDip1c4u40/DOdgBcXIQdxnBK8b6+6as4kpPG+n2Pufl/E/QAy3HozGlW1TYE4wxjhAvxx4sCw11NFy2hTiMIIFkmxFtazZRi8neIdjxCziR6LvpF5IkxikGN5cQTHCxE1r3jfW30VpJF8dDbqI0ifJ+tBu/A8QwyMZZyhbaJdarzIG4b7Ag2WqVDfZUdkINQ7XJ+jE75f0HWYnHIy8TMwifqSRGLHduXiOl4Qphq3tYR55E6z3vG7AfdoK1evGOrztx51WdCv2fhl+Jec9w3M+wv8AMdyaidLZGYM68rYxCJcFHizjDXX0Cm0KcRiB9YxSmbNpJ9kifZuYRfx4HkqxSRqztoP4Q2LWGOt2XA5lGWcsy1q677bo5ONXEsSM7jDSxFrzhkyI6f/VO+w138NuZx+0+bu1ht/vw/8AMdyaxYjhEVhm854Is/eWgfVG2hTiMIKBBAOF10r6DknuC3+dmEX8eJ4KYhh/GM5yY93OzqEsk41l4ShUNDrRfSbDONMdirqKapmUXYf/AWK4NcsQw8OYZgzAAWLFNHO3iWoiDiNIctZ2RQnLvzRB+Z9IOslSiNl6iJ8kieMQw2GI4YlSnqMW1rZtJt23CU3++CDF+DrtbO6Q3//Q8DeT8D9ADI/e4UISw9YEAluIFdOZjjeoJuIwgiRbRceXsPxJVrb3E7OIH8Qw/hDDc0N5VuZQjpWGcnB9YvLJDl3BvT3KmLorjXuC5zb97nTD336A/wFiuD1zEcPDOCHl2SZSdsYKq0zEYWdYt4o+KmHZpxkHDoN3Sk4hZhE/Q3iCGMYfWnDNUJ6eHMphOYN6i6571GjGeD0DrBOq13178Mz3Kfq/dRX5rLN3pXGOeH7Eb1muVtqO/wFiuD2WM2ShZGvrMg5QbhAnZt/hzDBxGIVVTF4oYdnfTCAMeolZxE8TaW6ZRAzXRwz3G8qzNYdybDKU4wRddym4KvErqFPwP0AMt2eMsFIwiPWMwiHixDywJps0cRiFdavo8RL6/iNj2XVL3FhiFvHThPUeUsRwWGLYkgjpnRzK8Y5UZ5IvZBaK7Xwx/geI4RjiVmcOBvLx9xk7+dXEycdYki1wzzBxGIV1m/TRkpX79QSiYDUxi/hpQbsVmLs0hUGLYctZyf4cymHJh7AS1ymcY4bvtAT/A8RwPHGXdR8O5ONbMtuqYOkmTj7Gch0Qae+JwyisCbTKNBGgq6vWLa4niVnETxuiVmBm0BwGK4Ytuzcu51COuOzEOhYah+sUygyJn0S/gv8BYtjGaanWqkwWTDEObs8RI5/wsqG+ZlFNxGEEFyoohnuNZX4g5UiaRcyWsz9eHfH8V2kOgxXDStwZ0Kc5lCFu185l3KZwDkk2O33wPwhSDPdJtc7rZcE64wB3JzHyCXHbaUh7TxzG0S/VEsNTpZEZuqrHKYjZ8vTH46X9qs5FmsOgxfBbhjJleb/qTMPz9+E2hTJb4leFL+F/gBi2sy2mbGcC+PDWQfl8YuQT4lLf36OKiMMY9lZMDB8zlvcAMYv4MRC1M+IlmsRgxfASKfZsv+Vam4W4TaGcMnyjl/A/QAzbWRFTtjsBfHhLZtj7xMcwNsTU1wBVRBym0OmVZYv4YmNZz0sjOzgxi/iJY4ekkwEW6iWGu/x4I6pM+zN8/gHGhKXGkuTqEP4HiOFkjJPizwcUyQLjIPcY8TGMuLOTb1FFxGEM1rP6RYs0vRrphqGcN51NJmYRP0Z0233UVsdlNItBimHlbYmfdMuKiwUKIYhGj1fcjvk+t5xNwP8AMZycr8SUr84ZlC33qqmtIz6GEXfGdS1VRBwauGaIvaJngg+IbefILGIW8ZOQ/pjJlfE0i0GK4RelmJstxkv8WdS5uExhHDP4xSL8DxDDo+NwTPmW1vijWzPaTiI+hnEypr6mUkXEoQFrduYJBZXPsiVNj1m8RMzS0Y+C+UICS/yhNXHXPWaRpK8n5pkXcJfC2Gjw1W34HyCGR8+amPL11PSD6wD7uZTjXrWqcTOivm5QPcShkVlGMbymgLJpVsu4O4VVCC8iZunoOyAuGc4emsYgxXDcGf++DJ45UMJ2GBqTrU9ivs0R/A8Qw52hZ+KeSXhpzHvENhAnjftwumImEQ5RRcRhAs5K+c7sT5T4LdwqlBcSs3T0HTJH4idlt9I8BieGNWajzoeqOEpzq+qkmP7nOq5SCNOd3Y3x0VP4HyCG0+G0hJdl9KhRDL9MbAxjVg3rSzscTczwkW+QtaHXy+ff9oNV4jA7FhpiUL9JXluldVLivMSfY55DzNLRp4TluMBuup6gxLCyJaZsW1J81g7JJ29KWfraKqAJGeOSN+qYYQz+B4jhdIjaElHXa4XuGQfhXcTGMKK28z6qYH2tcvZYopNF7CUOM2XAEIu7ciiHZvV+L6Ycl6SRCZuYpaNPC63/K2K7ZmwsXVAwYjjOL9JaLVMxdSumzatbX1t2pvjvG+Wb72bcdtfN/wAxbBoERm1RmFazj71IbKvCZ4mLEeyNqK93KvYu82L8Pu+tuqHF4SCavMlyPjdLEarbtD6IKYP6dzcxS0efAbMMMaB2zbdbUH8xrLwo0dvoN6bwjKhVOe2P0sjgW7a+tsxovoqbMXXUi/8BYjgbjkg4yXss16WEOFC0ELWVd2HF3uWE0Q8G7TXiMDPWGOr/ZIaTIjdjhPg6YpaOPmNeNrZDz30fNlmg7mJYfL/Trny6w62T2y6m+vYt6z6vjH1tGdFbI+5L9FndtfgfIIazI+qah6M1+tB6l9ljY4N8kLgYhm6bedqmrq5U8H2eSLIOWv1mAnGYGa8bvkHaM+KvRvj04HUOM4lZOvqc2JCgPdL2S89avkDXVPvxWVSOk1MdtA3nJJ8MxWXsa8uGrpBGrcLqtuS5+B8ghrPnYpsy3q3Rh34zQYPMPY/DidpevrGC7/NMknXQaSeNCDkO27HX8A3eSGnS4UOJPqO9iZiloy+AzaNolzQhkWYF11UjXe3vFqjb+Ox4RDkPj+L3+iN+70QgfW0ZmBYjCgd3KY7D/wAxnA+rIsr5Yg0+suXi8mZbRWx8Qrusp5qCv4pJeK6Pwh+OE4eZo1fJxF03o4muRrNiq9vQoq5z0ue+JY3rlYhZOvqiWDdKAVEGO4g/ZMbbMQLC0m5NiWkDs/h+Ze1ri0Tb350SvVNRs0kvw/8AMZw/V9uUs6pZ/jRT3UqJPjdnOau4Wphtb+cb22omFKLsCnGYCwsk/loJFQu6fWu5tL9eYrKP3QMSfW/ic/9bM4lZOvqSoKv6dwUxjD+MnCh5KO13tGjm/ekt/k7btj0Rf6tnN18JsK8tgldi+rfH/lt143+AGC6G1dJ+JaFK9PvG9Lmk18nrb+l2tAE/UAmJeW3qRBMPVXWFSbcdfZDQBx4Qh7mhA4HdEp1gY2hsakd8xpuKiKdiO5umK8EziFk6+hKWVydzTiKG8YcmNPFQn8Rn4D/nLa4N1fFSlrcVlLmvzQu9Fm2rH0O2e+envj+aWvJ3qZr/AWJ4VFxqU9aVNfqgndr6wAKkXQbuNRV/ry7fQZ3xDXbc5Ml94jB3dOvVTom/biLJpJZus94k9b63ta4xG6L40aMTNwQxjD8MZ440zoo/GsV30qRWetYzrwRsZe5rs3xn3eZ8RKKTiOmVaTukesdzquR/gBhOzIttynoOPwkSzerY6lzL+wG8++YC35k4HIlun9YEWrrKYDlTqQOuW9I4z/SGn0gYQ8zS0VdQ/AyKiY8Qw/hDC9/Qq7n0GM2A9xGN/6feHvvJFP1v+/y/LdvukM01aas047NOtPZL9Hngy75PqkMekDr4HyCGW/JOm/IuwFeCY4+03l46M8DG4ShxWAp0m1ZzNmi9BknPM+kq2jIJ72oOYjYc8bPYtw33EcP4A31tKXhZ2h/N0UnZa/6deqT826CBGEQMe/Qi7XstynseXwmKydJ6dnNrIO8/sem9e4jDwtFrke401YdeRzWecCVmAxQ/ejZ8vRfHer74pgxflcnbDuAPUMG+tlMWyKfnfrV/1jO1r3qRzFVngBiucGPb7ooXrhsKh1Yrk6cDev+1Mjx78XjisFBWyMjzSZelvGet1F+WELOIH8AfoPR9bSeMkfpcyQe0iYhhw8DqprAKEwKLWnx7PX85KaA6eG/Iux8iDgtlm7S+fmNyScurA6MLvpy7iFnED+APUPq+FoA2ETE8Ak2J3+quSi7GrjfjZWT2Xs3+Ny+gOlgiw2eqZxCHhXGoxbtfL7EQ1nINnmnWK0KmE7OIH8AfoPR9LQBtImK4JZp0pVWijmX4TW05JmFf6aOrereGvPtu4rCw7/C+tF4Vn1LSMmt20NsFfJ/QYxbxA/gDfS0AIIYzQ2fumq8yuVfiASmMnq0t/HRTQO+vyS7ODXl3vcanizjMnVliu0ZGM3U+8QL5lDQydm50tlzyT1yisfO0gLgJPWYRP4A/0NcCAGI4c3palF+zuI7Bf2rDUi8uhn7jHQG9/1hnZ4a8++0SCs0Q4lATZT2UdK560fsNj3nBuCijwZbeLXmhoLgJPWYRP4A/0NcCAGI4N7a0eId+/KcW6ID+QdO33R7Q++s5zw+GvLte3zOTOMydXsn2HlRdWT/rn7O8w0kEFaIDLZ6xnZhF/AD+AJXvawFoExHDLdnc4j324kOVRhNW3JVwt1kuaHr/a86mEYe5D5DOZSyE222z1pV1zdj9ijTO+DZn6dbtfJoEa4Wvd514uNfmtzYSs4gfwB+gNn0tAG0iYrgl64SteXVBB/l3ZHgG2lDusNUts80rke9Kda4sqkscLmsjLqtkukK7lJhF/AD+ALXrawFoE2lsW7JURm7Rew1fqpwQHpr5Vmds5wf0/nr/6iP5dKvWGuIw9wHSmxUXwWqXJJ/rk4hZxA/gD/S1AIAYLhGzpXHf59B32ok/VYK5Mny70nkp772tWbLN2S5pJPQgDvMt82VpvdVY7+jVrch6v7BetaHbf3UL+BFpnNF9UBIR/NSXr4uYRfwA/gC172sBaBMz+OE0rGh0m0tfU5n241OlZkmToOilSipPleJQxe1jGb66eUCSJbSaKo3M2vrORWyxPimN65+I2XJ00nXoSwExDACAGK5wB97TNFjTlZ1ufKt0rJdP76q95QfZUB+qEIcXfdl0ZViTVqWxsrrYC+obkm2yrePO5hGziGFg4AcAQJtIB97MFD/41nLp+ZBZ+FapUNHxFf99dAsqySvqSdnjUMVklgmf9JoOzfqs9wvflnSyTe+QYu7BJGYRw4AYBgBADFeswdakPivxq1KimXsXUQ1BQBw2mOjrQc+s6bZqPXd83U8UPB1iD51d8f99nzSSvEwkZhHDwMAPAIA2kQ4cAAAAMQwM/AAAaBPpwAEAABDDwMAPAIA2kQ4cAAAAMQyIYQAA2kQ6cAAAAMQwIIYBAGgTAQAAAKDsAz8mWACA9oz2DAAAAIDBI4NHAKA9AwAAAAAGjwweAYD2DAAAAAAYPDJ4BADaMwAAAABg8AgAQHsGAAAAAAweAQBozwAAAACAwSMAAO0ZAAAAADB4BACoVnv2/78tu++nJgXAAAABUHRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtZmVuY2VkIGNsb3NlPSJdIiBvcGVuPSJbIj48bW92ZXI+PG1yb3c+PG1mZW5jZWQ+PG1pPlA8L21pPjwvbWZlbmNlZD48bW8+OzwvbW8+PG1mZW5jZWQ+PG1pPlE8L21pPjwvbWZlbmNlZD48L21yb3c+PG1vPl48L21vPjwvbW92ZXI+PC9tZmVuY2VkPjxtbz4mI3gyMjA4OzwvbW8+PG1mZW5jZWQgY2xvc2U9Il0iIG9wZW49IlsiPjxtcm93Pjxtbj4wPC9tbj48bW8+OzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1uPjkwPC9tbj48bW8+JiN4QjA7PC9tbz48L21yb3c+PC9tZmVuY2VkPjwvbWF0aD4bZxO8AAAAAElFTkSuQmCC" style="width: 152.00px; height: 24.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="open square brackets stack open parentheses P close parentheses semicolon open parentheses Q close parentheses with hat on top close square brackets element of open square brackets 0 semicolon space 90 degree close square brackets"> nên P ; Q ^ min ⇔ cos P ; Q ^ max                                                 ⇔ 1 2 m 2 - 2 m + 2 max                                                 ⇔ 2 m 2 - 2 m + 2 min                                                 ⇔ m = 1 2 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABeUAAAPcCAYAAADPA9CsAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAH781CISwAAgABJREFUeNrs3Q/YHNV6GPZjWZVlRcFRsCormHKDVVVRKSGRKcYy4RKrKlZlqmJjWcUqF6shKiWYEDmEEsKllJhgjAnFuFilsqooijGVVSpzaTBRMKH4NoSouiohclSqKFRR1ChEVnQVXcX0nOx81d5l589+O7s7u/v7Pc/72Bd93+zsmTln3vd8M2dCAEbp22NcE+MXYvzlGD+f/d9fyP77t2siAABATQEAAJ/3HTG+J8a/H+OHYvxEjAdiPBHjxRi/EuM3YhyMcTzGuRifVYhz2c8fzH7/V7Ltpe3+VPY5P5R97vdk+wEAAKgp1BQAAIyFb42xOMaKGD8Q4z+O8ZMxfjrGX4rx38f4tRi/GePDGCdjfKNiMjys+Ea2Xx9m+/lr2X7/pex7/GT2vX4g+56Ls+8NAACoKdQUAADM2vwYV8S4NsYfj3FHjK0xHgmtxzr/xxi/HuO3YvyDGP8sxu82LBkeVvxu9v1/O2uPX8/a5+ez9tqatd8fz9rziqx9AQBATaGmUFMAAEygy2L8wRjfG+PWGHfGuD/G4zFeiPHXYrwZ44MYx2L8iylNhIcd/yJr7w+y9v9r2fF4PDs+d2bH63uz43eZUxkAADWFUFMAAAzPnBjfGePfifH9MX44xt0xtsX4mRi/FGNvjLdjHI5xIsYFiepExYXsuB7OjvPe7Lj/THYe3J2dF9+fnSffmZ03AACgphBqCgBgqn1bjD8Q49+L8cUYPxLjT8b4r2L8XIxfjrE/xnsxjsT4p2F6H+VM8WloPdL61Rivx9gV4xdD6y6Q50Lrsc7nsv/9i9m/v579/D/Ifn9a2+53s/PnSHY+7c/Or5/Lzrc/mZ1/X8zOxz+QnZ8AAKgp1BRqCjUFANBIC2N8IcaqGGtjbIrxp2J8OcZ/G+OvxvhfY/ydGP93jN+Z4mTuYox/EuPvxXgnxr4YL8d4OsafjbElxoYYN8X4QzH+zRhzazpOc7Pt/aFs+xuyz/uz2ee/nO3PO9n+/ZNsf6f1WP1Odr7+nez8/avZ+fzl7PzelJ3vq7Lzf6GhAABATaGmUFOoKQCAXqRH8n5/jOUxboyxPsZdMR6M8RdjvBTj1RgHYnwtxv8T419OcYL19Rj/KMb/EeOtGK+E1h0l/02MB2JsjrEuxg0xvifG74vxLWN2TnxLtt/Lsu+xLvteD2Tf8xez7/1W1g7/KGuXaT0n/mXWL76W9ZNXs37zF7N+dFfWr1L/+rez/uZRWABATaGmUFOoKdQUADAB/o0Y3xXj341xc4zbY/yJGH8uxjMxdsR4Lca7Mf5+jP83xr+a4sTnn8f4v2L87RhfifFXYvzlGH8hxn8ZY2OMNTH+SIx/K8YCp1ihBVk7/ZGs3TZm7fgXsnb9K1k7/+2s3f/5FJ97/yrrf38/64+vZf3zmay//oms/96c9efvyvo3AICaQk2hplBTqCkAYEB+T1sy8h/E+PG2ZOT5GLtjvNGWjJyZ8mTkVIyP2pKR/yHGz7YlI/9JjD8mGWl00ffHsuM0U/T9bHYcZ4q+j7LjPM1F35m2ou+NbBxoL/p+PBsvZoq+3+MUAwA1hZpCTaGmUFOoKQCYNumxvUXh0mN7/1GM/yzGnw6XHtv71Rh/I1x6bO/8FCcI6bt/EuNQuPTY3n8X48lw6bG91IbfFy49tvctTrOp61O/Pzv+35edDzOPRz+ZnS8zj0cfys6nae9TM49H/41svJl5PPpPZ+PRzOPRy7LxSp8CADWFmgI1hZpCTQFAI6QX3CyJsTJcesHNfx7joXDpBTf/c4y/FbzgZuYFNx/HeD9cesFNuiPnsRj3hUsvuPmjMa4KXnDDYC3MzrM/Gi69SOy+7Hxsf5HY+9l560VirXHsb2Xj2syLxB7Kxr2ZF4mtzMbFuU4xAFBTqClQU6gp1BQAlEl/vb0uxg/G+LEY98Z4NMZzMXaF1lp1/3uMozE+DdP9KOc/Da216v63GP9LjF+O8XMxHo5xT4wfifHFGNfEWBpjntOLCTAvO5+vyc7vH8nO94ez8/+Xs/6Q+sWRrJ9M86Own2bjZRo3X8/G0eeycfXebJz9wWzcXeT0AkBNoaZQU6CmUFOoKQCmz6NTeIG7EONEjMMx/maM/ynGL8X4mRh/JsaXYvxwjO+PsTzG5cFb3aEXc7J+szzrRz+c9as/k/WzX8r63d/M+uGJrF9O21j0550qAKgp1BSAmkJNATB97h3zC9DZGMdifBDjr8fYE+OFGI/H+FMx/tMY/2GM743xB2P8XoccGuv3Zv30e7N+m/rv/Vl/fiHr33896+/Hsv4/zuPXf+GQA6CmUFMAago1BcD0+bGGXEh+N8bpGL8d47di/HqMnTGejfFIjK0xfjTGLTGujXFFjG9z+GDqfVs2HlybjQ8/mo0Xj2Tjx85sPPmtbHw5nY03TRj3fszhA0BNoaYA1BRqCoDZG9QAO2g/OIB9/kaMfxzj/4zxmzF+Lcb2GE/F+OkYPxnjthirY6yIsTjGtzqFgCH51mzcWZGNQ7dl49JPZ+PU9mzc+s1sHPvH2bhW91j5g65JAKgp1BSAmkJNATB9g9V1JZ9/LsY/jPF3Y/xGjF+J8Qsx/usYPxXjJ2LcGuP6GFfH+A6nAjChviMb59J490PZ+PdT2Xj4C9n4+BvZePkPs/GzaHz9w65JAKgp1BSAmkJNATB9g1V6U3d6MUhah2zmDd5pUP/uGN/usAL05duz8fQPZ+Prj2Xj7Z/Pxl/XJADUFACoKQAMVgC4JrkmARi/AXBNck0CDFYA4JoEYPw2fgPgmgRgsALANQkA4zcArkmuSYDBCgDXJNckAOM3ALgmAVM1WAGA6xkAxmAAXM8ADDgA4HoGYAwGANczwIADAK5nAMZgYzAArmcABhwAXM8AMAYDgOsZYMABANczAGMwALieAQYcAHA9A8AYDIDrGYABBwBczwCMwQDgegYYcADA9QzAGGwMBsD1DMCAA4DrGQDGYABwPQMMOADgegZgDAYA1zPAgAMArmcAGIMBcD0DMOAAgOsZgDEYAFzPAAMOALieARiDjcEAuJ4BGHAAcD0DwBgMAK5ngAEHAFzPAIzBAOB6BhhwAMD1DABjMACuZwAGHABwPQMwBgOA6xlgwAEA1zMAY7AxGADXMwADDgCuZwAYgwHA9Qww4ACA6xmAMRgAXM8AAw4AuJ4BYAwGwPUMwIADAK5nAMZgAHA9Aww4AOB6BmAMNgYD4HoGYMABwPUMAGMwALieAQYcAHA9AzAGA4DrGWDAAQDXMwCMwQC4ngEYcADA9QzAGAwArmeAAQcAXM8AjMGaBgDXMwADDgCuZwAYgwHA9Qww4ACA6xmAMRgAXM8AAw4AuJ4BYAwGwPUMwIBTwXUxnnGYh2pbjA2aQV9Bn3I9AzAGy5OQ/6gp0KdczwCmZ8CZnyUDM99luUM9FMva2nxvjMWaRF9Bn3I9AzAGy5OQ/6gp0KdczwAme8BZFeOj7DucC+Px1+BTJcditnEhxvkYZ2Icj/FajJ0xHolxW4zLBvBd1mWflz7/ZIxbdTN9ZQwsyr7/kzH2xHgvxqdZ/7nY1o8+yP794Rg3x5gzhH3TpyTQAMZgeZKaAn1FTaFPuZ4BBpzGejC72H2WXfxWj8l+b88u2BcGlEgXRUoIHo1xVY3f59oYn7R9xhO6mr7SQCuzc/NgH/3ndIznY6wY8L7qUxJoAGOwPElNgb6iptCnXM8AA06jLAytx7DaL2o3jOHxmJPtd7o4nhlyIp2SqfTX+mU1fZcrwqU7JlLsz44T+soopUdr780Kx7r70Ksxrh7gvutTEmgAY7A8SU0h/9FX1BT6lOsZYMBphHRROdSREFw3Acfmquy7VL14P5N97zkdyUJKjjbGeDlUe6Q1JdKP1vQdFndc8D8I1q/TV0ZXODxa0gc+yIrXDVn/a+9LC0Lrkc/HYnxYsI30SOqDA/we+pQEGsAYLE9SU8h/9BU1hT7legYYcEbqmvDNj1+dCZP1F/qXKibPWypuLyUEW0NrDbmybb6eJeB1XPA/btvukRhLdT19ZYjuLzjnU8H4Qmg9dtqLtH7q0YL+81oY3B0n+pQEGsAYLE9SU8h/9BU1hT7legYYcEbi+vDNd32kC+HaCTs+Wyokuh/PYrtLYrxfYdtv1PQ9ruxIYI4Gf4nXVwYvvXTqYEmS28+joQuzPpK3/bSm66IBfTd9SgINYAyWJ6kp5D/6ippCn3I9Aww4I00IermzY5w8UyHJfX6W204X9iMVtv9ojcfsXNt2PxxgcsH09ZVOj4dLL53qjHQe3l3T58wtSaLfjjFvgMdWn5JAAxiD5UlqCvQVNYU+paYADDgDtzx8fg23Fyb0+LxSIcFd18f2b66w/bSe3RU1fZ/Ou3QOhG9eYw99pV/pjq13Cs7n9LjttTV/ZkpajxV85vYBfl99SgINYAyWJ6kp1BT6ippCn1JTAAacgUqPUh3v2M/0KNncCT0+x0qO0YUavvvbFZLop2v8Trs7tv2Sbqiv1CTd5VG0tml6LHtQ6yTeUdKHbh/g99anJNAAxmB5kpoCfUVNoU+pKQADzkCkv9R2/rU63XGxfEKPzeUVEtv9NXxOlTUmT9T4vS4L3/xyoBR36Yr6Sp/S3V3nCs7h42HwLy76KBTfTbNgQJ+rT0mgAYzB8iQ1hZpCX1FT6FNqCsCAMxAvdNnHhyb42JT9lTzFvTV8zpUVPuezmpOv2zq2fXbCkzt9ZbR9Ja1/uWwI+7EtDGctVX1KAg1gDJYnqSnkP/qKmkJNoaYADDgDt77L/n044cfm5QpJ7YqaPut8hc/aUPP363zE9au6o74yoELzliHty/KS/Uhrcc4b4OdPe5+SQAMYg+VJago1hb6iptCn1BSAAacm6YUnJ0K9LyMaB0dLjs/RGj/rZIUk5M6av9+NXT5jmy6pr/RgXYXz9tEh79PZkv25e4CfPe19SgJNU6T1d58a0LZXxnhME2MMliepKeQ/+oqaQk2hpgAMOIO2vcu+Tfpfa1dUSAzqfOP9mxU+b/MAvmfnGoUp+bhSt9RXKlgditd7TPH2CPZrf8k+vTXgz5/mPiWBpgmuCJfWgt1b87bTHXqns23vCZP9kj2MwfIkNYX8R19RU6gpXM8AA84IrcrZt40TflzuD8N99PPtMPy7WkJ2HDs/Z49uqa+USAlh2Z1YKXG8agT7tqtkvy6GwT5uOs19SgLNqKW72D/p6O+ratr2/C7jXpr8WqjZMQbLk9QUagp9RU2hT6kpAANO3d7rsl/pUbo5E35cXis5NhdCvXfInQ7DX/8xZMfxTJfPWqVr6is5UvJ5sML5+uCI9m97hX1bP8DPn+Y+JYFmlFZ3uZbWfd3snPRP8X5oLZcDxmB5kppCTaGvqCn0KTUFYMCpxdqc/Xpuwo/J3CxBLjo2+2v+zIsVLvqDukNgZ2jGI4LjbJr6SpUE9WDD92/Qa1JOa5+SQDMqaYKp8+WGdwzos5bGONzxWR/HuNphwBgsT1JTqCn0FTWFPqWmAAw4dXg3jPat56NS5UUzD9T4ecsqfN4nA/y+t+d85o1jdMzSHQPpTqSzWfGTErh79JXabahwrqa4ueEJ9KAf/ZyEPiWBZlw8EIb/iH96AV/nnYynQutu/UlwZXYN3Z1dT2eurRey/z/9UeLVbDLihhHsX1qj++5ssuL10Loz+Fy2f+ezfTwU45VsH4c99qb3GmzN2u9Ql/b7MPu3LaHe5Y/UFGoKNYWaQk2hplBTAEzAgJO3ll0qeib9MdPnKlyAV9T4eVvCcF8A1WlB6H5Xzetjcrw2F7Tbq/pKbdLyDCcrnKtvjHg/d1TYx/0D3odx71MSaMbFs13OtWFNnqSJ+cNdxv0NY9yead/fqThR0vmkwENhsOvrXxZaSxgcnsX+zSz98GRoTZgPSlreaF+odqfyTKQ/KGzLrhszOc1FNYWaQk2hplBTqCnUFGoKYHoHnB0jTEhG7aMKxWed3qhwwb9+wN/5vZzPXdbwY7W8QvH7sL5Si12h2gTDdSPez1fCaO8SG/c+JYFmHKQitds6zU8NeT9Sfz4bmrP+7WylOxEP5YyV6Vr2cmjdMZiud0UvkUwT35tr3rf0gt3Hctr5RDbmz+xfuk59EMrX73461P8HhG05+Uhq193Z/qVId1UezNmvr/Y5Zqop1BRqCjWFmkJNoaYAGPMBZ0HIX/9w24QfjyqPfb5YcwJY9nnvDuF7v5jz2U83/Hg9W6H9TukrfVtdMXluwl0b+0O1OxP1KQk042lJaL1ctSlrrD6Zc85vH4O2nN9lrLqY/bdrC34v3RF+vKC/78623a80efhRzrG+qeD3rsrG2qK1vNNkaF1L77yQcz1cWfA7aYmgZ0L+JOA8NYWaQk2hplBTqCnUFGoKYPoGnKJH99ZN+PG4p8LFt85H0/dU+LxhrFG7qSD5bPLjkq9VTOyW6yt9+aBiOzdhPeVPG5JAj2ufkkDTZGmi+JOcc2zViPapaM3oN0Nr2ZUmSsu4dN4dn9Y6v6bi768q6fMHQn8T83eGz7+8N8X9PWzj6pLrV5oQv6vPduz2ToNelgdJ6wJ3W8ZhgZpCTaGmUFOoKdQUago1BTB9A87egn2aP+HHY28of+x5bk2fVeUFNzuH9L2Liuu1E5BAr9BXZu32im38bgP2dW7FfT2pT0mgGTvrQ/clTGZi7gj3q+jcT2ugX9mwtrwmfH4iOE2i97qky1thMHcB35+zvU2z2Fa6Fpct6XH/LPczHdfOPxwcmcUkyaou21mqplBTqCnUFGoKNYWaQk0BTNeAMyfkPzp3ZsKPRdF3b7/rrQ43ZO1Z9FlHw/DusEvfPe8R6pcbfMyqPGp6JgzmLoJp6StVX6q3uQH7ekPFfX1Dn5JAM1YeqdCv0xq1y4e8X2ly+8OKRfvqhrTl1eHzE/LpjvnZrLG+ucJ3X9njNu/K2U4/7wtIE1plL7C9cxbbfSbUt8zEwx3buVlNoaZQU6gp1BRqCjWFmgKYrgFnTWj22m6j+u51vrztllD+ONypWRSy/ToeRncHwGyldWPPlrTl4/rKrK2rmJA25fHJTRX391V9SgLNWEiTqbsr9uumR5pwuWvE7bkotCbn2vfrXJj9y+KWVPjez/SwvVWh+8RUWle+3zuKF4fuy8TMRLpT/doet3miy3Zu7WPS5VjbdtaoKdQUago1hZpCTaGmUFMA0zXgPBpG/9jjqDwT6r/jq11aH/TJUO2OulG8bb7osc3rGnzcbgvd151NsU9f6ctboVpC2pQXDb1UcX+361MSaBovrXlede3ZcYpRjpf7uuzPw31u81DJ932t4nbSH2COhvqWremmbOmEtPRM1Res5r3E86Y+9u++0N8a0moKNYWaQk2hplBTqCkAxnjA2TsGF8lBKSssP57ldtPdWQ+F7ndUdUaagLhqRN9/Z6h/vdVhSYVNesFVusPlQtaO9+srfVnWwyTTNQ3Z5/cq7u/d+pQEmkZLS3ecDJM3IT8T+0PrrvVh6nbXX8pL+l2r+MkK37WKx3J+/5Oa26FsGZvHKm4nbw3vNX3sW5ponZkQXK+mUFOoKdQUago1hZpCTQFM14BT9Ajk5gk+DktDtZfOpDuX0t173R6rm5f9W3rhysbQukvm7ZC/Blznm9sfDKN9XO/pgv17RVedur7yWMVk9GBD9nduxb7W752M+pQEmsG6t4e+PM5xJMx+2ZhepfzkkzCYpRiuKjleVZavSTlY3t2pz9fcFjeVHJc0EXd5he3cmfP7j/a5f7uy7dyuplBTqCnUFGoKNYWaQk0BTM+AM79kf26f4ONw94iK8rR+aLrjZWED2uCukv1kuvrKRxXP4Ycasr/rQ/V1nefoUxJoGifdJTwp68dXjTQRs24Ibbst5/NX1LT9vBfxpruBq0xwP17QRrcNoD3KlkWqcrd83qR8Wvd3Xh/7NnMH/kY1hZpCTaGmUFOoKdQUagpgegacspcS3TrBx2HPEJPm9Ejrs6H1eH6T3FGy3/N016npK8t7OJ9XNGSfn624vwf0KQk0jZPuGD8cpmtCvj0eGXD7HuvymUdr/ox0Z+7JtomKl0NrqY0yc0LxUkWDWOZna8nxON7npE0/TyCk60K6Q3M2d8eqKdQUago1hZpCTaGmABjTAWdjyf7cMqHHIBWEZ0u++3tZ0ZwS7ddD683w6XfOZ8XnZ1kRdT777+nR0fRCm7RGYHoBzD2hdTdcky+YZXcFrNZdp6av3FcxGT3aoH2uehfOI/qUBJpGSXcB5j26n66lWybke94Quk+Ot79EcBB3uOZN+Owa0PecV9P+pTgzoH1cUuFaUTY+X1by+xvUFGoKNYWaQl9RU+hTagrAgFPVlpL9uXJCj0HZ+qIptk3Bubi2gQVmU016X3m1YjL6fEP2t5e7cK7RpyTQNEJas/W5UHwH2pIJ+85pKZe3QvE688tr/syXcj7rgYa0SdE58P4AP/dgyZj1RIVtvFWyjXTH/DDX9VZTqCnUFGoKNYWaQk0BMKYDzosl+7NgQo/B4xUuutdNwbm4OjTj7fLjYNL7ysmKyWhTEsBHKu7vR/qUBJpGSC8Hfb/gfEl3hM6Z0O+evlfR8hbp7vA7avy84w0fv98raIvXRngdf6PCNm6tcN1JyzLdqKZQU6gp1BRqCjWFPqWmAAw4RXaE6Vz/7/2S731qSs7FRSXt8ILuOhV9ZWHFZPRiaMbLxJKDoXmPmU5jn5JAU0WacP604FxJL+GcOwXt8GZJn3muhnZYGpq9TvGc7FpS9MeZQSlbMuJsTcdxJtKyI5cPuD3VFGoKNYWaQk2hplBTAIzpgLN7ChPosgtcij1Tci6WJU4v665T0VfWVUxGDzdkf6+puL9pndYl+pQEmpGZH1oTk2V99YYpaY80YX6+pC3SHyiW9fEZGwq23YQXQy4r+f6DnJRfXeFcrHItT9eVqneCprXBt6op1BRqCjWFmkJNoU+pKQADTqc9U5hAl90plWKTBPpfx07ddSr6yqaKCemuhuzvsw3e32nrUxJo8lwRqr047eyUtcsrFdvktllu//6C7d7UgO9ftvzLICfl54X6/kCUJvjPherrEKc/tgxiCRM1hZpCTaGmUFOoKdQUABLoiUmEUiydknNxfkk77NZdp6KvPFAxIb2vAfualnY4VXF/V+pTEmhGJr047XgwKT+bHCTFlllu/+WCbd7SgO9/e8n33j/gz79Q8vm9LPGzJjt/P+sh0hJFl6kp1BRqCjWFmkJNoU+pKQADzjQm0GUX30NTdC6W3TXmrpbp6CtlL5yaiXUN2Ne7Ku7ra/qUBJqRS5OPL1for7dP0TW3LAc5GvpbzueVho/hZXcWvzvgzz9d83VuVYwTobeJ+fTzm9UUago1hZpCTaGm0KfUFMB0Dzi7piyBvj5Uu4tpWnjUVF9Jqqz5nOLKBuzr+6G5d7RMY5+SQFNFmnQvmgxNk5RLpqAdyh6TT3/AWNDnZ+wt2P7GBrRB2aT86QF//qFQ/0RROncPhN4m5lO8VcN1VU2hplBTqCnUFGoKNQXAmA44ZXewLZywtn+swoV3vQT6/4/tuutU9JWqCfScEe/nTRX38yV9SgJN46QlHN4OxS99WzzB37/okf4zob51p18r+JxHGtAOd4Tyl+kN0puhvuVrOj0Uyl/kW/exV1OoKdQUago1hZpCTQEwpgPOoyX7s3zC2v6dCsXg3Ck6FxeVtMdTuutU9JWXwnis+/xWhf1Mj5Jfrk9JoGmsJwvOmWMxrp2w7zu/ZJLiYIxlNX7evoLPeqUB7XFbhXF80QA/v2xS/oY+t391aK2L3+td88+qKdQUago1hZpCTaGmUFMA0zXg3FmyP7dMULunvzZfLPm+b07ZuXhjSXts1l2noq88UjExHaUqj4l/lh0nfUoCTbOlF2SezDlvzsW4Z0K+580xPgrFd7nVvUzBq6F4maBRWx1Gu9Zw2aR8Xccj3SH9YehtYn42SxGoKdQUago1hZpCTaGmABjTAWddaP5LWOpSto5pim1Tdi6uLWmPDbrrVPSVzaHai+lG6Z0K+7hPn5JAMzbSerJfDb3fUTwJkf7wsGlA7bozNHNt3BnzKrTPIP8o83HJcalTWp7hvtDbi2B7XWJITaGmUFOoKdQUago1BcCYDjhLSvbn9glq9x0VLsCrpuxcXF/SHqt116noK+tCsxPo9RX2L911e7k+JYFmrKSlHao86j5JcSQMdmK8bFmEJxpw3MsmqXcN8LPPhOIXrw7Cwqzdq6w3n+6+7mXpCjWFmkJNoaZQU6gp1BQAYzzgFBUJk/RYVFkReGoKz8WyF67N012noq+UrVmY4tMR7Vs6B49WmMS4SZ9yPWNspfHzXJj8Cfl0591lIx6DjofBv2DvqpIJjVdK9vGjAe5b0ZIjTw+4XdJ6829UOE9eUFOoKdQUago1hZpCTaGmAKZjwClaX3NSXiBybYUEYc8Unot3lRTuTE9f+aRCkjoKj1fou/fqU65njL10V+mxMLkT8g8PqR2vHvGYmSYJ0strjxT8zJYK+3jFAPat7O7UNSW/vyH7uX4nbMquayfVFGoKNYWaQk2hplBTqCmA6Rhwngn1vnSqibaF5r/MpWnH/hVddar6yp4KfWTpkPfpmlD+IrXn9SnXMybG4hgHwmRNxp8O5ZO9dTtZsk9pwmThgD77+VC+NvrSEU2MbCg5TnMq/n4df2B5MtTzRwk1hZpC/qOmUFOoKdQUAGM84NxWsD/7J6TN32pgctAEuwra40Fddar6SpWXlg3zhULzQ2sJg6L9eVWfcj1jIj0fJmNC/nBoLeUybC9X2LcdA/jcO8Ol9YIX9JmXvTuA/Xukz8mYmUn5AzXtz6GC/blVTaGmUFOoKdQUago1hZoCmPwBJz1qnPeX408noL3nhvK/jH84pefi/oI2uV5Xnaq+kvrJ2ZJ+8twQ92d3yb7sz/ZZn3I9YzKlx7bLXoy5PQx/8itdB+6uMOGQxoKFI2q7NaHaHw3uqfEzb247Xlsr/HyVlwEur7ld3urzs2Ym5VMecHlN53je/qxTU6gp1BRqCjWFmkJNoaYApmPAKXpcfNxfIrKhQuH3/JSei5/mtMcZ3XQq+8ozJf3kyJD2o+zR8H0NTZ6nsU9JoBmk1aF4KZabR7Rfc0rO/Scb0HZlL7ObiY01fNZN2RiXtnewh9/7IAxv0ib9gSRvAmzXLPLJ+2vYp6IXIo7rpLyaQk2hptBX1BT6lJoCMOD06L6CfVo75u29vUICfdsUnofzCtpj1xjs/7XZfqbE5EL2f1+LsUlfmbUrs7Ys6iurB7wPm0L5nbH6lOsZ0yOtrZ23zMcdI9qn1Tn7k8bPuxrSbltD9WV2Hurjc9Kk/rkwu7v3birZrwuhvhe+5rVH2veqSwy1T8geGvAYelWfv6+mUFPIf9QUago1hZoCYEwGnPRytbw7iO4b8/au8gb4+VN4Ht40xgVF2WTDgeyc1ld691RJ2742wM++o+Szt+lTrmdMpXSXc7fHuNNd2aO4w63bMiinszGgKdLd/B+G6hPz78W4oYftp0njziUBXpjFfr40pEmTvLZ4oIdtdN4lfWsNx6jbPp1UU6gp1BRqCjWFmkJNoaYApmvAeSNnn/aMcVtfX6EQPTql5+E9Oe1xOisUm2pVxQmGQ2Fw6/lOYl+ZkYrJIyVte8sAPrfobqFTA/pMfUoCzXh5oct5tnPI+7C5yz58HOpf/7wOq0PvL6d9P5usWBu+eXJxbnb9vTubSOmcSDoSZjcZma7TZX88uGEAx2w2L1Pc0CXP6Md1Ofv1tJpCTaGmUFOoKdQUago1BTBdA07eOoknx7itXwjVXsY2jfJeetP0tTBf7mFy4UV9ZVauCZfWB+4Wx0I9L7mbSdiLjumbMZboU65nEyRNMKa7ks9nfek+TdKTB7qca88M6bOv7TI2pknsxQ1urydD7xPzvcbZrG1m6+psoqFo7eHLZrntxaH7ewkOz2Kb3a79j9V8bNJyOr0s2aOmUFPIf9QUago1hZoCYAIGnDnZhbHbfq0cw3Zemk16lCVZH07peXgipz1WNHy/9/eQQF8cUPI1aX2lm3SXZNFakO+G1kvq+pEezfwo5L/E6B59yvVswqRz4WyXtrpf0/RkffjmdcxTPDHgz7yqSx9PdzguHIP2ej0MdlK+jkfp013IRRPzqa17Xaoorcn7Tug+yT+b3CBv8mzdLLa1rMs53OtyOmoKNYX8R02hplBTqCkAJmjAyXtD+bYxa+PLcgqxvLhzCieGxvUOn309Thbcra/0lUSfKSk+Z7NkQyoyXg3FLzBaqk+5nk2gvJcEntA0PbsxtB5Db2/Hxwf0WWk8Ot7xWWkMmzsmbZXuHjwQ6p+MT5Mst9e4n9cVTESkeDtUnxS7POc7fzXM/smGDQXtsKWH7aQ/8HSbhNutplBTqCnUFGoKNYWaQk0BTO+As6BLkTvzArBxkP7Knv4S/vEsistUDKU15uZMwTmYl/xdNwb7/lCPx/VlfaUv6W6+QyWTMs9mP1ckPY6/tWRi6K0xOQcnrU9JoIen6K68OZpnVoVr52T5gzV/RprA7VwT96UxbKv52eREXRPyaWmFQbzYdknJdeJ0dozznlBId8ffG7pP7j+f/ftsbQjlL4S8ueD302enp2I+DfVMyKsp1BTyHzWFmkJNoaYAmLAB5+GcfVvW4DZNL8NJf2G/GOq58+vdrHidVAe7fO99Y7LvC3L2Py/26Ct9S0VlWjf3bCh/bDu19/YsdsTYm1NodN75cYM+5Xo2BfImRU9qmllLd8AdDvW+GHTGwi4TCE+PeXulOz1P95knpXF+0Ovoby3Zz5SrpfWB0yTZC9n/TS+g7bbESBqfV9ewTxsqts+p7NrXvm/7QvflG1Le+pCaQk0h/1FTqCnUFGoKNQVgwEnSnTyfdNm3J8e0TWcb5yf0/FuVUxSOU9KXJkoeDa3H0MvW+Nyjr9Tm8iyRPl5D/0rrPqalJq7Sp1zPpsh1ofvEnDXl+5PuaH03DOZlfJvCpUfuH5+Q9kpj+RMVJje6vSTvxiFf69OE9dFZXGPSGJwm6dfWuD8bQr15Zppk6Xd9YDWFmkL+o6ZQU6gp1BQAEzbg3Nll3z4N4/FCM4p1u1PziQn6fis6kurt+spApMeynwutu0jL7iY7k03mpLtc0gTXlfqU69kUS8tbfJD1mzTZeJ8mqUW643FQf9xIxfDWCWyzdMdieklpWi7g9ezadT6LdBdjegLhley7X9GAiYr0EtQ0KXYw27/2fU0TO3uz69Lt2fkwDGkiLd2VeUfWjmkf0uReusv/XNs+pv8/TbiltY/T0gR1TR6pKZD/qCnUFPqUmgJgAgecbuu0PeTwjbXlXZKdtFbu/An7nm+2fb979JWBFxDtd/6mu1XWh9bdiWkSZ44+5XoGgJpCTSH/UVPoK2oKNYWaAjDgVJPuDDsXPv+CrUUO4dja2+Wcu2ECv2f7OoUr9ZWBebTjO6eXoS3VpyayT0mgAYzB8iTUFPqKmkKfUlMABpwhua/LPj7nEI6ltV2O5SMT+D2va/t+h/SVgZgbPv94ZXos/4oG7WN61HO1PuV6BmAMVlMg/1FTqCnUFK5nAOM44Ozvsp/XO4xjJa1FeKzjGL42od91R9t33KKv1C7dqdP5aO2J0KyXK82cA4ezZF+fcj0DMAarKZD/qCnUFGoK1zNAAj1WA86iLheKaVrfbBLs7jh+h8JkvjTo5rbveFhfqV16pPZox/c7GVovwmpKofhauPSo7zJ9yvUMwBispkD+o6ZQU6gpXM8AxnXASWvofdqxrzscyrGwJXz+kcBJXKNvSfbd0ndML8m5Tl+p1ZosKe0cs74aY2cW22M8FmNzjHVDTiiXZ0XTzPFfo0+5ngEYg9UUyH/UFGoKNYXrGcC4DzjpgnShY3/vcTgbbXXHMTuZJRqTZnGMg23fc6u+UqttJeNWUaSkO724KK3HuCHGZTXv25wYD4VvfinWRn3K9QzAGKymQP6jplBTqClczwAmZcDZ0LG/6a/HNzukjbQsu7hP+oU+rTvY/vjjY/pKbdJdKa/2kTznRXr8Nt0FsynGlbPct/lZoXSkY9t36lOuZwDGYDUF8h81hZpCTeF6BjBpA86GLBlo/6v1NQ5ro6TH3o63HaOPQ7NemlOXNR0JzYP6Sm2u7ZKcDirSo5qvxHggxm3ZuTqnbV/mZYn2uuxnUlLfedfQ2ex39anJvp6ltUbvCsUv21qR9b27szEh/fytHedUFVe0beehbDtrZrGdsiL17uz879fykiJ9Tvbvm7N+dHfWLnOdxmAMliehplBTqCnUFGqKsa0p2vvbhuwz0j7fHy4tA7XIaQaTkUAna7MLVvtfd692aBuTPLff5ZHW51s8Yd8xJVRPdySm6/WV2jzYJUFtchzNEhB9avKuZ3OyPvRcR0HXubZoWv/1iXBpDdhucSq0HpsuMj8r0g4WbOdEaK0BOlsp+b8jtB7BvtBne6VHt9Nj7O9l29jf5WdSWz2aff+8x8EfcSqDMViehJpCTaGmUFOoKcamppiR3nvxcvj8Oyi6xbuht2WZNs6yL7V/r+09/B5IoHuwqmOw+kQSPXLpL/8ftx2T3dkFYdIsCJfuZtk1BsnMuPSVlCi+NUaJ88wLrxbqUxN1Pbs+S2L3FxRy7cf8gY4itSz25Xzu1iw5rrqdZ2ZRCOwo2NeqZib1u93d1Tkpv6akqGiPN4K75sEYLE9CTaGvqCn0KTVFU2uKdkvC55eF+jDGk6G1/FJa1unZGMe6fObrofqd83OyseeVku+RvnO6I39el22kpwUe7fI7afxNTw+sDIN5cgB6HnD6iVFIA8GBjk610iEeiZVtSVp6vPH+Cf++t4fWX4XHRdP7Srpon27bvwvZxfrx0HoEbk1WqCzMEu30vzdmScSbYfh3wXyY7YM+NVnXpJRYno9xpmTbC7NEcn/bfzuT/f6LWTK6p+C8fLyjb84UjueybbwU46nQurPjvYL9uKNC8fx8+OZH4mfbXndk3+l8wTbaJ+UfnMUxe9GlFIzf8iQ1hZpCTaGm0KfUFI2qKTrd0KW+uC/nZ+dk9Ui3u+bn9fi5T4XiP2yVaf+jxxvBkjoYrGrzWLi0zl26CHtR03Dd0pb8HBmzxHLaNLGvPNA2jhzIkule75htfyTw6ADHuY9Ca408fWoyr0nt592KkD+ZvSI7Fz7LCri8dRnTi7S63amSEuu0fufMHWcpcd5WkJje0lFgzsSxUHxXx+4s4Xw5i0/6aK+0nXS3ywsFfWxmUv7xjmJ9d1ZUvJj9zMWC/TAJBsZveZKaQk2hplBT6FNqiubUFJ370rmNZyv8Xrc73Wdzl/6+kP8HrrK+MPOz7wdPimCwql0aiA52DE4M3rVtCVlKXhZqksZrWl+5PMbOUO8Lo1KCk9a63hOq3SVcFOluhfSX95v0qam7Jj0Z8tdyrLru6/qcbbyWnVsnsz5Z5s6c7WyoWBCErK9frKG9luZsJ024P9jWbx7MSfCvCfl/IHC3PBi/5UlqCjWFmkJNoU+pKZpTU7TbN8vfXdnl99L5uaTHtlxUUEfcmvM76Y8UM39kS08wLDd8Y7AajFT8pzWhnnKYhyolKas1w1iZtr6yJEsWHsqS9ZS8pHUVz2YX5hTnsqTozexn0qOdN+pTU31N2pCz7XMVk94ZeXdapfPu+h62c7zLNnb2+J3eq6m93gnd12VM//dwaN1FU1bIf5azDcD4LU9SU6CmUFPoU2qKZtUUC3I+f2vFz+22Zv7GWbTnupz9OJTz8+3L3twfwGAFAI2/Jt2as+0He9zOjpztbOtxO7u6bONoj9t4pab2ytvO2zEuq7iNvJewLdUtwPgNAGqKRtUUed9jd8XPfb3L7z45yzbdnbMvnZPu13XUKWCwAoAxuCatydl2r3d03BX6e0x0xv2h+2Ofc3rYxq6a2qvbdtKj6728sOmBnH1Zp1uA8RsA1BSNqilW5nz+noqfu7/L7748yzZNy1V1W1IqLeVzRfYz6fscavvvV+omGKwAYLoS6NtrSqA35Wynl3URd9bUXt22c77HbeQ9ynuHbgHGbwBQUzSupni7y+/dUvFzu03K7+yjXe/I+R5vZv/+WNt/u1sXAQAYH3Ul0OtqSqDzJrHX9rCNJk3Kr83Zl01OPQAA1BSNqynSi1ZfCq33JrzdYx3SbVJ+d59tuzfnu6Q78GdedLzPKQgAIIEeRALdy3IvTZqUz2vfzU49AADUFI2tKXqVlpJ5N8x+6Zs86eXLp0P+kw6nsp8BAEACbVK+pH1NygMAoKZobk1R1aoYz4f8ifM9NXzG5pA/KX+70w8AQAJtUr5a+5qUBwBATdHcmqLIwhj3xTiYbfdEjOdifBAGMymfvBFMygMASKAbnECblAcAADVF3ZPyK2K8mNUEaXtvZNuck/17tzXl65qUvzLGmS7bPxnjcqcgAIAE2qR8efualAcAQE3R3Jqi3fXhmyfcXwmtCfpOg5yUTx7J+V67nIIAABJok/Ll7WtSHgAANUVza4pkWYzX2n7/oxg3Fvz8ICflF8Q4EvLXll/nNAQAkECblC9uX5PyAACoKZpbUzwY40Lb7+4LrYnxIoOclH8p296FnO/2SYxFTkUAAAm0SXmT8gAAqCnGrabY1fF7B2LMrfB7g5qUb2+Xe2O8m/P9djgVAQAk0CblTcoDAKCmGKea4sWO30l3pl9V8XMHMSm/OLRe5pq29Xb235aHSy+b7Yy1TkcAAAm0SXmT8gAAqCnGoaa4rcvv7O3hcwcxKb+vrQ5Z1vbfH8r5jsdiLHRKAgBIoIeRQLczKQ8AAGqKXmuKD7v8zv09fG7dk/J3t23noS7/fjDne77olAQAkEAPI4FuZ1IeAADUFL3UFNfX8B3qnJRPS+acybZxMOdnVsa4mLPftzgtAQAk0INMoDuZlAcAADVFLzXF5pzfuauHzz0S6puUn3mZa5p0X1nwc4/m7PfHwTI2AAAS6AEm0J12hXom5bttx6Q8AABMXk3xVM7v7Kr4mctzfn/vLNrz4bbff6LkZ+fEOJzz2c85NQEAmmndgBPoO3rczu2h/0n5V3K2MafHfdkT+p+Uz2sXk/IAAKgpmlNTbM35nXMxrij5vMUhf333oz3u+7Xh0pI0aY37uRV+Z1XOZ6dY7fQEAGie9TnJ26Yet3Nbznbu7XE7d+Zs57YetrE/ZxuLe9yXvV22caHHbWzM2ZctTj0AANQUjakp8ibyUxyKcXXO76W78o+H1uT9Rzm/f0Pbzy/M2qubeeGbXzZ7Yw/fOe9O/yPBMjYAAI3zQE7y9kCP28lbg3Fnj9t5Jmc79/SwjTM521jf474cy9nOoh628VzONl526gEAoKZoTE2xILSeis2bmE8357wa44UsdrXVC+nfbo3xbM7vnozxYlYDnCr4Pi+3/c7uHr9zmtA/HupbQgcAgAFJy7nkPWb5do/b2puznU9D9TvU54fWC4m6beetittYW5BI7+vh+9xcsJ1tFbexKEvAu20jJczuWAEAQE3RnJriyYIaIC9OZbVDsr7i73Rb1mdbx8+sncWx2FvwmemPCHOdrgAAo5Mmi9OjmwdKksVdWTI4vyDhXV0heU2Pcd4V48rw+XXd0/++LrTWcDxcsp20Vny6A+XytoQy3RGyNLTWh3w8S9iLtvFuaN2BszJ0X2N+WZYQny7ZTroD/pbs8zulyfZNIf/x1ZlIxcudofdldQAAQE1RX03Rvp3XQ/UJ+QPZ/rT//tGS39na8fPpu+/s8nMvZvtYRbrLf2OFGibVHxuCyXkAgKE7E3q/+6PbC04/meV2UtzUtp09s9zGmT6/T7fvtH+W22lfm3LTLLfxvFMTAAA1xUhqik6PhOIJ7nTHfd5LY9MfB7o9LZv+WND50tVTodqd+EU2zvK7z3MaAwAAAADQFOku9jWh9ZTtltC6Sz/dZV7l/VLpydk7st9Lv79KcwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIzOthiftcV2TQIAQIntHTnkQ5oEAACg3L0dxdThGPM1CwAAJeZnuWN7LvmAZgEAAMi3uaOIOh9juWYBAKCilDue7cgp79YsAAAAn7e+o3hKsVWzAADQoy1d8soNmgUAAOCSG2Oc6yic9msWAABmaV/4/BOYqzULAABACFfHONlRNJ2OsUTTAAAwS5fn5JhXaxoAAGCaLYpxJHz+8eLbNQ0AAH26rUueeSTLQQEAAKbS610KpX2aBQCAmuzpkm++pVkAAIBp9FSXAsmyNQAA1KnbMjYpntU0AADANLm9S2GUYqumAQCgZptzcs9NmgYAAJgGy2Kc6VIUvatpAAAYkLe65J9nYyzXNAAAwCSbF+Ngl4LoYoyVmgcAgAFZluWcnXno4RjzNQ8AADCpngndHx22picAAIP2VE4u+rymAQAAJtHNOUXQiRiXaR4AAAZsQYxPcnLStZoHAACYJAtjHM8pgO7VPAAADEneS1/TZP0izQMAAEyK7TnFzyFNAwDAkH2Qk5vu1DQAAMAkuCWn6Elxq+YBAGDIbirIT9dpHgAAYJzNi3E0p+B5W/MAADAib+TkqB/HmK95AACAcfVYyL8L6QbNAwDAiFxbkKc+qXkAAIBxdHWM8zmFzmuaBwCAEXs1J1e9GGO55gEAAMbNayH/7qPrNA8AACO2oiBffVPzAAAA46To5VlvaB6A2t0Y4x7NANCzV4OXvgIAABPgUEFxc6PmAajNynDpyaQzmgOgZ0Vry3+oeQAAgHFwZ0Fh867mAajFVTF2dIyxJuUBZueNgvx1i+YBAACabE6MIwVFzXpNBNCXy2M8E+NClzHWpDzA7BQtvXgsy3EBAAAa6Z6CguaI5gGYtfkxHg2tife8cdakPMDsfVAwvt6neQAAgCZKdxAdVcwA1D623h/jRMH4alIeoH9bgrvlAQCAMVO0lvzZ0LrLE4DqNoXiJcFMygPUZ26MUwVj7L2aCAAAaJrDBUXM85oHoLI1MQ6G6pPxJuUB6vFUwRj7keYBAACaZE0onihaqYkASl0X40A2br4XY2uMK9r+7VgwKQ8wSFeVjLPrNREAANAUbxQUL+9pHoBKLsbYHWNVzr+vDyblAQbtrYJx9oDmAQAAmmB5KJ4kukcTAVRyRcm/p5cMXggm5QEGaWNJbrtCEwEAAKP2bEHRkiaPvOAVoD5FLyE0KQ/Qv/TC10+DdyUBAAANLlqKJoh2aSKAWr0dTMoDDNpLBWPt2RjzNBEAADAqm0Px4723aiKAWr0ZTMoDDNpNJTnu3ZoIAAAYlaLJodOhtf4xAMMZd03KA9Tnk+CFrwAAQMMsjXGxoFjZrokAamdSHmA4it6blOIqTQQAAAzbgyWFylpNBFA7k/IAw1G2hM1DmggAABi290PxC7AsXQNQP5PyAMNzomDM/UDzAAAAw3R1KL5zaI8mAhgIk/IAw7O9JOddrokAAIBhKVu6ZpMmAhgIk/IAw7MhWMIGAABoiAMFxUl6+esiTQQwECblAYZnbowLBePuO5oIAAAYhstCa+I9rzh5VxMBDIxJeYDheiMU3y1/uSYCAAAGbWNJYfKEJgIYGJPyAMO1LVi2EQAAGLEdJYXJLZoIYGBMygMM16qS3HePJgIAAAbtREFRktbcnKOJAAbGpDzA8J0rGHtPaR4AAGCQlofiO4Xe1EQAA2VSHmD4Xi3JgVdqIgAAYFC2lBQkj2sigIEyKQ8wfA+W5MBbNREAADAou0sKkvWaCGCgTMoDDN/NwbryAADAiBwrKEYuxpiviQAGyqQ8wPDNyXLdvPH3uCYCAAAG4fJQfIfQR5oIYOBMygOMxldLcuHFmggAAKjbhpJCZJcmAhg4k/IAo7GjJBfeoIkAAIC6PV5SiNyniQAGzqQ8wGhsLsmFn9REAABA3faWFCLrNBHAwJmUBxiN1SW58F5NBAAA1O1ESSHiJa8Ag2dSHmA05obil72e0kQAAECd5oXiCXkTQQDDYVIeYHSOBTepAAAAQ7KmpADZp4kAhsKkPMDolC3neKsmAgAA6lL2YqvtmghgKEzKA4zOCyU58WZNBAAA1OX5kgJkiyYCGAqT8gCjU3ajyouaCAAAqEvZo7rrNRHAUJiUBxiddSU58V5NBAAA1OWDkgJkhSYCGAqT8gCjs7gkJz6kiQAAgLqcLylA5mgigKEwKQ8wOinnvVgwDp/XRAAAQB3mheIJeZNAAMNjUh5gtE6X5MbzNBEAANCvVSWFx1c1EcDQmJQHGK3XS3Lj6zURAADQr/XBC60AmsKkPMBovVKSG6/XRAAAQL82lRQeOzQRwNCYlAcYrZdLcuNNmggAAOjX/SWFx/OaCGBoTMoDjNZjJbnxg5oIAADo10slhcddmghgaEzKA4zWXSW58UuaCAAA6NeuksLjDk0EMDQm5QFG646S3HiXJgIAAPr1avAyK4CmMCkPMFrrS3LjVzURAADQr/0lhcdaTQQwNCblAUZrbUluvF8TAQAA/XqjpPC4WRMBDI1JeYDRWlmSG7+tiQAAgH6dKCk8FmsigKExKQ8wWpeV5MYnNREAANCvT0sKj/maCGBoTMoDjNb8ktz4tCYCAAD6daak8JiniQCG5lAwKQ8wSvNKcmNjMQAA0LfzJYUHAMNzOpgIAhi1otz4nOYBAAD6ZVIeoBnmxrhYMB6f10QAQ/GZsRgAABgkk/IAzbChZDxOsVQzAQycSXkAAGBkRYdJeYDhebfCmPyYZgIYaX58UfMAAACDLDoAGI7nQ/mE/Mxk0FrNBSBHBgAAFBwA9OaaGPfFOBSqTci3x94Yt8dYohkB5MgAAICCA4DPuy3GiRifhuIXuvYaF2KcjnEyxp2aGUCODAAAKDgACGFjqG8iPi+2aGYAOTIAAKDgAAAAOTIAAICCAwAA5MgAAICCAwAA5MgAAICCAwAA5MgAAAAKDgAAkCMDAAAKDgAAkCMDAAAoOAAAQI4MAAAoOAAAQI4MAAAoOAAAQI4MAACg4AAAADkyAACg4AAAADkyAACAggMAAOTIAACAggMAAOTIAACAggMAAOTIAAAACg4AAJAjAwAACg4AAJAjAwAAKDgAAECODAAAKDgAAECODAAAKDgAAECODAAAoOAAAAA5MgAANMHiGE8NaNsrYzym4AAAgIkgRwYAgD5dEeOjLIneW/O2b4lxOtv2nhhzFRwAADDW5MgAANCHdBf7J21J9MUYq2ra9vwYJzuS9DdjLFRwAADA2JIjAwDALK0Ol+5in4kNNX9G56R/ivdDa7kcBQcAAIwfOTIAAMxCmnw/35FA3zGgz1oa43DHZ30c42oFBwAAjB05MgAA9OiBLsnzxgF/5qIY73V85qnQultfwQEAAONDjgwAAD14tkvifM+QPjtNzHfeMX8u1L9kjoIDAADkyAAAMFILYrzWJWl+asj7sSzG2S778aCCAwAAxoIcGQAASiwJrZerdibMb49of57MSeC3KzgAAKDx5MgAAFDg2hif5CTMq0a0T+sKkvg3Y1ym4AAAgMaSIwMAQI71oftSMTMxd4T7VZTIp3Xnr1RwAABAI8mRAQCgi0dKkuUUu2IsH/J+XRPjwwr7djLGagUHAAA0jhwZAADazI+xO5RPeo9DXIhxl4IDAAAaRY4MAACZK2J8ECZjQr49nlZwAABAY8iRAQAgujm0lnz5bEJjf4xFCg4AABg5OTIAAFPv3hgXw+ROyM/EkRjLFBwAADBScmQAAKbWgjA568dXjU9jrFNwAADAyMiRAQCYSumO8cNhuibk2+MRBUelfRRCCCGEEJMRJuUBAGCEbg+tO8a7JcGnY2yZkO95Q4xjBQn/vhgLFRyKVCGEEEIIk/Im5QEAYBDmxniuIAE+EGPJhH3ny2O8FYrXmV9uUl4IIYQQQpiUNykPAAB1uirG+wXJ794Ycyb0u6fvtafgu5+JcYdJeSGEEEIIYVLepDwAANQhTTh/WpD4fhBad9FPujdLCoDnBtAOJuWFEEIIIYRJeZPyAABMifkxtldI0G+YkvZYGuN8SVukP1AsMykvhBBCCCFMypuUBwCAXlwR46MKyfnZKWuXVyq2yW0KDgAAGAg5MgAAEym9vPR4MCnfaU+odifRFgUHAAAMhBwZAICJdVmMl0P5BPTtU9Ie82KcKmmLo6He5XwUHAAAIEcGAGDKpEn30wWJ74kYS6agHZ4tKQDSHzAWKDgAAGCg5MgAAEyF9JLTtwuS38MxFk/w93+g4LufibFJwQEAAEMhRwYAYKo8WZAAH4tx7YR93/kxthd854Mxlik4AABgaOTIAABMnTUxTuYkwedi3DMh3/PmGB8VJPxpsn6eggMAAIZKjgwAwFS6MsZXQ/lLYCcx0h8eNg2pnRUcAAAgRwYAgH9tboyXwnRNyB+JsVLBAQAAIyNHBgBg6m0OrbvHJ31Cfl+MyxQcAAAwUnJkAACIVoXWi14ndUL+YQUHAAA0ghwZAAAyi2McCJM1GX86tF5sq+AAAIBmkCMDAECH58NkTMgfjnGVggMAABpFjgwAAF3cFeN8ScK8PcbSIe/XvBh3h/IJ+f0xFio4AACgceTIAACQY3WMkwUJ880j2q85JYn8kwoOAABoLDkyAAAUuCLGoZyE+Y4R7dPqnP25EFp3+Cs4AACgueTIAABQIi0Ds79LwnwwxtwR7M9bofsLXW9ScAAAQOPJkQEAoKIXuiTNO4e8D5u77MPHMZYrOAAAYCzIkQEAoAcPdEmcnxnSZ18b40zHZ78fY7GCAwAAxoYcGQAAerQ+xrmO5PmJAX/mVTFOdHzmG6G1tI6CAwAAxoccGQAAZuHGGKc6EujHB/RZS2Mc7/isV8No1rNXcAAAgBwZAABGYkX4/GT5gzV/Rlqa5kjHZ7yk4AAAgLElRwYAgD6ku9gPdyTSN9S07bQ0zaGObT+t4GBCC1AhhBBCiF5iUnMiAACggkUx3s2S6Bdr3vamcOnlro+PYdsoOKh6PgghhBBCmJQHAAAqWxDj/gFte1mMrQoOxtw1Jg+EEEIIEUzKy5EBAAAFB0Nxn8kDIYQQQgST8nJkAABAwcFQ/KrJAyGEEEIEk/JyZAAAQMHBwKWXFn/d5IEQQgghgkl5OTIAAKDgYOB+NOccSBP1X+qI6zQXACBHBgAAUHAwe7tyzoH1mgYAkCPLkQEAAAUH9ToRut8l/52aBgCQI8uRAQAABQf1+YGc439A0wAAcmQ5MgAAoOCgXk/kHP+tmgYAkCPLkQEAAAUH9fpazvH/gqYBAOTIcmQAAEDBQX2W5Rz7r2kaAECOLEcGAAAUHNRra86x/1lNAwDIkeXIAACAgoN6vZlz7NdoGgBAjixHBgAAFBzUZ2GMr3c57idizNU8AIAcWY4MAAAoOKjPj+Yc9x2aBgCQI8uRAQAABQf12pVz3H9C0wAAcmQ5MgAAoOCgXl/LOe7fqWkAADmyHBkAAFBwUJ/vjvGNLsf8gKYBAJAjAwAACg7qtTXnmH9Z0wAAyJEBAAAFB/X6Ss4x/4KmAQCQIwMAAAoO6jM/xte7HO/fjjFX8wAAyJEBAAAFB/XZkHO8f17TAADIkQEAAAUH9dqec7zXaxoAADkyAACg4KBex7sc698JrWVtAACQIwMAAAoOavJ9Ocf6VzUNAIAcGQAAUHBQrydyjvVPaBoAADkyAACg4KBefzfnWH+XpgEAkCMDAAAKDurz3TG+0eU4v6NpAADkyAAAgIKDem3NOc5/TtMAAMiRAQAABQf1+krOcV6haQAA5MgAAICCg/rMj/H1Lsf4Y00DACBHBgAAFBzU68dzjvHPaBoAADkyAACg4KBeO3KO8Rc1DQOQnszYFGNnjPdjnIlxIYv0/x+I8WKMdTHmaC4A5MgAAICCQ8ExaT7ucnzTcjbzNQ01SufTYzHOlowt7XE8tF5CDAByZAAAQMHBRPi+nOO7R9NQo2tjHAnVJ+M7I909v1gzAiBHBgAAFByMuy/nHN8vaRpqckOMT8PsJ+Rn4liMpZoTADkyAACg4GCcHcg5vl/QNNTgyhgnQ/8T8jNxKFhWCQA5MgAAoOBgTH13jG90ObbvaRpq8m7HufV6jI0xrgiXXuI6L7SWt0lrx78Tyifmn9GsAMiRAQAABQfj6Es5x/bLmoYabG07p07EWF3x924OraVq8saeizGu1rwAyJEBAAAFB+NmR86x/aKmoU/p7vdPsvMpLV9zZY+/n17qeji4Wx4AOTIAAKDgUHBMiLQu9z/rclyPx5ireehT+13ya2a5jTSRfyZn/PlYEwMgRwYAABQcjJMv5hzXHZqGGny1pvPpkYIx6HLNDIAcGQAAUHAwLr6cc1y/pGno09XZuXQhtF7o2o808X4x51y9VVMDIEcGAAAUHIyLv9flmH49xu/TNPTpnux8eq6m7b2dMwZt0NQAyJEBAAAFB+PgCznH9EBD93dFjPti7I7xXoxPY5wPrTuxz2f/+60YO2NsirHUIR6pV7Lz6eqatrc9mJSfBvo56EdyZAAAAAXHxPpSzjH9coP2cU5ovSz0g5LzsFuk5U7eDLN/wSj9+STGGzVu795g+ZpJpZ+DfiRHBgAAUHBMha/kHNMVDdm/tTGOzGJyoVu8E2O5Qz5UC2NcVeP2Nucc2yWaeqzp56AfyZEBAAAUHFNhfmitHd95PD9uyP49VdPkQnucjbHRoR9bW7oc01OaZazp56AfyZEBAAAUHFPj1pzj+YsN2LdXBjDB0B73O/xj6ekux3KXZhlb+jnoR3JkAACAWRYcio7xtCPnWH5xxPu1fcATDDNxl1Ng7Ozpchxv0yxjST8H/WjS8+OLmgcAAOjX+WBSftJ83OU4puVs5o9wn+4d0gRDigsxrnMajJWDHccwvUh2jmYZO/o56EeToqjdzmseAACgXyblJ8uKnOP4lRHvU7fz7FyMnaG1tm168dzctt+ZF+P6GJtC6y7qcz1ONHwYTOqOiwWhdddh+/F7WLOM5dijn4N+NClMygMAAANlUn6yfDnnOH5phPv0Tpf9SWuIL+phG2nidluMMz1MNGx1OoyFjeHzL3hdqFnGjn7+/7F3P6BXVP2i8BciIiFxwhNe6YgRIRIRgq90ohMWiEiIiCAe6YZFEBIhEUJPdCMl5InnRje64XkjQiRC8IpXvNERIkRE5OFEb0j0hJcQkQgRPOEJH/ERnnfW2fv3uN3Nmtn/98yezwcWle5ZM7NmvrtZ371mLRBHs2JeSXtd10QAAMCwyjptRk/Vy8nEdbx/Sseztes44v22boj6lmXl6x6TDOfdDrVwrOu6vaxJakecgziaJQtK2uuaJgIAAIZ1taTjsUAT1cbfhdbc8d3X8E9TPKZz4c6F0Z4YQZ1xFPWpHhMNj7stKm1ZuHPqmm81SS2JcxBHs+Sukra6qokAAIBh/VjS8TCNRH08l7iGe6Z0PE91HceuEda9OLQWAy1LMrzjtqi0d8OdSaiHNUntiHNG5YnE9f1cHImjCbunpK0uayIAAGBYX5R0PFZqoto4kLiGT07peI50HMPpMdS/uYckw+dui8qKo+Q717TYrUlqSZwzKk1Oyoujallb0lanNBEAADCs4yUdj6c0US3Mz8qlnOv371lZOIXjia9+3wy3R0A/NKb9fBPM+1pXnXPJH9cctSTOGaWmJuXFUfVsCH7AAAAAxuxwScfjaU1UC08mrt+BKR3Pto5j+GiM+9lVcv/ecmtUUueChj9k5W5NUkvinFFqalJeHFXPppK2OqKJAACAYR0o6Xhs1kS1sCdx/Z6b8n0VO/nLx7ifB0P5K/nz3B6Vcl9WroTb8/I+oElq//8Pcc4oNDUpL46qZ3tJO32qiQAAgGF9WNLxeEYT1cLZnGv3l6z8w5SOZ24B4YMT2NevJfcw1RETPqfD7akS1miSWhPnjFJTk/LiqHqeL2mnjzQRAAAw7o7Ha5qo8u5PXLuTUzqeuzuOYdUE9vdVwf170+1RKfs7rst6zVFr4pxRa2JSXhxV03slz8avaiIAAGBYW4PRQHX3XOLa7ZnS8cRF6o6Gyf0ocKTg/r3o9qiMzvmMt2iO2hPnjFoTk/LiqJoOljwbb9dEAADAsDaUdDwOaaLK+9fEtVvZkPM/FCzGVnVbOq7Ji5oDcU6Opk5fI46q52jJs/FGTQQAAAyrbOGv45qo0hZm5c851+1Cg9qgaOSf6ZemL05Tc7N9Pd7SHIhzEiTlxVFV/LHk2dh6KAAAwNDmlXQ8ftZElfZk4rodaFAbHC+4fx8d0z6Xh9bo73ezciIrX/ex7fzQWsshJkfiYqc32/+M57FuiGNaG1qv3F9s13m9fWxrp3htHmufW7wWHwhXxPlMxvmoSMrPZhzVUdmCuAs0EQAAMArXCjoetzRPpf1L4rptaFAbnAvjnR/33qxszsq+0HqlPa+zvr/Hup7NyqWSzv6bfR5fnJP4TEmdO6dwXeL0SVeCabAQ57Mc56MkKV//OJoFC0ri7IYmAgAARuVkSQfkHk1UWRdyrleczmZhg9rgRuK+fXuAuu4OrbliY8IsjnC9UhIbc2VzSb0xho72WFcsj/V4vLtD64ezsvriZya5xsCy0HrLJu77i9B6IwfE+WzF+ahJytcrjmbVQyVxdk4TAQAAo3KopAOyQRNV0srE9TrZoDZYHtLJqeUD1Hct9J5Q69xX0Y8gD2TlfJ91lo0sj/s70med+yd0TeKI4x/b+zwTRvMD0YqsrBLyjSXOqxfn4yApX684mlWbS2LsqCYCAABG5e2SDsg2TVRJe8JsTmHQj21hsGRXSpw7+sN2+SSUTxcRy6mC+h7JyuXQfwLwl4I6F7X32W+d5ydwPeJI4W/b+/sujO4tmziXt0Vim0ucVyvOx0VSvl5xNKteCrP7wxcAAFCTjtpceUcTVVJq2qH7G9QGBxJtMMopHLaWxMfexHbxGDoTdd+264oLQMbpMz4rqPNmos44crYzUXc1K69nZWloTRHzXpjePLidxxanVVoyonrjFCNGcjabOK9OnI+TpHz942gWHCz5LnhGEwEAAKPyWBjuFXsm7x+y8peca3WhQW0Qk1N5o1MPjGFfNwvi44mcz8fk2dyc6jGh/FrOZxYX1Plr4jiOdXzmy9CaKqbT/II6r4/5Wpxo7ydekwdGVO/cD4ZfCPnGEufVifNxk5SfjTiqu89LnonXayIAAGBU5ofiReS+10SV81ziWv2+QW2wPuf841zRS8cQH0UJsO5FTOO0E9+F2yNc1ybqnRf6myqjc5qp9wqON1XnT2O8FnOjgeN0HKuHrGtB+9p2jurcJOQbS5xXJ87HTVK+/nE0C8rWnFioiQAAgFH6IRQvcDevoe2yqKLHlXoN/ckGXZtjOee/awz7ebQgNo7kfH5ulF0clfhwQb0rC+r9pOuzm0L5NBrR3X0e6yh8EPqf97qf8lODv38Q51WJ80mQlK9/HNXd3SX/P7qiiQAAgFE7VNIRWdPANtkZqjl1Txyl9e851+jPoTkjuFbknP/ZMe1re0FcdC+q+2a4nahbMUS92zs+tyy0RuLGP99XUufGgjp3j6Ft3grjTciXJScR5+J8/HE+KZLy9Y+juttY8v+jo5oIAAAYtVdLOiLbGtYeL4fbc7ZXbRG0J4O5/7vfFIjTpoxrIdCPCuKi895YF25PCdDLj1j7C+pd1vG5M+0/O9hDnXsL6lw9hhj56wSKBV6bS5xPP84nSVK+/nFUd6+U/P9onyYCAABG7emSjsj+BrXF78Kdi6j+74od3+8T1+i5hlyfh0LxiNNRO5No74sdn4kLMc4torehx3rPJurtXKz39fafxWOY30OdpxN1Xhtxm2wPk0nIn/DV3FjifPpxPmmS8vWPo7o7XPL/pM2aCAAAGLUFJR2RUw1phz2J83+4Qsd4IXGM9zfkGnUnpD4c477iXOY3E+19oONzc/NLv9pjvUWLK8/NM72yve+YBFzSYwyn6hzlWxTzw2QS8hIgzSbOpxvn0yApX+84mgUXSv6ftEQTAQAA43CuoCNyI8z+Yot7Cs7/f1XkGO9PHF9T5ofdGSb7Y9HjBffElq5jOtxHvUVvpswlor9p//e6HuvcXFDni77eEOfivOIk5esdR3W3KJQvOg4AADAWn4TmLva6J5SP2l1VgeP8XeLY9jTg/oxz4F7rOOfzWVk85n3uSrR3HKl6T8cxnW936Hv1dqLeOGI2jq7d3f7vd/uo84OCe/dBX2//aV2Y3Cj/cZYr4lycTynOD81IDHWWdeKIzKaS++QzTQQAAIzLtpIOyUszet57euy4V2G0/MnEsf3jjN+b8S2NzrmZL4fJLFR3JNHef2z//Zehlbh7pM96v0rUezwrD2Tlela+y8rCPupMvely0Vfb30jKi3NxPhxJeXE0q/aV3Cc7NREAADAuS0o6JIdm8Jz39Nl5n+Zo+Zi4+XMoXjBwVr3fcb6/ZGX1hPb7S+I+eCcrL7T//fU+64wjZFPzVz8fWoubxgTgwyOK3YO+2v5GUl6ci/PhSMqLo1l1quQ+eUgTAQAA43Q+NCcRtGeAzvs0f5j451C+EOEserbjXOPI0icmtN9VBffBM1m5Ggabyz+VGI4Jurk5gN/ss86it1y2+VorbXtJeXEuznsjKS+OZlHRosyzPmUYAABQEftLOq8rZ+Q89wzRgZ/WaPkDieP55xm+H+MCjHOjTeM/109w3y+H9HzQn7X/OcjIudQ806dDayG579sJglHcG7GYR/g2SXlxLs6HIykvjmbRhtC8N0UBAICK2Rxmf07NJ0vOMS669x8Ff/+/p3DMMXlzKedY4nQ2C2f0XoxzLl/pONctE95/ap7pq+1/7h2w3tOJei+HwRNElxJ1fucr7Q6S8uJcnA9HUl4czaJ3Su6R7ZoIAAAYt6J5cGM5OiPnuSdxfnvaf/8/Szpo/zTh430ycRwnZ/Q+XBruTEC9MOH9x4Xyrhdc/5/DYD+GxG2KXpE/MUCdKwrq+8BXGuJcnNfEE4nz+1yoVDqOZsHXBfEVY9kbZwAAwEQcL+icxATGvBk5zz0hPyEf/X1W/r2gHb6c8rHOld/N4P13b2iN/Jw7x1encAxPhOIfZV4esN6yN1EGmRrphYL6Nvs6Q5yL85qQlK9nHNXdkpJ4Pa2JAACASXmxpIMyS/OU7gm/TcjP+e8l7fCPEzzOPyWO4f4Zu/fuzsofO85v75SO462C6x7ngx70h6mPwmhHz0ap6STi6L4Fvs4Q5+K8JiTl6xlHdfd8ybPea5oIAACYlHtD8av378/Y+T6Z+PN/CMVzy09q6pj7E/u/MGPXIU75cKrj/D6c4rGcLrjurw9R7w8F9a4dsM5rifrO+CpDnIvzGpGUr2cc1d3RUJyUX6GJAACASTpZ0EG50KB2eDtMf7T8c4l9/8sMtXNcy+BEx7l9OsVjiaMPUz9KxfUW7h2w3vsK7qMfBqxzVUGdb/saQ5yL8xqRlK9fHM1CWxato/SNJgIAACZtZyhORq9pSDuUzS1/tt2pG6d/Tez7yRlq52Md53V8yseyreB6Hxqi3qI5oQedB/jVgjqf8jWGOBfnNSIpX784qrtNwdQ1AABAxdwTiqew2degtthT0mnbOMZ9x1fU/5yzzz+3/24WHOw4r6/C9OdHPhTGs57CkZCeE3rJgHV+HtIjfecFEOfivD4k5esXR7PUnnlluSYCAACm4VhBR+V8g9rh77JyJUxntPyGxD7/dUba9sNw59zIi8a4r3nte3pTyWd+SbT55TB4Aixu92ui3q+GqDP12r0kFuJcnNeNpHy94qju4nPb9TD9dYMAAAB+o+y13tUNaovdYTqj5Q8k9vfcDLTp3o7zORdab2eM0xvtfW0o+Mzagmv8wRD7fqqg3hfHUOduX1+Ic3FeM5Ly9Yqjuttc8lz3vNsOAACYljhS6qeCDsv7DWqLOFq+aG75fxvTfv9vYn/317w9Xwt3Lhy8ZMz7i2sgxOkjLpV87r2Ca7x2iP2/E9JTWiwesM69YbA1H0x3gDgX51UkKV+vOKq7ordBr/l/JQAAMG1vF3Ra4pQuTZq3ek8oHlU16hFlD4f0dDl11rmIcPzR574x729pVn5u729vyWfPh/SUFsM4l6j31BB1nk7U+WvBNveGVqJlh682xLk4rxhJ+XrFUZ2VrZv0QQAAAJiyZSUdl00Naouy0fL/34j397vEfvbUuA2fCXcmwFaMeX+PhNbIwl4WbVtZcG0/HuIYlhbU+9qAdc4viMvDBducaX/mDV9tiHNxXjGS8vWJo7rbFYoHWaz0NQ4AAFTB4YKOS9M6y3vC5OaWP5nYx5M1bbvONQriIotrxrSfxe3rEOfj70xofVmyXdG6AeuGOJ4XCup9eMA6NxbUuSuxzUfB4nWIc3FeXZLy9Ymjuvs2WOAVAACogccKOi+xE7ekQW3Ry2j5+SPYz6Ks/Dmn/ksjqn/SYrLrZij+QWPcZWvJMZ4K6bllh5mm6Uii3p+HqHNfwXk+nfP5l8Lt6Q/u9ZWGOBfnFSQpX584qrPVYXKDKwAAAIZ2tqAD81bD2mJPSYfuv45gH5sTdR+oYXvFH3V+nXKCoWz9g3sLtv10iHOP+7yeqPfgEPUeLzjeu7o++3T7z2+0kxEgzsV5FUnK1yOO6u7jgnP/wVc5AABQNUWv0V8KzVrwtWy0/J/C8KPZU53Gf65ZW63KytUpJxhi+UPJcRZNPbF5iPN/qqDebUPUe62g3k4xUXdjBOcB4lycj1vTk/J1iaM6i28hFr2FsNPXOQAAUEXnCjoy2xvWFr8r6dQ+N2T9P+fUGaezWVijNooLpV2uQIIhlrIF8o4ltoud9wVDtMG7Bcc0zPQSRef6QGjNE9w59cXzvr4Q5+K84pqclK9THNVZ0ZoSF0OzBpgAAAA1sr2gM/PHhrVFHAn/f8N4Rsv/Y6j/4mPLQ2te4yokGE73cC1TI+eGTQalfsg6N2S913s895uheT+YIc7FeT01NSlfpziqs5hwv1hw7i/7SgcAAKqsaLT8Yw1ri+fCeOaW/2+h3q9VLy3p+E66lI0e3RTG8yr70oJ69w/Zxid6OO/4tsUTvrIQ5+K8JpqYlK9bHNVZ0cCSC8EoeQAAoOKKEhtfNKwtxjVa/t8S9d1fk3bZVqEEQ5yTuWxaik8Ktr9viHYY1/zVIaQXAo7lVlY+Cq2pLUCci/O6aGJSvm5xVGffFJz7C77SAQCAOjhb0LFZ2bC2eK6kk9vvwqz/kJW/hPxRXNBpR1a+D60FHuM0F3Hagb2hNRUCIM7rpukLvTI+6wqe077XPAAAQF2sKejcHGpYW5SNlo9/18/irM8l6vm92w6AGSYpz7icKXhO26B5AACAOvksGC0/57lQPFq+n8XDPk3U8aRbDoAZJinPJO+rWE5oHgAAoG7iHLy/Jjo5nzWsLcpGy1/KyqIe6/r3nO3jny10ywEwwx4PrWl6ussxTcMQUqPk47oMD2oeAACgjl4P6UT0Qw1ri+dC8Wj5/9ZDHf+U2PaAWw0AoC9PFTyX7dM8AABAXc0LrQWy8jo7TRvZVjZa/kooH+3++8S2z7nVAAD68nXiuepC8AYiAABQc4+FdCL6sYa1xXOheLT870q2/1PONn/Oyt+5zQAAerY1WNwVAACYce8nOj1nG9YOvYyWTyXYH0xsc9LtBQDQs/gm54/BlIAAAMCMu6ug8/NMw9riuVA8Wv7txHY7E5/f4/YCAOjZ7sQz1U9ZuUfzAAAAs+TxRAfoYmjWvJ1lo+X/Iyt/n7Pd/0l8fqVbCwCgJ4uzcjXUc9qa+My3o/0sWfSZzVl5Piuvtj8fz2ten/u6r6Oe19r1rBugnl480t7XjvYx78rKs1l5OviRBAAARuLtRCdob8Pa4blQPFr+f3R9Pv5o8R8hfyEyAAB6sz/x7PVBBY81JsDXh9Y0kOc7jnVR1+eWtJ+xfwrFUyTuLtlffN58JSvfFtTzc1ZeGMG5rcrKJ1n5peSZOJYzWdnWR93beqgzr3Se18d9bAcAAJUXOxdncx5mb4bWnOlNUTZaPi7e+l86Pr8u8bl/cUsBAPRkVeJ56rtQnbc214RWYvzz9vNx3vF2JuXjZ38NvSeQjyX2G6dJ/LmPet4d8PziDwhHuur6Piv7QmtKy+1ZeS+03qTt3ucXofeR87HPsTorh0vOI55zHJG/IKeO+LbAmznbXA6ttwceCuN5cwAAAMZiWch/bfirhrXDP5d0Ev57x2f/R+IzT7qdAAB68k3Os1RMaK+oyPHFZPWNrFwreUaMSfmYnP6848+utbePbwLEBPehkE7qd76huqT9DB7//Hq7jo+y8k5ojRY/W3AcW/s8v0dDK6HdWcfLic/GZPcHIX/U/II+9/tOwTn0srBv548eJ4IpdQAAqLGng0Vfo5OheG75+9uf+1PIH02/0K0EAFDqpcTz1rYKHWPnXPFxbvjLIb2e0A/tf/8ypOd6j2+h5o1+j8n65aE1kjxOeROT8XFqm1Sy+6mQP6DmYuh9pPiDOXW818N2eSPdBxmlfyzRlt+XbPdUx2e/9uwNAMAs2BvyXwdd3KA2eDIUj4SK09P8P4m/O+QWAgAotTTkz13+XsWPe19Izw8fE9wbe6hjY6KO46E1uj4+e6/uoZ5nEvVs7vFcjg247UM5290KrRH+/Yij21Nz7qcW+I0/UvzY/kx8g2GFUAIAYFZ8HiSbi0bL/yUr/2/i755z+wAAlDqe8xz1ZQ2Oe3PiGTCObF/dRz0/JuqJieY1fdRzKaeOgz1sd1di/zt73G/enPmDvOGQelP3XOLzndPe7BJGAADMkjgn5nc5D8dbGtQGT4bi0fJXE39+v9sHAKBQ3gjv86Ee84JvSDwDvtpnPQcS9ezus55Pc+r4cYjz+KzH/X6Rs+2+Adv0s8SxdCfdOxcFPiWMAACYRXHh1+45M+N/39ugNigaLZ9XzrptAAAKxWlrugc3xKlfHqjJ8a8Lo5kHf0cYbuqZObtC/lQyZfPKPxSGm4ox783aTwZs08Uhf67+OJXPfe3PxPM51/Hny4QSAACzKr6Ce73r4fhog87/ydBfUn6PWwYAoNCJ8NvpWh6v0fGPKim/JYwmKb89UU8vc62fytnuqR73m5eUPzhEu25NnMfclEZvdfzZ88IIAIBZl7cQ1YsNOv9+Rsv/o9sFACDppZznp001O4dRJeVTc6n3m5RPzXG/vodt43RBH4XWmwunetxmTl5S/rMh2/Zo4lziCPxb7X8/JowAAGiK7hE4cWGnFQ059ydDbwn5C24TAICklaE1Kr7z+emFGp5HXZLyT4+xDeJUMmfC4FPfpCwJ6XWb5qY5WiKUAABoku75KuNCsAsbcu69jJY/5BYBAMi1sP3s2Pns9EpNz6XJSfk4teUHIZ04H8Xz8LMFz9tbhBIAAE30ateD8ccNOe9/CuVJ+efcHgAAuT7uem56o8bn0rSk/KKsvJyVb9v1/pyV97PyTRjfIJUTQVIeAADI/K9QnJT/e00EADDzmpKUj9MN7Q+3pxw60a5zXvvv8+aUH1VSfllWruXUfzkri92CAADQHKtCOiH/b5oHAKARZj0pvybcmXA/HFoJ+m7jTMpHbyTO61O3IAAANMuhROfg95oGAKARZjUp/2BWjnds/0NWHiv4/DiT8ndl5XxID4h52m0IAADNETsrf8npGDysaQAAGmEWk/Jx3aibHdseC63EeJFxJuU/atd3M3FuP2XlHrciAAA0R/dCZX/SJAAAjTFrSflPu7Y7mZX5PWw3rqR8Z7u8lJUzifM74FYEAIDm+C9Z+Q8dAgCARpqlpPz+rm3iyPTlPe53HEn5e0NrMddY16n2n60Itxeb7S7r3Y4AANAc/3OIjhMAAPU1K0n5TTnbHO1jv+NIyh9r1xOT8A92/PlriXO8mJVFbkkAAGiG2En4c7v8neYAAGiMWUnKf5+zza4+9jvqpPzzHfW8lvP33ybOc79bEgAAmuPtrJzVDAAAjTILSfk1IziHUSbl45Q519p1fJv4zENZuZU47qfclgAA0Ax/n5WXNQMAQKPMQlL+2cQ2O/rY7/kwuqT83GKuMen+UMHn3kwc94VgGhsAAGiM+ZoAAKBRZiEp/05im0973OeKxPZHB2jP1zu2f7vks/Oy8l1i3++7NQEAAAAAZk8qmT6qpPzWPuvZEvpPyu9MbHM9K/eV7O/ekJ7f/cc+j/2RcHtKmjjHfS8DXlYn9h3L425PAAAAAIDZsjHkJ4S391nPpkQ9L/VZzzOJejYVbJNK5MdyLisPJLaLo/IvhVby/ofE9o92fH5Ru73yLAh3Ljb7WB/nnBrpfz6YxgYAAAAAYKa8EvITwq/0WU9qXveDfdbzbqKeFwu2uSsrN0I6MX8zK0ey8mG7xGltLnb83YasvJfY9nJW9mflk6xcKTifTzq2+azPc44J/UthdFPoAAAAAABQQXFO89TULaf6rOtoop5fQmuKmF4sDK1FTvPq+apk230hnZRPlZhkX9vefmOP2+RN67O76zPrB7gWRwv2GX9EsPYTAAAAAEBN3RNa08GcDMUJ6JgMjgnmhYl64p/Hec/LEuJxapgdWVkWWj8EdIr/vSq05oX/rqSew6E1qn1x+G2SOtbzReg9IX+yfTyd2/9Yss3Ors/Hcz+Y87n97WPsRRzlHxP9V0v2HX882Rwk5wEAAAAAauVa6H9EeSw3uur5acB6Ynmio55DA9ZxLXF+b4TiBHcccZ9aNDb+OHA5Z5v4Y0H3oqtXQm8j8YtsG/DcF7iNAQAAAACoijiKfV1ozXP/QmiN0o+jzO/pYdu4sOrW9nZx+9WaEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYPI+zMpfu8rNrOzQNADAEHa0nym6nzM+1DQAAAA00aKsnMjpKF/NylrNAwCMwNr2s0X388aJ9rMIAAAANMI9WTmb00G+nJVHNA8AMEKPtJ8xup87zrafSQAAAGCmxc7vNyE/Ib9S8wAAY7Ay5CfmvwkS8wAAAMywu0L+CPlfsrJK8wAAYxSfNa7lPIecycpCzQMAAMAs+iKnI3wrK09pGgBgAta1nz26n0c+1zQAAADMmj/kdIBj2alpAIAJ2pl4JvmDpgEAAGBWbEl0fg9qGgBgCj5LPJts0jQAAADU3bLQmjO+u9N7PrTmmAcAmLSF7WeR7ueTa+1nFwAAAKit0yF/HvnVmgYAmKLVIX9++dOaBgAAgLraFfJfDd+naQCACngn8azysqYBAACgbpaG1ivg3Z3cC6H1yjgAwLQtbD+b5E1js1TzAAAAUCefhvyRZ5s1DQBQIRakBwAAoPZWJTq3ZzQNAFBBZxLPLqs0DQAAAHXwVaJj+5imAQAq6LHEs8tXmgYAAIC6dmpPahoAoMJOBoMKAAAAqKEvEh3aJzQNAFBhTySeYb7QNAAAAFTVykRn9htNQ8UtzMr20FrU7+usXMvKzXaJ/x5HT+7PytNZmae5AGbWN4lnmZWaBgAAgCran+jI7tA0VFRMxr+VlV8T925euZSVnZoOYCY9n/ju369pAAAAqJq7snI9pxN7NSvzNQ8V9EhWzofek/F56yTcqxkBZsr89rNL93f+9fazDgAAAFTGiyE/cfmBpqGCHs3KL2HwhPxcuZiVpZoTYKa8n/jOf1HTAAAAUCVnEh3YVZqGilmWlcth+IT8XDkXWtPgADAbViW+789oGgAAAKpieaLz+oOmoYK6f0D6IivbsnJfuL2I64LQmt4mzh1/OpQn5t/VrAAz5YfE9/1yTQMAAEAV7E50XPdqGipmZ8f9+XNWHu9xu7WhNVVNKil/KysPaF6AmbE38X2/W9MAAABQBacSHdc1moYKiaPff2rfm3H6mmV9bh8Xdf0uGC0P0ASrE9/1pzUNAAAA07YkpBfAhCrpHCW/bsA6YiL/WuKev6CJAWbKTyH/zajFmgYAAIBp2hbyE5QHNA0V88cR3ZtvhPRoeYkagNnxSeK7frumAQAAYJoOJTqsWzQNFfJA+768GVoLug4jJt5vJe77DZoaYGZsSXzXf6ZpAAAAmKafEx3WezQNFfJi+758f0T1pdZR2KypAWbG3Ynv+p81DQAAANPyYKKzeq4B574yKy+H1mi5s1n5JSs3Qmsk9o32f3+VlYOh9Zr7UrfLVB1u35sPjKi+j4OkfBDn4hwaEEfnEt/3D7q0AAAATMP20Kz55OeF1mKh34T0nOKpEqc7+TIMvsAow4mL9Z0YYX0vBdPXBHEuzqEBcWReeQAAACqlSR3V9Vk5P0ByIa+czsoKt89ELcrK8hHW92zi2i7R1OJcnCOOZiqOmjYAAQAAgIr7Y6Kj+siMnec7I0oudJZfs7LNLVRbL+Rc0yuaRZyLc8TRzMXRw4nj+trlBgAAYNLiq+m3cjqpN2bsPA+PIcHQWXa5lWrpDznX8lPNIs7FOeJo5uIoPu/czDmem+2/AwAAgIlZleg0n52hc/x4zAmGubLD7VQ7h3Ku4ybNIs7FOeJoJuOoKW8GAgAAUHHbEh3UgzNyfi9NKMEwN9pulVuqVr7tuoZxIVkjJsW5OEcczWYcHUwcj+mpAAAAmKi3Ex3UV2fg3FaG1jQ83ed2vd0xj53wuPDc/I5tFmRlTWgtCHeo/dl+Eg3fB0ndurgr/Hbqptc1izgX54ijmY2jXYljecctAAAAwCQdSnRQN8/AuZ3OOa84h/g9fdQRE7e7s3Ktj0TDTrdVLXS/JRIXeF2kWcS5OEcczWwcbU4cxyG3AAAAAJOUml/14Zqf19au84lJgnVD1LcsK1+H3pIM591WtXCs67q9rEnEuThHHM10HK1MHMc3bgMAAAAm6Uaig1r3qRnOdZxLnKLkiRHUGUdRnwq9JRoed2tV2rJw59Q132oScS7OEUczH0fzEsdww20AAADApCxIdE6v1fy8nuo6n10jrHtxaC0GWpZkMD9ttb0b7kxCPaxJxLk4b6wnEtf3c3E0k3GUml5ngVAAAABgEtYkOqanan5eRzrO5fQY6k/NSdu0ZE5dxVHynW+I7NYk4lycN1qTk/JNjKPUCP41QgEAAIBJ2JTomB6u8TnFheZuhtsjoB8a036+CcVJhmtur8rqnEv+uOYQ5+K88ZqalG9qHB1JHMdGoQAAADBe94bxvS4dO7Vv1aQdnkl0TD+p8bXd1nEeH41xP7tCcZLhljCrpM4FDX/Iyt2aRJyL88ZralK+qXF0IHEc24UCAADA+NwXWsm42AE7OuK649ysV9t1H8rK/Iq3xe5Ex/TtGl/fAx2d/OVj3M+DofyV/HnCrXKxf6V9bS5n5QFNIs7FOaG5SfmmxtGbiWN4XSgAAACMRxzF3rnoWOyIrh5R3QtDK9HX2cH7MiuLKtweHyU6pjtqfI1/bJ/DwQns69eSJAPVERM+p8PtqRLMHVxv4pxRampSvqlxtCNxDB8JBQAAgNF7PNwexT5XNo94H91J/1i+Dq3pcqro00THdGtNr/HdHeewagL7+6ogwXBTyFXK/o7rsl5z1Jo4Z9SamJRvchxtTRzHp0IBAABgtGLy/UaYTOJ5aVa+69rXhVDNqTKOJjqmT9f0Oj/UPqeTE9rfkYIkw0VhVxmd8xlv0Ry1J84ZtSYm5ZscRxsTx3FEKAAAAIzOKzkdr21j3uc9WTnbtc84l/XjFWubzxMdUyOJe3OoIMmgc18NWzquyYuaA3FOjqZOX9PUOFrvegMAAIzXezmdrkkl5mJivnvE/PUw+ilzhnEq0TE133Zvikb+vaZ5pi4mXm62r8dbmgNxToKkfLPi6JHEcZx1mQAAAIZzV1aO53S43pnwcTwY8hc3e7Ui7XQl0TFd5BbqyfGCJMOjY9rn8tAa/f1uVk6E1poFvZqfledDKzkSFzu92f5nPI91QxzT2tBaKPBiu87r7WNbO8Vr81j73OK1+MCtijifyTgfFUn52YyjlLsTx3HZZQIAABjcktBKYHR3tk5N6Xj2JTp/H1egrX5JHNtCt1FPzoXxzo8bFwje3L6H4ty/eT/w7O+xrmezcimkkyKxvNnn8cU5ic+U1LlzCtdlZbj9g9MhtynifCbjfJQk5esfR/24K3EsV10mAACAwcRXkn9KdLZWT+mYng7pRMaXoTVia1p+TRzXfLdST24k2u/tAeqK90FcfC4mzOII1yuhOAk2V8qmQ4rTKB3tsa5YHuvxeHdn5VYP9cXPrJzgNVmWlZ/b+/4iK/PcpojzmYvzUZOUr1ccDWtB4liuuUwAAAD9i4mOXwuSBvOneFxFyYw47/yyinWSKbc8pJNTyweo71roPaHWua+itxoeyMr5PussG1ke93ekzzr3T+iaxBHHP7b3eSaM5o2PFVlZ5XYX5+K8MnE+DpLy9YqjYc1LHM91lwoAAKA/b/SQMPg0tBJsk/RwVr7v4djiPKaPT6HdJOUHty0MluxKiXNHf9gun4Ty6SLKpmR6pH1f9ZsA/KWgzkUhvThwUTk/gesRRwp/G27/0HXPiOqNU2FZJFaci/NqxPm4SMrXK45GIe94brhUAAAAvYmj+T4bIHlQxRIXztsx4fa7GSTlB3Ug0XajnMJha8k9szexXTyGzkTdt+264tsid5fEzM2CWOtM1MW5d1/PytLQGnX4XkGdNybwPTB3bBdCa12JUYhTjExrJCfiXJxPjqR8/eOoX5LyAAAAA7ovK9+E2UjId5Y/TLlTKilfLian8kanHhjDvm4WXKcncj4fk2dzc6rHhPJrOZ9ZXFDnr4njOBbuXAvh3q6/n19Q5/UxX4sT4fYbJw+MqN65kZ1fuN3FuTifepyPm6T8bMTRsM8/t1wuAACAYmvDYK/s16XERMA9E2hHSfnBrA/5C8QtHfF+yhJg3YuYxmknvgu3R7iuLUiS9DNVxtsdf//eAPfTT2O8FnOjgeN0HMMu5rygfW07R3VucruLc3E+9TgfN0n5+seR5x8AAIAxeym0RjP9dcZLnJ/3QZ3SSjqW02a7xrCfRwuu0ZGcz38ebo8Yf7ig3pUF9X7S9dlNoXwajejuPo91FD4YcwzGJOM8t7s4F+dTjfNJkJSvfxyN4vnnpssFAADwW3eF2Zk/vp/F+J4eY5uaU75/K3La6+yY9rW94N7Y2fXZN8PtRN2KIerd3vG5ZaE1Ejf++b6SOjcW1Ll7DG3z1gTib6/bXZyL86nG+aRIytc/jvplTnkAAIAexBHj34VmJeQ7yxtjatcbQVK+X90L1sUfTsa1EOhHBfdE5wJ568LtKQHW9FDv/oJ6l3V87kz7zw72UOfegjpXj7hdXp5Q3FngVZyL8+nF+SRJytc/jvolKQ8AAFBiS7sjl9eBiqP7XpiR84xTGFwM6YRHfAV80Yj3KSnfn4dC8YjTUTuTuD4XOz4TF2KcW19hQ4/1nk3Ue6HjM6+3/ywew/we6jydqPPaiNukaPTvKMsJt7s4F+dTi/NJk5Svfxz1S1IeAAAgISYI3g/ppNnJrCyZsXNenJWvQvE88ytGuL9rif0scPvl6k5IfTjGfcW5zFPTCx3o+Nzc/NKv9hFXqTUZ5uaZXtne9+UeY2xBQZ2HRvydMKm3Uza73cW5OJ9KnE+DpHy946hfC8Js/rgEAAAwtPh689chnTA7GmZ3AcZ4XocKzj12GreOaF9XE/u4yy34Gzu72ujUmPf3eME9sKXrmA73Ue/ToTwR/U37v9f1WOfmgjpfdOsgzsV5xUnK1zuO+rUocb2vuHQAAECTxYTzLwWd/5hImN+AdvgyFI/kfX8E7ZCap/8Bt+Ed4o9EnW8VxDcWFo95n7sS1yaOVL2n45jOh/6mNXo7Ue/N9v20u/3f7/ZR5wcF9+mDbp//tC7MxvoWV8S5OJ9SnB8Ks7dezDpxNBVLE9fjR/+rAgAAmmhhVj7uoRP7aEPaI3Yab5S0RfyBYphkyBeJep9yO/5NfHOhc27my2EyC9UdSVybP7b/Pv5oExN3j/RZb2p6pOOh9WPM9dD6sWZhH3WeC+VzYjedpLw4F+fDkZQXR+P+PvZmBAAA0Dj3ZeWHHjqwvzasXQ732CabBqz/WKLOp92Sf9O5rkF8g2P1hPabelvkndBa3Dj+++t91hlHyKbmr34+tBY3jQnAh/uoc0nBvXnQ7fM3kvLiXJwPR1JeHI1KanqnY/5XBQAANE1cvPRSkJQfNAnxwoD1fxaK5zJuumc72iSOLH1iQvtdVXCtnwmttQDODlBvKjEcE3RzcwC/2Wed2wqOdZtbqLTtJeXFuTgf7f8PJeWbFUeD2JK4Hp/5XxUAANBEd2flkx46sU1JGC8IrQRYUVvE+U+Hmc4n1d7PuB3/cwHGudGm8Z/rJ7jvl0N6PujP2v98aIB6U/NMn87KT1n5PvS/TsGBgvtzsdvobyTlxbk4H46kvDgalWcS1+MT/6sCAACaLCbdrxZ0Yn8OrVfpZ917JZ352Hm8a8h9vJ6o+62G34NxzuXOH0Qm/UNQap7pubjYO2C9pxP1Xg6DJ4hSb7h856vsDpLy4lycD0dSXhyNymuJ67E3AAAANFxc5PRUQUc2JgLuneHzf6Xg3K9lZfuI9mO0WP6915mAemHC+48L5V0PxT9KLRyg3rjNrYJ6TwxQ54qC+j7wNYY4F+c18USw8Gcd42hQ3hIEAAAosa8gGXAxK4/M2PnGhMrHBef8bVYeHOH+NiX2c7ih91v8oee7jnZ4dQrH8EQoHln58oD1bi6pd9UAdb5QUN9mX1+Ic3FeE5Ly9YyjQR1OXO9NLisAAMBt8fXuy4kOVBxp+OKMnOfarPwQ0smPmKxfMOJ9rkns61QD77O4psEfw/RfY3+r4B6I80HPG7Dej8JoR89Gqekkbo3hXgVxLs7HRVK+nnE0qJOJ6/2oSwsAAHCnZV0dwCaV+MPD9jG164KQniKnSeIbCp3TJX04xWM5XXAvvD5EvUU/+KwdsM5rifrO+MpCnIvzGpGUr2cchRHf035MBgAAyDE/FI8CnMVyPisPjbldU/Maz2vQfXWi47w/neKxxNGHqfmgb4bB11G4r+Ae+2HAOlcV1Pm2ryvEuTivEUn5+sXRoAxGAAAAGNCzoXiBvFkpx0IreTNuZ8Lo5h6uo2Md53x8yseyreB+ODREvUVzQg86D/CrBXU+5WsKcS7Oa0RSvn5xNKjVwRteAAAAQ3WqLobZTci/PsG2TM0X3ISFOg92nO9XYfqvrh8quCfWD1HvkZCeE3rJgHV+HtIjfef5ikKci/MakZSvXxwNakviWn/mEgMAAPQmvuKfWqyrruVqaC1sO0mvJ47lrRm/fz4Md46QWzTGfcXkVRxhuKnkM78krsXlMHgCLG73a6Ler4ao82aQxEKci/PZIClfrzgaxpuJa/2GywwAANCfD8JsJOS/y8ryKbTf5jD6aRSqbm/HeZ7Lyj1j3t8b7X1tKPjM2oJ744Mh9v1UQb0vjqHO3b6SEOfivGYk5esVR8No8tuBAAAAI7cjKzdCcdL746wsnfBxxde7nw/lCfnY8V80pbZbFka7MGDVvdZxjhfC4NM69GpNaE0fcankc+8V3B9rh9j/OyE9pcXiAevcW3Csa0riAcS5OK8aSfl6xdEwvk9c6+UBAACAgTweWq//jyPhMYx5oTghv68CbZc37UHsGM9aEnVnx/n9lJX7xry/+CPQz+397S357PmQntJiGOcS9Z4aos7TiTp/LdgmTjcVEy07fFUhzsV5xUjK1yuOBrWg/WzTzz0NAABAD2KnMZWc2DqlY3o8pBfKq0ri4ljiGDfM0L3xTLgzAbZizPt7JLRGFvYyCm9lKH7DY1BLC+p9bcA654f8pEYshwu2ORPM24s4F+fVJClfnzgaxrrEdT7uqxMAAGB4i9od6e5O17ftpMGkfRXyF3R9okJtllr47PUZuSc2dZxTXGRxzZj2E6eJ2JiVA+HOhNaXJdvtDumk2jAL/75QUO/DA9a5saDOXYltPmr//UlfT4hzcV5BkvL1iaNhpGJwbwAAAGBkPszpeB2c8DE8m3MMcTTYioq11dOJjuqRGbgPYrLrZpjuIr5lb2mcSmx3LbSmPxrUkUS9Pw9R576C83w65/MvhdvTH9zrawlxLs4rSFK+PnEUxhArG32FAgAAjNYrOZ2vdye07/g69rWufX9d0YRFaqqC6zW//o+F/PnyJ1muhOKE270F2346xLnPa1+/vHqH+XHqeMHx3tX12bkfe+IizKt9HSHOxXlFScrXI46GlVo/Z76v0Yl6NCtn298ZF7PysiYBAIDZtDEnafH2mPcZ50P9uWufJ0Jrap2qOpnoJD9a0+u+KrSmCfrrlMsfSo6zaOqJzUOc/1MF9W4bot5rBfV2errd4R72PECci/Nxa3pSvi5xNIw1YfSLIdO/uLZG3o8juzQNAADMpjgC7EqYzByicdG9S+G308BUfSTWG4kO65s17fRdrkCCIZayqYpSi+zGKQQWDNEG7xYc0zBvaxSd6wOhNU9w59QXz/v6QZyL84prclK+TnHkGaf+Pg6jn24LAACoQcezO1n+6oj3EZMg57v28VFN2md1oqN0umbXOb6l8FNFEgxlbRd/qEnN3ztsMuhcot5zQ9Z7vcdzj+e13dcO4lyc10BTk/J1iqNhpdZ0WOPrdKI+L7gH5mkeAACYXXEU+3dhPNOzxKlpuhMkf6hZ+1wK+fOt3luj63uxIgmGXkaPbirYdueQ7ZCqd/+QbXyih/OOI96e8HWDOBfnNdHEpHzd4mgYSxL7vOjrdOI+TVyLy5oGAABm3z1ZOTOixEW3OGJwbi7evTVsm/fC6BNHk7StQgmGeB+UTUvxScH29w3RDuOavzq0t0/VHX/AiW+GLPY1gzgX5zXSxKR83eJoGDsT+33f1+nExfUL8t4cMqc8AAA0xF1j7AA8GOqTxO72WKLj+pVbhg47svJ9aC3wGKe5iNMOxB+hlmsaEOc11PSFXmfdrC1kX3drs/JNaP3A92NWXtYkAAAArQ5SXud1maYBYAZlHkb3AAAbYklEQVRJys+uZYlr+6OmAQAAoEreTHRg39Q0AMwgSfnZ9YZnGgAAAOogLv52K6cDe0HTADCDHg+taXq6yzFNU3t5b//FZ5z7NA0AAABVcyTkjyzboGkAgBpYn3iWOappAAAAqKLHgwVfAYD6OhUs8AoAAEDNnEl0ZldpGgCgwlYlnmHOaBoAAACqzGvfAEAdHU08w6zXNAAAAFSd0fIAQJ08knh2OatpAAAAqINHEx3bk5oGAKigLxPPLo/PwLmtzMqOrMwv+czmrDyflVfbn9+QlXl97uu+jnpea9ezboB6iixq1394BHWtyMragr+f1/77Z7PySnu/G0raEgAAYGo+S3RuN2kaAKBCNiaeWQ7X9HxiIjlOufN+Vs53nM+irs8tycrbWfkpcf6xXMnK7pL9LQythPW3BfX8nJUXhjinmATfGlpTDN3sqHcQd2flxdB6CyLW8XnOZ2Jbvdk+/7zzuZqVN4QOAABQNUuzci2nE3Oh3XkDAJi2BVn5Med55dfQGvVdF2tCKzEeE8w3Q34iuTMp/0r7HP/aYzmW2O/O0Eq491rPu32c09yPCwcKjrVXc0n9Iznt052UjyP7f+rxfE4Eo+YBAICK2ZXowOzTNABABbyTeFZ5uUbnEBPNN0L+YIjupPw9oZWEnvuza+3t97efzw6FdFJ/b8c+4yj7r9p/fr1dx0ft9vw43B6Fnle2lpzP6qx8kJXLoTwpXmZr+5xuFNTRmZR/NfT+A8Nc2S+MAACAqjmZ03m5FVrzzgMATMuakJ9kPVWz8+gcqR3nhk8ls+Pf/dD+9ziHfmqu9wdD/uj3mKxfHlpJ8ziSPCbj49Q2CxLH9VRoTfPSXc/FUDzHfJwCMY5A/6Rdikatl4n1vJeVD0P+GxGdSfm9HX92uX0c8YeK/e3P3Co4joeEEwAAUCXLEh2yOMfpIs0DAEzBonDnfOudc4Uvq/m57Qvp+eHj+W3soY7UPPvHQ2t0fUxar+6hnmcS9Wwu2KZ7Opj4Q0AqId6PpYl6YsJ9boT8tfa/5/1o8HBI/0BgtDwAAFA5mxIdmM80DQAwBbO8IP3mxLnFke2r+6gnNbI8TgWzpo96LuXUcbDPc0pNh9Ov0zl1zL1Z8F1ovSVQZHXiOC4LKQAAoIr2Jjoxr2gaAGCCUmvevD0j57chcX6v9lnPgUQ9u/us59OcOn7ss47DYTRJ+VQ9ccqiu3us46tEHUuFFgAAUEVHEp2YDZoGAJiA9YlnkaMzdI7rEue4rc96doT+p57Jk/cjSJxGZl4fdXwaRpOUz6snzpW/oI86Xkkcy9PCCwAAqKLY4TmV04n5NVj4FQAYr/iscS3kj5JeOEPnOaqk/JYwmqT89kQ9K/qo42AYTVI+r54bfdaRmh5oqxADAACqKi6sljcvaFx47BHNAwCMwSMhf+H5s2H2Fp4fVVL+6TCapHwqib2+jzqqlJRPvW2xXZgBAABVFju/Z0J+Yn615gEARmhNyE/Inw6zl5CP6pKU72e6lyol5VPt+6xQAwAAqi6+Jn48p0Nzrd3ZAQAY1rqQP2XN8TBbU9Z0n7OkfO/1SMoDAACN8167M9Rdntc0AMAQXkg8Y7w34+ctKd9fPZLyAAAAAAAMTFK+v3ok5QEAAAAAGJikfH/1SMoDAAAAADAwSfn+6pGUBwAAAABgYJLy/dUjKQ8AAAAAwMAk5furR1IeAAAAAICBScr3V4+kPAAAAAAAA5OU768eSXkAAAAAAAYmKd9fPZLyAAAAAAAMTFK+v3ok5QEAAAAAGJikfH/1SMoDAAAAADCwWUzKfxpGk5TPq0dSHgAAAACAgaWS6aNKym/ts54tYfik/OFEHfP6PJZDYfikfKpdJOUBAAAAABpoY8hPGm/vs55NiXpe6rOeZxL1bOqjjs8Tddzb57EczanjZp91bEscywtuPQAAAACA5nkl5CeNX+mznmcT9Rzss553E/W82Ecd1xJ1bOzzWC4m6rmnjzreT9TxiVsPAAAAAKBZ4nQu34b8pPGpPus6mqjnl9D7CPWFWbmQqOerHutYn9g+lmN9nM/agnp291hHTN5fTtRxKSuL3IIAAAAAALMvJovjdDAnQzrxHEtc6DQmuRcm6ol//nhW9pXU80NWdmRlWfjtvO7xv1dlZWdWviupJ84VvyEri7Myv739gqwsDa252/eG1o8ARXWcCa1R/Q+F/DnmHwytpPvVknriCPin2vvvFpPt29vnXVRH/EEkTtdzr1sSAAAAAGA2paZ2KSvdC5z+NGA9sTzRUc+hAeu4NuT55J3T5wPW0znf/fYB6/jArQkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECxx7LyomYAAAAAAIDxeSgrx7Py16xc0xwAAAAAADB6y7NyILSS8XNFUh4AAAAAAEZocVbezcrNcGdCXlIeAAAAAABGZGFW3gytxPtfE0VSHgAAAAAAhjAvK7uy8nNIJ+Ml5QEAAAAAYEjbs3I+lCfjJeUBAAAAAGBA67Lybeg9GS8pDwAAAAAAfVqVlZOhlWA/m5WdWbmv4+8uBkl5AAAAAAAYiVtZ+SwrqxN/vzFIygMAAAAAwEjcV/L3cdHXm0FSHgAAAAAAJuJKkJQHAAAAAICJOBUk5QEAAAAAYCK+DJLyAAAAAAAwEZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIZLyAAAAAAAwIeeCpDwAAAAAAEzE1SApDwAAAAAAYzc/K7dCOil/QxMBAAAAAMBobA7phPxcWaqZAAAAAABgeGdCeVL+Lc0EAAAAAADD+SCUJ+RjidPbrNdcAAAAAADQn4ez8nJWzoXeEvKd5WhWtmRliWYEAAAAAIDf2pSVn7PySyhe0LXfcjMrV7NyOSvPaGYAAAAAAAhhWxhdIj5VXtDMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP/f3v1HWn3/cQB/ua4kiUmSJCZJJpGZSTIyXzOTkeRrJjGZySQmM1/JyMzMzJiZZCYmk/RHJJMrGTOTzMTXJJlEciW5ou/77Zzr3O49n8/59Tk/vuc8Hrzcuvfc1+d9Xp9z/nmez31/AAAAAAAAAAAAgHJrUp3qU++tqf5jxAAAAAAAELE+1V+pnqX6ueLer6V6UO99NtW0cQMAAAAAMKnyVex3oxaa53qaakdFvZenuregd67LqVYaOwAAAAAAk2ZnNK5in6+9FR9jceif67eobZcDAAAAAAATIYfvT+L5sHxfn461LtXNRcf6O9WLTgMAAAAAAOPuw3g+IM+1v8/HfCHV9UXHvB+1q/UBAAAAAGAsfRFLA/n3BnTsHMwvvmL+cVS/ZQ4AAAAAAAzVilQXYmkgf2rA69iU6lGTdRz9P53rxlRvp/o81aWo7ZffrulUB1OdSzWbaq7+NZ+nPT2saXeqM6lu13s+rq9tt7cBAAAAAED/rY1aWLw4CL86pPV82mQtub4b8Tnmm9Pura//52j+4cI3bfZ6J9WdgjnM1ycdri/fVPdai56HvR0AAAAAAPpnW6q70Tyg3TGkNb0RxaHx5VSrRmBueQ1vRi0Yz1ey34/ysHu+Wm3Fk7fw+bnNXrlebXO9x1I9baNffswWbwsAAAAAgOrlULnZ1dzzNT3EdZUFx3nf+Q1Dnt1stB+cLwy8l5f0fDHVrQ57nm2xzny8cx32/MZbAwAAAACgWh9H63D2h1SbB7yul1L92cba7qXaOcT55T3iv67X99F6W5hW2wFtqz+nToP+hyU9V9aP2WnPW94eAAAAAADVyFdO/xidB7WjWPkmpe+O0Gz3tVjviYLfy9vFLAzk/6j3yn+psKrF+ZorOc8LA/kHqY6nWpdqKtUXJT2fDGBWZ8fkNdjJ1kQAAAAAwIRZn+r3GL8w9LMRmvFcyTp3NXl8Dsn/icb2Nh81eczqkp6PCtZxPp7fh3/Nop9Pl/R8PIA5CeUBAAAAgLG2O7rbHuX/pS5G7Sapw9Qq6J5a9Pi8vczNaFzJvrug71R0tiXOyQU//6JkvUU97w5gVkJ5AAAAAGBsvR+1q7CfjXnlvdA3DXHOr5Ss7VyTx1+Mxv74L5X03VLS9/tFj30rWm+Xk63qcK1VE8oDAAAAAGNnRYzP/vGd3Pj0jSHN+0DJug4veuwn0QjkN/fQ98CCx22I2hX3+fuftuj5ZknPYwOYlVAeAAAAABgr+Yrx+a1RJrE+HsLMvy1Zz5YFj9tT/95sqpfb6PtNSd8NCx53rf69M230PFHSc8cAZiWU79wz1VYBAAAAwMC9HbUrxpsFVvlK6kNj8jzzdjG3ozicyzc7XTnA9VwrWMftBY/JN1yd39v/X232vV7Q9+8Fjzle/15ew3QbPWcKes56+4wsgbtQHgAAAIARk8PYL6M4rPol1doxe86rU12J8n3mNw9gHflmrHMFazi94HHz+8gf7eCcFt0PYH4/+S31Y99r8/wuK+l51ttoZAnchfIAAAAAjJCNqX6L4qDq56gFx+MoP6+y7VDy1d/7+ryGnSXHf7v+mMP1///UQd83ovV2Kb/X/7+nzZ57S3q+5600sgTuQnkAAAAARkQOnIu2q8mVQ9vpCZjD5SgP677s4xyOFBwzX5H+QtQ+NMkfDuQr9zvZUudkQd+5+nM5Vv//5x30/KpkRpu8nUaWwF0oDwAAAMCQLU/1XbQOqV6ZkHmsS/WkxSzyBxT9CJ7PFRzv1/rP8wcGOaDf1mHfoq15LqR6MdXjqN3Qd3kHPW9E673vGT0Cd6E8AAAAAEO0PtVf0TqgejRhc/mpzZm8VfFxi/5S4VTUbqyb/328w575SviifeoPproUtaD/pQ56ri2ZyxlvKwAAAACA5vLNS++EUH6xs9He1bSHKjzm9pLj/DvVg1TXu+i7J4q3xJnfn/6TDnvuL1nrfm8rAAAAAIBiq1J9H60D6LcnZB7LUt1vMYv/RvXb+XwQxfu+/1j/urWLvkX7yc+kupvqz+h8j/zTJbNZ7S0FAAAAANBaDt3z1dhFYes/Udu2ZNx9EeWBfP4AY0Ufjlu0n/z8OTnRZd+Zgr736l/3dNGz6K8rbnobAQAAAAC0L9/k9GoUB9I5dF0zxs//w5LnPpvqQJ+OOxW1m62WfSCyvIu++XeelvS91EXPzSX9vvIWAgAAAADo3KdRHLzeTrVtzJ5vDq+/K3nOf6Ta1Mfj74ryq/M/6LLv3hZ9t3fR81BJv73eOgAAAAAA3cnbmsxvcbK48lXd743J89yd6q8oDppzWL+sz2v4T8nx877vU132/TaqvUo+K7oJ7tMBzAkAAAAAYKxtSPVrtL4J7DhW/uDhwIDmPFOyjuM99C37sGF3lz1nC/pdG8Lr8+wYvu78tQEAAAAATLjpKL/iehzrVqqtA5rvqije930uut/Df33J8/ury57bS3qeHMJrUygPAAAAAIytd6L8ZqTjUuejFpQPyv6StZztoW/Z3u9Hu+x5tKTna0N4TQrlAQAAAICxtiNqN3od10D++BBmWhYsv95D33NRvPf72i57XoziK/qnRmx2QnkAAAAAYCzk7VR+ifEKQh9E7ca2g5aD7IcFa7oX3Qfd+fceFfS90kPPuYKeF4f0WhTKAwAAAAAT46sYjxD0ZqqNQ5rh7pJ1fdVD39dK+r7Xh57HhjQ/oTwAAAAAMFHeTfUkykPG71KtG/C6lqU6GK0D0HyF98ohzu+LkrXt7qHvqSjeumZ1lz1PlKz15RbnAgAAAACAiuyM2lYr/QiXezEV5YH8pyMwu1tRvHVNL24U9L3aQ8+Zgp6PSn4nb3V0J2of3gAAAAAAUJH1URwE7xvSmnZG8U1JRyEk3hLlf13QrXUlfT/qsud01K6yb9bzp5LfuVZ/zMfeIgAAAAAA1crbwOTtYBaHtn9ELaAdtCvR/Iauu0ZkXseiODzv5aazh0r6vtRlzzdLeh4p+J1v6z//xVsDAAAAAKB/vo6lwe2ZAa/hnSZr+DvV5hGa09VoHnLPRm3rnW6dK+j7Tw89P43iUP6NJo9/v/6zu1HbwgYAAAAAgD76MJaGt58P6NjbohZsLzz2bzFa4fCaKA65f+ihbw7zHxf07eWDkQsl612x6LFv1L+fbwC8w1sBAAAAAGAw8pYniwPik30+5saoXRG+8JiXora1zigp22Jmbw99Xyvpu7+HvrMlfRfKgfyTCp4HAAAAAABdeDXV/Xg+xD3Rp2PlG5zeWXSsvJXL9AjO5XwU34R2WQ99P4/i8LyXvxR4VlIvplodz29xc9BLHwAAAABgOLbE0rD8aMXHyIHzrUXH+HZE55E/JJiL5gH3xR573yjoe6PHvkVb4jT7UOGAlzwAAAAAwHDlq9hvxvMB7isV9c5b0ywOoz8b4Vm8FcWh9uEeZ1zU95se13wpWgfyedugXV7qAAAAAACj4YVU16KakHixfHX2/L7nJ0Z8Dt9HcbC9voe+/dqnPuq/X9T7adT+KmG1lzgAAAAAwGhZkepIn3pvit6uNKfcu6n+jNqNXPN2NjNR+wBko9EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAZNmS6oNUP6a6nuphqiep5upf8/+vpDqT6kCqdUYGAAAAAADtm0p1ONXvqZ51WE9TXU61xxgBAAAAAKDc66luRedhfLOaSbXZSAEAAAAAYKlTUU0Yv7AepdpvtAAAAAAA0PBTVB/IL6wjRgwAAAAAABHfRX8D+fl616gBAAAAAJhk78dgAvlcc6m2GzkAAAAAAJNoS6onsTQ8f5zqTNT2gs83ap1e8DvLUr2c6kCqs/XHdhLM/5lqyugBAAAAAJg0M7E0NP8s1Qsd9FiR6liq2Wg/mD9s9AAAAAAATJJ98XxQnkP1PT3025Dqt2gvlL9l/AAAAAAATJIb0QjJn6baVUHPlamuRnvB/E6nAAAAAACASfBaPB+QH6mw9+pUd6N1KH/KaQAAAAAAYBKci0Y4PtOH/nujdSh/0WkAAAAAAGDc5RuzzkVj25qtfTrO71Eeys86FQAAAAAAjLv90QjGv+3jcY5EeSj/1KkAAAAAAGDcnY5GKL6xj8fZFK23sJlyOgAAAAAAGGf/jVogfmYAx3oU5aE8AAAAAACMrVXRCMS3D+B4V6I4kJ9zOgAAAAAAGGf5pq4/p/plQMc7F8Wh/G2nAwAAAAAAqnM2ikP5c8YDAAAAAADVKbtS/iPjAQAAAACA6lyI4lD+FeMBAAAAAIDq3Aj7yQMAAAAAwEA8ieah/EmjAQAAAACA6myM5oH80/rPAAAAAACAiuyP5qH8WaMBAAAAAIBqnY7mofwWowEAAAAAgOpMpboXSwP500YDAAAAAADVej2WBvKzqdYZDQAAAAAAVOt8LA3ljxgLAAAAAABUa3MsDeSvGwsAAAAAAFRv8Q1eH6baaCwAAAAAAFCtrbH0KvkDxgIAAAAAANWbiecD+a+NBAAAAAAAqnc4ng/krxoJAAAAAABUL+8ZPxuNQP5WqtXGAgAAAAAA1ZpKdT0agfy9cGNXAAAAAADoiy+jEcg/TLXDSAAAAAAAoHrvRCOQf5xql5EAAAAAAED1dqaai1ogn7++biQAAAAAAFC9F1Pdj8ZV8m8bCQAAAAAAVG9dqjvRCOQPGQkAAAAAAFRvTaqb0QjkjxoJAAAAAABUb1WqX6MRyJ8wEgAAAAAAqN7yVFejEch/bSQAAAAAAFC96VSXohHI/2AkAAAAAADQH+ejEchfMA4AAAAAAOiPM9EI5K+kWmYkAAAAAABQvbxv/Hwgfy3Vyj4eaypqV+S/ZewAAAAAAEyaE9EI5G+keqHPx/u4fqx/GT0AAAAAAJPko2gE8n+nWtvn472c6mmqO0YPAAAAAMAkORyNQP5uqvV9Pt66VP/Uj3fC+AEAAAAAmBT/jkYgfy/V5j4fb1vUrsSfP+ZGpwAAAAAAgEmQb7A6H44/jNqWMv2wOtWbqU5Hbcua+WNedgoAAAAAAJgEe1LNRSMgH0btcxoAAAAAABh3r6Z6FMMN5O+nmnIqAAAAAAAYZ9tTPYjhBvK5PnMqAAAAAAAYZ1uidjPXZyNQm50OAAAAAADG1cZUd2M0AvkZpwMAAAAAgHG1LtXtGI1APtdBpwQAAAAAgHG1P0YnkJ9NtcwpAQCYHP8DEdeLWmAKwtAAAAfudEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1zdWI+PG1mZW5jZWQgY2xvc2U9Il0iIG9wZW49IlsiPjxtb3Zlcj48bXJvdz48bWZlbmNlZD48bWk+UDwvbWk+PC9tZmVuY2VkPjxtbz47PC9tbz48bWZlbmNlZD48bWk+UTwvbWk+PC9tZmVuY2VkPjwvbXJvdz48bW8+XjwvbW8+PC9tb3Zlcj48L21mZW5jZWQ+PG1pPm1pbjwvbWk+PC9tc3ViPjxtbz4mI3gyMUQ0OzwvbW8+PG1pPmNvczwvbWk+PG1zdWI+PG1mZW5jZWQgY2xvc2U9Il0iIG9wZW49IlsiPjxtb3Zlcj48bXJvdz48bWZlbmNlZD48bWk+UDwvbWk+PC9tZmVuY2VkPjxtbz47PC9tbz48bWZlbmNlZD48bWk+UTwvbWk+PC9tZmVuY2VkPjwvbXJvdz48bW8+XjwvbW8+PC9tb3Zlcj48L21mZW5jZWQ+PG1pPm1heDwvbWk+PC9tc3ViPjxtc3BhY2UgbGluZWJyZWFrPSJuZXdsaW5lIi8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1vPiYjeDIxRDQ7PC9tbz48bXN1Yj48bWZlbmNlZD48bWZyYWM+PG1uPjE8L21uPjxtc3FydD48bW4+MjwvbW4+PG1zdXA+PG1pPm08L21pPjxtbj4yPC9tbj48L21zdXA+PG1vPi08L21vPjxtbj4yPC9tbj48bWk+bTwvbWk+PG1vPis8L21vPjxtbj4yPC9tbj48L21zcXJ0PjwvbWZyYWM+PC9tZmVuY2VkPjxtaT5tYXg8L21pPjwvbXN1Yj48bXNwYWNlIGxpbmVicmVhaz0ibmV3bGluZSIvPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3hBMDs8L21vPjxtbz4mI3gyMUQ0OzwvbW8+PG1zdWI+PG1mZW5jZWQ+PG1yb3c+PG1uPjI8L21uPjxtc3VwPjxtaT5tPC9taT48bW4+MjwvbW4+PC9tc3VwPjxtbz4tPC9tbz48bW4+MjwvbW4+PG1pPm08L21pPjxtbz4rPC9tbz48bW4+MjwvbW4+PC9tcm93PjwvbWZlbmNlZD48bWk+bWluPC9taT48L21zdWI+PG1zcGFjZSBsaW5lYnJlYWs9Im5ld2xpbmUiLz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4QTA7PC9tbz48bW8+JiN4MjFENDs8L21vPjxtaT5tPC9taT48bW8+PTwvbW8+PG1mcmFjPjxtbj4xPC9tbj48bW4+MjwvbW4+PC9tZnJhYz48L21hdGg++k5l6gAAAABJRU5ErkJggg==" style="width: 265.33px; height: 173.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="open square brackets stack open parentheses P close parentheses semicolon open parentheses Q close parentheses with hat on top close square brackets subscript min left right double arrow cos open square brackets stack open parentheses P close parentheses semicolon open parentheses Q close parentheses with hat on top close square brackets subscript max space space space space space space space space space space space space space space space space space space space space space space space space left right double arrow open parentheses fraction numerator 1 over denominator square root of 2 m squared minus 2 m plus 2 end root end fraction close parentheses subscript max space space space space space space space space space space space space space space space space space space space space space space space space left right double arrow open parentheses 2 m squared minus 2 m plus 2 close parentheses subscript min space space space space space space space space space space space space space space space space space space space space space space space space left right double arrow m equals 1 half"> Thay tọa độ từng phương án vào phương trình , ta chỉ có điểm thỏa phương trình nên

Ta có:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>n</mi><mn>1</mn></msub><mo>&#x2192;</mo></mover><mo>=</mo><mfenced><mrow><mn>1</mn><mo>;</mo><mo>&#xA0;</mo><mn>2</mn><mo>;</mo><mo>-</mo><mn>2</mn></mrow></mfenced></math> là vtpt của

<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><msub><mi>n</mi><mn>2</mn></msub><mo>&#x2192;</mo></mover><mo>=</mo><mfenced><mrow><mn>1</mn><mo>;</mo><mo>&#xA0;</mo><mi>m</mi><mo>;</mo><mo>&#xA0;</mo><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced></math> là vtpt của  

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mi>&#xEA;</mi><mi>n</mi><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>cos</mi><mfenced open="[" close="]"><mover><mrow><mfenced><mi>P</mi></mfenced><mo>;</mo><mfenced><mi>Q</mi></mfenced></mrow><mo>^</mo></mover></mfenced><mo>=</mo><mfenced open="|" close="|"><mrow><mi>cos</mi><mfenced><mrow><mover><msub><mi>n</mi><mn>1</mn></msub><mo>&#x2192;</mo></mover><mo>;</mo><mo>&#xA0;</mo><mover><msub><mi>n</mi><mn>2</mn></msub><mo>&#x2192;</mo></mover></mrow></mfenced></mrow></mfenced><mspace linebreak="newline"/><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><mn>1</mn><mo>.</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>.</mo><mi>m</mi><mo>-</mo><mn>2</mn><mfenced><mrow><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mrow><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt><mo>.</mo><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mi>m</mi><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></msqrt></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>2</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>2</mn></msqrt></mfrac></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mover><mrow><mfenced><mi>P</mi></mfenced><mo>;</mo><mfenced><mi>Q</mi></mfenced></mrow><mo>^</mo></mover></mfenced><mo>&#x2208;</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>;</mo><mo>&#xA0;</mo><mn>90</mn><mo>&#xB0;</mo></mrow></mfenced></math> nên <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mfenced open="[" close="]"><mover><mrow><mfenced><mi>P</mi></mfenced><mo>;</mo><mfenced><mi>Q</mi></mfenced></mrow><mo>^</mo></mover></mfenced><mi>min</mi></msub><mo>&#x21D4;</mo><mi>cos</mi><msub><mfenced open="[" close="]"><mover><mrow><mfenced><mi>P</mi></mfenced><mo>;</mo><mfenced><mi>Q</mi></mfenced></mrow><mo>^</mo></mover></mfenced><mi>max</mi></msub><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#x21D4;</mo><msub><mfenced><mfrac><mn>1</mn><msqrt><mn>2</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>2</mn></msqrt></mfrac></mfenced><mi>max</mi></msub><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#x21D4;</mo><msub><mfenced><mrow><mn>2</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mi>min</mi></msub><mspace linebreak="newline"/><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#x21D4;</mo><mi>m</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>

Thay tọa độ từng phương án vào phương trình , ta chỉ có điểm  thỏa phương trình nên

1

Câu hỏi tương tự

Trong không gian với hệ tọa độ , cho điểm và gọi , , lần lượt là hình chiếu của trên các trục , , . Phương trình nào dưới đây là phương trình của mặt phẳng song song với mặt phẳng ?

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG