Square root
VBT
Calculator
magnet

Câu hỏi

Trong không gian toạ độ , cho mặt phẳng và mặt cầu . Hai điểm lần lượt di động trên và sao cho luôn cùng phương với . Tổng giá trị lớn nhất và giá trị nhỏ nhất của đoạn thẳng bằng

Trong không gian toạ độ , cho mặt phẳng  và mặt cầu . Hai điểm  lần lượt di động trên  và  sao cho  luôn cùng phương với . Tổng giá trị lớn nhất và giá trị nhỏ nhất của đoạn thẳng  bằng

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

Gọi . Do . Mặt khác: Áp dụng bất đẳng thức Cauchy, ta có: 3 k - 9 2 = a - 1 - b + 2 + c - 3 2 ≤ 1 2 + - 1 2 + 1 2 a - 1 2 + b + 2 2 + c - 3 2 = 75 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABgQAAACoCAYAAAAvmoWoAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABPJkfOnwAAO9VJREFUeNrtnQ+kVdn7/x9JriSSJElkJMmIJElGjCRJIkmSDMlIRoaMJBkxkuRKJEmSS5IkI0aSJJEkSeL6yLiSSJLkivnt53vW+d1911nn3LPP/rfW2q8Xy+cz3bP3Xnvttd7Ps/49SwQAQmR6kjYnaU+SDiZpX5K2JWkBRQMAAAAAAEB/DQAAAADCZ16ShpM0nqT/uqS7SVpJUQEAAAAAANBfAwAAAIAwWZ2k9z0cy3T6Lq1VKAAAAAAAAEB/DQAAAAAC4ockfTTO41iSribpVJLOJelakt51cTR3UHQAAAAAAAD01wAAAAAgHJ4bh/FokqY5/q7/tj9Jny0HU53SuRQfAAAAAAAA/TUAAAAA8J99xln8vY/frpfW9tO0k3mMIgQAAAAAAKC/BgAAAAD+8yJJjzL8/rTlYD6iCAEAAAAAAOivAQAAAIDfLDdO4qoM1yy1HMxvFCMAAAAAAAD9NQAAAADwm4NJejjAdV8tJxMAAAAAAADorwEAABTK1gqfNT1Ju5J0LUmvjUEdN/+rW/YuJ2lTyXlYlKTt0tryd5XPXxqzkvRLkq4n6V9praDQb/1FWtsrz0krFuOg6Dcc8rhN/TTAdaPCipPQNC3kPEG1zE7SySS9z3kfn7UPwtAFPSBxualL2/gMlbA4SUeSdDNJ74yN/278Xz3Q8or5HtPQBXSBIoiWsvvBPuoA/TUAAAAP0S1vT0zHZFYFz/vFPOu/PtLLJK3L+byVpqN7yHS0/pHOGf17VINSnN2j0hr4b5fzc9MJviWtwbD/rL9ldcbmJGksSW+StCaisnubKpcXVCXvNS3UPEG16ADfb0n6aNr25xz3ilX70KpyWJKkLUnak6RhaU3Qq3+VPhTxCp+jVOabMv7ep/+rdeIAuoAuUBzRUXY/2EcdoL8GAADgIdrZ0BltXZ2woORn6QDxSJ8OUDpp52l3juceT9IdY6i7dcSOURUKZWGSnqbKVycAFjt+pzsDnlvf4uwAnez2s45EUn6fU+UxTHXyVtNCzhNUi64+e2Vp3eec94xR+9Cqcrho6tt4D19rJ5+kNNZK5yKIftNtyTYojC6gC+AnVfaDfdQB+msAAACeoFv2rsrEjPa8Cp55Z8DOUDv9VEAe1Bl547j3WqpEYejA/5j0v+pQHeRb1ve4mfGZ2lm+Z64dMfcMlZlWWayjSnmraSHmCarlxyQ96GLTPhdw/5i0D62qBl19/NVRH9GnclglkweNBkn3MrZtdAFdAP+ouh/sow7QXwMAAKiZudKK3a7G601FTucpmRxjT2fRNyZphvm7hlJYkaTDMnn7XTqNyuAxVdPYqzO+FnRfaG0JTcdTfGccpn46Qvbq2fMDdKbupTrPoW6z3iaTwyiBn5oWYp6gOnSX1OUpOvefC3pWLNqHVlXHU+kMSwHl+ET9hgaZKp1FF9AFCJa6+sE+6gD9NQAAgJpQJ7M98PreDFqUzdqUwdT4/VNtgVVH4VYXZ6iIQ+/uS77V6NCd6zJ4KKafHd97R8bnz5KJEEQPJMyD9a6k3n8LVcpLTQsxT1ANqkEnkvQsSfukNSE6TzpDoxU5IRCL9qFV1fFN8k3AQ39clclhPy4Yu55eKDHH/NsFx3ex04/oAroAwVF3P9hHHaC/BgAAUDHa6XiR6phUFSbnmWSPradbCF86HKFLJXSED1I1CmGD43sty3gPe9BMO0ezM95jkUzE6r0dYMewHeP5b6qUt5oWWp6gOlaLeyJzt5Q7IRC69qFV1bFCyllsAZNZJZNX9vbjD+lA4T3pPiFwGV1AFyA4fOgH+6gD9NcAAAAqQrcYpuMYH67ouRtzdGL2ivtwtTz86LjncqpHITy2yvXfAe5x2PF9Tgxwn82p6/8MqAxPmzx/Mo4y+KdpoeUJ/GCjlD8hELL2oVXVcdCqhzqoMYPPVDjtHZM64LUgY33pFmt80BCX6AK6APXafh/6wT7qAP01AACACjifMrj3K3yuOi66wmGQrYAzHY5Q3ln4X637faBqFMJKx7caGeA+yxz3+SiDHTp1LXWPjQGUoa7a/G7yu50q5a2mhZYn8ANXSLTPJT0rNO1Dq6rltlUPQ9SqX6x3OOdZ/ual7PmmAa7XlePvxT0psAZdCKIO4C+Aj/1gH3WA/hoAAECJpA+9UQO2rKLnzjHPW5njHl+l2Hj/NyT/oDV08qcUs7Jf+eK41+4B7qMr8trhocZMffQVXZ3Z3jb+F9XJW00LLU/gD1VOCISkfWhVtejk+rhVD48EWK6+DwYfMPm6leMeR8Q9IbAVXQiiDuAvgI/9YB91gP4aAABASWj89XcpR+Jihc+eK6248nn4bDlCZ3Lca5rDsdpDFSmEB45O664B7+XaKj/oxM2Zmup+Vi4IE1QhaFpIeQK/qHJCICTtQ6uqZZOjHq4KsGx9HwxuLz7JM9C7RNwTAjvRhSDqAP4C+NYP9lkH6K8BAACUwCnJd8hrnegA/ncr/3kO3Frv6FgtpIoUwjcp7pDCK+KOmzsIP1j3+dHDsmvHc74rg4VGQtPIE/hP1RMCIWgfWlU9ZySOsIm+Dwarz3KngPu4dkxuRReCqAP4C+BbP9hnHaC/BgAAUDCLLEfiUWD5t+PSP8h5v+PW/UapIoXginGZZ0Lgjy73Wzzg/Z6m7nHPs7LblmqbM6lKQWpa6DoL1VD1hIDv2odW1cMLiSNsos+DwboCXOP/byjgXq7dl+vQBe/rAP4C+NgP9l0H6K8BAAAUyDnLkTgcWP6PpfKuq6SWFtyxYptuMawQ9wD+oAct7ZZi4+YeEz/DI+hggcZy1sPGiPEdrqaFrrNQDXVMCPiqfWhVPcyXYs7n8YHQD5TtFzuEovoM09CFYOsA/gLU2Q/2XQforwEAABTELOkM4xLS1uAhaR0s1D5wa2vO+02Xzm2X26kmheAa6Moz0LC9y/0GPe/BDhV13YMy0y2/Ohj4P2kN0kCYmha6zkK9Oln2hICP2odW1Ydrsn1BoGXclAmBJ9Z73kcXgq0D+AtQZz84BB2gvwYAAFAQ+6WYGOx1cd7k+5O0DsHLyzarPNS5smf5p5sORT9pH1Xs/7Nc3AP4pwa839Yu9/tzwPvZMTi/1+zUabxYjdusIQWWUH2C1rQQdVY7XMNJembyO27qoh6U1j5TRQdabksrvIh2hE5T/XJTx4SAb9qHVtXLiJWv511+91OSLifpTUoj3ibpqhQTv7oImjIhYB8ouh9dCLYOhOYv6ATGLqMFT0xdHDdpzDM9iJGi+8Eh6AD9NQAAgIK4ZzmefweU9yMmzw+ldchQEQxb5fGsiyOiHYwTMjmOoZ3emjxCi6Eu5TToyo7NXe6Xp7Nnf8+6tmkvMh2pj5J9ZZh2vpY2uJ75qGkh6ax27F+ZfL4yWtdeHTzfdD7fm///yHqvn5C53NQxIeCT9qFV9fNJek/aL3W0fVc678G7NGFCYIb1jl+Mv4UuhFkHQvEXtN+lCwTGU/nckaS5qXp5OPUew0h+EP3gUHSA/hoAAEBOXOFxQoiXP8vkMz3wflDyx0tVXkm21euuQe4r0loND518dZTX+wHvVcaEgL0y8mENZTRPJlZcrs947baa8oymha+zehj3/VQej/bQ1HumnaXf62tBGtx06poQ8EH70Kr6We2ofxtTf9edeV9k6smAdjpb8/s0YUJgi/WOJ9GFYOtACP6C2nldENWeCNB+08ouv51jvcsBpN/7fnAoOkB/DQAAICeukCu/ep5njQ8/1qXjqU7puhz3XuC455YprtmX+u1ozuc3gdtdvt0g24m7TQj8lSN/f0pnyKjZFZaPPuupee7mjE6prhTSuLM7B+hY/OdR+jkyTQtBZ1Xn2quCx/vQvV2pwYB2uom8FUJdEwJ1ax/+lx+6YB/WmD6cdpdMrEDX+tJe+KB/191B3XYN1Bn/vAkTAumdrR8Kbrcx6EJIdcB3f0F9zfR5FfeMD9kN+zySl0i/1/3gkHSgif01AACAQjnhcCa2eZhPNZ66FfCN9Deg+MeAz9nt6AhP7/F7XRHTjts6MoVTDC0OdvlmFwa415Yu99qbI3+uwxSrOlRad5s8kHyD6WOSfYVQTBMCPmqa7zp7yMpbPwfSuSbjDiFvhVDXhECd2of/5Y8u3LfydNuql4+lFSLBhYYIee54rzpXOMc+IaD2/n3q/X5BF4KuAz77C7po6n8yOaTqVP2e69a7fEP6ve4Hh6QDTeyvAQAAFMoNh4Ha5FkeNWTP9wEM7e8DPMvefnivx29XpDphnBPQPxpbdNzxvfQbZ41/eajLt8/jELpWZ52qqGxuS/7B9BMDPDemCQEfNc1nnT08YCfS1U4Ik1YMdU0I1Kl9+F9+6MJMh7+ldlYnADQ+8l2ZOja9a5DmdY3vFPuEQLq8/0EXgq8DvvoL7dAo7Tx9lO4Tg2lGrXcZRfq97geHpANN7K8BAAAUyguHgVrlWR7XSGs1qq4G18OqdIW5HsIzNoWhVedpZcZnvbfucaxHnnRb9meZOrQGuJ1b1zfTlYfT+7yHxiV9K8WFH2qz0XG/KkKhnC7AufzeZwfNJqYJAR81zVed3Wvl6W6Ga3dZ135A1gqjrgmBurQP/8sfXdgu7ok+tc0aJqSfg2rnOu5R56rgmCcEdHXpa5k4i2k+uhB8HfBRF7SePbTytKfPa09a1+1A+r3uB4ekA03srwEAABTKN4eRmhlQ/jVmba8te/cy3OtH6W9gWbfu6uFB76TeuLghowPQ3Qbzb/Ux6KCHHr7q4WTl2YK52HHPt3wyNC2yPGkbSu/U+ZKxc2LHbr1G1SuMuiYE0D504aLj+x+X1oTfggz3sd9rvMZ3inlC4LeU37MBXYiiDvioC39Z+XmU8Xo9a+2MtAa2wd9+cGg6gM8CAACQg2ldnIcZAb7LL9J9O+XSjB2rdvoqnQPL7cP2XmbsHEMnumrlY5dvpluK98vEajf9DsuSdEAmVinpAOZ9x7XPcubLtVqemKdoWkx5cu2uOZbxHnZYg91Uv8Koa0IA7cP/ssN7PDG+VdYwfHXU317+YYwTAotk4gyrA+hCFHXAR11Y6cgPA/tx9oND0wF8FgAAgBzM7OI4hHrAze4u7/Nbn9ffku7bDtXpaA+AaViN2SW/y1zxI3TL5pLfU7dBvxsgX6Omk+KaEDibM08zujwT0LRY8nTByou2waGM97DDqy1E+wqjrgkBX7SvCXXAR11Y2iVPtwv4fnlWqfoW0m6uJ/au7f+cboAuNKUO+KgLT6y8PKwxL/gH5faDQ+sb0V8DAAAowcEOmWuO9+knlIU62/ZBt4fM3/Sg25fm365W5Jg3yenVg8ouSX8HZukg5DHjBM7tcs3POfPTzcGcgWSgaRHkybXaL+uh6PbA4SjaVyi+TQhUrX1NqAM+atVBcYf6WZzxPlsc9zlfQlk1eUKgHcLlUkN0oSl1wDdd2OTIy74a84N/UF4/OMS+Ef01AACAyDqkeVnmeJ+/BxyAWSGtbfKfU/+2F6e3NDQEk257HzHfTCdhdDeG7tQ4bQYZ0pMxvzryO4aDiaYJEwK9eCSdodFmZbzH79Y9LqN9hcKEABMCdXDLkZ9TA9znL8d9tpZQVk2dENhp8nGjoucxIdDcCYF70jlBOFRjfvAPyusHh9g3or8GAACAIe3gufU+b/q45qR1zSdphZ6xy+YxTq+331nTiRLbxXQkA00LPE/rHPkYHuA+T6177ED7CsW3CYGqta8JdcA3rXLtktT/nj/Avd446m6enZVMCEzwk/kuf1fYLn3QhabUAZ90YYEjH3dr9vHwD8rrB4fYN6K/BgAAkBNXyJWhwN/pimQPZ/G4i1Px0PFvq6g2tbNe3KENiohjPuS493eKHE2LIE+ureSrM95jheMe86l2hVLXhADa11ytctW5CwPcZ63jPmdqLudYDhVWrdbFKo8qricx6EJIdcAXXdjnyMcxZDvafnCIOoDPAgAAkJPPDmO6MPB3Omq9z50pfj/L4YBrGI1d0lpl8Mn620WqTe08ctTbog7Wmy31DMZBvJrmQ56042SvAH47wH3OS3nnB0CLuiYE0L7matVpR15WDnCfEekcnFlccznHMCGgYUA+JOmZaadVEoMuhFQHfNEF1wKCrQIx9oND1QF8FgAAgJz87TCmGwJ/J9vxvzrF77c7ymB96u/npHMl+jyqTm1sE/dhw0Vt4XYduvo08jL1bTv+z5Fpmg952unIQ9bJzUXSOalwBUkqnLomBJqoffhfLewQEy8GuMdyKSYkWdk+YWgTAjqh8i5Jr2ryPWPQhZDqgC+68NSRjx+Q7Sj7waHqAD4LAABATi47jOmWwN/psPU+v07x+4vSObic5kdHGR2h6tTCHGkdHGx/j50FPmOT4/4jkZdrTBMCPmqaD3m66MjDjgLusRNZKpy6JgSaqH34X62QX0WEBrlt3eOj1H8ArxLyhIDGcf/XpAU15SEGXQipDviiC1+E2OxN6QeHqgP4LAAAADnZ7TCmewJ/Jzt24lQrWuwD8FwrXu0QNRpqYxrVp3JGJP8q56lw7RiJfQIopgkBHzXNhzzdd+RheYbr2xOj76x7LEKWCqeuCYEmah/+Vys8Yt5wQVvF38nCUCcE5hn/VBepLMl5Lw0JtbrBuhBSHfBFF1xnGUCc/eBQdQCfBQAAICfLxL8D4PKS3ub6cIrfLna8/64+HfTdVJ9K+d3xDe5J8SuWXAep/Rx52cY0IeCjpvmQJ1dc4n4nNWdIK4SI5vlb6voxZKkU6poQaKL24X91TrR/zHi9DlzbE4WXPCrnECcEdDfkc/MtVuS8l07WaKi32Q3WhZDqgC+6MC5MCDShHxyyDuCzAAAAFMCoZUyvB/wuS6x32Zixk/CfuGO06sDZv9bvnvW4L7sHisU1IaNO7qwSnmWHRRnne6JpEeQpT+f+QpJeJmmNTL01W1ehzqEK5qKuCQG0r5la9cnKw42M1/9jXa87Koc8KuPQJgTUr3ls2vyanPdabb7vtYbrQmh1wAddcC0imIFkR9cPDlkH8FkAAAAK4IxlUEcDfpfh1Hvc6uP39sq45z1+61qhvq3Lb48m6TeqViG4VoBorOKZJT3vpvWsW3wCNC2CPLkmBPrpOB2SVizhpUnab11/yPrtT+LHIaKhU9eEANrXPF1Y7ahrJzNcf9q6Vg++netZGYc0GKwTKRreTXdi5RnI01Xmx2UiDvzPDdeF0CYEfPBhXIcbrx/gPjpoy45qf/vBIesAPgsAAEABrHQ4fTNryoc6MqdksFin6Y6thrKY38c19gqYsz1+q2Xy0fr9S8fvFphO2I9UrdyckmIOO8yCvVpyF58BTYsgT/86nr92imsOmN9tN/99zbp+g/V+N6h6hbDF8a2+VPBctK95unBUBo/9/4d0LqiY52EZhzIYrBO0rkHYvOlfdCG4CQEffJg/C/C/z2foj0E9/eCQdQCfBQAAoCCeSX8r38vCtUrtjvR/YOUCmRjw+ij9HYjneubmATrP9k4AXaFwkSqVCz0Ayz7IWZ3bsmNDLpLOWMrT+RxoWgR5ch3IfbXLb3Vgqr3yN31A20txhw/QGNd3ZfAY1TCZ4+Ie2CuzfNG+ZuqC67DxLX1cd9a6xuf2H8pg8A0p50yeP9GFIM+RqNuHcZ1loP2sfsKBDRmfQwdsVyHx3vaDQ9YBfBYAAIAC2WsZ1vMVP/9Ml46MruA/KL1DW+gq1zHz+zfSCm3RD0ekM/bgVM7EzNSz0tfpRMIM8x56uN5cqtRAzDad13R4k+/SWjFTRVzyfQV2pKHZmuZbnrZ20djhVIdzpmkDr8zfjlv3+Gpdu0NaYYT0PI95VLlC0BV9H6T4gT20D61y8dJRz7b3+L3ufHxm2edjnpdvCIPBl6WcyQBNS9CFICcEfPBhXAsJLk9xzfIkvZDWAO1aAZ/7wSHrAD4LAABAgaij8TZlWN9V/PxdU3RoNG8npDXwrh1SjVWt29pvy0Q4Bf17loPs7lrP+KfP63ZPkdefqU6Z0ZVIp2Ui3m17ouV8CY5tL26lnq+Dn2xzRtNiytNj6W8ASQf5Djiu/y7uw705RDh/vVC7dkg6J5ztdElaK7iLPlAd7WumLqyTzlCIOiGYDlexwPhots/0VMIIjej7YPAZKW8y4D66EEQd8NWH0Yn+UUe90h28G2VikFoXE+iig+vm768r9t1joI5+cMg6gM8CAABQMPZqlKoHtm8N0NnRVShHJPvqVN0JYB+yeSTD9Ve75OcXqlFf6E4AHdTSOJnPLadOt83ryo9ZFedJ61B6wPM4nwlNiyxPOrD3cgpNfSbdB/lUIz+bdqLay8Hp+fko+Qb8LqF9aFVOFibpirgn/FxJBwO3BlS2Pg8Gb5DyJgP+M74UuhDmhIAvPozWgzt91jc9DFsPJR8S8L0fHLIO4LMAAACURHor+P0anr/BDHDoyrPPxrnUpAPF741Tqn/XlRSLai6rv6QVH/OrKav1VJ++GTbf9aEZiNDO2uqa85SO260rombwmdC0CPM0ZDqPT4x2fTP1/bKwu6mpoH3ogqIrLH+V1qT8WMr/GjP/proR4qrfUAeD0QXqgE8+zGrju2t+vqT6ZrpyXXcGaPhAzhGKrx/sow7gswAAAJSErgxNz7qvo0igBKZ5lp+5xvGm3qNp6Cw0CbQPrYodJgTQhZDrALoA6AA+CwAAQGUcSxna5xQHNICLwtZTNI08AdoH6EJsaNicb6l0liJpnC6EXgfQBUAH8FkAAAAq437K4B6lOCBitqTq+m2KA01DZwHtA3QB0AV0AV0AdMAbHUCbAAAAKkIP7Bk1Rle3qq6hSCBCNP7mB5k4KHEWRYKmobOA9gG6AOgCuoAuADrghQ6gTQAAABWzOEnvjPHVQ+XmUyQQEXOS9NLU78fmvwFNI0+A9gG6AOgCoAuADpAnAACAxvKDcTrbcSsxwhADurLkoanXug17NkWCppEnQPsArQJ0AV1AFwAd8EIH0CYAAICamW+cTmbmIRaH94Gpz5eTNJ0iQdPIE6B9gFYBuoAuoAuADnihA2gTAACAJwwZY6xG+am0YlkChMY8U3+/JWk/xYGmeaZp6CygfYAuALoA6AI0WQfQJgAAAA/ZmaT30jrYaojigICYm6S30lpVtYziAI81DZ0FtA/QBUAXAF2ApukA2gQAAOC587CHYoAA2ZekaRQDBKBp6CygfYAuALoA6AI0TQfQJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIkrNJ+i+V9lEkAAAQGXstWzeMnQYAAAAAAKBPBtA0rqca4niSNlMkAAAQKVuMrWvbvevYaQAAAAAAAPpkAE3hRqoBfhcGGQAAoBkO6H+BOKDYaQAAAAAAoE8GAIVwzmp8eygSAABoCPssG3gWOw0AAAAAAECfDCBW7Jhd5ygSAABoGPaA+17sNAAAAAAAAH0ygNhYmqSvqcb2IknTKRYAAGgY040NbNvDr8ZGYqcBAAAAAACa2ycDiI6nMjke8XKKBAAAGspyYwvbdvEpdhoAAAAAAKDRfTKAqDgok7finKJIAACg4fxl2cZD2GkAAAAAAIBG9skAomJOkj6mGte7JM2iWAAAoOHMMjaxbR8/GpuJnQYAAAAAAGhOnwwgOphtAwAAcPObZSNPYqcBAAAAAAAa1ScDiAqdVfsik1cdzqBYAAAA/g+1ie9TdlJt5mzsNAAAAAAAQCP6ZADRcVQmz7Ido0j+7yTzzUnaI62YzfuStC1JCygaANo1NPLbHrds5VHsNABgdwAADQIAaESfDCA63qYak57cPb/BZTEvScNJGrdEJp3uJmkl1QaAdg2N+rbzjI1s3/df7DQAYHcAAA0CADSnEX0ygKjYZDXSmw0ui9UyeftRr6QCtI/qA0C7hkZ925vWfTdhpwEAuwMAaBAAoDlR98kAouOa1ZC2NbQcfpDWKeVaBmNJupqkU0k6Z8roXRdB20EVAqBdQ2O+7Tbrflex0wCA3QEANAgA0Jyo+2QAUaHxvdJber4maVpDy+K5TMQfc5WB/tv+JH22hEfFby5VCYB2DY34ttONrWzf75v5N+w0AGB3AAANAgA0J74+GUB0bLUa5UhDy2Gfef/f+/jtepkcr4zDHQFo19Csbzsi1a3Yx04DoE0AAGgQAKA59fXJAKLjvNWA9ja0HF4k6VGG35+2yu0RVQmAdg2N+bZ7rfudx04DAHYHANAgAEBzouyTAUTHG6sBLWxgGSw3774qwzVLrXL7RlUCoF1DY77tAut+o9hpALQJuwMAaBAAoDlR9skAomK+1Xj+19ByOJikhwNc99UqPwCgXUNzvu1b637zsNMAaBN2BwDQIABAc6Lqk0E4rKcO9Md2q+FcCyTfs5N0MknvC7qfxmf+aYDrRoXVFGWzlSLwug2phgx5XHdo12h2md/2mmVDt2On0XLA7mB30KAUepDiclNviWtcDYuTdCRJN5P0zrQpjVmtA1B68OUV8z2moUFoEH4QFIAeYrvL+OivjdaMm//VcDqXk7QJvyf4Phn4j9r13aavMURxTM0pq+EcDOAD/yat08g1v59rzk96JvIF1alQdCvZE+PIz6I4vGxDc5I0Jq1wJmsiKiPaNZrdLwctG3oKO42WA3YHu9NIDVqSpC1J2pOk4SRdT9JLmXx44hU+R6nMN2VsH1jZLWmdOIAGoUH4QZCDX8y37Udz1CasQ3OC7ZM1oS7/V0Ia1O9/mOOZnCPRJzetgtvscV519vFVQZWrKD6n8jJMdSoMdc51plhn2BdQHF63Ie18PTX3OhJJOdGu0ex+2Wy9382G22m0HLA72J2matBF8x3He3RQd/JJSmOttFYEDjJwcFuyDdSiQYAfBLorYGQAvdEJy934PUH2yWLnnpQzIfB4gLyszvnMlXzO/vhoFZyP2yp+TNIDKXa2qQhmWnlZR3XKjda/qzIxU0zcrzDa0KyUARkxDlKo0K7R7Kyalb7nx4baabQcsDvYHTRoAl0R/NVR99HCclglkweXBkn3MuoIGgT4Qc3mTk7NyRpmB82pv08WM4ulnMkATb8PkJ/rOZ73JJaP8kOS9pZ4/xni18pNm4XSirdWxvaTItiWysdzNCQ3c5P0yJTnGxyn4NrQUMpJuSfhbomlXaPZWbEHIWY0yE6j5YDdwe6gQW6eSmeoCCgeDafRb7iOqdJZNAgNwg+CPkiH89QdILrCfWOqD6ChElck6bB0HnbbTqOS/RwTNKe+PlnsHJPyJgSWZMxL3smJX0L/GMukdSiGbicqc6vLOqvg/vHk/VXYTiTpWZL2SWsGcZ4RC58Gl66k8rEFDcmFft92SIH3ZkABwmtDs1LPeCBhHuRCu0azs/KP9Y7rG2Cn0XLA7mB30KDefBPi2VbBVZkciuOCaUczU7+ZY/7tguO72OlHNAjwg6AHay2/fKpQUKoJt7rozSAHzaM59fTJYmdUypkMeDZAXs4M+Kzvpk0EOxGkDsgNqS721TbrWSOelIPGi9rh+Pfd4s/gkhr7dozQv9GPXKiT/iLViNdSJEG3oUUyEcP1doBOPO0azc7KSAHOfWh2Gi0H7A52Bw3qzgopZuAHerNKJq+2XdbHNTp41ytO8mU0CPCDoAfPJHvcew3v89KhN5fwe4Lpk8XMOsuW6tknukp/2gD30ms+pe73R8brZyfpi7n2QpOcmW4xyMqcENhvPcv3A4Q2ij+DS6fN8z8ZQYbBUMFIxxg+TJFE0YbSh/r8GVD50K7R7EGwVzEcaKCdRssBu4PdQYMmOGjVeR38IHRB8bRjDOvA2IKM9aVb3/vrgIMgaBAahB/UHJ9mkInDveI+0By/J4w+WcxcNOWloQ7n5LzXFusbLM14/R8yMam6JPaC15mYXisUHiZpTYnPv2A9b6/n5fWz+DG4tMJUUH3+9prL5BerPM4F1gbOp/J+Hy2Oqg1dSz1jYwBlQ7tGswfFdvCLXM0Qip1GywG7g91Bgya4bZVniLroe52Yl2o/mwa4Xgc93nfpgw/a/0aD0CD8oLhRbdeV/oOE6Znp0Jq8K+TRnOr6ZLGiu1e+GHs4v4D7pcNBZT0fQidWx8y1N2Iu9A3SGuzvNhGgs8vrKsjHNeu52z0vNx8Gl3R1T3sr4F8467lIh8JQw7BMIKY2pCu12nFaxyT/bDPtmvrm67fdYb3j1YbZabQcsDvYHTRocud63CrPIwG2Xd/rxAGTr1s57nGkS198KxpEfcMPAos55vuuzHGPr1JsNBA0p7o+WazskeLCK7UnF9rlfyLj9ftS166KsbB11u6xdJ8I0NnkKmPN2YebbPK8/HwYXGqv1vQljnOozpPGBnuXyvdFtDjKNnQmkG9Mu0az87DZesdbBd7bdzuNlgN2B7uDBk1mk6POh9ix9b1OtM/dyzP4uqRLn3wnGkR9ww8Ci7nSWtibh89WPT+D3xNMnyxWdHdTUWHq7bPvlme8vn3ORnS7rLRgnok/EwFt7lr5+IlOZU/a8UC13KbjPOXilJVvVlLE2YZ+sJ71o4dlQrtGs/OyQYrd/huSnUbLAbuD3UGDJmPHMP4QaNv1vU7oSts7BdznixS3QwANQoPwg6AbGg7lu1VfihgDRHOq6ZPFzFBB90nvbH+d49u9Nvf6NUmrZbBzfbxgl0xsi/FpIqDNmJWfOZ6XZ52DS+3ZrkfSiv+Gsz44iyxj+AgNjroNPU09655n5UG7RrOLYLb1ju8bYqfRcsDuYHfQoE7svt9IoG3X5zox29jaDQXc64FDo/KG7kWD0CAAm5XSGSYcvyecPhn0xg6XmPWg63+k+7i5LgDQXQw6QbDQ94LQ2Qs9zOJ1jxfSRrrWg7x+svI15HnZ1jW4tMFUbt3C4tukSYjO0zkrz4fRz6jb0DHxc9s87RrNLooh6x0/NcROo+WA3cHuoEGTme+o77sDbbux+CJTccd6z3HJvxoRDUKDAHrpgu5MWorfE1SfDHpjn9+Q5ayN5dJ97LzbwvpdvhWAOg46YzEqvScC1niUZ/tQE9+3YtTRqVxrnvE/KebU7aY7T7Nk4uAbn7e1xUodbWi99bzrHpQD7RrNLpLp1jt+aYCdRssBu4PdQYM62e2o7wsCbbtNmRB44hhoQIOob/hBUCQ6UN3e9au7SrYWfH80p/w+GfTmRqrcRzNee1GyTQi0k+7IrH3yS0/L1phY//bIqG5/WOPhR7ONGJ3KyWgMQI37qVuNluCsF8J+6dz+A/G2IcWOl/i95o4I7RrNLoP0O35rgJ0OUcu1szQsrTOdNL/jpq7oIWcLU23vtnEwta6exmxgd7A7+JMZGLHy9bzL7/Q8mMtJepPSo7dJuip+7CKPyReZCvuQz/1oEPUtQj9IJzB2Gd15Yur9uEljnmlPjJyXiRXrm/B7guyTQXdmyORwQX9luHZIOs/WyJK+G/tROZpx3Rb2rkfm9NCMNR5/uO/ChEA3Fhnj+FGyz/arQV1aUZmE5jzdEw56adrAjPJU/NhSS7tGs8v6tmU5n77a6ZC0XDvAr0w+X5n21V6xO9900t6b//9I/D7EGR3A7mB3/NYgO8zbKevvSx0640rnPXiXJkwIzJDO1aRDaBAaFJEfpAfO6sKH8VQ+NbTH3FQbOJx6j2HclsI5Ysr2ofke+D1h9smgd18rXe5Zx8A3S+usCb3PoSRdMe0ly0TBb1W9rM6u/iGtGa9eEwGrA/hw/wkTAi7mycSKnfUZr91mKi/OeifTHY36IvrZiIEZe8XcwxrenXaNZpf5bcuypz7a6VC0fLG0Qj+083hUuodcumfaWfq9vor/oRTRAewO/qQ/GrTaUdc3pv6uISK+ZOjcnq35fZowIbDFeseTaBAaFIkfpP7LCZmYCNAFEd1ies+x3uUArkshzJLJoVB0F9jBEn1LNMffvlPs3LLqeZFau93cv5/JgT1lvqSeWK2HdXzqkYG/JYyJgFAbSxWdSv3OT02F25xR/HT2V2chd+I8Odnq+H6/op+NGJj5Uzq3ds2u8L1p12h22d/Wrt8x2+kQtHxLyl8bN//di10yeaurppuYDOwOdgd/MgP2oY7pw2nbq+e+mLq53Py7/l13InXbNVBnTPImTAgMp97vQ8EagQahQXWh3zB9NoYuepjV4/f22ScvcV1yowOTY110XSdn1uH3BNcn68UsGTzkTRnp5wq/+0yrD3WmpOfoQq+pzhr4VobfpNupTkrvFR13xJ+TvEMfaKizU6lbRB/kbHxjUu2KwpCcpxOO8tqGv9CIgRnXIXvbK3pn2jWaXcW3LWt7qo922nctP2TlrZ+D2zY73ukQJgO7g93Bn8zAfStPt6028FhaoRRcaNiO5473qnPVcewTAtq+3qfe7xc0CA2KwA/SkIj/S+VLz02aNcU114UwK0WgA9sapudNn23sDzQnqD5ZL5o8IbDHenbZZ5HoTqeXPd79VVG2Sx0zPUzuq/SeCFgZsGhxqPBkbhfQ+E7grHflhqO8Ngk0YWDGtZLmVEXvTLtGs6v4tk06VNhnLT88YGfLpVHLMRnYHewO/mSf6Ao5ezu7TirqBIDGUb4rU8emdw3mvK7xnWKfEEiX9z9oEBoUgR/UDtfSztNH6T4JmWbUepdRXJfMnJLBDkb9Hc0Jpk/WiyZPCNxJPfddRc9Uf+pKj/ffV8RDdEJgRHqfZqyxHRcGLFz2QIPvsXLL7FSeLqDhfe/T6DbVeXrhKLNVAk0YmNnoeG4V4Tho12h2Fd92mnXfr5HbaV+1fK90nufUL/ZhWB8wF9gd7A7+ZAa2i3tSUXcFPJH+DqqdK+7t73UR84SA2tLX5r3ah8qjQWhQyBqkdfqhDBZP+6R13Q5cl8zoIaq623SLKT89K0APyB3ro62tRHOC6JP1oqkTArNl8kRY1YeSD3d5/8dFPkRPub4k3Wf8NF7S2RqMZhF8tt5lBp3K4AjJefrm+H4z8R8a0YYWO577ls8RfSe8KZo9o8R39NFO+6jlq2Vy/MovGf0yO+7qNWQIu4PdwZ/MwEVHXTsurcnFBRnu4+pnUieK5zeZGITagAahQRFo0F9Wfh5lvF5X1Grs7zVUxcLRc2J6hdO5h+YE0SeDqXV7Qw15uNelXc0pw6ifk85D59IO27CENTHwwXqHWZ7nlwmBcJ2naV3azQyBJrQh16w58Snj74Q3RbNnW+/4PmI77aOWzzEdnnR+jmW8h739fzcyhN3B7uBPZsAOuaG7AnSwOWv8Zp9sZqwTAotkYrL9ABqEBkWgQSsd+WFg38863m2R8VI0x/s+GXTyjwdlreP0rjH60s510VUeZ8Q9M9yeGDhnMhbSB9S0zvP8xji45Nv2orklvefMLs+rM/zFXE/KfHMD2tCMLu8eK01p103UbBerrXd8GLGd9lHLL1h50fiVQxnv8d66R1HhIJtoZ7A72J2m+ZNLu+TpdgF6cY86UTjtw59Po0FoUCQa9KREPxS/p1h2d8nvb2iO930y6Gzr6QmuizXm5byUdI5AL/TQFt1i/kW6x8HSjPk8MWAf/uH7Aa9MCITrPM3y0EAxIVD/wEysO0TohMer2S42We94K2I77ZuWu1bFHck5mFfkYXp0jLE72J34/cmD4l4glrUPuMVxn/PUiUJph1W5hAahQZFo0KY6BsLwe3JxzZHfa2iO930ymMwBqe8gY5s1jnpf2S4z3ZaiMSI/SveJgQvi58SALUbbPa90TAjgPOGwMDBDu2ZCwDfswySvRmynfdPyR9J5eFjWsEq/W/e4jJ3B7mB38CczcMuRn1MD3Ocvx322UicKY6fJx42KnocGoUFVYMfP1snIoRrzg98zNcsc+f0bzfG+TwaTuZ8q509S7y4pMX3AohZUDIRuH9NVae8knIkBe5v9Xs8rHRMC4TpPPhooJgTqH5iZTqeICYEI2FuiA+KbnfZJy9c58jE8wH2eWvfYgZ3B7mB38Cf7ZJp0xq7V/54/wL3eONrJNOpEIfxkvsvfFWoAGoQGlc0CRz7u1lwP8Hv647mV3zdojvd9MphgvlXOlzzIkz05Wts5NNoQNQbYW/F/YmBfYA2GQ4U7CenAL9chOkMCTWhDQ120EMJv12i2yFkpb6u2j3baFy13bblenfEeKxz3mC+A3cHu4E8OXr8vDHCftY77nKFOFILaBV29+KjieoIGoUFls8+Rj2NUpSC4IsWHq0Rzyu2TwQSHxL/Q89etPB2sO0O6ouNX6VztkW6cevDCkhrzuM3K0widSpynEvns+H4LBZrQhmbTdhvZCW+KZo9Y77gtcjvtg5Zrp8delft2gPucL6FDBtgd7E5z/MnTjrysLMCOaD9xMXUiNxqa40OSnhlNqBI0CA0qG9fCiK1UpSA4an23O2iO930ymOBhqoz1TN1pHn77nb4UlhbOniS9kt4TAz/UkLcfrbw8pVOJ81Qifzu+3wb0tBFtyHXw51M+R9Sd8CZp9mPrHX+M3E77oOU7HXm4mPEei6RzUuEK8oPdwe7gT2bADvvwYoB7LJdiwp/hi0xGJ1TemT74vBqejwahQWXz1JGPH6hKQdb3ImLdoznl9sl64VvItDIP+F3gad/J3iGw2scKqodcPJPuEwOXKhbxaTJ5y9s3OpU4TyVy2fH9tuAPNKINbXI8d4TPEW0nvGma/c2y5UWukvDRTvug5RcdedhRwD12CmB3sDv4k/0xX4oJ13HbusdHqf8A3tB9ER2w+NekBTXlAQ1Cg8rmizQ7XnzIHLa+269ojvd9sl40aULArru+7MJITwZ9FT92LXRls3TOXqUrrs6yLK0oL6+t5y/xuNyYEAjbedrt+H578Aca0Ya2O557hM8RZSe8aZq9UIo/FMx3O+2Dlt935GF5huvbOy/eWfdYhPxgd7A7+JN9skvyhwvaKv5OTIbqi8wztvh9AfZSQ0INusoQDUKDysZ1lgGEgX2GQBGLgpuuOVX0ybrRpAmB9Di2TsD4MPCuE6HpXd/XQqm065P0QOqdGLBjLW2nU4nzVBLLxL8D0xiYqaYN7avYUNGu0eyqsJ3vMhwQ3+y0D1ruit/br0M6Q1phPc7I5JVEY0gPdge7gz+ZQ5s/ZrxeB67tSclL1IlczJFWGCf9Fity3murGWAY9OwBNAgNKptxYUIgVNLhnh7i9wTTJ+tGUyYEFoufO1Dsb/9TaJV3rbhj0Wm6WfKz7ROiT9GpxHkqkVErv9fxBxrRhuzQHOrATuNzRNUJb6pmn7Te71BD7HTdWp6nE3whSS+TtKYPp1ZXhs5BkrA72B38SQefrDzcyHj9P9b1j6R1YDp1YvABmcdGX9bkvNdq833zDCihQWhQ2bgWR8ygKnnPEuubbcTvCaZP1nR+Fz8Xkz+S4ifYakG3sN+UaicE1lvPu0enEuepRM5Y+R1FVxvRhmxdu8WniKpdN1mz71rvt6aEZ/hop+vWcteEQD+dHu0caMxd3X25f4qOg64uGRbA7mB38Cc7We2o1yczXH/aulYPvp1LnRgYnUjRUHK66yvP4Jqu/D4uE7HZ86yyRIPQoLJxLShdP8B9dCB5N1WwMoZL0oWma04VfbKmk97Zon0xHyYg06EXv0l1ofdLRZ0RPWn8u5Q/ITDN6lj7PJO4xWH0vuA8BeU8rXR8w5loa/RtyF5Ft4tPEVW7bqpm2/azrDiKPtrpurX8X8fz105xzQGZvJrlmnX9Buv9bghgd7A7+JNujsrgsf//sK7TEDfzqBO5bGS3nfZ50r9oEPXN8z7tn5L/YPPz0gqZOJ8q2Pd31wF93a07yPki6cnkosu9yZpTVZ+syfwgxe+K2pXq032Q1uTksgzXa/t5H3Od10LfW8Fzbks525aK5ngXh212gxtmiAOHz8TPk8mbQB1taJF0xtidzqeIrl03UbPtlc+3G2an69TyEUe9utqjk9BejZs+XO2luLfZa9zpuw33LbA72B38yd64Djbf0sd1Z61rfNaaUOrEDSknBvOfaBD1zfM+ressAx1c6yf02JDxpXQQeRXVry9cO8PumPbeDwtkYvBTNWFlgXlruuZU2SdrKvZCiLyD7/ZBwOmzdI/3cb2GdE3vWCBEVA4OWB/hrId51NmfDyU4bDhP1bPXyvN5mmDUbWgf7bUR7bqJmm2HfDjQMDtdp5Zv7VK3hlMds5lGf16Zv9nO5Vfr2h3SCiOksSfnIUPYHewO/mQPXjrqdK9YuhoW9pnV4T1GncjNZSnvUMYlaBD1LYA+rWuBxOUprlmepBfSGjReS9XrmzNdtELDIB6U3ivStZzHzO/fSPFhTZquOVX2yZrKC5m8Wz3vmUczp7DBGiJ3YQ8Ney0Tu0H28nnysdAq/P95kq9pxoE+lBLQbumStFbmzMJ58h79rm9TeX5HE4y6Dd1KPUMH4NiSGme7bqJmv7beaWHD7HTdWv64z0Gd7106Bt8dv9XJAA4Rxu5gd/Anp2KdtAbT7HMA0iEkdDWorqCz4xo/NW2EOpGPM1LeZMB9NIj6FkifVhcwjDrqsB6yuVEmBql18E0XU1w3f1cfdinVLhO7ptANrQsnkrTZaLyeRaWh5Nq7fL+Yv5dxeHzTNafKPlkTsXcjFXU+xcMp2pQO9g8b7VI904UXV1N9OF1osYLPUwyPrMJfXXN+PuZ05C7hPHmNvaLiZ5pglG1onkwedDvOZ4m2XTdNs1dJ50By0+x03Vqug20vp6hXz6T7wJuGD/psNEpXvfyG9GB3sDv4kxnQAYcr4p5cdKVHplNLncjPBilvMkDTPjSI+hZQn1br3J0+67YOsOkB6ENUuYG4NYCevDA+57wSv3+TNaeOPlnTsMN/7imw7g7Sph4IYccLZ790brsHnKcySW+dvs+njN546OqVGRRJ9O26KdhxoPc32E7XqeVDppP1RForor4ZrbksTDRjd7A7+JPVoCsxf5VWLPsxo0PfzP+/YTRqKXUCDQI0qGRWG99Q8/PF6JD6Rrpy/brxIzkfKT86IakLGHS31+eU5mtZ6wGnd8zfdUfBogry03TNqaNPBsWiq/w1zJVODnxI9ek06Tkn/0hrAYZOwLL7oyRmGsPRbkifcGBwnkpGV22mZ7PX8TmjYq5xkvi+dMJjY7pMjouutrOKlVa+2mm0HLA72B00iDoBaBAaxHcHNKcJfTJoSOP6z4N0s8J3tg/j+JVq4D26pfVbKp0NLP/HUvXtOZ8zKi4K26Wb2q5jxz7g9zR2Gi0H7A52Bw2iTqBBaBAahAYBmtOIPhlEThMnBHRLU3p2+w3VACrgfqrOHaU4omBL6pvepjggMtIHV32XarYDh2Cn0XLA7gAaBGgQGoQGoUGA5sTeJ4PIaeKEgHJeijtUCaAf9DCR0ZSQr6FIgkYNcXvrnh6gN4sigYjYI/VvaffVTqPlgN0BNAjQIDQIDUKDAM1pQp8MIkYnBL55kK5X/N4LZHKMYj2EhjhcUDaLk/TO1Dk9hG0+RRIkc5L00nzHx+a/AWJB4/X/TybHqVxQQz58ttNoOWB3AA0CNAjQIDQI0JzY+2QAUfKHTJ5tIwYiVMEPxnFqx17EoQ4LXZnw0Hw/3TI7myKByDhu2cYj2Gm0HLA7gD8JaBAaBGgQoDmN7JMBRMe0JL1INbDxJC2lWKAC5hvHiVU24TknD8x3u5yk6RQJRIbawG8pu/jC2ErsNFoO2B3AnwQ0CA0CNAjQnOb1yQCiZHmSvqYa2jMcHaiIIWPktN49lVY8RvCXeeY7qWHeT3FAhEwzNrBtD78aG4mdRssBuwP4k4AGAaBBgOY0t08GECX7hIM6oD52Jum9tA5n4hwLP9GzVjR+ua6AWUZxQKQMW7ZwL3YaLQfsDuBPAhpEcQAaBGgOfTKAWDljNbpfKBKo2ADuoRi8Rgck2aYHMdfvtA08g51GywG7A/iTgAZRDIAGAZpDnwwgdkasxreVIgEAgMjZatm+Eew0AAAAAAAAfTKApnBNJh9euI0iAQCAiB3P8ZTdu4adBgAAAAAAoE8G0DROS+sgk3biECUAAIiN/ZatO4WdBgAAAAAAoE8G4fH/ADNXmLodfkI9AAAD5HRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtc3VwPjxtZmVuY2VkPjxtcm93Pjxtbj4zPC9tbj48bWk+azwvbWk+PG1vPi08L21vPjxtbj45PC9tbj48L21yb3c+PC9tZmVuY2VkPjxtbj4yPC9tbj48L21zdXA+PG1vPj08L21vPjxtc3VwPjxtZmVuY2VkPjxtcm93PjxtZmVuY2VkPjxtcm93PjxtaT5hPC9taT48bW8+LTwvbW8+PG1uPjE8L21uPjwvbXJvdz48L21mZW5jZWQ+PG1vPi08L21vPjxtZmVuY2VkPjxtcm93PjxtaT5iPC9taT48bW8+KzwvbW8+PG1uPjI8L21uPjwvbXJvdz48L21mZW5jZWQ+PG1vPis8L21vPjxtZmVuY2VkPjxtcm93PjxtaT5jPC9taT48bW8+LTwvbW8+PG1uPjM8L21uPjwvbXJvdz48L21mZW5jZWQ+PC9tcm93PjwvbWZlbmNlZD48bW4+MjwvbW4+PC9tc3VwPjxtc3BhY2UgbGluZWJyZWFrPSJuZXdsaW5lIi8+PG1vPiYjeDIyNjQ7PC9tbz48bWZlbmNlZD48bXJvdz48bXN1cD48bW4+MTwvbW4+PG1uPjI8L21uPjwvbXN1cD48bW8+KzwvbW8+PG1zdXA+PG1mZW5jZWQ+PG1yb3c+PG1vPi08L21vPjxtbj4xPC9tbj48L21yb3c+PC9tZmVuY2VkPjxtbj4yPC9tbj48L21zdXA+PG1vPis8L21vPjxtc3VwPjxtbj4xPC9tbj48bW4+MjwvbW4+PC9tc3VwPjwvbXJvdz48L21mZW5jZWQ+PG1mZW5jZWQ+PG1yb3c+PG1zdXA+PG1mZW5jZWQ+PG1yb3c+PG1pPmE8L21pPjxtbz4tPC9tbz48bW4+MTwvbW4+PC9tcm93PjwvbWZlbmNlZD48bW4+MjwvbW4+PC9tc3VwPjxtbz4rPC9tbz48bXN1cD48bWZlbmNlZD48bXJvdz48bWk+YjwvbWk+PG1vPis8L21vPjxtbj4yPC9tbj48L21yb3c+PC9tZmVuY2VkPjxtbj4yPC9tbj48L21zdXA+PG1vPis8L21vPjxtc3VwPjxtZmVuY2VkPjxtcm93PjxtaT5jPC9taT48bW8+LTwvbW8+PG1uPjM8L21uPjwvbXJvdz48L21mZW5jZWQ+PG1uPjI8L21uPjwvbXN1cD48L21yb3c+PC9tZmVuY2VkPjxtbz49PC9tbz48bW4+NzU8L21uPjwvbWF0aD7/JysgAAAAAElFTkSuQmCC" style="width: 326.52px; height: 34.50px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="open parentheses 3 k minus 9 close parentheses squared equals open parentheses open parentheses a minus 1 close parentheses minus open parentheses b plus 2 close parentheses plus open parentheses c minus 3 close parentheses close parentheses squared less or equal than open parentheses 1 squared plus open parentheses negative 1 close parentheses squared plus 1 squared close parentheses open parentheses open parentheses a minus 1 close parentheses squared plus open parentheses b plus 2 close parentheses squared plus open parentheses c minus 3 close parentheses squared close parentheses equals 75"> ⇔ 9 - 5 3 3 ≤ k ≤ 9 + 5 3 3 ⇒ M N = M N → = k . u → = k u → = 3 k ∈ 9 - 5 3 ; 9 + 5 3 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABPkAAAKZCAYAAADK/f5hAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAE+GF6+dAAAc/1JREFUeNrs3Q/IVVW+MP6FiEhIjHTFK04UISEREnijiW7UQIiEhMQvHOlGhS9DRERI0EQ3KkQmmuiN3nAICZEIoRu+0itNICERIXGjV7rRFS8RIiEiOOEVRxxf+u015zzT03Gfvdc5z9nn7D+fDyzu3DzP3vusP9/z3WvvvXYIANBMPyoLLgAAyGnltADAzPxSMiMhAgCQ0yq6EQA0279KZiREAAByWkU3AoBm+3fJjIQIAEBOq+hGANBc12flr5IZCREAgJxW0ZUAoLmekshIiAAA5LSKnBYAmu1wwQ/8O1nZM1A2qzIAAOS0AAD18Q9Z+cuQZOj3qgcAADktAED9PRaGX/H8leoBAEBOCwBQf/9nSDJ0JiuLVQ8AAHJaAIB6W5aVPwePNQAAIKcFAGisR8Lwxxr+WfUAACCnBQCov33BYw0AAMhpAQAaa2kY/gayfaoHAAA5LQBA/W0Kwx9r2KR6AACQ0wIA1N8fg8caAACQ0wIANFZMeIa9gewd1QMAgJwWAKD+7g7DH2v4F9UDAICcFgCg/vYMSYbiosX/oHoAAJDTAgDU36ngDWQAAMhpAQAa65bgsQYAAOS0AACN9ochydBfs/KPqgcAADktAED9/WfwWAMAAHJaAIDGWhs81gAAgJwWAKDR/rUgIfIGMgAA5LQAAA3wf4ckQ0dUDQAAcloAgPoreqzhCdUDAICcFgCg/h4rSIi8gQwAADktAEADHBqSDP27qgEAQE4LAFB/cQHivw5JiJ5WPQAAyGkBAOqv6LEGbyADAEBOCwDQAMMea/AGMgAA5LQAAA3wi6z8ZUhC9DvVAwCAnBYAoP4eCcMfa7he9QAAIKcFAKi/fUOSoe+yslj1AAAgpwUAqLelYfhjDb9XPQAAyGkBAOrvN2H4Yw03qx4AAOS0AMA0xB/tNaphbHuGJENnVA0AgJxWTgsATMPqrJzMyluqYizxsYY/D0mI/qh6AADktHJagPpakpXNWXk9KweyciorF7JyKSsXs3IuK1+G3qKl27NyqyqjhlZkZVtWTvd/vG9RJWO5Owx/rOGeGh93XDh5U1Zeycr+0FtM+Xw/hl3qx7RT/Rj3Zj/mLdHcAHJakNPKaeW0QBvExOadfrD4ccRyIisv9X+EYBRfjtHfRi2fqeax/XFInZ4M9XwD2U1Z2d1PfEbtJzH27c3KOs0OIKdVjchp5bRyWqCJ4roOHxYEiR+y8nFWDmXlbFYuF3z2Qj8xWqpaSfDrKSRDsTysqseyuJ/4NOGxhvgIy74J9pm4Zss1ugCAnFa1IqeV08ppgaaIjybkXeU82v8RWZbzN3OPPhQlUd9m5TbVS4lPppAMxUcbFqnqsdxdUK+ba3Scm/snbpPuOzEZXK8bAMhpVS9yWjmtnBaos3hV8v0hQeDJEbZze1aOD9lOvDq6TVUzxC1hOlc8X1LVY/t9GP4Gsrrc2fBsxf3nXD/OASCnBTmtnFZOC9ROvJL56ZDBf98Y21seiq9ePa/KyTHJ29B/LEjKr1XVY/tuSL3uq8nxvTSlpDo+0nWd7gAgp1XlyGnltHJaoE6WFCQvC7k6FJOsrwoCynZVzzxrpvRD9r6qHtuvCup1Uw2O7/GCJPhg/99vDz9/u1j832uzsiX0FiM+P0Jf+lyXAJDTymmR08pp5bRAnewdMtjj1Y2FvlUo/shdKAgoD6h++t6cUkJ0l6oe24tD6vSvIX9do2m6Y0gi9GroLVac6qqsvBDS31q2RbcAkNPKaZHTymnltEAdbCsY6E9MaB9Fawmc6ydNdNuKkL8w9iQfZ/g+K0+r6gX5z1DPxxpiMnYiXHlFcu0CthnX0jmV0Le+0C0A5LRyWuS0clo5LTBrN4ThVyQvhcldxVhSEljcHsyOgT7xjSqpnbUFY/hfZnxsbwwcz+4wmTfN3RTSHnVwUgcgp5XTIqeV08ppgZk6GKa3xsPzJQHFWibdFW8lH3wt/MOqpXZeHDJ2/5KVX8zwuG4aOJ4dE97+0wkJ0YO6B4CcVk4rp5XTymnltMCs3FkywLdNeH+rQu/28mH7iz+I12iWThr8wYm3qC9SLbVzZMjYPTTj49o/71jerGD7S3IS9sGyW/cAkNPKaeW0clo5rZwWmJVPwvRv1T1css8dmqVzYuJzMlSzbg6Tc33BuH1khsd145QSs70lsetdXQRATtuinHZxf5Ihr3jBiJxWTiunBWpmbcngPl/Rfp9K2O8yzdMpg4tkx3VulqiW2vldGP4Gsn+c4XG91j+OuAB1lXdNPFQSu/bpIgBy2hbltEsKvtubup2cVk4rpwXq5eWSwb2/ov3eHMrXAXhS83TKNwPt/6wqqaVhdyz8+wyPKV4xP9M/jo0V72tTcNUTQE7bnZzWJJ+cVk4rpwUa5HiY3bP4F0r2/aXm6YzBH5l41ftq1VI7vwy9q5t54/XpGvSf96awr3tK4tYrugmAnLZFOa1JPjmtnFZOCzTEDaH8yuNDFe7/w4T936iZOuGzgXbfqUpq6ZGCsbp2hscVH4O6P/QWQJ91QnS/bgIgp21RTmuST04rp5XTAg2xNSEh2Vzh/t9K2P92zdR6d+S0e0yI7s3KUtVTK38aMk6PdKgOih5tuJSV5boJgJy2RTmtST45rZxWTgs0xJsJCUmVawE8lLD/g5qp9Q6W9IH4+M07obeI8c2qa2Z+kZW/DGmjFztUD0Vx6z3dBEBO27Kc1iSfnFZOK6cFGmJ/QkJyT4X735Sw/4uhtwAp7bQ2oQ8MlrOh97anmCCtUoVT80io52MN07aroB7W6SYActqW5bQm+eS0clo5LdAQX804IUr9MRRk2uvtMRKivMWs4wK5q1VnpfYNqf//6lg9HAvTX9AdADntrJjkk9PKaeW0QEOcn3FCtCTxB2+Lpmqla7NyeQIJ0VyJ2/ooK3ep2omL68h4rCGE9WH44zfLdBMAOW0Lc1qTfHJaOa2cFmiIi2G265eExB/ElzRVK70ywWQob9HcW1TxxPymoK7/qUP18G7O9z8dem91BEBO28ac1iSfnFZOK6cFGiLlh+W+io8h5crrXk3VOssT236h5dWsLFbdC7YnDH+soSv1u35IMiTxBpDTtjmnNcknp5XTymmBhriU8IOyteJjOJtwDAc0Ves8M4VkaK58HixmvBDxsYY/D6nb/9mROoiPLQyuWxIfZ1ijewDIaVue05rkk9PKaeW0QENcSPgx2VHxMXyfcAyHNFXrbM7Kwax8mJXP+olxSn8ct8R+dqNqH8vGgnr9VUfq4ODA9343WK8EQE7bjZzWJJ+cVk4rpwUa4kTCD8m+io/hUMIxnNZUnRETyZuzcn9WdvYTppSr8z8m9iNJ0eiGPdbwXQe+e7zie2AgsX5AlwCQ03YopzXJJ6eV08ppgYb4IOFH5KsaJERnNFWnLQq9N+K9kZVTYeFXP1eq0mRxbZKTQ+ryjy3/7vFNeZ8PfOdYF/GxHFc8AeS0XclpTfLJaeW0clqgIfaEtFe4V7kI6YcJx/CDpmJechQfi/hkAUnRF6F3NYtydxfU490t/t6PZ+VcwXc/20+MlugiAHLalue0JvnktHJaOS3QEA8m/oBsrvAYDgZ38jGeW7Py8ZhJ0TuqL8kfh9TfydDON5BtCr07PVL7UXy8Y4NuAiCnbXFOa5JPTiunldMCDbE2cdDvnnFCZE0+itzX/2EaNSl6UNUVKnqsYU/Lvue2rBwN419J3x1cAQWQ01qTDzmtnFZOC8zYtwmDPd7Gu2iGCdEnmokSV2Vl14g/YrFfL1d1Q91dUHcbW/D91mfl9X4/mMQi2PGNeit0GwA5bctyWpN8clo5rZwWaJCdiYP90Yr2/1HCvj/QTCSKV0DPjfAjtkOVDfX7IXX2l9Ds9V/iFc7jE0qCBstRSTaAnLZlOa1JPjmtnFZOCzTIdYkD/VhF+095s9S7mokRrAu9x2FS+vW54Jb0YYY9LrKv4d/r3X67n8/KxQqSogO6DoCctkU5rUk+Oa2cVk4LNDBApAz0xye839T1U17XRIzoxhGSoodU1xV+VVBfv2nh913S7zP39vvD3jDemjj6FICctm05rUk+Oa2cVk4LNMwNIW32P14lWDPB/b4nuFChO7JyOaF/7VNVV2jrYw2jimucvBZGe1wmllMdqycAOW17c1qTfHJaOa2cFmig5xIH+tdhMs/nPzNCcPE6b6rsZ+enfEzXN6Dehl3x+1NH+9HVobfWU0qCPVe2G34ActoW5LQm+eS0clo5LdBQHycO9CNh/DfuXBN6tw2PcgXB+hIsxNcJfWzNlI4lXk08k5Vf1Li+ih45eqTjfenmkPb2xli+MfQA5LQtyGlN8slp5bRyWqChYrJyLHGwnwy9tz6lio9PvJqVC/O2kbK+xPGKvuvuUM2biOpSTIz+ZFNCfW2u+BiWZeXf5u3vxRrX14th+GMNv9Cd/hYnjyaOw5tVF4CctqKc9p6W57Lzy25dWk4rp5XTAuNZFXqz9ak/ul+G3uLF8e1Pi/rbiP93Zf+H6PmsfDbk7x5I2P7eir6nSb5uKUv0H65w3/+QlX/PSS7+oaZ19Z9D6uiwbvR3Mb6lvEXR4w0ActqqclqTfHJaOa2cVk4LJInrk3xY4Q/1y6E3CfVCwme3VvQdTfJ1S9k6Jq9VtN9bCn44/1DDerq+oI4e041GPrl6TzUByGkrymlN8slp5bRyWjktMJIYAM9O8Af6YFZumrf9LxL+5pqKvptJvm5ZO4Pk8V+y8t8F+/xrmN66Kal+V3Csv9SNrvBBKF/UHQA5bRU5rUk+Oa2cVk4rpwVGFq+AxquTJ8f8UY5XfF4fSISiaxP+9rMKv5dJvu45M8WE6A/9JKKsnf5Yszo6EjzWMIo7Str3oioCkNNWlNOa5JPTymnltHJaYEFuD731SPaH3noQccHhS6H3Cu74v+MV0o+y8k7orWmyvmBbKa+Br/LZf5N83bN/CglRXMT3/4zQTjFpWluT+rm+4Dh/p/sM9V1JGy9SRQBy2gq+g0k+Oa2cVk4rpwVq46uSIBKTrJUV7t8kX/cUtfmbE9h+fOvUf4zRVn+qSf38ruAYr9d9hnrbWASQ084gpzXJJ6eV08pp5bRALdwe0tY6gUl6oqC/PbXAbW8MxY9OlJV/rkH9HB5ybEd0nUIPSogA5LQtzmmXhGonlJDTymnltEDDvZvwA3GXamLCHgrVvPEuJlopa5XU+crnLwu+w4u6Tmky7NEGADltW3Nak3xyWjmtnFZOCwx1Xeg9tlAUQI6qJqacEN07xvaWhrTHvv9fYlK0aYZ181jBca3VdQqtDhYpBpDTtjenNcknp5XTymnltMBQuxJ+GO5XTVTg0YI+N85aOf+Ulb+U9OX/m5UnExOi/+wnWbMw7LGG73SbUssK2vRr1QMgp204k3xyWjmtnFZOC+S6MZRf8fxcNVGRl4f0uXML2Oa/hOGPBLzT/7GMPk1Mip6YQb0UPdbwe92m1FUF7blP9QDIaRvOJJ+cVk4rp5XTArk+SPhBuFU1UZF9Q/rc+wvc7r/mbDO+1WvxvM/cnZgQnQzTv/L5SMHx/Eq3KVX0aMN21QMgp204k3xyWjmtnFZOC1xhU8KPwS7VRIWOD+l3j01g2/+7v60/Z+X/G/KZQ4lJ0e+mXC9/Ch5rWIh7C9ryNtUDIKdtOJN8clo5rZxWTgv8TLy9+2TJj8CJrFytqqjIqiH9Lj5qs3IC249XKuOjDP9U8Jm42G/KG8v+Oyv/OKV6+UUYvgbLH3WbJMMWvz6pagDktC1gkk9OK6eV0wL8zLslPwDxR+kO1USFnhrS9z6a8nHsCWlXPqeVjDxScAx36zZJ3hlSfztVDYCctgVM8slp5bRyWoC/ezQh+D+pmqjYN0P63l1TPo41ofztZbHEq6PXT+F4hj3WEK/YLdZtkpwacpJ3naoBkNO2gEk+Oa2cVk4L8DdxweELJYH/bdVExTYP6XuHZ3Q8O0Lalc89FR/H0oLkbI9uk+SeIfW3W9UAyGlbwiSfnFZOK6cFCNeG/KsB88sHqomKLQr5VzzjVambZnRMcc2QPycmRf9U4XH8pmC/G3WdJIdz6u5c6K2XA4Cctg1M8slp5bRyWqDjVmTl25JAfzC4dbrLrsrKnf2+UqWXhvS/Z2f8/V9MTIiqvDI7bN2NmKwt1UVLbRxSf0+oGgA5bYuY5JPTymnltECHxbc6HSsJ8jEQL1JVnbQtXPlWuotZ2R96r22fpDsLkvFZi1c+y+4KmCu/qmD/8WTkTGjfYw2xzV/Oyluh94aw1RXtZ3novT2xjn0LADntJJnkk9PKaeW0QEfdkJXvSoL7S6qps7Yk/PgfDb11bxYqLhB7Omf7X2ZlWU3q45HEhOhImPwdAv9csL/fNLBvxfp5P+Q/whKT7Uk/xnIwZ18x9l1jmAPIaVvGJJ+cVk4rpwU66Ndh+FWUWOJixQ+opk77KDEBiOWFBewnXunKuyL1Vaj+UYpRf8T/K7E+Jp2k/M8h+4mLFjfxsYbnS+ovJkav9E9UFmpvzva/758QAiCnbRuTfHJaOa2cFuiYp/sBZ1gwio863KSaOu+HERKiWD4OvUdlRnF7yL/a+Uno3Y5eN79JrIv4OMikrtbGRGzYIsn7Gtq3vkmsx/i5u8bcx9Wht7D64DaPh95VdgDktG1kkk9OK6eV0wIdEa8uHS4JQPG121epKkLvsYIfRyxns/J4wrZjsrBzSGK+O9R7QezDiXUxqcVv7ynYxyMN7VtnR+xXMbFZP8L2t4Qr192J5f2aJtoAyGknxSSfnFZOK6cFWi4uMPxMVs4XBJxv+4EX5jw7RkI0/8pS/Pt14acFruMt+Juy8kboveJ98G/iozZNeJzm7jDdK5+/D8Mfa/hFQ/vW/jH71Zf9WLYh/Pyxh/i/45vGdoT8tyrGRxm2GtIActoOMMknp5XTymmBFntwSICYKzFJeiFMZp0A2iVeefxkAUlRaolXPl8Lzboa9afE77ZjAvsatmbK4Qb3rY1T6FexxMdmngvuTgaQ03aHST45rZxWTgu0TLy6FG8vP14QKC72f4RWqS5K+tJbFf1YxSufr4ZmriWxJit/TfiO8crkPy5wP8O2/VjD+9bzobpEKCaLD4d6PyIDgJy2Cib55LRyWjkt0ALx9vH4aMLbofcWsWGB4uvQW6TYM/yMIj6isCcrlxb4QxWvsseFdbe24MdqT+J3/sMC9vH0kG3GZOyXLehX8ernl2EyyXVcm2RbGH2hbADktG1ikk9OK6eV0wINdVM/AOwLxWuTxIATb7G+RZWxQDGJiWuQxAWG3+v3rfjGsovzSkzI4yK0n4feOhVv9ROgdS2ri9Qrn/Ez14+5j/8I7XusIc/a0LuKuzcrH4beWjbnB/pV/P9Phd6Cxfv6Me3+fjsAIKelxySfnFZOK6cFGmZDP0AMWwsiXtmMV2Ti23g8ugDV+X1Iuyr3b2MmCcO29ztVD4Cclhwm+ZDTAjTMbeGnNUjiIrLxSsET4cq38wDVim8C+3NiUjTq1bl/LdjW9aoeADktOUzyIacFaJh4e7n1R6AeXkxMiP73iNv9dMh2jqhyAOS0DBEn+S4OKa+rHuS0AADDxbe1fZeYFP1T4jbj28uGrY3yoioHRnRjMJECgJwWAKDUI4kJ0aHE7f2Pgm2sVd1AgWuzsjn0FpM/EH56iYHH9ACQ0wIAlIiPG/1XYlJ0d8L2/m3I3/6nqgb64ksI7s3Ko1nZ3T/hulAQe7aqMgDktAAA5X6TmBD9ez+BGuaXwWMNwJXiZN7+rBwLw99GWlS8mRQAOS0AQKLDiUnRUwXbKHqs4VeqGDprdxh9Ym+uHFN9AMhpAQDS3Z2YEJ3KyrIh2/jfQ/7mO9UL9C3KyurQewT3aELM2aXKAJDTAgCM5k+JSdG/5vxtfKvZn4d8/veqFsgRT65Ol8SbzaoJADktAMBo1oTh64/MLzHx+cXA324MC1vcGCgW74Br4wsoDhTEjsth+F0W6H8AcloAgAJ7QtqVzz8M/N3/GvK5k6F4YWOgWJxceSL0HhE618LvV/TI7hHNr/8ByGkBAMZzfVb+OyEh+kvovXks9BOek0M+t0eVwliWhN6i4PPHVhsnWS4VxJmXdQP9D0BOCwAwvhdD2pXPP/Y/v7ngMxtVJ4wkrgX0TOgtCD44nto2yXJjSYzZoDvofwByWgCA8cW1Sf6ckBDFtU7imie7w/B1TpaqTkhydVaez8qZgjHXtkmWBwq+a7zDb5Fuof8ByGkBABbmxZB25fOdkH/Hh8caIM01WXkpKz8kjLe2TbK8UfBdD+ka+h+AnBYAYOHi1crvEpOiYeU3qhGGWpmVnVk5P8KY+qFldXCk4Ls+o4vofwByWgCAyXhkAcnQX4LHGiDP6qy8GopfOJH36OqbWbm2RfUQFze/XPCdb9dV9D8AOS0AwOROwv9rzIRon+qDn7ku9B5PHXVy5fXQzsmVosXNL+gu+h+AnBaYs6hl+wGYlY1jJkSPqDr4m7mFvC+H0SZXXgu9u67aqmg9vvd0G/0PQE4LRHEB4c+y8mjF+3muv5/lqhxoucNh9McafqHa6Li1WXk3jDe5sqoD9fNVQT08pvvofwByWiAmJd/MG5RVTPTFW33fnrePr0Nv8WKAtrp7xITosCqjw9Zl5f0Rx8zF0K3JlZUl9bFWN9L/AOS00G3xcYTvcwblpB+pvTdn8J/Myg2aAGixPwWPNUCR9Vk5GEyupNhSUCendSX9D0BOC912az8pnD8gj2Tl6or29+CQpPQ2TQG0VLyQ8tfEhOgm1UWHxLfAHgqjT67EN5x2dXLl3YK62atL6X8AclrorriA5vmBwfh5qH6tvE2h9/a3+fs93z8egDbak5AMxTuql6oqOuDXWfkkjDe50vVlPk4V1NFWXUv/A5DTQjdtyxmMX4bpvQwjXj09m3MM2zQN0EIpVz6fVk203IbQe1pg1MmVV7KyQvX9bb29orpyd5n+ByCnhQ56KWcgfjODBCY+Knwu51he0kRAC/2xJCG6WRXRUptD70LiKJMr8Y5/kys/90RBfR1TPfofgJwWuiW+3Tbv9tq4Jt7qGR3TxiGB4Z3+8QK0xS+y8uchMe8/xDxaKD4++lUYbXIlLt/xcjC5kmd/Qb3tUj36H4CcFrojPoZ7OGcQXg6zf+nFrjD8tdvLNR3QIi8OiXcvqhpaYlFWHg69O8tGnVzZGUyuFNXrhYL626yK9D8AOS10w7UFyc5zNTi+60Lx4yfXakKgJeKVzzM5se6fVQ0NFydXHs/Kt2H0yZUdweRKmTsL6jBesF1W8vcvZOXgBMpi/Q8AOS3Mzh2h9zhuXmJzKdTnrTfnCxKwePy3a0qgJf7HQIw7GTzWQHMtCb214k6G8SZXrlGFSV4oqMsjiX8fJ+mOht7LJH4co1zot7f+B4CcFmbgoZJELv7bohocZ7z6fCkhsbxfkwItEJOf/5oX336vSmigeJFwe1ZOhdEmV+ILt+LkiuU4RvNJQZ2+POK2Yu63NSH3iv8e13LeHOpzUVj/A5DTQie9nJjsvJ+VdWF2k33xFdwfjZCcPa9pgRb4l+CxBpopXpiLS32cCaNPrrwUTK6MexJ1uaBuN4653QNh+OO/b2Rlpf4HgJwWZp/8HAjjPYbRlLIv1O+KMsCoPs3KfwePNdAMV4feI58/BJMr07Y5FN9tN86F2viYa95yLvFttOv0PwDktDB7N2Tl69DuCb658nmo5xVmgFR3Z+V/qQZqLq5ZFt86ej6MPrkSJ2VMrizcGwX1fGjMbe7I2daroR7LuOh/AHJa6LwNWTkbujHBN1e+z8p6TQ802C9VATW1KvQmfS6E8SZXrlaFE1N0AfeZMbZ378A2zvb/m/4HgJwWamB76Nbk3uALOR7SBQBgIq7Lyuuh/KUMgyVOFMXJlWWqcKJWltT77SNuL37+3Ly/P9pvc/0PAGDGYiLzXujuBN9C3iwHAPwkLvnxVih+wcOwyZXng8mVqmwJxRc6R3Fb+PmadvHla1fpfwAAs3dj6M76e6nlYLD2CgCM460xfnfjhNHtqq5S+wrq//0RtnNn+PkE30v6HwBAPdwXRn+7WFfK8dCbAAUA0sU34j2RlRNj/PYeCPV8I2sbnCqo98dGyBvn1raLj8Fu0f8AAGYvvvHs9ZJE52RWNre4DuJb1soeUT7XT2hnxWSroiiKspAy61xjW1aOjXHcH5hsmai1JfW9NmEbT8z7/Jms3NGAXFf/qw/xWFEURWlqTlt78S1jR0oq8J3QnTVJ4tXrsnVbdkqIFEVRFAnR2B4M4y0NYrJlMp4oqOPTCX//5rzPf5uVNQ37/vqfST5FURRFTttKG/rJXFHlPdXBerkr/PwNcXnl46yskBApiqIoEqKxxScEvhxzsuUWadzY9pdc2B0mrk98aN5nj8wgF9L/TPIpiqIoCgPiIws7EyruuQ7XUVxw+UIof4T5NgmRoiiKIiFakHuy8pnJlqnlgBcL6nTrkL+Lj/AeH6j7pS2pE/3PJJ+iKIoip22sa0P547lzV2e77vGEeoqP9m6XECmKoigSogWLb2o9PMb3+jAr66UtyXVcVJercv4m3vE2/wmHXS2uG/1PTqsoiqLIaRsjJmlnEyvtQdX1N98l1ld8fGWlhEhRFEWREC3Y+v7EicmWyXuhoP6O5Xz+1YHPPNuBOtL/TPIpiqIoctrW/aDeo7r+Zv8IdbZbdQHAxMSXHOwbc7LlVtWX65OCept/h97KnM9+qP/pfwBAfdyble8TE5RtqutvjiXW18GQ/4gLALAwcT24vaG3RMYoky3xLvvbVN/fLSmpw839z8UXkOW9mC3+7Ur9T/8DAOojvhkt5apkfEx1Wcfr6p6Eeoov53hctwKAyl2XlTezcimMPtlyu+r72yRe0RrDMe/bHoons17Q//Q/AKB+4pp750qSkgMdrp8VWTlRUj9fZ+UmXQkApiq+ROy1UPyW2LwSX6rQ5cmWNwrq5pt+3ldWh/GJkEX6n/4HANTPmqx8Fcon+pZ0rF5W95PdsvX3luhCADAz8YLczqycDyZbUqQuQVI2eeXlbPofAFBTS0NvwqooGTkSurPe3MaQvw7NXIl3P27VbQCgNuJSJPEx0rPBZMswqxLr5OPQu1Ot6JHUT3U5/Q8AqLeHQm99uWGJyJms3N/i7x8Xkt5bkozFK+BrdRUAqKW4ptwzofhiXV6Jb5G9o+V1szWhHl6e9/mynGid7qb/AQD1FhO2b0dMTLpS9gUvIgGAJojLaTyVlZPBZMucopeuxcdNHxj4/F0ldbVLN9P/AID6i48cHAwm9eaXJ3ULAGic+IKIx7Py3Yi/+/Fx1DtbVhdFd5e9PuRvii78xsd5r9bF9D8AoBleCib3TkuyAKDx4mTLwyH9xRPzJ1vuasH3v7nke24a8nfPlvzd07qW/gcANEdM+s6Fbk7wfR6687IRAOiK+FjqVyPmBJ9l5dcN/s5PhuI78hYP+bsVofgFHCd0J/0PAGiWNVk5Hro1wfd26K2nAgC0U7yQeWTE/CB+/p4GftcDofhtukXKXsCxWVfS/wCAZolrrnRlnb7HNTcAdEa8Q+rT0N7JlvioaNHdeM+X/P1tofyRUvQ/AKCBdob2Tu6dCR6FAICuuj0rH4X2TbaUvSX39oRtfFGyjVt1H/0PAGimrVm5kJB47M7KtaF3BXkW4n7vyMqphGONCyFfp2kBoPPWh+LHWwfLuZp/n6IXqV0YIfcrqoMDuo3+BwA0V7xie7ok6bimJse6v+Q441XT5ZoUAJhnbVbeDc2fZCl6FPT9xG3EC6cnSurh5hGOaUfovdSD9vc/AKAhVofit4PdVJPj/KbgGN/SjABAgRv7+cLl0LxJlqsKjjuWx0bY1vYwmbv5NgV3/3Wl/wEADbMsKx8OSTpercHxFa1D85TmAwASxWU93ghXvsSizpMsm0PxxNzaEba1NPTWLy7a3vqSbSzJyreJn6X5/Q8AaKhdQ5K9WS4GHB8t+Trkrz+zWZMBAGNYlZVXwk/rE9d5kuXNMHxC7vsxtvd8KJ7k+6Lk71/of+4d3agT/Q8AaLCnQv4jBLfM6HhezTmesyHtLXIAAEXimnJxbbnva3yMx8LwCbm9Y2wvPsFRtibzE0P+Nq7ZFx85/SErK3WfTvQ/AKDhHsjKxYFkLyaDa6d8HA+H/CvWazURADBBS2t6XKtC8WTcljG3W7Y2X7zDbPACb3zB2fH+vz+uy3Si/wEALXFn6N0xNzjRd+OU9r8pJ+E81k92AQC64MFQPBl3zZjbjcuhfFOy7Zj3bex/Pj5BMbd8yieaBQCgeeKbdb/PSfjWVLzfuAbg4J2En4feIw0AAF2xLwyfhPtqAvnWjyOWeAF4tWYBAGimeOfc4JXe70N1d9TFN+leGNhfvGK8TFMAAB1TtHbe6xPY/q4w2iTfBk0CANBs8VGQz8Jkrx7niY+CnBvYz0fBOiUAQPesC8UTbpsmsI+YY30R0ib4HtQkAADtEO+kO9RP8i5l5d4K9hEXdP5gXjJ5ICuLVT0A0EFPhuETbpcnmCPF5VCKJvrOVJT3AQAwQzGZfC/8tAhzVeIb395X3QAAU8vxng69l2vEdZHj0ilx4u+FMP7LPQAAAAAAAAAAAAAAAAAA+LvdYbS3sDatnNPE+p/+BwAAALSdSRb0P/0PAAAAaDiTLOh/+h8AAADQcCZZ0P/0PwAAAKDhTLKg/+l/AAAAQMOZZEH/0/8AAACAhtuVlYstLmc0sf6n/wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQX4uzsikrr2Rlf1a+y8r5rFzMyqWsXMjKqawcyMqbWdmclSWqDQAAOS0AwOzdlJXd/cTnxxFLTJT2ZmWdagQAQE4LADB9q7Oyb4wkaFjZk5VrVCsAAHJaAIDpiI8l/DDBZGiunMzKetULAICcFgCgWs9WkAjNL+eycrtqBgBATgsAUI2XKk6G5srZrFynugEAkNMCAEzW40OSl8tZOdj/93i1cv7bxeL/XpuVLaG3GPH5EZKiz1U5AAByWgCAybljSCL0augtVpzqqqy8ENLfWrZF1QMAIKcFAFi4ZVk5Ea68Irl2Adu8JSunEhKiL1Q/AAByWgCAhXtjIEnZnZVFE9juTSHtUYc1mgAAADktAMDCkpb5ycmOCW//6YSE6EHNAACAnBYAYHz75yUmb1aw/biI8Q8lCdFuzQAAgJwWAGA8N85LSg5VuJ+9JQnRu5oCAAA5LQDAeF7rJyTfZ+WaCvfzUElCtE9TAAAgpwUAGF1chPhMPyHZWPG+NgVXPQEAkNMCAFSWpLw3hX3dU5IQvaI5AACQ0wIAjG5ZVu7PyqoaJET3aw4AAOS0AAD1VvRow6WsLFdFAADIaQEA6q1okeL3VA8AAHJaAID621WQEK1TPQAAyGkBAOrv2JBkaLeqAQBATgsAUH/rhyRDx0NvoWQAAJDTAgDU3Ls5ydDprNygagAAkNMCANTf+iHJ0C2qBgAAOS0AQP3FxxYG1y2JjzOsUTUAAMhpAQCa4eBAMvRusF4JAAByWgCARlialQPzEqHvs/KAagEAQE4LANAM12bl8/Dzq50ns/JMcMUTAAA5LQBA7T2elXPhykWJ58rZfmK0RFUBACCnBQCol01Z+aogERos32Vlg2oDAEBOCwAwW4uzsi0rR0dIhAbL7uAKKAAAcloAgKlbn5XXQ+8xhR8nUD7LygrVCgCAnBYAoHrxCufxCSVBgyVeOV2uigEAkNMCAFTr3dBbgPh8Vi5WkBQdUMUAAMhpAQCmL649cmNW7s3KQ1nZG3oLEI+bFD2kSgEAkNMCANRDXOPktdC7SjpKQnQqK0tVHwAAcloAgPq4Ois7s3J5hKRou2oDAEBOCwBQPzdn5dvEhOgb1QUAgJwWAKCergm9N46lJEU3qy4AAOS0AAD1tDL01ijxeAMAAHJaAIAGuychIXpPNQEAIKcFAKi3D0oSoq9VEQAAcloAgHq7oyQhuqiKAACQ0wIA1N93JUnRIlUEAICcFgCg3t4uSYiWqCIAAOS0AAD19qCECAAAOS0AQLNtDB5tAABATgsA0Girg0WKAQCQ0wIANNqygoToa9UDAICcFgCg/q4qSIj2qR4AAOS0AAD1V/Row3bVAwCAnBYAoP7uLUiIblM9AADIaQEA6u+hIcnQSVUDAICcFgCgGd4ZkhDtVDUAAMhpAQCa4VROMnQ5K9epGgAA5LQAAPV3T8i/4rlb1QAAIKcFAGiGwznJ0LmsrFI1AADIaQEA6m9jyL/i+YSqAQBATgsAML47s/JyVt4KvTeEra5oP8uzciInGTqoCQAAkNMCAIxncVbeD/mLBe/Pyk0T3t/BnH19l5VrNAUAAHJaAIDxPB/yHzOYnxi9kpUlE9jX3pztf5+VGzQDAAByWgCA8X1TkhDNlfi5u8bcx9VZ+SBnm8ezcp0mAABATgsAsDBnExOiuRITm/UjbH9LVk7mbCc+TrFc9QMAIKcFAFi4/SMmRHPly6w8k5UN4eePPcT/Hd80tiMr34b8Rxm2qnYAAOS0AACTs3HMhGjUcjorz2XlKlUOAICcFgBg8soWKl5IOZyVh0PvjWcAACCnBQCoULz6+eUEEqBzobc2ybasrFStAADIaQEApm9tVh7Lyt6sfJiVM1k5n5WL80r8/0+F3oLF+0JvrZL7s7JG9QEAIKcFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaKrdWVmmGgAAAACguX7MyvGsrFMVAAAAANBMP/bLxaw8pToAAAAAoHl+HCgHs7JCtQAAAABAc/yYU05l5deqBgAAAACa4ceCsjMri1QRAAAAANTbjyXlSFauU000uA+DsWAsAAAAdP6kMJYfsrJVVdHQPgzGgrEAAADQeg9k5WxIm+zbnZVlqoyaMbEBxgIAAACZa0PvsdyUib7jWVmnyqgRExtgLAAAADDPSyFtou9iVp5SXdSEiQ0wFgAAABhwV1ZOhLTJvoNZWaHKmDETG2AsAAAAkGN5VvaHtIm+U1n5tSpjhkxsgLEAAABM6cRCqXe5OK+cz8q5fhllGzuzsshQwMQGGAsAAEB7TyyUbpT48o7rDAdMbICxAAAAtPPEQulO+SErWw0JTGyAsQAAALTvxELp1iTfFkMCExtgLAAAAO07sVC687jutYYDJjbAWAAAANp5YqG0v+wIXryBiQ0wFgAAAKiNq7KyO6RN7p3Kyl2qjBkysQHGAgAAAANuycrxkDbBdyArK1QZM2ZiA4wFAAAA5nk2K5cTThQvZeVJ1UVNmNgAYwEAAIDM6qx8EtLu3juWlZtVGTViYgOMBQAAgM57ICtnQ9oE39uht14f1ImJDTAWAAAAnBQmlB+yskVV0dA+DMaCsQAAAND5k8IjWblWNdHgPgzGgrEAAADQ6ZPCHVlZpIpocB82sYGxYCwAAAB09qTwVFbuUjU0uA+b2MBYMBYAAEBST6f7z4GsrDAG0P5gLAAAAJJ6mtd/LmXlSWMA7Q/GAgAAIKmnmf3nWFZuNgbQ/mAsAAAAknqa6e2sXGUMoP3BWACMd7QTAH48wBhA+4OxgPZXt9ob7QSAHw8wBtD+YCyg/dWt9tZ3APDj4ccDY8AY0P7aH2PBWND+2r/9dau99R0A/HiAMYD2B2MB7U/D61Z76zsA+PEAYwDtD8YC2p+G16321ncA8OMBxgDaHxZgQ1a+zsoKYwHtr26DST5xWTsB4McDjAG0P410rN+vvsjKMmMB7a9uHZO4rJ0A8OMBxgDan+a5LSuX+33r46wsNRbQ/urWMYnL2gkAPx5gDNDt9r8xK8s1YeM8Na9/fZiVxcYC2r/VsdAkn7isnQDw4wHGANr/767Nyuas7MzKgayc7x/fm5qwkfbO62Mf1OSEUiwUC8XC7tSt8S4uAyCpA2MA7V+xVVm5NyuPZmV3Vg5l5ULB8W3VhI0UTx4Ph5/fObLUWED7tzIWmuQTl7UTAH48wBigA+0fT2D3h97C3xcTjmewrNKEjRUXeP9iXlt+Ema76LtYKBaKhd0ZW8a7uEyH7R4jyOaVt2r8HQ9N4PvdU7D9exe47RNTqIMlE2rnubLf0JHUiTfiTUPijQRKDJxl+y8k7h3TfI0X1xE7Oq9Nj85wskIsFAvFwu6MLeNdXKbD4lWV97PyaRjvqspc2VfT7/fYAk8uf+ifYN5UsI91WXmn/7kTY+5nU8X1sLjfRvG25PMLrJNvs/K0oSOpE2/Em4bEGwmUGFiX9l+UldWh99jZ0YRj26X5WmFFVr6a167fZ2W9k0nEwtbEQpN84rJ2otZuzsrzWTk14onYoRp+lxvGPME8k5UXQu9NTuOIf/da+OlV3SnloynXzXVZ2Z6V04nH901WHg8eG5LUiTfiTfPijQRKDKxj+y9LGBObNV9r3DAQp+OFrm3GAtq/FbHQJJ+4rJ1ohHgb6+cjnDSereF3+GyME+6PwuRe0X7rCCe1sayZQR2tTJhgeTX0rrghqRNvxJsmxhsJlBhY1/Y/UHBcl8Ns1wli8s6F/DvTlxsLiIWNjoUm+cRl7URjbBrhhPFyzY79mTFOuOPdI5N+w068U+lC4v5fnVFdbS84pr2GgaROvBFvGh5vJFBiYF3bv+gxtSOarjXiBMVbBW0dHxO7Tz6AWNjYWGiST1zWTjTGhhFPWlfU5LjjelaXxjjp3lDR8Twd0u9OWjKD+hq2kH+8snGNYSCpE2/Em4bHGwmUGFjX9i+KHS9rulwHw2Rf7FOn8kEYf+kGsRCxUN3O6pjEZXGZBnm0Jieto4iPeX0VxlvcvcpjOpl4HL+dQZ3dM+RYdhoCkjrxRrxpQbyRQImBdWz/GxsQ4+qozSeTc3eqx7eQrunQWEAsbHosNMknLovLNMa+EQfAAzU45pfGHLw7Kj6ubxKP48sZ1NnGIcdygyEgqRNvxJsWxBsJlBhYx/Z/oOCY4l0t1sLt5snk/HK7WIhY2IhYaJJPXBaXaYxR33j55IyP99YFDNjbKjyu1TU6ljxbc47hU91fUifeiDctiTcSKDGwju3/RmjWG8Trogsnk/ElBOvFQsTCxsRCk3zisrg8Y/EEaJVqKLV+jM6/e4bHGxewPxauXNi+Dm/q3DZiPU77ZRe7co7hcUNAUifeiDctiTcSKDGwju1/pOCYntFsnTyZjG+Zv0UsRCxsXCw0yScui8szFJ+jjm9KORF6k30M99xAB7uY0Anfn+Hxvh6ufHY+9Y2X+yo+tvdHDCbx1vRpvlQgb00x40NSJ96IN22JNxIoMbBu7b+4Hzem9TgQsxUfN3w4FF/82SYfQCxsbCz0dl1xWTvNsCG/Dj9/LfJ1qmWoT3JOTMs64axecX5XzrHEtbJ2Jp7kPlhxv7swsL8LCcf07JTqblXIv2KBpE68EW/aEm8kUGJg3dp/c8HxXNBkrZV3ASs+jrhSPoBY2OhYaJJPXNZOM3THwAnP6azcpFqusCz8/KpK/N8bEjrhuRkd64mB4zjaP9n9IvGku8rHt389sK94rK8nHNOJKdXfgzn7ft4QkNSJN+JNi+KNBEoMrFv7F61B9Z4ma6Vbctr6aWMBsbAVsdAkn7isnWbsvnDlrZgei/i5LQN1FE9elySewE77DUhvhysfm7s5K9ckHu/Rio/v1YH97cnK2sRj2zSF+su7Y2q9ISCpE2/EmxbFGwmUGFi39v+q4Hge02Stszz8/GmiM6F3UcZYQCxsRyw0yScua6ca+G248nbge1XL3+0ZqJ8d/f+esk7Wmike56Yw/K6QLYkntq9UfIxHB/Z3f/+/f5xwbNN4o9QPA/s8pftL6sQb8aZl8UYCJQbWqf1XlhzPWk3WKvEO8PkvFvg2zG65ILFQLBQLuzO2jHdxuZNeyKnEbarlb04N1Mtd/f9+PKEjTmuy9Jqc45x/l0zKml6x3FPhMQ6uPxXv+lleMGEw7UmMW3P2t0f3l9SJN+JNy+KNBEoMrFP7F10UOK25WiW+VGD+RZYj/d8TYwHt365YaJJPXNZONbIrTP9Oi7pbH668y3HukbgPEjrilikd5+AbJOMbIuevr3g64Vjnf7cqPBqKF5g/kXCMr1Z4fM/l7G+zsCCpE2/Em5bFGwmUGFin9n+34Fj2aq5W2T+vbT/KylXGAtq/lbHQJJ+4rJ1qJi/AxBO6pR2tj+dy6mLO3oSOOI1F1LeG4rdD3hLS7lrZX/FxDt7ds3Pg358OaS8XWFLR8X2cM3GxREiQ1Ik34k3L4o0ESgysU/ufKjiWrZqrNV6Z164f1iS/EgvFQrGwO2PLeBeXO+9gToXGxd9XdrAuDofhi56+kNARq378Kj6SdjYU37GyPfGku8oFXeMdO+dD8aN6V/dPdMuO87cVHF+8VflymP6aXPjxEG/Em2nHGwmUGFiX9i97Ec4qzdUKDw+cSC42FtD+rY6FJvnEZe1UQ/GuvbyFyb8P3XrT6LKcE7H5i1A+GGZ/t8pHA/uLi/PfWPKZYeXGCo/zzpzjzHtUb1eYzRs5N+fs5ymhQFIn3og3LYw3EigxsC7t/0TBcRzTVK2wPvz04qiPQ72eDBILxUKxsDtjy3gXlwlXvmVl/jpKD3SkDgYXQP124N9TFm//usLjeyxnf9sHPhNn5VPuVvm24rrcObC/D4Z8bl3iBMHtEz6+N4I3+knqZvvjId6INxIoutb++wuOY5emarzF/Xgf2/PL0LuD2lhA+7c/FprkE5e1U42tCFc+8jRsfaM22lMSZNeGtMXlq3BD6K0XNX9fR3I+d1/iSWzVPyBfDOzvyYLPfppwvJNegPbYlCch8OMh3og3s4o3EigxsA7tv6gfs4YdhxdfTfekb0PorVUa14L9IUzuzo4/ZOVMVh7PykMD5dfGAtq/lbHQJJ+4LC7X3O6CSo7Pby9v8Xc/VRJkFyee0FaxiOXgien5/on4oDcSj7HKH5CVOfu7qeDzWxOON94ttGJCx7c6Z/tvGPqSOvFGvGlpvJFAiYF1aP87C44hLl2wrOTv4zqlBydQFnes/WOMvDf0lgh4J/TuAB9cKuLEBCcvil4m8LqxgPZvZSw0yScui8s193BJRR/Pys0t/N7rQ9qbD88ndMZ1Ez62vLdCPjHks8cST2CrfJvO4En0qYTgczJM702i23K2vdHQl9SJN+JNS+ONBEoMrEP7F71M6Eji38cT07hu5sWQdoEh7+7nJS1t57im60P9E7b4tvEvRqinSd29vKFkP5uMBbR/K2OhST5xWVyuuTcSA8ODLfvezw18x4+HfO6LhPqZ5GBZmxMMPhny2dWJQePjiuty3xhBKuVNoicrOr5LIX+RfiR14o1404Z4I4ESA+vQ/p8UHMPLI24rjqGtoXxN0PjvcWmEeDfx0pa387YxT/Z/7NflJLwXiu9QWmIsoP1bGQtN8onL4nJNxSDx5Iidb3eLkqbDA9/tmSGf259QLw9NsE2Ohisfm7tuyOcfTWy3Zyquy8G1vLYk/M2KkLaA/6YJ1Ong8e03/CV14o140+J4I4ESA2fd/ovDlY8iTeLu1gMFJy7xovXKDrVzrONl/bIq9B4Fey0xTl87gf1fXRJXPzEW0P6tjYUm+cTlVsblHztc4knhmoYH/WU5AXf9kM/uSaiTVyZ0XC/lbPuxgs/vS2yz9RXW5W05+7sm8W/3hurvCso7vt/OoM/d06EYsb/m8Vm8EW/aHm/qmECJgd1q/82h+A6Tce5ujXcfnM7Z3ldh8ssYNNlTJe0/qXWfHivZzwtOJsVC7d/aWGiST1w2ydfCEu9U2Bqaa8vA9zlT8NntYTrP0N+aMxFwqODzeXeM5JXTFdfl4GNwX474nVP6240TPL5YVkvqJHXijXjT4njjxFYMnHX7Fy0Fc2jMbe7I2darwfIbg5ZP4Tck+qxkP3c5mRQLtX9rY6FJPnHZJF+LS1xUsolvLRu8W+bdEU7Q88oHCzyeeEVmcEH7H0pODm9LbKO9Fdfl52FhdxmlrEH22gKOb3AdjKOSOkmdeCPetDzeOLEVA2fd/l+HyT7Sf+/ANs72/xtXuiNUv+7T2lC+lncdJl/FQrFQLDTJV4fJI3HZJF/jSjxpuq5hCdCpEQbWxoQ6WOiC7a/nbHNbyd+8kNg+Wyqsx6tz9rdhxG2krPN1Loy3SOhV4cq7lXZK6iR14o140/J448RWDJxl+68s2f/tI27v9vDzO4mPNjDvnKbfhurXfXo5VHsxSiwUC8XCesdCk3ziskm+DpR4FWFzQ5Kf9WG0NZ1WJXz/iws4njtztvdRwt99mnBc8YRzeYV1OXjX0ThrS8Q7QU8nfJdx1rW6P9TnNmVJXTd/PMQb8UYCJQZ2rf2L7ki+MOK24l3EP8z7+/dDb0Kd4d4N1a77tCghjj7lZFIsFAtbHQtN8onLJvk6VN4I9X9897kw2ppOixK/+zhvHV7WH9iDE6arSv4u746RvHKk4rocXIj/4JjbeSnhu4zz2NvucOWbQ2dFUtfNHw/xRryRQImBXWv/opf0vD/Cdu4cOKl9yfxdkhOh2iUVNif0sZudTIqFYmGrY6FJPnHZJF/HSt0f3z08cLwvJ/xNyoLz49yxsTtnOw8l/N39iW2xo+K6HLxisH3M7VybOIlwx4jb/Xbg7/eZ5JPUiTfiTQfijRNbMXCW7X+qYN+PJW7jvtC702Xurt0tgRRld4NPYt2nj0v2caZG9SEWioVioUm+WU8eicsNmuTrshWh+JbTuUXc6/j47rKck7t7JjBwfhzj+96bs40DCzhZn/YbdPLeVLmQKwTvJXyfd0bY3pqcv3/Q8O2Euvx4iDfijQSKrrV/2cLfaxO28cTAickdmjRZ2cubFrru0w0J/WufsYD2b30sNMknLovLLRUXPC979rtub98dHGSpb5lJOSF8eITjiGtyDV7diY/NrUz8+28TjqfqN+gMPoa40CsEdyZ8p3gFa0Xi9gYXOL0citdCQ1In3og3bYk3EigxcFbt/0TBfk8n/P2b8z4fY88azTmSPaHadZ9eSehfDxkLaP/Wx0KTfOKyuNxi8fbTb0JzHt8dHGSpt5Gn3Mmya4TjyDuJT71V98aQdldN1TP2n4Tx73oZ5quE7/V84rbeH/i7Tw1XSd2UfzzEG/FGAkXX2n9/GO/u2PjSnkPh52t8rtCUI6ty3ae4PmvKchLXGgto/9bHQpN84rK43HIrSjrv3F0j99XgWAfvZkldD+GxCZ7kPpDzt++N8B0eTzzp/m2F9Zj3GOIk1hNIqeeTCduJdxRdGPNkHUmdeCPeND3eSKDEwFm0fxwLF8Po6w7Fx9aOz/vcB2G8lwt13ZpQ7bpPTyX0rW+NBbR/J2KhST5xWVzugNRFZF8P1T7SVWR9zvHcmPi3KQvPf5iwnXjn49lw5S3bozzWdSCxrqucsc9bW2DVBLa7JKRdjShbjyzvUbxbDVNJ3RR/PMQb8UYCRdfav+wx+Lxxu3lgHO7SfGPbVmGcjrn7dwl9a7exgPbvRCw0yScui8sdcSzxZDDedrx6Bsc3uKbTKLPaGxK+19mE7RzM+bv7RxzMlxKO5euK63LwMcSvJrjtVxO+38cl23gpjL72BZI68Ua8aUu8kUCJgbNo/xcK9nksYfw9q+kWZF+obt2nbSEtx7/fWED7dyIWmuQTl8Xljtif2NFmNaN8OIy/ptWyhO90uWQbeY+GvTvid/h1SL9jskqnKtzfdYnfseiuqCMDn91jeErqpvzjId6INxIoutb+n4S0dURX5nz2Q822YGdDNes+LQrly/LM/S5dbSyg/TsRC03yicvickekdLRYPgvTv5Mvb02nzSNu43LCd7um4ERy8LGwUR+bi3Ym1vG9FdblLTn72zThfXyY8B1fq7CtkdSJN+JNk+ONBEoMnHb7LymJW3Pj4q5+PMo7EVmp6SYaKye17tPTib8FXxoLaP/OxEKTfOKyuNwBqYuzvzSj49uSE0CXjLiNMwnfb8OQv/0057PjvIjki4RjiI/XLa6wLp+ewv5S7iA6H/IXo81rawt4S+qm+eMh3og3Eii61v6bQ/GdBHFCfHvJye8Lmm5sT4Zq1n2KF4fm7kT5oWQfrxgLaP/OxEKTfOKyuNxyt4cr3yw4WOLjVnfN8BgH13Q6PMY2DobxnnnfnvO5cR7nWh7SJlIPVlyXg48hHqpoPylrPOa90fPtMNp6WkjqxBvxpm3xRgIlBk67/d8o2N83Ie0lPt+H2b2cremK6nch6z7tCj+tA3uopP02Ggto/87EQpN84rK43GLxDoiyGeTY+VbM+DgH13QaZ0HTfQmd8smBv4mvQr+YE7iXj7H/LYkn3U9VWI9XhSuvPD1T0b5SXgl+NOfvvh/4zHbDVFI35R8P8Ua8kUDRtfZPffnaxZJ/f1DzjWxRSb2Ou+7T7fO2EZ/YKXobedV3dYuFiIXqtknHJC6Ly431WChfN6oObwdan3Nct42xndfDaC8UiYP7yzC5GfWUk/5YbqqwLu/P2d/6ivYVb2c/n/B97xiY5Bj897WGqqRuij8e4o14I4Gia+2/KjFexDtdrw3Fb+3+VPON7M4w+XWf4hIT38xrk7tC+QV9YwGxsDux0CSfuCwut0x8Dvz9ksY5MeaJbRWeGzi2s2Nu56GETvnevM/nvT797QV8j1MJ+z9RcV3unlBdpnoj4TvPf2PoEwP/9q3hKqmb8o+HeCPeSKDoWvtvTdjny/M+v7fks+s04UieD5Nf9+nl8NMaYvFizisl+3jOWED7dyoWmuQTl1sZl39Uhpb4/PnyGnWkwTWd9o25nc0J3/2z/mdvCVfe5XgyjP8K63WJdb+n4rr8fkJ1mWptwneOV8Hm3kI1uPbBGzXqh/d0KAbs7/CPh3gj3kigxMCuxcCiO3/jHbIPDHy+7O6DXeYmRvJxmOzFmHXzflPmXpj3ZUmb3e5kUiwUCzsVC03yicsm+TpS4snPkzXrRMtyTn7HXePg9oQ6iM/Fz7+Vdn65ZwHfY3tiG9w/5RPgB2ccJOdKvFqyKFx52/u9JvkkdVP88RBvxBsJlBjYxRh4umBfrw/5m29L8smrAykWh+Klc0Zd9ynGtqP9vz3W/41ZWdKfLpiIEAvFws7FQpN84rJJvg6UGKDW17AT5S0ev2rMbS1NrIvXwuSvxHyUsN/LFf8Q5J34r55CG25K+O4nc5KmS6Feb6aS1LX/x0O8EW8kUGJg12LgzSX72jTk754t+bunzd8luTdMdt2n+UtOzK1BWvYI4vtOJsVCsbBzsdAkn7hskq/lJa4LtaymnWhPKH874igujlE/3y2wfhaH4oVZ58onFdfl4B0uX0+xHU8kfP+jA///BzXri5K69v94iDfijQRKDOxaDHwyjPdmvxUlseZEIMXOMLl1n+a/oX3+8gNlL2J6zMmkWCgWdi4WmuQTl03ytbTEDvfbmic/g4vHv7LA7X03Rj3dtcB9bkrcz/MV1mO8LXjwtuNprj/19Bj1XrfgJqlr/4+HeCPeSKDEwK7FwAOh+A2SRcoWnd9sDq/UpxOaHJj/hvb423NVwW9bXd8qLhaKhWKhSb46HJO4bJKvseV4qP/bz9bnHPeGBW7zgxHraRInpq8n7qvKtxk/kLO/+6bYlvGNzpdGrPtra9YfJXXt/vEQb8QbCZQY2LUYuKhkrJRdDLit5Dg/NYdXKO+CyLjrPu2Y93d3zvvvN5a00fc1ryOxUCwUC03yTfOYxGWTfI0t74b6Pp473wth8msm7Q2jTYQuncD3+CZhX2crrst3Qvpt51XZNULdH61hf5TUtfvHQ7wRbyRQYmDXYmDZmyFT3uz3Rck2bjWXN9R9YTLrPt05729eHfi3R8Ns37IuFoqFYmE9Y6FJPnG5lZN8bRBPmp4YIVBf6n++KQZfKz2JNZN2jFBfk3ht9arEfe2rsB7jRMUPA/s7PIP2XDdC3b9seHfaLH48xBvxRgJF19r/pbDwN/uVLR5+QHMO9WpY+B3GcT2wk+GntU+XDPz7u2H8t6zH/ccLUFvEQsTC1sVCk3zisrhcc28kVHbsaE26mnpDznd4dgLbfSjxpO/VCX2PRxP392CFdbkhTHc9riKfJtbHXYa1pG6KPx7ijXjT9TFAN9u/aIykvtkvTuyXvezm5hGOaUf/BKkLJrHu06Hw0zrbefVc1DbxkbTlBe16JOGEUyxELGxmLDTJJy6LyzX3cElFf9zAhOm5kP7q8lGkLEp/LEzmsbnovcSTzGsqrMs9YfJrjY1ra0JdnA8Lf0wSSZ14I940Od5IoMTAqtv/qlC87tAoL6PZHiZzB8umMJ07XlZn5c3+iVY8CTuTlbdC74LPtCwOC1/36eWS9rqmpF2OFGx714gTHGIhYmGzYqFJPnFZXK65olcw72rohMnxnO+ycgLbvSmhY66fYKBIWfz9qwrrMf5wXcjZ55IZtWvsiyfD7B4lRFIn3og3TYg3EigxsOr23xwm92a/eKHizAJjXYwT3044Lua5I/TWJc07xnOht97aNGwMC1v3af6d2++N2cavlGz79IR+C8VCxML6xUKTfOKyuFxjMfDkzTjH//bbhn6nvMVPL01o20tKOuXOCX6P1Ef13q6wLh8fksTO0gthdo8SIqkTb8SbJsQbCZQYWHX7vxkm+2a/50uO+YvEsfpOhfUa1y09W3KcMWZN446+50qO47qCv7133ufiek/Lxox/eXes3xl+umB0f0fGAmJh12JhXcfWrI9JXBaXayF2nqM5FXsmNHtNs48qPlG8MKRDxgE5yTdAfhHSTrqrmoyNd7Hk3aF0ZMbtGx8dH3YrdPzv1xjakrop/niIN+JN18cA3Wz/Y2FhjyTl5aSnS4572Mvfbu6Px/jSnirvUHgzMU7unUIbvzdmG98372Qv5vs3LGAfVw98Pt59PjcJuqdDYwGxsGuxsK5ja9bHJC6LyzMXbwc+nFOpx8N01xSZtDuGdJaLE9zHl0NO9iZ5S3TKWlBz5eGK6nLYm5c/rUE7vxNGX4cASd2kfzzEG/Gm62OAbrZ/2Zu4x31rX9l6VPGixy0Df7M8/HSB4PGK6/X7xDh5YQpt/G3JMeStpf3cwO/UnSX7ODpCP7p53sTE8TD8LhSxELGw+bGwrmNr1sckLovLMxUfAcu7++TjMPxtLE0QO27R1ZSNE9rP/pxt75jg95g/455SdlVQl/F24nND9ncpzG6NrDm3Djm2FwxvpvTjId6INy90fAzQ3fZ/MFTzcp54R+83Jds+PS++3h56dzXH//7JFOo1Zd3Saa0lWnYs7/SPIdZpvEtk8G7t+xL2cTGUPxYW7yiPi8P/EH56GdE6sRCxsNWxsK5ja9bHJC6LyzP1QU5l7gnNfiNpXLD9o5IOczIUPwufavDtj0cnWHebQ/kt2nl3Dd0x4RPusle4v1mDNs+7w+k2w5sp/HiIN+JN3eONBEoMrLL9i17YttCX89wzYkyKJV6oWD2Fek29IHJ5Cjn1pTHqae7CSeqaTJfH2P5msRCxsPWxsK5jq+6TfOKyuFyZd3Mq8vkGf584Ux0XjD+W2Mnj3SIvhdHedDTo2YFE7uYFfod4q/e2rHw2ZmCYO443+ied4yaWq/t94XziPj/tB6TFM2r7R8OVV7Sgyh8P8Ua8aUq8kUCJgVW2f9HFgdcnsP1dI8akDVOq1z2Jx3NoCsfyTRg9dv8QRnv777cjbv8xsRCxsBOxsK5ja9bHJC6LyzPxWmjPm0ifDr01BcedMZ+7dTXe1fjWiPveEhY+QfpUf99nFnD8RXfaxLtO4mN+8bbgX5ccS/zM8QWe8H/X39/2KfaBxQM/rnsMcSr68RBvxJumxRsJlBhYVfuvC6O/2W9Ucd3o1JcBTTOPXROGvwxpfoy6ZQrHsmPE2Hm0f/yjeHmE7W8TCxELOxML6zq2Zn1M4rK4PHVPhSvvMNnQ4O9zcIInqaO+CfPesPDH5vZXcLI97kL5Fye4r4NT7gfzg+lmw5yKfjzEG/GmafFGAiUGVtX+T5ZMcE3qbtsVJSe3Z/rxcdriGljD7kCOE4D3T+k4loXyBdjn7jp+eszfj5R9xIsud4mFiIWdi4Um+cRlcXnGtuR0rFtVCy1wbT+pjmWp6sCPB+KNMUBr2n9x/0QoLih/sT/24slufOnNNTM8rhtC767s0/3jiv93dxj9joyFWtqvn7j8wvl5dRTr651+/r94AvuId5F/1d923MeprLwfessYLDIW0P6djIUm+cRlcXmG4muY5z9i9n1Y2PpQAJI6MAbQ/mAsoP3VrUk+tNMUxVncr+dVWHyD4bWqBfDjAcYA2h+MBbQ/Lalb7a3vdEac1DvRL6tUB+DHA4wBtD8YC2h/WlS32lvf6ZRVwQQf4MfDjwfGgDGg/cFYMBa0v/ZvX91qb30HAD8eYAyg/cFYQPvT8LrV3voOAH48wBhA+4OxgPan4XWrvfUdAPx4gDGA9gdjAe1Pw+tWe+s7APjxAGMA7Q/GAtqfhtet9tZ3APDjAcYA2h+MBbQ/Da9b7a3vAODHA4wBtD8YC2h/Gl632lvfAcCPBxgDaH8wFtD+NLxutbe+A4AfDzAG0P5gLKD9aXjdam99BwA/HmAMoP3BWED70/C61d76DgB+PMAYQPuDsYD2p+F1q731HQD8eIAxgPYHYwHtT8PrVnvrOwD48QBjAO0PxgLan4bXrfbWdwDw4wHGANofjAW0Pw2vW+2t7wDgxwOMAbQ/GAtofxpet9pb3wEAAAk0GAtofxpet9pb3wEAAAk0GAtofxpet9pb3wEAAAk0GAtofxpet9pb3wEAAAk0GAtof9QtAACAky8wFgAAAAAmyMQGGAsAAABAw5nYAGMBAAAAaDgTG2AsAAAAAA1nYgOMBQAAAKDhTGyAsQAAAAA0nIkNMBYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/b+8OQOUoEvwBFyGEIEEirriiYhCREEIQdFFxxRyIBAkS5ESDilk8DllERASVU5IgoqyyJ55EJCwhBAm4kg2eqCASRERE8cQVDYoECRIkoOJKlJg/++/Km2yeL6+7a+ZNz1R3fx807J0vMz01VfWrqumuBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACADvrnBA4AAADzFQAQmgAAgPmK+QoACE0AAMB8xXwFAKEpNAEAAPMVABCaAP3sB7t+ACALmsoTOQYAGQ1GAHJ1ngmVfh5AnljkA4AuEJpAnz1sQqWfB5AnFvkAoAuEJtBn75tQ6ecB5IlFPgDoAoEH9NWK4vjFhMrkCECedD5P5BgAvSDwgL6612TKIh+APLHIpwoD0BUCD+irfRV9367i2DHn2KDIAJAn5jwAIPAA8vGb4vippN97XPEAIE/MeQBA4AHk766Kfu8KxQOAPDHnAQCBB5C//y3p8w4Xx2LFA4A8MecBAIEHkLdlxfFdcGsVAPLEnMecBwCBB9Bamyr6vN8rHgDkiTkPAAg8gPztDm6tAkCemPOY8wAg8ABaa2kofwribsUDgDwx5wEAgQeQv/UV/d16xQOAPDHnAQCBB5C/54JbqwCQJ+Y85jwACDyA1oqTrrKnIO5SPADIE3MeABB4APlbW9HX3aZ4AJAn5jwAIPAA8rejpJ+LG6f/RvEAIE/MeQBA4AHk71DwFEQA5Ik5jzkPAAIPoLUuCW6tAkCemPOY8wAg8ABa7cmSPu6X4vit4gFAnpjzAIDAA8jfZ8GtVQDIE3Mecx4ABB5Aa60Mbq0CQJ6Y85jzACDwAFrt4Yo+zlMQAZAn5jwAIPAAWuD/Svq3dxUNAPLEnEfxACDwAPJXdWvV3YoHAHlizqN4ABB4APm7q6J/8xREAOSJOY85DwACD6AF3ijp295XNADIE3Mecx7Q0JQt6gpA/uIm6L+U9G33Kx4A5Ik5jzkPaGjKFnUFIH9Vt1Z5CiIA8sScx5wHNDRli7oC0AJlt1Z5CiIA8sScx5wHNDRli7oC0ALLi+Onkn7tQcUDgDwx5zHnAQ1N2aKuAORvU0W/tkLxACBPzHnMeUBDU7aoKwD5213Spx0ojsWKBwB5Ys5jzgMamrJFXQHI29JQfmvV44oHAHlizmPOAxqaskVdAcjfLRV92mrFA4A8Mecx5wENbbaLi+MMZYt2CDQgThwuUgwj21HSnx1WNIA8QZ6Y85jzQL8b2vnFsaE4HiuOvcXx4+D8nlW2aIfAmJ1bHAeL43lFMZJ4a9V3Jf3Zc4oHkCfIE3Mecx5yFTf6XF8cfyqOPWFm88+4APVzcRwtjiPFcSjMLEzFBam4ULVEQyt1TnFcXxx/KI7txfHGoAzLzm+jTgyBl4Ulg/7t6UF/d2jQdo8O+sMfiuPDMLNx8n3F8TtfOxk6qzjuLI5vBm3vEkUykrUV/dm1xnTIE+QJ8qSXeWJ+TNZWhZlFqJ8TKuvcIzbsncWxRkM7vpgXO779I5blOToxBN5UxcnVrkG/Nmz7/ao4tg4GwjCMD0eob8Me7yjmkT1XUqYHQ55PQezKmK7t5AnyBHnS7TwxPyZL8ZLr3WPs9OMeA2f2uKFtX0DZ7deJIfCmJu4t82rFOX9fHG+Gmatxvy2OYxV/e2QwOVuqKpDg3yYwIYvHHYp6JIsHk6823FrVtTFdW8kT5AnypB95Yn5MdjYMBhrj7vhj53WphhYWDTrIeAvuRwnntk0nhsCbinh71HxXWnw0GMgum+ffnLj9qmoi92VxXK46UOOtCUzIvhlkEsNbW1GuG4zpkCfIE+RJb/PE/JisPNRwAMT9Ra7U0P5lWTi5h0UbOnedGH2oK/HKiJdKzvGeIV4n9nWfl7xOvELjTlWCEpeEyVx1sVVRj+zxUP4UxFyururqmK5N5AnyBHnSvzwxPyYbWycUAvEWhAs0tH/ZW3FeceC2TCeGwJuY2N7eLjm/G0Z4vTNC9S/oj6gWzGOct8JU5cv5inpkB0rKdbcxHfIEeYI86XWemB+ThT9WdNqvDP57XF2f/TSc+L9XFsfNYWbzzB+HaMTvaWj/UnXL7rs6MTok97qypGICtZBfqONE7+OKz32fqsEsF01oMP2Soh7ZFRXlut6YDnmCPEGe9DpPzI+ZuqtKGu5TYWbvuFSnFcfmkP6UnZs1tOOqnq72hE6MDsm9ruwsOa/4C+tCn2wWB9pHKj77TaoHA89OaFJ2jaIe2ZaSMv0lTP/q+z6M6dpAniBPkCf9zRPzY6Yqdh5fhVNX0Fcu4DXj3g+HEir3BxpauLjmvK7TidEhOdeVOyvO6+4xvUfVfiY/DCZu9NtZofqHn3HcUvV1cdyvqBfks5DnrVV9GdPlTp4gT5An/c4T82Om6pk5FW57GM+TkVaFtEtzL+p5Q7up4pyOhnY8pUonRtvryoWh/KqIo2F8v6QuqRncuOWNR+fUiU8VSXZWVrTh24zpek+eIE+QJ/LE/JipWTWnsj065te/P6GC39rzhvZMxTm9oROjY3KtK6+Eye0z80hNGdhPqb/i7Szfz6kPdyiW7Gwpabs/FcdyY7rekyfIE+SJPDE/Zmr2zKpozzbw+kvmCZi5x/aeN7R3K87pAZ0YHZNjXbm65pzuHPP7nRNmbnEpe7/YZ56pqvTS3EFvvE1mkWLJTlluT/uHuT6N6XIlT5AnyBN5Yn7M1Fw8oY5kZ00Ff6HHDW1xzeDsSp0YHZNjXXkrTP52gX017/moqtI7cfJ1MDSzdxfjs6Ki3W4yppvYmC5X8qSZsfKzJYcHjMgTeSJPzHlglj8PKljcMLXJX/lur6ngu3vc0DZUnM8RnRgdlFtdWVlzPj829L73JrzvMtWlV+Zu1B/32lqiWLLzYCh/CuJvjemmvlH8NMmTZiyp+GzPBuSJPJEn5jxwXPyF5/Cggq1r+L3WB1fylanaj+9FnVi2bSc+8TjeBrGrOF4tjm/DzKJs6mPhx308q66M7Ima89nT0PuuTiiLe0RVr3w65/t/SJFkqeyqqfeN6Xp/JZ88aYZFPnkiT+RJG1nkY+JONKpJLCRdW1PB/9TjhvZxxfncpRPLRgy8jcWxN8w8Ge+fmR0W+Ub3eZjefiBHat77Q1HVu0yefeXN6YolO+eFmSss5muv9xvTTXRMlyN50gyLfPJEnsiTNrLIx8TFy/ZvDDMb9k67Ad/Y04Z2ds35rNSJTV0cFG0OJ3/RyvWwyDeaCxPO5/YG3//VhPe/WFz1wjtzvvfHFEmWNmWa2X0c0+VGnjTHIp88kSfypI0s8tFpVZfixquizuhpQ7u54ly+0YlNXdyg+NuQ9+KeRb6F2ZhwPhsafP/nE97/PhHSeVfN873HSdn1xbFU8WTltZJ2+q4x3cTHdLmRJ82xyCdP5Ik8aSOLfHRa1aaaL/a4ob1QcS47dWJTE598915ox+KeRb6FeTbhfNZNqW88cbwiQjrvlZo6EG8BjPt/xo3UVyuuqVleHD+VfEdbjOlat5ewPGkPi3zyRJ7IkzayyEenbauo3Gt63NAOVZzLRp3YVMRf2X8I7Vrgs8g3uj0J53Ntg++/PuH948NcFomRzlo5QnuPVxjvHkzSzlGEE7MpdGN7ja6M6XIjT5pjkU+eyBN50kYW+ei0/WHyGxDn3tDqgrhtQduFTuy+0L7FPYt8C/PxlCdlqQPyPk+cu+4vY2j/cUP9uEn3uYqzUbtLyv8LY7qpjOlyI0+aY5FPnsgTedJGFvnorEtD+eXiy3rc0O6uOI/9OrGJ2zrCQCjumxhvub61OK4ujtM099bVlR+nPClbkljXblZtOun84jgWxrfYH1/r9eK4RtGOXdzLyq1VeY3p6sStN+I+dV+HmSvY4gO0dgz+//KkXSzyyRN5Ik/MeSAjL5QsjlzY84ZWdVvHNp3YRD0w5MAnDnrWadqdqCs/h+nuoRQSB+VbVZtO+lNo7ureuHH3JYp4bG6pKOvLjOmmMqarEh8yULbo9uPgv8uT9rDIJ0/kiTwx54FMXFrSeC/peUOL+6EcCdN5+ppO7NduGmKQEx/G8TvNulN1JeV7v6Hhc0i5+mOnatM5ZyR+9ws9niqOxYp7wXaE8lur+lK+uY3pylxcM8Y6sTfdKnnSGhb55Ik8kSfmPJCBeJnt3Pvs4+W3F2lox2/trLo8vu4S5c1h5ulZCz0Wd7Bsh7E6YSJwYjJwjybdybpyNOF8mn4IzrcJ57BXtemcYa8gXsgRf6Cwofro4q1V35WU7X8b02UndV+yPfKkNSzyyRN5Ik/MeSADcx/h/kKY/v31uTS0zaH6kviUfx/L96OQdnvIfMeRwaCpr53Y0kGg1J33weAWhS4HXsoi76MNn8PXCefwhmrTORsG/firxfHOYHKeUh9HPWI9u1ixj2RdRbleYUyXnW8S28RRedIaFvnkiTyRJ+Y8MOXFk71zguAmDe1X3qo4hyeGfK146+/GUP8LcvzvOwYDgaU6seO3HNSdc3xSnl8ru11Xvko4n90Nn8MbIe0hL/RDnMzGq4xvLI7HBpO2lCuEUh8WZGI2vLJbqw4Y02VpmPYyzh875Umz/aJFPnkiT+SJOQ9MQXyy03vh1Cuh4mXkyzS04+ItslUbI4+6KfPeUH777zPFcbZO7F/WJJxvvEryLE2683Xl5ZC22DvtSdlh1abX4o851w768kNh4VdgnK1Ih8rsgyVl+ZwxXZZS28i4r+STJ82xyCdP5Ik8MefpiWvD5PYfmPaxpwXfxx+L44eKz/DtoCEv6XlD21Az4Fw04uDnm5LB5Bqd2CnerDnXrwxaelNXdiScz7HQ7EbIryacw/eqDbMmaDFH3lrAmOKD0MwV3V20tqIc13b4c7dhTFdmW2I7eF2etIZFPnkiT+SJOU9PWOTLw/rBYlLqZ4mXI1/X44b2TBj/PimPhvmfgLVIJ3aKq2rOMz6dbE2gL3Xl1sR+q8knXr8SXMnHaOLTvt8Mo40rdim+JM+F8v1au/gUxDaN6cqcG+ofQBEX28a93648aY5FPnkiT+SJOU9PWOSbntgR3Rlmbmkc9TNtD5Nfsc+hoX1S8f4PjPB614dTfw25Xic28gD4Ll1rr+rKyiH6q2lOyuzJR5UbBoPjYXP4VkVXO9Ypu7VqR8c+ZxvHdFWuCuULffGBBDfKk1axyCdP5Ik8MefpCYt8k3dpcTwd6n8hTT3iE6DO6lFDO7vm/a8c8vXi38++/Dl2qBfoxEqdX3OOb+tWe1lXvkw4p9jnNXVlbMqk7C3VhhqnhfTbFGfX6zMUXam1Yfz75+ak7WO6OvHBWfHuibhv2LHB54yT6ZXypHUs8skTeSJPzHl6wiLf5MQV+c8b+mwfTTAUpt3Qbq547yNDvtblYWZflRP//qVBKOvEyj1Qc46rdKu9rCuPJfZVf2jo/V9PeO+XVRsSxaswfhgigx9VZKUeLymzn0K796DqypguR/KkGRb55Ik8kSfmPD1hkW9yXhh08nG/sp8b+Hx7e9LQdle890tDvM7V4dcLfFt1Ykneqzi/3brU3taVCxL7qf0NvX/K0+1eUG0YQtxX9JvEev1D6OZm1+NwoKN50ZUxXY7kSTMs8skTeSJPzHl6wiLf9AP34jCz/9vtxbEzjLaHw4nj9h40tKrBV+pecPFXtSPh5NN4b9aJJVlWc36X6lJ7XVdeSOyn/jjm903dw+lp1YYhXTzExOx2xXWKKyrK65YOft42julynvTKk/HXT4t88kSeyBNzHpiSuFjy5zDc5d3xiAtgSzvc0OoGXyl7xNwdfv10tKt0Ysk2VJzbx5pt7+vKhSHtF8j4S+VFY3zfFw2aaVDMiGMJ9cuVzKfq6q1VXRrT5UqeNLNoYJFPnsgTeWLOA1N2epjZm+TYEI34vg43tLvDwp509uysv/9yzAPDPnRiWyvObbPmqq4U/iuxn4pPyB7HHiEPhPS+8TrVhgbr2Y8TPqcVLSi3sqsOXjOmy2ZMlzN5Ml4W+eSJPJEn5jyQkdUh7Wlj8fi0ww1tT8X77qr4d3Hw98asv3035Pm0odw7sar9EK/UTNWVgTcT+6qFtMMzw8ytC8P8immPGxbik4Q6NqkfjuIVDfFK9OUZl1fVlfebjOmyGdPlTp6Mj0U+eSJP5Ik5D2QmDkI+SmzEqzvY0BaF6ls3NlYEw+wnFsUnouV6uXLundhbJed1dPD9oK6c6Kv2J/ZVB8PMHpmp4i1cT4WTe2qeuIq37n0+b+izbg/d3svWwuhJ6xPKa0PD5xD3Rf3rrPfbknF5bQnlt1YtV52yGdO1oZy6nid92h99u6YvT+SJPOnY/BgW7OyQ9tSv+zrY0K6ued9z5vk3MSBn71mwTSe2IN93fPDZpl+yc68rsT1+OkTZfxhmNlCPT6A7sWC8aNDnxcHwI8XxTsm/uynh9Xda5LPINwZ1iw13NPjevymO9+eZ4Pwm07L6rKSM9qlGWY3p2qDreWKRT57IE3kiTyzy0XMpg4EXO9jQNle85/55/v6pOX/zkE5swZp4rLtFvu4GXrxN/tUGv68nBotQmxP+dqNFPot8Y1C3l9KfG3rfSyoG709mWE4rKsroLtUoqzFdW3Q5TyzyyRN5Ik/kiUU+OH7Lad0mxF1raG9VvOfsK/TOnudvX9WJjcVRi3zqygjiIOzbMX5PrxTHqlmv/0HCvznTIp9FvjGoe8J7ExPY24rjHxXv+UvI7yFSD1ac63mqUVZjurbpYp5Y5JMn8kSeyBOLfHD8EexVlf3njjW0ONGsenrQiX0rrgnz76dybLD4pxOzyGeRbzriVRjxComDI3438Vfnp+dMxqLzE/7tOw1+Lot8/XN4gpOyJwcTmbrv6bnMyujd4Naqtozp2qhreWKRT57IE3kiTyzywXEHair8og41tA0V7xcX8OLmsffVLARu1okt2BGLfOrKGMQnMcc9keLTsvcP6tXRQfuN/ztepfF6mHlidtxX6dKK13ogoSya3H/EIl//7JnApCxuJP6/Q3xPceK2MpPyWVFxng+qPtmN6dquC3likU+eyBN5Ik8s8sFxf5nS5GwaDe2ZUP048L0J5/V1Czq13Duxcd4iY5FP4I3DxzXl0PRVvBb5+md7w31IfPLd30f4rl7LpHwerDjHFapPdmM6pp8nFvnkiTyRJ/LEnAeOu7VHi3z7Q1oo1T0Y4lad2IK8aZFPXcnIlQnl8IqoYMzurqhv9y7wtdeF6tu36o7fZ1A++0rO7V1VJ8sxHf3JkyUdGf/IE3kiT/qVJ+Y89Mq60I/bdc9JDKO4ABX3U6naN+5tndiC7A7l+9ugrkzaCwnlcI2qwpjdHpp56mac7KXsl5Tz1RfnVXyGLapOlmM6+pMnFvnkiTyRJ27XhcydG/rx4I2NCe/5xKy/31nzt2t0YiPbXHFuF2iS6soExfp2rKYMPlJNmPCk7PoRXm9pSLvt+/8lTszWT7Fs7qo4r5WqTpZjOvqTJxb55Ik8kScevNETfdoHYk/HvrtlYTqPx550Q9td8V4/FsdNc/7+mprz26YTG1nVA1Du1p2qKxO0LaEMblRNaMAfKurcKPt1XVYcP9XU5f8rjnsSxzqfDSZ601B2a9UB1SbbMR39yROLfPJEnsiTNuaJRb4RWORrr9MqPuvuDjW0byre6+mSf/Nlxb+Jt/OerhMbOTTKfu22P4a6MikXh/qrLt5TRWjIEyV17ocFvOZtofy2pF2Dvjd6O3G8M40fXapurXpctcl2TNd3fcoTi3zyRJ7IkzbmiUW+EVjka6+qS3Hv60hDWx1Gu4z8oZp/d79ObGRVg4Lf6VLVlQl4OeHzq4s0pezq8pcW+LoPz/Oa8cmCi2f9zdrE8c7BMPmrLzZVnM8Vqk22Y7q+61OeWOSTJ/JEnrQxTyzyjcAiX3tdX/FZL+9IQ6u6nPzonLCa7axQ/QCOr3RiI7s/eJKpujI96xM++zbVgwZ9XlLv7hrDa/9t8FrfFce/l/zNG4ljngcnXC6vBbdWtXFM12d9yxOLfPJEnsiTNuaJRb4RWORrr7LNWg92qKHtDdVP061S9wCODTqxkcSnHVfd2nKtblVdaciyQf9W9bnjAv7pqgcN9n/z1bvYJ549htePV0vE26kuq/ibuOF4ylMT/1Ecv51QuSwP5ftAPafaZD2m66s+5olFPnkiT+SJOU9PWORrr10ln/OxjjS0+HjvqqvxHqn595fXnOfbOrGRVT0M5UA4ud8H6so4vVDzmePA+CpVgwbdW1L3Xp/weexIHPdMakK0qeIc1qo2WY/p+qqPeWKRT57IE3liztMTFvna61DJoOSCjjS0uqfkXpnwGh+Edu2z0pZO7NKa83xR16qujNkfEj7zPaoFDfu0pO5dM+HzuCjUP0ExHvEKjRUTOJ+yW6viVQOLVZusx3R91Nc8scgnT+SJPDHngYyVLc5u71BD21rxHkcSX2Njzbnu1YmNrG6z6s2aqboyJr8btPmqz/sXVYKGbSipe/umdD6PhrQfOHc0fB5LKyaIO1Sb7Md0fdPnPLHIJ0/kiTwx54GM7QvzP279nA41tKqnuKY+dSre8vtVzfmuHjIEz9KJHRf38ThWc75/1FTVlQU6P8z/i+Ts42XVgYbFLJnvqovYB66a0jnFfYu+S5yYXdbgedxS8b7rVJ3sx3R90vc8scgnT+SJPDHngUytK6ngd3eooZ0WqheQhnnq1H1hPFfzrQ/NX/3Xtk5sa8I5P6LJqisjigvqX9Z8zvhEZ7dv9FfMiqtDsz++VPV1D035829JnJQ1eXVI2d4/ccK4VBXNfkxXJy6MPRVmngIa90mOV8F9XBzPhJkf++RJe1jkkyfyRJ6Y88AQYig8URzPh5kn2pzb0PucEea/Mu2VjjW0DTXvMczAMobC4ZrXuzRhYPRl4t/2qROLv0Z+FNIu7xfOAm8Y8cly+2s+465BHaR/7gynPhnz5zCz9+71DeT7P6ecu2Xi1ReHQtrE7IoG3n9xRb62+daqPo3pqtxQHD+G6odTtGEjd3lycixrkU+eyBN5Ys4DCR3SSyUDnxgO477s+pUw/9NMz+xYQ3u24vW/HuH1Hqk55w9q/v3mWYNAndivxQ17v00490+KY40uQ+AluHDQr1V9vq2qQG/dnFD/448P43iwUtyk+pt5Xv/DkM9TxDclTsreDeO/Sun3Fe93izFdK8Z0ZWJeH02sWy/Ik1awyCdP5Ik8MeeBMSwexYb8p0GwLtTOMP+C14UdbGhVv7juHOH1lpUEa8qlzKsH3+P3YebXYJ3Yqa5LHBTEcnw6NH8rRB90NfD+LVRfeRtvFbvJ199rryf2Nwt9AFD8tX2+X8U/zqwPixOJLxLLY9wTpf8ueZ+4cXobr97u45iuzEtDtLN43CtPsmeRT57IE3lizgMJPk3sCOPfjfpI9NPD/E8yjfujXNDBhnZOzevfPOLr1u3NFwd7l8z5N2cMynlSD5Focyd2xxADpVjWcT+f1boQgTfL/aF6L864+L/KV9973w+5+PBmGP4HmivD/D8MvTXIhdzcklgW8Za0cV0xEieDZRu17zama82YrsyRIdvZj4PPJk/yZZFPnsgTeWLOAwm+DcOFQ2yIw+zpdnM4dZ+IE0+XPaOjDe3Wmtcf9bLjRQkdbgzhdbNC+ZNZQawTq/efQ7aHE0G0Lcz8mn5lGM8vWn3QpcCLv3Dvq/k828PMptjw4Qj9TMzqlB9q4oTlsZLFge0h70359yWWxbg24L624j02GdO1ZkxX5ugI7eyuDM5bnpSzyCdP5Ik8MeeBBHtGCIcT+y88EGZuc1wyJ4DjItOjYf6ngMVLbzd2vKHtrnjtjxsMkaowP1cnlmzjiJODHI42DXK7UFcWDfrBqo3dvxy0WzjhoQW08c8H/35NOLnJfrwNKD49PV5d/MM8/ybe7teGW/rWhsleffF4KL+1arkxXWvGdGX2j1AOL8qTrFnkkyfyRJ60kUU+Jm7dhBYf4hVm/xXy+OWx6YZWtXfe02N4/W1Dlv11OrGhXRXSn9Blka+fdeXWkkHK7Fu/NgdXdnKqePXDWxPoD+LVF38O7fpF/LXEz/boGN6rbN+mfcZ0rRrTldk6wuf6SJ5kzSKfPJEn8qSNLPIxFY802HBj53ZHyOuS7iYb2pqa114/hvOPv7J9kFj+t+rERhY3Et4bLPKpK79ue/EWl88rzvvnwUD4HNFCTV16vqF+IF598VRo53428WnnvyR8xnh1xG8X+D4537JpTLdwccL4Thj+zgd5ki+LfPJEnsiTNrLIx9TE1foPw3jCIN5Lf2do/kmuOTa0e0L1r2Dj6sjiAlTVQl+8nP56ndhY3BCqf2G3yNftuhJvYYm3R/0lVG/kHve/jBuld20fEZoVfxjaERa+RUC80iduFbGxAwPmHYmf+ckFvMf9Ja8ZJ4TnGdO1akxX13/HhbRXB5/lWM3nPSxPsmaRT57IE3nSRhb5mLqVYeZXh52DQdHhQWf/86wj/t/xVsaXByEQL3O+Mcz8kqGhTc7iQbB8Mvhe4oAxLvzFWzrOVLaNTBQ+Dxb5+lBXVg0GIbtD9f5IHw76v0tEB2Poz+OV3nGT8xcHdev7Odkb+/h4pdF7YWavnOcHk7A1HSuL1Ksv4t+sGPE9/h66d2tVX8d0CzH3YVtvypOsWeSTJ/JEnrSRRT7Q0JRt5q4OM08VOxws8nWtrlw3GKSUXYkbF9Tjr8LxiWBun4LmPJ7Y5/11xIlK2es9qOh7PW7ZIU+yZpEPeYL5MaChKdtGxV88bw8zi35x/74D4dRftSZ5PK2uLMjl4eQ+SHEj6/hr5d3h1CeEAc2KTyP8LnFiNuwVAg9XvNYKRd8rZ8z5/m+WJ1mzyIc8wfwY0NCULepKssXBHkiQiy2Jk7K/Dfm6b5e8zruKvHdumvX9x33MlsmTrMVFvi78yIk8wZzH/Bg0NGWLugL0Snxi5IHEidllia8Zn6BYtj/TFkXeO2/M+v63KQ6QJ/IEcx7Q0FC2qCtAMzYlTsreSHy9/6h4jZWKu1euCb++iu8CRQLyRJ5gzgMaGsoWdQVoRrzl8YvEidnahNf7a8m//UxR90q8jfarWd//I4oE5Ik8wZwHNDSULeoK0KxbEidl7w8mcWXOC26tYmZft32zvvt3imORYgF5Ik8w5wENDWWLugI0b1/ixOzeiteourXqCkXcC3Ffrldnfe8Hi+NsxQLyRJ5gzgMaGsoWdQWYjLWJk7JDofwJqX8r+TcHFG8vnBVmrto78b1/XRwXKhaQJ/IEcx7Q0FC2qCvAZL2WODF7eJ5/G6/g+q7k7x9XtJ13+WDCfuI7/6Q4zlUsIE/kCeY8oKGhbFFXgMm7KJTvgTT7iJOv5XP+7bqwsA3Waae4197WOd/3rlB+dQ4gT+QJ5jygoaFsUVeACdgR0q6+eHLOv/ufkr+Le7ItVqyddWZx/BBO3p57oyIB5AnmPKChoWxRV4DpW1Ec/0joP34KM08/DINJ18GSv9uhSDvvnuJ4KMzcYgcgTzDnAQ0NZcsU6so4DqB7tiS2/+cGf7+h4m/WKU4AeSJPMF+BbjdWlC1CE8hT3B/pu4T2H/dbivsubQ/ley25ugtAnsgTzFeg440VZYvQBPK1JbEPiA9ZOBTcWgWAPMF8BXrbWFG2CE0gX/GKiQML7B9uUYwA8kSeYL4C3W+sKFuEJpC3TQvoG34Kbq0CQJ5gvgK9aKwoW4QmkLf4lMMvRuwbdis+AOQJ5ivQj8aKskVoAvlbN2LfsEnRASBPMF+BfjRWlC1CE2iHfWH4W6uWKzYA5AnmK9CPxoqyBaAd1g45mN6nyACQJwAAAPl5Lbi1CgB5AgAA0GoXFccviZOyVYoLAHkCAACQpx0JE7Kvi2OpogJAngAAAOQp5eqL+xUTAPIEAAAgb8/VTMpWKyIA5AkAAEDelhfHdyUTsr8Xx2JFBIA8AQAAyN+WkknZFkUDgDwBAABoh3j1xeF5JmW/VzQAyBMAAID2+I85E7KDwa1VAMgTAACAVokTsC9mTcoeVyQAyBMAAID2uS24tQoAeQIAANB6bxfHP4JbqwCQJwAAAK21tjj+RzEAIE8AAADa7TxFAIA8gcn5/2+dHCoAVC5oAAAEC3RFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtbz4mI3gyMUQ0OzwvbW8+PG1mcmFjPjxtcm93Pjxtbj45PC9tbj48bW8+LTwvbW8+PG1uPjU8L21uPjxtc3FydD48bW4+MzwvbW4+PC9tc3FydD48L21yb3c+PG1uPjM8L21uPjwvbWZyYWM+PG1vPiYjeDIyNjQ7PC9tbz48bWk+azwvbWk+PG1vPiYjeDIyNjQ7PC9tbz48bWZyYWM+PG1yb3c+PG1uPjk8L21uPjxtbz4rPC9tbz48bW4+NTwvbW4+PG1zcXJ0Pjxtbj4zPC9tbj48L21zcXJ0PjwvbXJvdz48bW4+MzwvbW4+PC9tZnJhYz48bXNwYWNlIGxpbmVicmVhaz0ibmV3bGluZSIvPjxtbz4mI3gyMUQyOzwvbW8+PG1pPk08L21pPjxtaT5OPC9taT48bW8+PTwvbW8+PG1mZW5jZWQgY2xvc2U9InwiIG9wZW49InwiPjxtb3Zlcj48bXJvdz48bWk+TTwvbWk+PG1pPk48L21pPjwvbXJvdz48bW8+JiN4MjE5Mjs8L21vPjwvbW92ZXI+PC9tZmVuY2VkPjxtbz49PC9tbz48bWZlbmNlZCBjbG9zZT0ifCIgb3Blbj0ifCI+PG1yb3c+PG1pPms8L21pPjxtbz4uPC9tbz48bW92ZXI+PG1pPnU8L21pPjxtbz4mI3gyMTkyOzwvbW8+PC9tb3Zlcj48L21yb3c+PC9tZmVuY2VkPjxtbz49PC9tbz48bWZlbmNlZCBjbG9zZT0ifCIgb3Blbj0ifCI+PG1pPms8L21pPjwvbWZlbmNlZD48bWZlbmNlZCBjbG9zZT0ifCIgb3Blbj0ifCI+PG1vdmVyPjxtaT51PC9taT48bW8+JiN4MjE5Mjs8L21vPjwvbW92ZXI+PC9tZmVuY2VkPjxtc3BhY2UgbGluZWJyZWFrPSJuZXdsaW5lIi8+PG1vPj08L21vPjxtbj4zPC9tbj48bWZlbmNlZCBjbG9zZT0ifCIgb3Blbj0ifCI+PG1pPms8L21pPjwvbWZlbmNlZD48bW8+JiN4MjIwODs8L21vPjxtZmVuY2VkIGNsb3NlPSJdIiBvcGVuPSJbIj48bXJvdz48bW4+OTwvbW4+PG1vPi08L21vPjxtbj41PC9tbj48bXNxcnQ+PG1uPjM8L21uPjwvbXNxcnQ+PG1vPjs8L21vPjxtbj45PC9tbj48bW8+KzwvbW8+PG1uPjU8L21uPjxtc3FydD48bW4+MzwvbW4+PC9tc3FydD48L21yb3c+PC9tZmVuY2VkPjwvbWF0aD5xD2aOAAAAAElFTkSuQmCC" style="width: 202.67px; height: 105.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="left right double arrow fraction numerator 9 minus 5 square root of 3 over denominator 3 end fraction less or equal than k less or equal than fraction numerator 9 plus 5 square root of 3 over denominator 3 end fraction rightwards double arrow M N equals open vertical bar stack M N with rightwards arrow on top close vertical bar equals open vertical bar k. u with rightwards arrow on top close vertical bar equals open vertical bar k close vertical bar open vertical bar u with rightwards arrow on top close vertical bar equals 3 open vertical bar k close vertical bar element of open square brackets 9 minus 5 square root of 3 semicolon 9 plus 5 square root of 3 close square brackets">

Gọi .

Do .

Mặt khác :

Áp dụng bất đẳng thức Cauchy, ta có :

<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>3</mn><mi>k</mi><mo>-</mo><mn>9</mn></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mfenced><mrow><mi>a</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mi>b</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mi>c</mi><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mspace linebreak="newline"/><mo>&#x2264;</mo><mfenced><mrow><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>1</mn><mn>2</mn></msup></mrow></mfenced><mfenced><mrow><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>b</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>c</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>75</mn></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D4;</mo><mfrac><mrow><mn>9</mn><mo>-</mo><mn>5</mn><msqrt><mn>3</mn></msqrt></mrow><mn>3</mn></mfrac><mo>&#x2264;</mo><mi>k</mi><mo>&#x2264;</mo><mfrac><mrow><mn>9</mn><mo>+</mo><mn>5</mn><msqrt><mn>3</mn></msqrt></mrow><mn>3</mn></mfrac><mspace linebreak="newline"/><mo>&#x21D2;</mo><mi>M</mi><mi>N</mi><mo>=</mo><mfenced open="|" close="|"><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>&#x2192;</mo></mover></mfenced><mo>=</mo><mfenced open="|" close="|"><mrow><mi>k</mi><mo>.</mo><mover><mi>u</mi><mo>&#x2192;</mo></mover></mrow></mfenced><mo>=</mo><mfenced open="|" close="|"><mi>k</mi></mfenced><mfenced open="|" close="|"><mover><mi>u</mi><mo>&#x2192;</mo></mover></mfenced><mspace linebreak="newline"/><mo>=</mo><mn>3</mn><mfenced open="|" close="|"><mi>k</mi></mfenced><mo>&#x2208;</mo><mfenced open="[" close="]"><mrow><mn>9</mn><mo>-</mo><mn>5</mn><msqrt><mn>3</mn></msqrt><mo>;</mo><mn>9</mn><mo>+</mo><mn>5</mn><msqrt><mn>3</mn></msqrt></mrow></mfenced></math>

 

1

Câu hỏi tương tự

Cho hàm số y = f ( x ) có đồ thị là đường cong trong hình vẽ bên. Hàm số f ( x ) đạt cực đại tại điểm nào sau đây ?

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG