Square root
VBT
Calculator
magnet

Câu hỏi

Tính: ∫ 2 - x . sin x d x " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAvkAAADlCAYAAADJN+ixAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAClZpjF+QAAIeRJREFUeNrt3Q+oFlX6wPEHuYiExEYrJhZeROIiIhfccMNChUuIiIgk/qSiG4ZISEgIFSkqEkkrbZT0I0RERC5YmJikICIiIlFU7EobRUSI+BOhIsXkJvSbp3fedXx9Z86ZM3/eOef9fuCwy269c+eZ85553jPPnCMCHw1GbVnUNkXt3aiNRe1k1E7H7aOo7Yn//5GoTSZkAAAAQLNMitqKOJn/T9T+yNl+jxP/RYQSAAAA6K1hac3I/+yQ2Kc1TfYfJLQAAABAvWZJa9b+9xKT+2S7Kq1yHwAAAAA12Ba13ypK7pNNnw7MIdwAAABAdYaidraG5D7Z9HgDhB4AAAAo32PSKqHJk6DrC7jtFXRGo7Y5ahcdEv1FhB8AAAAo1yuSr/b+vLTq6bvNwK9wSPL/wSUAAAAAyvOu5FsGc73h8zY6JPmnuQwAAABAOd7IkYhfE/NqOLosZt6SH5J8AAAAoCTPi32Jzu8WCb6W7pwXt5dvT3I5AAAAgGKelHw1+JssPtOlTKfdDnBJAAAAAHe6Lv01yTfLblricrIU2xF3E5cFAAAAcKPJ+HeS70XbYYvPXSbF1sp/kEsDAAAAuPkgZ/L9ruXn/qNAgs9LtwAAAICj/8mZfOssvu0M+/ECSf6TXBoAAAAgv0HJv7Tlnhyff1J44RYAAACo1ZhDAj6U4/Pfdfj8L6P2Vy4NAAAAkN9jkm+5TJd16xflPMZpEnwAAADA3WeSf5b9MYfj/FPsds19RVqr/AAAAABw8KRDgq9LbA44Hm8kavviz7iWSOz1ycBmYalMAAAAoJABybcmfrttJnQAAABAMz3tkOBrXT218gAAAEBDnXZI8o8TNgAAAKCZFonbuvVPEzoAAACgmVxm8XWzrAFCBwAAADTPHHGbxR8jdAAAAEAz2axXT6kOAAAA4IlJcnt9+ryNVXUAAACABnJZNlPbZ4QOAAAAaKazjkn+G4QOAAAAaJ4HpbWZlUuSP0T4AAAAgObZ7Jjgf0foAAAAgGb60jHJ30PoAAAAgOYZckzwWToTAAAAaCjXUp3fovYA4QMAAACa5zPHJP8koQMAAACap8iqOpsJHwAAANA8z4t7Pf4iwgcAAAA0zweOCf61qE0ifAAAAEDz/OCY5H9E6AAAAIDmmSPupTqbCB8AAADQPBsKJPmPET4AAACgeVzr8X+O2gDhAwAAAJpFk/TLjkn+acIHAAAANM/fxL1U5xXCBwAAADTP+gJJ/t8IHwAAANA8Hzsm+L8J9fgAAABAI111TPKPEzoAAACgeYrU428mfAAAAEDzFFkffxHhAwAAAJrnI8cE/1rUJhE+AAAAoHmuOSb5HxM6AAAAoHmGxL1U5w3CBwAAADTPpgJJ/t8JHwAAANA8Hzgm+L9HbTLhAwAAAJpFX5r9zTHJP034AAAAgOYpsj7+K4QPAAAAaJ4i9fgjhA8AAABono8dE3wt8fkL4QMAAACaRevxrzom+WcJHwAAANA8jwnr4wMAAABB2VAgyV9C+AAAAIDmOe2Y4F+L2gDhAwAAAJpFk3TWxwcAAAACUmR9/G2EDwAAAGieIvX4iwgfAAAA0DwfiPv6+JMIHwAAANAsRdbHpx4fAAAAaKARoR4fAAAACMo2oR4fAAAACMpJoR4fAAAACMrPQj0+AAAAEIw5Qj0+AAAAEBTWxwcAAAAC87FQjw8AAAAEY0BYHx8AAAAIyt+EenwAAAAgKK8I9fgAAABAUI4L9fgAAABAMLQe/5pQjw8AAAAEY5FQjw8AAAAEZbNQjw8AAAAEhfXxAQAAgIBoPf5loR4fAAAACAbr4wMAAACBYX18AAAAIDDU4wMAAACBYX18AAAAICCLhHp8AAAAICisjw8AAAAE5rhQjw8AAAAEY1KcrFOPDwAAAARikVCPDwAAAARlm1CPDwAAAATlvFCPDwAAAASDenwAAAAkTSEE/lsk1OP30r1RW04YAK/dx/cYJVgbtU+jdjNqN6Q1kUa/QtUmRG04aquititqh6N2Pc7zniA8ftsm1OP3ysqoXY7aeNRmenwe86L2YtQOxjeln+Ib1Hh8s9LB4vt44NABZEXUJnL5EZAj8Zh4NGrTCQccHM641+4kPCjonqgtju+/+mNyT9znvo3arYy+dz+h89tpoR6/bvql+TARy1PSmgn0iSYy26N20bH/jMcDzEK6AwKwKdG3f4naGkKCHLZajJnM6MPFOkMSn9X+Rfj8Rj1+/UaidiURR539HvDo79fyol1xkv5HSe2ctB4VAj5bErVfE/16HxMhsDCho9+ktTOECg6WRe0LaT1hv5nz3ryb8PltkVCPX6fXPf8C6az7RSkvuU82nWnYSheB54Y7fsTrTNhDhAUZhizHyBuECiWYmEj8TX1uBeHy2zahHr8OWp5zqiN+b3l2Ds+J+yO/PE1rmpn9hM80qf8x0ac16V9AWJBiNkk+emCumCfeJhMmv1GPXz19ofaHjvjt8uwcXqghuU+2E+JXCRPQaVpHoq+PyampRjcTxK6M4iyhQokmGfrbp4TI/wtMPX615sudj+617fHsHJbXnOC32366DwJI9C919GteyEU3b1qMiasIE0p0j6G/vUmI/LZIqMevki5V1fky1WHPzmGWpL8Qpstu6TsGWrM3VVqzUW1a86ePoHWJ0Hfk7icZtu05uhE8p/XWVzv69WrCgg466XZKWEIT9eYoWfffZYTIb9uEevyq6Auq1+XuR1++lTh92uXaX5DWCkEuMTmfs5/pagCs0QvfaT3+LW6gMNCJEl2KVV/W1tXLtAb/k6gtJTSoQFYZro5XlMx6jnr8amiJTufst5bsTPXsPNZ3ufbvyJ0z9q6feyNHf9tFl0IAOr9P+h2YR1gA9Mgh4f2PYFGPX40ZcncNvv4iftyz89Bavc4Sgx0lfv6j0pqlt11Rgjf8EYKxjr6tu11PIywAeiBrb4YdhMdvi4R6/LLpjrXfdonXdg/P5dWOcxir4BiLxX5JzrV0LwQyRnS+iKslcTwWB1CnRwz33CcIkd+2CfX4ZTvaJVZfeHgeWo6T3PBKX5qtaiZ9q2Wf+5DuhUAs69K/3yYsAGr0Wsb9dlyKl+Wix44L9fhlelm6v7gy28NzWV7jL3pdhedHi373K10MATkizJwB6J2sdzJPEh7/uS5pSD3+3eZK97ITX2fnDifO4UgNx3vJsu9NpKshELO6jBlaxnMvoQFQscmSXSq7hRD5bVCoxy+LPtK60CVOunymj0s/am3wuNx+EjFUwzGniF1t/mK6GwLyfpc+/j5hAVCxlYZ77XxC5LdRoR6/LGk15a97ej4rpDc7zn5q0fdYKxoheTilnz9CaABUaG/GffY64fHfPqEevwwPRe2mdH9pZaqn5/RW4jyGajzuXpJ89KETEsbL+gD8cSnjPjtGePxHPX459qfE6aDH53QmPocTNR93nUX/W0KXQ2CeSunrTxEaABUYMtxnnyNEfhsU6vHLMDvQZFSf8nwv9a/0scqi/82h2yEw+jL5eJe+rt9BlrADUDbTQhfTCZHfRoV6/DKMSXo9Gzfn/FYY+t4t4opAHUnp8+sIDYCSnci4z35DePxHPX5xM4V6trqT/K8JEQK1NqXPf0toKqcTByNRe1NaSwdrrfINaT1d0XY9TnwOSWsGdGaP/s7hqO2M2ic1HOcdsd+FWeOnT651VajP43iNxzHU/U90E8P10trpGb2XXD2vW3uHEPmPevzidmXE6VnC48S0pNd+QoQ+nDRYQXgqoeuEb5HsFxCzxqJZic9aE//v95T8Nz4c/41fS7WbAuoSxi9G7Sux35dkIP7RYxs/XaBiu7DXSa+ZJtOWEyK/DQr1+GX8Er6aEaeZhMjJM4b+t5oQ9TWdMVworSVrdXbwotyecdXdGWcU/Hz9bH0K91P8mVektdJUXXtdXE7p92e49KVbkhHvW3Hf0j51Nk6qsya+DsrtPT7K6CvT4+T5c6l25++J8Y+TY5K+R8nEjO+K62Shrhw1jfGilB9mek/UyoxTUfsl/iE1HveR0/EPxM4nKLszrs242D296ffYN9qoUI9fVNaM81XC42yHYfChVKw/f1CvjAf064bxSZOOyQ7H0KVuP8n43As19b1DGX/Dw3SF0qS9dKh1ystSkhztV7ra0TlDH3zc8W/SRGxdnJiZ7sO/Fvw+rYi/TzfFbYfxnQVyiGTp5X2MF07J83NxP7llGWtNgOcmPuPbjH/2FLH3H/X4xR3OiNOHhMfZWEZcDxKevqLJ0t549ifPOPVazuPMi2+Cps/dWMM5v5Zx/NfpEqVYmzKBkGe50lWSPrs/kuNz9H6qTy+P5kjYXJJ8Pc6aHIl9WpKvSdnJEhL8djvCeJHrGm6S7k+fPo+PNyy3F6bQJTLf7kiq9VrOMvzdLxN7/1GPX3ymIOullZ2EyNnXGXFdSHj6giZQ30v3el6bcerHHMd6VFqPuG0+t44fmSsMM18oZiilH7msYPRISqJvu3TymOE+UmaS/4y4J+LtJF9n3c+XmOC32zLGCyN9x6/bew/6YvSCHGOK/sBdb/i75xF7vw0K9fhFLRfqxqswWbJrONEfno2TH53l2xC1+YnZKe0jOyzGqvmWCd9POca/Om4c0w1/wyN0j0K6LVN6oWCC6bojt/6zOiurT4X16freOGmrIslfECfT7YT9fsvvUTvJn9wlwb8Sf8bCxOfq91T3jtEZ54tiX5/PeNGd1q2f6fLZN+Jk3VZ7kZAPJX2p3j/i8yP2nhsV6vGLekeqqcnsd1nvObC6SP/QBMT04tchw3dwq+HfnxLPIuUZ/16o6fyzyja20z0KJUzdYrqj4OcedRyr0mZgberdy3rxdsziWFomkizR0aRui5hXyJncJTZlzB73y3ihT1+61bXrjP7cnJ81LdFvsp4ejRF7/1GPX9xXkv9FJbj3zU8JDToMG76DJzP+XZ1pOt3xz86I/3edVdor3Wcb6xr/vs84r8+59M5eTInpyoKf+3DH560q+Hl6/zCVO5SV5JuWLG7P/iZ3YM6TYA5I+gpBdZa4+jReaMz2SHp5i+uqRN9aXIen+jz2QaAev/gAnDXTdpMQOQ9saS+yUaKAvDetm5K+M3Jyf4u0x7rtl9Y0wXlV3FaBcJX1OP0Wky3O0matl5bw2ccSn7emhM8zzYCXleSbXsLsXMbVZTWceRaffZ7x4k86M35W0lfImVlSH01r0/o49kEYFPdSnTe4R/xpxBCni4TIybMp8dxLaJBit+G7ONzl31mS+P+PNvS89ku1Lyr2q7R69zKS8uR94Zka+kBZSf6A2K+CU+QJtWnZ0fGMRK9fxgtNsNMWnrghxUqabJL8C30c+2CMFkjynyR8f1priBOd0c35lJkLNrZAGlOpQWfyNkVuL792ocEzPqaa7K1ceidpK3McKunz20sbrq0hKSpzx1vTvb+M+LxscZyhPh4vNMHPqrIoYzGPE4bzf5ux2n+u9fi/R+0vhM9qhuUQIcptgTBjifzuNXwX93X88+2ZLH2ZrckbSz0r5hpplJfk6yzy9BI+/30pr758S4OS/DKeTCy1OM7SPh0vNKH9tobk27Q6zbI+jH1wXOvxzxO6/zqas7PCrNuj3PcJCyx8I3ZL8yUT57UNP6dVQklgFc5XPDnTXo98dwmf9UJgSf5Ui+Os7MPxQmeos15M/peYV6+xlfUy93iJx+mnsbpRBoV6/DKYlnJ6jxA53Rg7v/CsUAQbByT7JVW9cemj8PYs1icenNMywxij5zWBS5+b6Ul20V0yB+Jrs4ck/y4TLI6zug/Hi6OGxHt2Sce5R9xXuGGs9sSoUI9f9a9hbW8RolwDT+fTpavSWiILsGHayVNfiDyWSIyme3BOSyzG5Flc+tJ/PDVpH4LQkvw6j+PLeGEqydpS4rFM5VKbGKvDn8WgHr+c2QgeL9nb1eXX/GLCghzmiHmGqv3fN3hyTostxpklXHqn8dtmUx19kjhMkh9kkt+U8WKh4e/Q0pYyy2dMC4YM91Hsg8X6+MXdYxGvZwmTlQUN/oG0R9yfevnQQiuFumGZuPlimjSjfjlEz+T4nmjpZa9W9yLJD3e80L0GLkq9LyFnlcpcZaz236BQj1/Wl7MpA5XvceycUdveoL+PJN8vRyzOedij85lscT5PMYw4O5Hju6L1wetJ8oNK8ns9XpjuL1VMrGa99HqQsdp/o0I9fhkeJ8mv5Iu+p2F/H0m+X0y1rXs8Ox+bJP85hhFnU8SubKeXJTwk+WGOFwss4jCv5GOaVjZaU2O/Dm2sbgzq8csxIiT5ZX/Jm7ivAEm+X0wvlS337HxsygJ596cY3XjpisN3R8eGOkp4SPLDHC++kvpXuTHV49dZkhbaWN0Y1OOXY7GQ5BfRubpFU3cHJsn3i57PrYzzXefh+Ziu4Q6Gk1IS/UsO3586SnhI8sMbL56yiMHCCo6btUznFz0Y20IaqxthUKjHL8tsknxn8+IbUztOWhc70NC/lSTfP1kzZPs9O5dJwkx+XfQl508dv0fa5x4hyfcuye/VePGNRX8qmz4VHM845puM1f4bFerxy2JTK8vqOnfTde8vJ2J0Nk5kmook3z9Z1+xfAY4z1OSXR78P7xX4Pr0TXzOSfH+S/LrHixUW5/9CBcc1leqMMFb7j3r88gwww5abvuT2fSI+5yu4IQKrDd/LewNL8lldp3xaL+xSvqNNS2Lnk+R7k+TXPV6cMRxvvKIx6lzGMXU5y17snB3SWN0I1OOX65YhbrsJ0X/pUpnJR3P63+8nLKjAegnnhS6bpXpZJ7+6H1i7LMb5bu2WlFerT5Ifzngxy+Lcj1RwjsOGYx5mrPbfoFCPXzbTigzvE6L/3iyTswhajziFsKACD8md73t0a295dD42S/Wy42219KXcY473zp0k+Y1O8useL7ZKb57MHZD6y4P6bazuuVGhHr9spoF/HyH6s8Y1uUW1rkk9jbCgIucsxrNzHp3PExbnM4vLXtsPri8c7p+vkuQ3Nsmve7ww9R99AnRfyec4Q8xPo4YYq/1HPX759htid6jP46M1fskluy7Fv96BKmzpuFlm3UgHPDmnZRZJwQQufa10w6C8pa9FNs8iyQ9jvJhqcd5VLGO513DM7xmrw0A9fvleNMTukz6Pz1giFlra9DBdBhV5JHGz+DVOEkIocVllOI8rXPqe0MRjk7TWybe5j54lyW9Ukt+L8WKVxXnvLfk8h8Q8i1/3zrKhjtU9NSjupTqbCV8q045tl/o4NsmlsfRGOJfugoro+s/fyp1bs+vsdtaa0Fs9ObdnpZkvzPlOSy0vl/A5Wnp4yvJe6loSQZIfxnjxttRfj2/zLskKxmr/jRZI8lcQvswOmxW7m30al10dN6D5NR13WnxzoHyhvyQfRydnpU5kfDdPeHJu24UX06pK8jV+Myvog2ntRZL8RiT5vRovDlucd5lr1a8Uu1Wg6twrJeSxuqeox6/O19J/mw1lSa4eoGvvPl7jsQ/Fx51Ht+wbyY1lLsidG6ttMfwA9+HHoOm9n1V0gUJJ/roKPrPsHTxJ8sMYL76xOO+ylpXWl3cvWxzvDGN1GKjHr877hhgu7qNYbJQ7N/R4osZjt+sd2SWvf+iLbFfj635d7n7nY7Hhu7nAg3M8YjgHVqoqlpAfLfEzp8UTG2nXyvVYJPlhjBfXLc67rGT2Q7k90ZZ1vLpKYfphrO6ZQaEev0qmR2Kr+yQOz0nvNrHQR+7tF+BepEv2jZOGpGBAsms9X/J8guZ7ukDhJF/7xz01TfocI8nvaZLf6/Fi3OK8y9DuL59La9Ir63h1PWnvh7G6Z0YLJPnLCJ/RJEPn3NkHMej8obOmxmNPiZOd9g37PrpkX0g+NTqY8c9lbSH/oeWxdB36rXLn4+U66Kxe1soY79ENCif52tbWNOnjOpO/gSQ/iPHCZufkohbG90Ftpl1ub4j5yYGW0WgZ7ETPYx806vHrvWH02+oXSzsGr3U1HntuIsHXNkZX7AtzpFWnqddcV2qYnPHPvm64yZnoze0r6c0iBLMMY/QTAV3T6VHbLa3N8vTa6qN9nRWfWdHxkmN2mWuTZ21e5lqTv5skP4jx4obFeRcpv5stt59ovyrm1f9MPzrbT+fPBhD7oFGPX72sZe6uBnzeizsGrqofqU2IEx8tgTrSZWZkhK4YPJ2hab/sflPMS7OabnSmf/89ixmoqqw0JHahvIy2QNLXm/+1ou9158RMWe9OZSX5rk8M3hPzjKxPSf6EGpP8Jo0XX1mc98oCyfSVjqT8JcOxNln0Y/1ePhRA7IM1KNTj10FrOrNKdqYHeM6PxjfgPxrSfqAb9oXkajPrLf75Acl+TJ71Dsea+J+5GLV7e3CuWTNbewK5ntPEvKGUjjNlz+h3Jvmfl/S5ayR9qcIpJfT5Kl/YHKgp+Z5SY5LfpPHioMV5H3E4R62rb7/UekVuPw0YE7dFQfTe3n5JeHkgsQ/WqFCPX5esdZJDe/l2rtjv9FhX20IX9Ja+R6G7Gpo2C3otcb0P5fj8sxn95lzKv6PLsN6Q3q6QlVUG+Ggg13635fd7fw2x3VDC535YwY8ym/XVy/gRNNPiOM+WcJylUmw893W8WGfZ1/MsAf1SIjG+JXe+SHvOcJyBLp83nLi372Ssbj7XevzfhHr8vOZlxHNfQOc5S24/FmxSm0EX9JKuBJF8Cva1dH+vI/no+YecszW7DH1nfpc+3l5j+vUexUVnZm+m/L1fBXT9L1l+v2+UfNxjKccossfGkHSfifxFij3NtZlQWVlCTGw2TypjIYmXLI5zIMDxYqrYvXx7yeJHm060nZfs3XJNT9o7n/4ky+bGGKv9QD1+vc6nxPNyIOc3PcdNuc52kq7npQUZ11Q3jtGa0eVy52NnvXHNyXmcEUP/0Zc9ZycSnSsNGAezYvNcQH1gPMf3vMyNBdOeklxx6F8SJzJpNddFXgKcK/U96XjP4jhnSzjOOYvj/BjoeGE78ap/91a5c8ZcE9q18XE6//mNDt+tnXGir3335cSkwim5e3UaxuoGmiXU49dteUZMhz0/t+RSlU1rq+l6XnJ50rjU4TgTJH95mU6Q3N/D2GxP+bsuSli7P9pel1sln/cxQ4K1PsdnzcxI8DcW/DtP5IhPkTXP9UnodctjFXkRemWO7+AzAY4X06X8d9nSVrS75fBZ2t/uYaz2w/NCPX4vpG0+4fOjpPvFvKlGr9pPwpbXvjqY81o/VeBYb+U4zhWpbunGouNIaJu92SYPZT+tO2ZxTL0GWqKQtrqIlvZoecF4StLt+sRlRvzv5h1zb8Xx1ORqIMfxdLfwPE9otaxJl2jMsyfJpPjfuZXzfPTH7tTAxotVJd379GXbrGV0f8n5efo0aCJjtT/2OHYc1scvZkXGDJyPNIH+tKEJvra36XLeesnyGmsSVXSDtemWM5VaWje3x3GZmzFjFdoP2lliXj9ck72yn4QeyznOaN+5EP97mnzflOzyhfk5k77LcVI2LuWMixozLW042iV2+qNF9yA4LPaz92nH+DxODnd0Oa+H4jzkWMHzuhXfgz4LaLxYY+hDpqbX1bSm/r4cfXs9Y7V//i3U4/dKWlLs4xOSiQ1O8LXNobt5S2f3zou5BrOsrdfXiLneeFoD4vK2VPdyZRMtybip36jovI9VMBb9GCdDeX+IPVPxGNlZNjFSwTG6bci1tILj/F9A48Vs6V5fb8rPFub4AW0qfdEXnGcwVvvnAWnNyFOP3xvD/IACrAzEidG5OKG7GScMWp7xopT7sqXSGdYj8THax9JlD5c3JB73piS8pwLvB/rIXWeXr8TXRf9zT5yo1NkXddJAn8bqi4g6Q300Tl5+SfTPdtP/7RNplews5qvMeFEgX9gR//D8JdG/dBzQdz20VGa9uK0g93Dcj5N//ydx/55B7P01WuCX8grCV4q0cqn5hAZAiq3S/XH6TEIDAFCu6+NTj18efVm123ryZwgNgC6mSPdZ/BcIDQCg7aJQj98EaUtq8rgJQKduT/+OERYAQNscYX38pt+4dZWMyYQGQKzbZjNaC34/oQEAtG0Q6vGbRDeW6Lbe8W5CAyD+wd+5O7m+2DaX0AAAkv5XqMdvGn1p7qqUu3MggDB022iGDQkBAHf5j2OSf57QVUrXtu3cEERfzJ1KaIC+9UKXsXgtYQEAdBoU6vGbbHXKj6sBQgP0HV1b/VbHeLCJsAAAunm+QJL/JOGrxfousR8jLEBf0d0uO3ejfImwAADSHBD3evy/Er7arOtyDV4nLEBf0J0mLwslOgCAHK4K9fi+WCM8qgf6zUNRuyR3rqLDvhkAgEzD4l6qs43w9YTW5HY+st9IWIBgE/zkRoU6mz+PsAAATEYLJPlLCF/PPBy1bzqux8uEBQjKbLmzROdM1KYQFgCAjX1CPb6vdDOc/R3XZRdhAYKgy+cmn9htJyQAgDx+cEzyPyN0jbG6IxnQVXcmEhbAW8/I7f0xfowTfgAArM0S6vFDMTVO7vXa/BpfWwD+mRC1r+Pv8nvSemIHAEAuRdbHpx6/mfSlXLa2B/w2ErUFhAEA4OqDAkk+9fgAAABAwwxE7WehHh8AAAAIBuvjAwAAAIEZFerxAQAAgKAcEOrxAQAAgKBcFOrxAQAAgGDMEfdZ/B2EDwAAAGieDQWS/BHCBwAAADTPmFCPDwAAAATFtR7/LKEDAAAAmmeWuM/iv0L4AAAAgOZ53jHB/z1qDxA+AAAAoHk+EEp1AAAAgKBcdUzyNxI6AAAAoHn+5pjg/xa1BwkfAAAA0DyvOCb5xwkdAAAA0ExfOib5TxM6AAAAoHnmOCb4WsM/QPgAAACA5nEt1XmX0AEAAADNdFbc1sbnhVsAAACggR6IE/a8Sf5JQgcAAAA003pxK9VZQugAAACAZjrpkODrSjy8cAsAAAA00F/FrVTnSUIHAAAANNNGhwRfX9JlFh8AAAAoaFbUNkTtg6idltYuszuiNlIw4f5BqMUHAAAAajUYJ/ZZJTWfRW3I4bOXOCT4p4VZfAAAAMDZiqhds0y+f45/EOSxT/Kviz+HywIAAAC4eVryvxC7L8fn6wu3v1X4+QAAAAAS/i5uK978nOMY2xw+m91tAQAAAAeTovaduG1O9YflMXQW/1rOz93ApQEAAADcbCiQ4F+zPMa2nJ+rL/bysi0AAADgyGVJy2QybvIXaZXe2H6m1u0Pc1kAAAAAN0MFEnxt/7Q4xoGcn7mRywIAAAC4e75Agq8z7oOGzx/J+ZkfCWU6AAAAQCH/KJDkm2bcdWWcq5Jv06tJXBIAAACgmLybU7XbGxYJfp5a/y+ltQIPAAAAgIL2OCT4ZyW7pGY4Z4L/GQk+AAAAUJ6NUl6Zjibq2yTfrraa4E/mMgAAAADlmSX5d7r9OU709aXaJfF/PyD5lsnU9r8k+AAAAEA1PpJiy2i6bKD1NGEHAAAAqqMvyV6sKcE/GbU5hBwAAAConr4se7nC5F5/ROjsPWvgAwAAADV6IGrHS07uv4vaepJ7AAAAoLf0ZdrTBRJ7XT5Tl+Z8jOQeAAAAaBat1d8grZVz/i137157LU7odd38d6U1Yz9E2AAAAIBq/T9NErvsmulS5QAAAMJ0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bW8+JiN4MjIyQjs8L21vPjxtZmVuY2VkPjxtcm93Pjxtbj4yPC9tbj48bW8+LTwvbW8+PG1pPng8L21pPjwvbXJvdz48L21mZW5jZWQ+PG1vPi48L21vPjxtaT5zaW48L21pPjxtaT54PC9taT48bWk+ZDwvbWk+PG1pPng8L21pPjwvbWF0aD6RQzkEAAAAAElFTkSuQmCC" style="width: 120.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="integral open parentheses 2 minus x close parentheses. sin x d x">

Tính:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x222B;</mo><mfenced><mrow><mn>2</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mo>.</mo><mi>sin</mi><mi>x</mi><mi>d</mi><mi>x</mi></math>

N. Huỳnh

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Tính diện tích hình phẳng giới hạn bởi a) Đồ thị các hàm số y = 4 − x 2 ; y = − x + 2 b) Các đường cong có Phương trình x = 4 − 4 y 2 v a ˋ x = 1 − y 4

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG