Square root
VBT
Calculator
magnet

Câu hỏi

Tính: ∫ 1 sin x + cos x 2 d x " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAA44AAAEUCAYAAABklWiYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAClZpjF+QAALa1JREFUeNrt3Q/IVGW+OPCHEBGRuNGNNtpIQkJERGijG25UICEiIbHRT1rJaAmJCBGhlhKLiI1udKONLiERESJUtNJGBRIiIhFFG93oSktERHRFqLAwMWF/59k57zqOM+ffnJl3zjmfD3zZtuY958wzZ555vuf5FwJNtDSJDUnsSOLPSexNYn8SB9L4SxK70/++NokligwAAKDdFiWxMU0Q/zeJf5SMX9Jk8gZFCQAA0C6rQ6/n8PsKyeKoiAnkrxUtAABAsy0Lvd7FX2pMGPvjWOgNdQUAAKCBHk7i5wkljP0RezFXKm4AAIDmWJ7EoSkkjP0Rz7dA0QMAAMy+34be8NEySV9cJGdu5dQtSTyUxNcVkscbFD8AAMBseyCUm8v4XujNTxzWU7ixQuL4nz4CAACA2fXnUG5Lja05x9tWIXE84GMAAACYTX8qkdz9GPJXQY1bbJQd7ipxBAAAmFF/CMWHp/5SIGmMw1bfC9UWyNnv4wAAAJgtvwvl5jTuKHDMKkNU5+JlHwkAAMDsiPsm/hjK9QbmbZexJPT2ZKyaOO7wsQAAAMyGmOD9PZRbDGd1geNuCOPt5fhrHw0AAMBseLVkQvfngsf9zzGSRgvjAAAAzIj/VzKhi72NRXsC3x4jcfydjwYAAGD+LQ3lt8nYXeL4+4NFcQAAABptb4WkbnmJ4/+5wvH/lsS/+2gAAADm329Dua03quyreEPJcxyQNAIAAMyOD0L53sDfVjjPfxU4btwG5IHQW90VAACAGfC7Cklj3K5jQcXzrU3ixfQYP/Yli7EH86Fg2w0AAICZsiCU27NxLh5SdAAAAN3w+wpJY5ynaO4hAABARxyokDi+rdgAAAC64YZQbV/F3ys6gFa5IIlHk3heUQAAg6r0Nh4L1RfFAWC2nJ/EriR+Suv444oEAOi3MlTrbdyr6AAaL253tDOJHwbqeIkjAHCWIvspGqYK0C6Lk3gwie9G1PESRwDgXxaFM/snlg2rqQI0s97fEXrTDbLqeIkjAPAvVbbgiPGBogNolIVJbE/i24L1vMQRAPiXQxUTxz8pOoBGiIuYbSuRMEocAYCz/DqJXyomjssVH8BMOy+Je5P4umI9L3EEAP7poYqNib8rOoCZThi3JvFVWmefDr3RJbuTeDKJwxJHAKCMv1VMHHcrOoCZ9VlaV3+YxH1JXDTkNS9IHAGAIpZXTBptwwEw23YlsSLnNRdLHAGAIqoOU/05iV8pPoDG+0ziCADk+aBi4rhf0QG0wj6JIwCQZZzVVB9SfACt8LrEEQDI8odQfX7jDYoPQOIIALTfqxWTxh+TWKT4ACSOAED7fVkxcfyLogOQOAIA7bcyVB+mukPxAUgcAYD2u3eMxPG3ig9A4ggAtF/V+Y3fJ7FA8QFIHAGAdouJ37cVE8cDig9A4ggAtN9vQvVhqg8oPgCJIwDQflvHSBx/o/gAJI4AQPv9tWLS+HMwvxFA4ggAdMKxionj24oOQOIIALTfOPMbH1J8ABJHAKD9xtm/8QbFByBxBADa7y8Vk8Yfk1ik+AAkjgBA+/1YMXH8q6IDkDgCAO23PFQfpvonxQcgcQQA2m/HGInjfyg+AIkjANB+r1ZMGn9JYoniA5A4AgDtFhe2+bli4nhA8QFIHAGA9htn/8YHFB+AxBEAaL9x5jeuVXwAEkcAoP3+WjFpjMNb/03xAUgcAYB2i/Mbj1VMHA8pPgCJIwDQfr8N9m8EQOIIAGS4d4zEcZ3iA5A4AgDtd6Bi0vhjEgsUH4DEEQBot5j42b8RAIkjADDSOPs3Pqz4ACSOiggA2m+c+Y03KD4AiaMiAoD2ezVU379xkeIDkDgqIgBot3H2bzS/EUDiKHEEgA5YG8xvBEDiCABkeDiY3wiAxBEAyLA/mN8IgMQRAMjwfTC/EQCJIwAwwspgfiMAEkcAIIP9GwGQOAIAmf4azG8EQOIIAIywINi/EQCJIwCQ4TfB/EYAJI4AQIYHgvmNAEgcAYAMbwfzGwGQOAIAI8T5jT8G8xsBkDgCACPcEMxvBEDiCABkeCiY3wiAxBEAyGD/RgDKeEPiCADdEuc3fhvMbwSguCMSRwDoFvs3AlDG4iRO5/w+xP9+nqICgPawfyMAZdxV8DfiRkUFAO1hfiMARS1J4ouCvxP7FRcAtIf9GwEo4uIkDpb8rXg2GLIKAI13QzC/EYDRLkhiQ5oA/lTx9+LLJHYlcVMSCxUpADSP/RsB6Lcm9Fba/i6Jk2P8RmTFyfT48Ty3KnIAmH1vB/MbAThj7YSSxVGxWZEDwGxblCaA5jcCAAAw1A3B/EYAAAAyPBzMbwQAACDDe8H8RgAAAEYwvxEAAJikixRB890QzG8EAADGd14Sq0Nvi6Unk3g9nNn79ybF02wPB/MbAQCAYhYncWMSG5O4K4ndaYL4eRKnM3KHCxVdsx0I5jcCAADZ7s5JDLPiE8XXbOY3AgAARWxI4qMkvkviZMnc4VnF12w3BPMbAQCA8hb2JZN5ucNGxdVsDwfzGwEAgOpW5eQNcXjrEsXUbOY3AgAA41iUkzu8r4ia/wGb3wgAAIxjcU7u8IQiarYbgvmNAADAeG7MyR02KKJmeziY3wgAAIznnpA9v3GBImo28xsBAIBxvZKROxxSPM1mfiMAAFCH4xm5w6OKp9luCOY3AgAA47k6J3e4SRE128PB/EYAAGA8D2bkDaeSOE8RNdvbwfxGAABgPFnrpuxXPM33ZTC/EQAAqG5J6K2aOip32KmImm1pML8RAAAYzy05ucM1iqjZtgTzGwEAgPG8kJE3/KR4mu/FYH4jAAAwnm8ycoe9iqf5zG8EAADGsTwnd7hTETXb0mB+IwAAMJ7tObnDpYqo2bYE8xsBAIDxvJORNxxRPM1nfiMAADCOBUmcysgdnlFEzWd+IwAAMI6NObnDzYqo2ZYG8xsBAICei5K4LfRGJb6bxA9JnAy93sTjodd5tDOJCwb+7tmMvCH+7YIaru28JK5PYlcSryXxdRIn0uPvT+LyMY8fjx1Xfv0uPebRJJ5K4kK3hfmNAADQdTEhuzNNCk8XzAViUrWq7xifZ7z23TGuLSact6QJ3U851xRHUi6pcI6Lk3gr47ifBlP0zG8EAICOiu35HUl8O6S9/2ES25JYnSaWUdxu4+mBRG1hEstycof7K1zbdUm8EHo9imXylAdLnueqNAnOO+62rt8s5jcCAED33JHEN0Pa+e8nsSbnb/vnM96VxNac3OGqEtd1axJfDDnGyYJ5ylclznVt6A3FLXLcPV2+WZYG8xsBAKBL4jzAg0Pa9yfSBLCoJ9O/i3MN92XkDd9VSGhPpce8N4lrwpkezzgM9dECuco1Bc6zPL22ovlPpxPHLcH8RgAA6IrNYfg8wdjzuKrksS5J//Z4yN6GY2/J48aFaPIW0nklJ1fZlfP3cQGgr0rmP/d0+cYxvxEAANovJmK7w+ihnZdUPO7nBXKH2yfwflbnnHN/xt/G3ssDA6+9PP33safyhSHH+6jr+Y/5jQAA0G6xB+9QGL0y6hVjHPvNArnDJRN6X1lJ68lwZnjroCdD/vDTuUWA4jDcP4ZqK7W2xtJQfZjqn3z/AABg5sWk7bMRbfo4p/GqMY+flzh+OsH39mzOuVcP+Zt1ff/9DbdHMVvGSBx/p/gAAGDmk8asEYa31XCOd3Lyhqcn+P5uyTn3poHXx3mNR/sS2iVukWKqzm/8JYl/U3wAADCzYpL0+RQSurxVSTdM8D2en3PuFwdeP9c7GhcHutItUlzV+Y3vKToAAJhZsSftw4z2/Cchf9XSorL2VjxV43lGOZJx/o/6XndHOHvfSQpaGsxvrNs/hBBCCCGEqBB1eyMnmVtR03kWh+orm9bl5Yzzn04T1zhkd65n9C1pSzlbgvmNEkchhBBCCNG2xHFnzrl21niu9Tnn2jGFNvjmnGtYG84MUY37TV4qbSnH/EaJoxBCCCGEaFfieH3OeY6EeoeO3hXKr2pat5UFej3n/vleKUt59m+UOAohhBBCiPYkjhck8XXOedbX3P7NGiZ6bIrt8BMFyvgj6Up5S8e4qc1vlDgKIYQQQojZSxx3z0MHUNbCNHum2A7fV6CMVwdK2zLGTW1+o8RRCCGEEELMVuK4psA5rqq57Xtxzvk2TbEdnjevc7dUpRrzGwEAoD0+DtNf3TRvfuOFU3z/eYv03OwWqcb8RgAAaIfbC7Tjr5/AebO2/Jj2fMKFobf1xqjrudttUt7SUL0L3fxGAACYLUdy2vAfT+Cccf/GUxnnfGIeyiGr1/Ult0l5W4L5jQAA0AYbC7Th75nAefOGqa6dh7LIWhzoE7dKeeY3AgBAOxzMacPHXsHzJ3DewxnnjFtjnDcPZXFbTlmc73Ypx/xGAABovmUF2vD7JnDe1TnnfH2eymNrsEBObZYG8xsBAKANdhVow98+gfO+HKY/NDbPZUkcz7mup9wyxW0J5jcCAEAbfJTTfo+rjF5Q8zkvD9mrl8ZYPg9lcbhAPnPYLVOc+Y0AANB8Fxdow09iS4wXcs75xTyUxc6BZDkrkV7g1inG/EYAAGi+Wwu04V+o+ZzLQ35v4+4pl8PVfdcUh6puzrm+dW6dfEtD9WGqDyk+AACYGU+H6c9vfLPAOTdOsQziXpKf9517U+it5pq1v+Qut06+LWMkjhsVHwAAzIzXC7Th69xL8ZYC54s9fwunWAb9w2b7ezrfybjGd9w6+cxvBACAdjhSoB1/YU3nigvsfFvgfAen+P439p330yQW9f23nRnXeDLMzx6TjWJ+IwAAtMNPBdrxdSVIr6XHO5FzvmkNA40LAx1LzxnL4cqB/35jznWucfuMtjSY3wgAAG1xqkA7vg73pMf6MIlPcs533ZTe+/6+c24e8t8X5JTPdrfPaFvGSBw3KD4AAJgpeaub1pE4Xp8mYDFW55wr9kbm9XDGIaSvhPHmQW7rO+eejNcdzLjW1wqea1no9aIu6tKNZX4jAAC0R96w0RiXjHH8FUl8lx7nj0mszznXGznHuzN93aExrmll6M1RjMeJq6kuyXjtYzlJbp6Y3H4cOrhQqPmNAADQHh8XaMvfMkaCdnQg0duec64dGce7KX1NTEQvq3hNsdfvs3BmgZtVOa/PS3Tz/v65kN+r2TpLg/mNAADQJnsKtOX3VThunKc4t/BMTB7nei335pzrxhHHuzacWcjn5jHe70t959pa4PVxnmPWcN77Mv52U/qar5M4v0s31ZZgfiMAALTJ3QXb81eVOOb2vmTrdDh7sZvDOedZMOR4cV7k3HDXx4f897jNx7okludc14N953mlxPs5lHG9h0f8TSyvEznJcGtVnd/4czC/EQAAZtHFodgCOd8kcUXOseKwzfcG/u72gdccD+W2/ljTlzTuHXLOuFpr/8qnn6XJ8LBkdu41cfpdmR7AJ3Ou+ZqB18fFcOb2q3ysizeV+Y0AANA+RTuIYtIXVwddPpAk3ZW2+Qdfv23IufK2/3g8TR5jYnd/OLOIzbvh3FVJ12Qc50jozZe8OZw9PDa+h5Uly2dtzjV/FXqLAEVxPujRLudBy4L5jQAA0EaXhvyewLJx94hzna5wrHeSWDxGwtsf6yuUT0xkvyt5ntjpdmEXb6Y/BPMbAQCgrW6tKWGMC+LclHGeH0oeLy5mM2q/xj0lj3X7GOXzVInzxB7HK7p6I+0O9m8EAIA2i6uAnhwjaYx7MObt+Vi0lzCuoJq36un2gsc6lb63cVwazqzqmhVxbuOqLt9E/xPMbwQAgLZbEYbPV8xr819f8PhxClzesM+Xk7i8wLHinMf3Qv78w+tqTKyzznWoQOLcar8KvZ5D8xsBAKAb4hYYjybxZugNLz2ZRux1+zj0holuLZjgDboy9IagHk+PGf/3rdBbDKfs8eL2HbHnMW6LcaLvePtDb4/FhTWXS1xBdd/Atb8WxttbsjW2hOrd1RsVHwAAQPtV3b/R/EYAAICO+DqY3wgAAMAIK4P9GwEAAMhwbzC/EQAAgAz/HcxvBAAAIMP/Vkwc31N0AAAA7bc0mN8IAABAhj+MkTj+TvEBAAC038uh+vzGf1d8AAC0yPIk7k/itSQ+T+JEEqeSOJnE8SQOh97+55uSWKK46JJjwfxGAAC67aY0KSzTHo4J5XNJXKr4aLvVofow1YcVHwAADXdBEq+M0SaO8VMSWxUlbbZljC/IOsUHAECDXZLEkTGTxv54XpHSVi8G8xsBAOiei5L4osakcS6eVbS00ZcVvxAfKDoAABrs3QkkjXNxh+KlTZYF8xsBAOiebUPatx+m//6aJBb2vXZREtclsT19TZG28g9JXKiYaYtx9m80vxEAgCa6OPS21Zhr1x5N4uYSf39jKDYv8lFFTVu8OkbiaH4jAABN9FRfm/abJC6vcIy4f+NbOe3luOXdeYqbpluQxPfB/EYAALojJnwn0zZt/N/VYxwrDmHNG7p6vSKn6ezfCABA19zX16a9v4bjLU/idEa7eYcip+m2BPMbAQDoloNpe/azUN8w0qzt7V5S5DTdy8H8RgAAuuP8vvbsxhqPuzaj3fyaYqfpvg7mNwIA0B23pO3Zj2s+buy5PC1xpI1Whuq9jZYVBgCgiZ5O27N3TODYn41oO+9R7DTZvWMkjmsVH6k43ONmxTCWu5J4P/RWdTuRxAFlCkDNLvDb8i+bQ68HcBJbZLwxou38hGKnyfYG8xsZTxzq8W0Sp5K4QnFU8nrG9+xxxQNATfalvy0xsblUcUz9d/1WRUOTVZ3feEjRdd6Fofekbu6eeDf0nmRSzq4C3zdPhwGow46+35YfktikSCbizRG/55J1GmtZqN7b+IDi67Q4TPloOHvM/gLFUlocHnO8wPftoKICoCbrBn574vYRixRLrd4f8lv+sWKhyf5QMWn8JYlfKb7OemzgfnhWkVS2vOB37oSiAqBGq8PZD4A/SeIyxVKbk0N+y7crFprs1WCYKsXFoanvDtwLTymWsayQOAIwT2Ki+FXfb01MJNcollraS4O/43EdiIsUDU12rGLiuE3RdU5c9ObLgfvgScUytjhU9WTwsAaA+XHJQPIYf5PMqx/PLUN+x59RLDTZbyomjT8n8WvF1ynXhLOHs8TYrVhq80SB751V2ACYZPL4zcDvjkVzqtsdzu1ttCgOjfZAxcTxbUXXKTeGcxdveV2x1CouSPBusB0HAPMnzrkfHIl2m2IpLY4kGnzY/ohioen+VjFx/L2i64zrk/hp4PN/P1h5bVI/NHGJ9Lg4QXwyGec0vpXEekUDwJTE+Y2nB373NyiWUm4eKL8vtZtoupUVk8b4JMqWC90Qh6cO9jTGJ2gXKxoAaK2t4dzF2a5SLIUdHCi/6xUJTVd1mOqfFV0nXB7OHWYRn0Bep2gAoPX2DrQBvg29eZBkuzZYRJAWOhSq7d1oUZz2uyCJz4d8/sbnA0B32gKDi+XEqSpGnWX7qK+83lNetMGv0iSwbOK4X9F1whtDPvuPFAu0VmzYPDsirOYL3bVhSHvgacUy0t3B1B5aaGuoNkx1naJrvfuHfO5xiOoKRQOttTCj3n9W8UCn7RtSL9ykWM5xWTizLkScE3q1IqEt9ldIGuMKrLrb221VOHclNU8XQeIIdNeyIW2DOIT1fEXzL3FV9Pf6yudmRUJb/HuoNkz1d4qu9ZXep0M+97gVx4WKBySOQGc9P6RueF6x/MtTfeVyh+KgTbZVSBrjQjp6G9tt14jP/jFFAxJHoNOuHFE/GI4Zwu195bFdcTBf4tCAe5N4NYkDSbydxKNJrB0zifsymNvI2eK4/JNDPve4Cb2J3SBxBHgnWDhv0JrQm89o5XnmzdI0WcwaTvpBEssrHHtdhaTxQNDb2HYvjfjs9ygakDgqHiCc3bPWH7d3tDxiO/yYepL5tDGJHwsmdN+nSWYZL4by+zau9LG02oqgpxkkjhJHIL+eODWkjvgi9NZJ6JJLw5k9Ll92azAffh/KL1rzYonjx0Vxfp7g8WmmvSM++586+EMAEkeJIzDavhH1xN0dKoM4hWdu2tcbbgnmw3+Eaiudfl/iHA9XOPavfTStdkXG57+3A+8/JsZxzvATSbweek8P41yFU2nE5PlIEq+E3oT3K+bpOlcn8XgSb03hPM8k8X4oNjw9ll/slY4r632YlteptAy/SuK10Nsz9gJfNYljx8SG5abQe/gap3v8EHrzyE+l/xv/f1x07uW0wb18nq839p7cmsRzaV34efp9Hrzmg+lvQ1xk7xp1dyfdNaKe+Lwj7z+uMv9J+p7fDaZyMQ8WJfH3CknjXBQRext/LHnce300rfdkxuff5uWklySxM5wZZlIm4nzQZX3H2pT++8U1X+OV6TV+1nfu4xMoi4uSuC+Jjwfe58KMv1mQNsaKll9sdD6Sc0wkjk0Xk5nNaaJY5bf8k/R3d9GUrjd+93cM+e6XiW/T5G2Zurszsh44b2z5e4/7Vr6fvtfD6f0IU3fvGJX2jwXP8XDJ437gKUrrxc/3WMY90NYntOvSxs6w9xw3OP46if2h1xtwPGQvGrUnnNkUuY69Li9NE7IPR5yzrsRxYdpoejOcu6lzXuJ4fai2MvPc6nuXTKkBH68zbjHzWvqZzvVGxM/28jGPH48de12+S495NPT28GryfqcSx/HcnvG9iA9OvkjvvcM59cpcMrZ1wgnj02H4XLW56/0kvd7PwvAVt0ctpjbJ341Zrru7VgeN+hwOtvg7vih9f/9IH7YYScO8qdoIm0vw8vxb6A07LXrMOA9ytY+l9W7JuAeOtfQ9bx/xfuMS4xtGPCxZkjYKD+d8b66reE3xx+fuUKyXYpzEMb63jWljo0hDcFji+PgYddVcfDahH9wF6T0d399POdfwZaj2pDgOP3wr47ifhun1FkkcZ8OyvsZkf8Sh2g+mv6XD5opfGUbPL+9PcOreDunuEUnV8fT7Peq3/6rQ2w7sWMgfXXB/R+ruLtdBr2Rcw5Ut/J4vCGe2IvkyffhSp3jP3Kg6pYjlYzbC/qvAOV4uecxtPpZOeD3jHnithe932LyMU6HcMuK3htFPsteWOE78YY9D2uKk+tMlvptlE8d4nk0lksVRiWNs4OyvIWmci301fq6x0fdCOLOPVtF4sOR5YsP5aIvrT4ljeZuGJAjxO3pfKL6w2J6c++mbmhri56f1zaiewqIPc2Jd8GSB78G7NT4gmqW6Wx3U82DG+R9r4Xd9X9/38dIJtU3amHAzAX8Yo/EVewaX5hx/bclj/iUYotoFC8LoYUoxHm/hA5phiVOVVeCuHtEAKbp1yd6csq8zcdw8Rv0ylzjGxt97NSaNc7FhzM80NgS/CMN7PIqc/6sS57o29BYGKTpcT+LYfo+F4b3pZef6XVKgPoiN1XF6HuM5Ph1x7Kq9g7F35LuQP7pg3KHps1R3q4PO2Biye1PbZO7hztEJJHcr0wcOh1SpFPWfYzS88p4qxRVRj5U4XhwWs8hH0gk359wLt7Xs/Q5bPvzTMZOWweOtL/i3c3OYYo9vXHExPql+f0KJ45o0QZtLAuP8l0dLJI5LhiSNR9NjXN933Ni7EvcDjQttfB2Kz3ccxx1pgzt+tnGe+DXhTC/PkoLvs8iqkMsLNJAljt3y/IgkqerwtSKjgqou+d+/bUDdPUOrC3w3vhwz6Z2lulsddMalOddwdcu+6zFpv6rmY68IZ+aK3qVapagXKyaNfyqQNJaZO/m30Ft5lW54JkxnzscsuHzEe3x0zOMODvsquprcmhH/vsj8wboWx9lb4FzxIVL/8NTYQNoZ8ldGXRJGD4kbjHF+iGMSnDc64pWc8+/K+fuYCHxVsm6+R+LYasOGaR4N4w1fu6XgvVW2Mb44fUAz7Fh19XDEB0h5w+0/CdXm881a3a0OOlvW5/5Ii77rJ2psEy1MvzNxJeKTfcfXaUNhuyskjYdyKqvVJZPGDySNnZO3/Hqbtk24b8R7vGXM4145cLxba/hByRviVFfiWKSh+lrfP8fhWKtKHD/WTx8WOMekh0Svzjn//oy/jT0HBwZee3n672MvwQtheC+qxXHa684wmS0IloRic52fKnncUfMn47nq3Dfy/jCZXrCm1N1drYO+yHhfHzb8u74r1D89Y1Q8r2qljG2hviGqMfl7OPTmPpZJGu1D0y0LcxopJ1v2fkf1rq2v4dhv9h1vUw3Hy+upqytxXFaijogrRlZZ5OKqAsd+bwqf/+c59/qoRUyeLNDojY3vp9Mk+48Nr0sljtlWjHiw80ZNxy8yj7jMuTaF7P0M6/ZRgesvm6A1qe7uYh20L+N9nW7wQ7T7ppg0xrhW9UrZBtwvJW+y79PkMS58sy7955dDuS03Yvy3pLGT8hZM+rpl73fU/MFNNZfl5hqO99KUEscFofjqp+P0Puctg38qFF99sqpnc65h2PYD6yaQGEgcm21UYrSipuPvLPB9fLPgseLvetbqm1dNoHyuLnD935ZsczSp7u5iHZT3e7Whgd/zO6acNH4aoIK/TPlG/TGJ3yv2zrorTGYRhlk1aiW6V2o6fp2T2/MaGMdrLJe8eqKO8ikyhG35hD//vGG5g43Qi/oa3Z+G7jxckziWrzPfrfEcl4X81VWfKXisRzKO8cUEy+mtAt/3nS2tu7tYB+XNy9/VsO950bnGdcZ2TVKqiAvZfD2lmzSOkV+pyDst7ynhKy17v6MaH7GRVsd+THOrrtUxXy+v12GaiWMdT+HXFzjP+gl//ufnnP/FgdfPDWGL+/N1aV8tieNwsUf8qwl+R4omfMcK1leLw+j9CmPsnmBZXV/g+34sFB/F0KS6u4t1UF7vXJP2g14fqm+TVTVOh+orMcM/hyp8O8EbNCamsZfRHo3kzaN7sWXv970JJ8kba2xc39OyxPHiAue5ZQr3wJFQbFuQ/oZQ15ZHlzgOtzmj0Xf+BM43bMG8uNVH0cWptob53WrpiwLf+TtbWHd3sQ66NbRn2sv+MP3exn2ao4zrV0m8XfON+ff0h0TCyJy8pb2fa9n7zdvyZtuYx1+QNiLreJLftsTxvALnmcaeoVn75J1OP8O4UfncXmlvdbBekDgON2qe7vsTPOeqNLmKm9yvD+XmAR8K87sQx2MFvvNFh/g2qe7uYh20IeT3qJ0XgImLk6IPjJEsfplWhL+VMDJE3pYPT7Xs/W4o8J2ZlT2n2pY4TvM8WTbnXENcKOPNvjK+tIP1gsTxXJeFZo3MuKDA923SWy2tCcWG6BW5jibV3V2sg9YV+HyWaXLB9MS5j/eG3pOq/wm9uQGDi9zEJDE+Yfxz6PUsLldsZCjSA3RXC99zkQ2U43Ch1RLHViaOK0P+3O+5f763o3WDxPFcWcM+Z/E+yRs6eGpK9e3JAt/7DQWP1ZS6u4t10I0FPpt1ml0AzbW4QEV/Rwvf9+ZQvMc+DtW9UOLYqsQxOlGwATpr1obpz72Zr9g9Y2X/Wsa1bpzBe+WZKdYfWYqsrlp0xc2m1N1troNGuSTMxhx2ACakyFCmzS197++UaIDEeSZbJY6tShz3FbiWWey1kDjOn6wF62axJ+WNMBuJ47MFPuu9Lau721wHjbKkwPu5XbMLoLmu63DiGJe9LjLsaT6HQEkcJydvq5PdM3rfShznx8KQPydt1nwdZiNxLNJLeLhldXeb66BxEsc7AwCNVaQRurnF7z/OAT5asUE7jSFQEsfJydtT8maJo8Sxz00NTBzz9qH7aUrXUWRRmx9aVne3uQ4apcjUl65tawTQKkUms29ueRnEBsg3FRog0xgCJXGcnNiDdDrjOu6WOEoc++QtNDNriWORhc9OTulaVk7oWma57m5zHZT1fvLK/lHNLoDmWiFx/Kc4qf/9io3bj5O4WuLYuMQxpJ/dqOt4SeIocexzR861rm9gI/4fYTr76hXpiaq6wuus1t1troNGWRT0OAK0WpE5CXd0pCxiQ+u5MRq5z6TlKXFsTuK4O+M6PpE4Shz73JVzrbc2NHFcPIVrmXTv5yzW3W2ug8ZpT5jjCNBgC4InhINiz0GV4U8x4j6q10gcG5M43pZzLed3uG6wj+PZtubcK9sbWLdPc4ht3nWcaFnd3cU6yKqqAB1wOqei72IjMf4APlmgbIbF6VDf/BmJ4/wmAzd3uF6QOJ7t7px75eUG1u3T3H+yyLzDNtXdXayDimzvZR9HgIbLW5nu+Q6XTVx84c1Q7Qn24xLHmU4cL0vLL+tanpI4ShxTd4b8+XKz5niB79u0ekrzruNAy+ruLtZBRbb3WhcAaLS8H9cXFdE/fxA/qtAA+aPEcWYTx8MFruVwh+95iePZNoX83qpZG1Z4oMA9Po0FWIrMcdzbsrq7i3XQTQXezzLNCYBmeymnon9FEZ3VePyyZANknE2nJY6TsXOgwZ+VDCyQOEocQ7G9CGdt/tbLodjKopNWZFXVnS2ru7tYB+V9R06H6aziC8AE3ZdT2b+liM4Sf8R3hN6cnCKNj0MSx5lKHK/ua6gdT89naJXEMc8VBe7dN2fsmreGYvP6Jp2YFNnHcUPL6u4u1kF5e50e1XwAaL71OZX9Ny17v7Fx920Nx4n7h71bsAGyXOI4E4lj7Pn4vO9csRciPgE/lXE9uySOEsfUyQJJ2OVTvJ7LQvZ2GqsK1k+TTtqK9EQtbFnd3cU6KG+v09c1twCaL28Y0cmWvd+5OZ1X1HS8Fwo0Pu6TOM5E4tj/WfXvEfhOxvW8I3GUOBa4T6a9mElMNuLG93H45aKM1xXZnuKZCV9r3sJCRRfGaVLd3cU66JFgsTGATvgsp8Jf2KL3Otf4uHsCx6x7AQqJY3029p3j04HG9s6cByddnJcjcTzXzlBs6Oc0FgB5PD3fnpzXPVXgmic9quTFnPMX3QKjSXV3F+ugvPUSbtXUAmiH53Mq/BtbmDi+UeMx49CnExnlV/VcEsd6XJzEsfT4PyVx5cB/vzHnmtZIHCWOobdYSpHhjQcnfB1zQz/j8Ma83rflBa/5ugle78cZ54315pIW1t1drIP25byHSzS1ANrhlpwK/7YWJo6x0bV4Ssl31UUzJI712J9z/AUhe47R9g7WCRLH4T4pmIhNapXQVeHM3n9PFPybItty7JnQ9Z4f6hu+2KS6u4t1UNaqtV9oZgG0x6KcH63HW/Re+4cm3TWl5LvqU+t7JY5j21awcXww45peK3iuOERxV8iecyZxbLZ7QvHtHOoemhcX3vk2nBleWrSn7tpQbIjtZRMor6z5jXEI5qUtrbu7VgedF7K3FXlOMwugXbLmerze0vf5UY3Hzdr8uOo8mWcljmNZGc6shPl5TkP7sZA9nK5IojU3JG+jxLG1FvYlb0ViU03nvTKcvdBN2XvslTA/C/tkrV5adrXQJtXdXauDluXcWzdpYgG0S9ZS2sdanCDXNX8zq/FR9en4czk/xidqLJdpJHTnTTFxjE/c5xZ9ig23VTmvz9uWZlXBz2pPS74nEsfRiuyP2B9PhPEWGLs5nL334CsVjnFJyN+/8FSod2GfFRnniovDlN0/skl1d9fqoKxe2+OhmwuMAbTa4pA9XPXSlrzPwcbHhzUdd1MYPQTsoorHzFul7h81/SAvmFJCd9EUE8f+sttasAyyhlrdV+Cz/zr05nRJHNvvw5LJ4xehfO/jleHcnsJ4j104RgKad537ayyjN0acIy4Os7LldXfX6qCs3tLdqguAdsra16otC+QMG5J7bw3HfW0CP5qvF2jo1bGn2RUFznNHDedZH8ZbVOSCJNaF/E25HwzVemcOZVzX4RF/c1U4sypjm1YfljjmJ3XHSyaPcw37p0Ovh+bygQc/sYdqbejNiTs4IpG5doIN/DrnD2Z9129pcN2tDir+2czFtaoLgHa6KqPyf7HFieOJ9L1XtTwMf1L8QxivpzZvaNk4jbB+txQ4Tx0LJG0vcJ6XR/xtXJSkv0c8DgG7O+cccZW/Mk/fn8y5tmsGXh+H9c3Nd3usZXWBxLGe702dcWdN1/1yyB8Cf80Yx4/DYo+OOPa2Btfd6qDh4sOPkyOu92PVBEC7vTfiB+DbFieO/0gbOlWGT50fRu9TNs4CBasKNibr2KD6uQLnOVTDeQ4XOM9XQ/5uTcbrjySxI/SG4e0NZ8+rKft5ri1wbSv6koa5xvGBFtYDEsdi7ptS0vhgzdf9Ys754kOrKj1FF6ffyWHHvKfBdbc6aLQ1U3jYAcCMypoHs7rFiePcD/3WEse6IqPhsW3M63ynYIMyPi0fZ/PuOFzup4LnWjvGecr0zmwu2cgdFusrXON5oVgvb3/EHoULW1gPSBxnJ3ncOqHrfjDnvLEXqcxQ0Fg/fDMiCV1fw/XOZ92tDhrtkTB6WLZFcQA6YNQm120YjvdmgR/i+P7j0/FR+5rFoVFxSNGpEYlc1aesl6d/W3ST8f5zvpg2VMqsVHjriIZe1hC2P4bePJ+iFqV/c7rk+4mNkYvTY+wpWR63j3F/PFXiPEdDPXNMJY7NF797x2pOGL8Z86FQEXFO3Fc513EkTSAvGfL3sb6JvXNvjfjbA6G+/SHns+5WB5VvL9ynWgDoho1h9BPELiSOgysAfpr+XfyBPJnTwCozNygmbnEI8A8he0XbsklkbAjGFQ0He4hjY+r50Ft056cxzxFXNIzDZB8d8r7ieXanZXZqzPO8n8QHBV8fzzXuvnmXFiyb+LmtanEdIHEsLz7o2FvTdzhu4bFkSte9OP0enyhwbbFn73CaKB7NeCB0JK3f2lJ3b1cHDTVqSkXsBdXbCNAh74/4QdjQscSxSHyVNizK/lBuDpMd4jY4VGrtBM5xfMj7Wj+B8/xfgc+grt6ZTSF/vuclLf/+SxzHa0zvqfDQJCYLz4TeyIP5EIc7xuGrn1f8jp5KH0qta2HdHUdOvKcOOsfTYXKLtgHQIKvD6KFHbROHW8VFDGJP6/2h15P2RtoQiL2B8Un8yb6I/y4+cY9Dnm50q0ztM4oNvMN9n0dMWuO+c/eF8TZYHyb2PuxLzzF3rrhs/80dKW+J4/gWpw3o59P64ru+ezf+79H0HnsyfdgySz00cQGWe9K68EBa5w3WgXHUQexh3RXKD5NvYt2tDjrb+WF4z+i7vvoA3bQ7FFsSHJA4At2xKwzvNb9C0QB0Uxy6NGw/roOKBiSOQCddFIb3Nt6jaAC6bdT2HDcrGmh14nhyRDyteKDTho1GelOxADDqRyKumrZE0QBAZ6wJwxcGulDRABDFRR6G7dVkyBoAdEN8WPxlOHd/31WKBoB+ccL7sA2u1yoaAGi9PaF9W3QBMCHXh3P3JouL51ysaACgte4ZkjTepVgAyHLbkB+PuDHyAkUDAK0T97w8PfC7v0OxAFDE1iHJ417FAgCtsiKJ7wZ+77crFgDKuHtI8viYYgGAVrg8iW+D4akA1GBTMHwFANrmsiS+CWevnmr/ZgDGEuc+DA5j2aZYAKCxSePXfb/psdfxKsUCQB2uTOLIQPJ4v2IBgEZZEc4ennowiYsUCwB1ihsDvzSQPD6pWACgEeKWW/0jiB5RJABM0m0DPzxxtdWFigUAZtbmcGaf5q/SJBIAJu7iNGGMP0DHk1imSABgJp2XxGfpb/ZzoTeCCACmKi6cs0ExAMBMW5vEGsUAs+X/A+mH8HFdZ3PaAAAA6nRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtbz4mI3gyMjJCOzwvbW8+PG1mcmFjPjxtbj4xPC9tbj48bXN1cD48bWZlbmNlZD48bXJvdz48bWk+c2luPC9taT48bWk+eDwvbWk+PG1vPis8L21vPjxtaT5jb3M8L21pPjxtaT54PC9taT48L21yb3c+PC9tZmVuY2VkPjxtbj4yPC9tbj48L21zdXA+PC9tZnJhYz48bWk+ZDwvbWk+PG1pPng8L21pPjwvbWF0aD5TPlAmAAAAAElFTkSuQmCC" style="width: 144.00px; height: 44.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="integral 1 over open parentheses sin x plus cos x close parentheses squared d x">

Tính:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x222B;</mo><mfrac><mn>1</mn><msup><mfenced><mrow><mi>sin</mi><mi>x</mi><mo>+</mo><mi>cos</mi><mi>x</mi></mrow></mfenced><mn>2</mn></msup></mfrac><mi>d</mi><mi>x</mi></math>

N. Huỳnh

Giáo viên

Xác nhận câu trả lời

Giải thích

&amp;#x222B; 1 sin x + cos x 2 d x " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAA44AAAEUCAYAAABklWiYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAClZpjF+QAALa1JREFUeNrt3Q/IVGW+OPCHEBGRuNGNNtpIQkJERGijG25UICEiIbHRT1rJaAmJCBGhlhKLiI1udKONLiERESJUtNJGBRIiIhFFG93oSktERHRFqLAwMWF/59k57zqOM+ffnJl3zjmfD3zZtuY958wzZ555vuf5FwJNtDSJDUnsSOLPSexNYn8SB9L4SxK70/++NokligwAAKDdFiWxMU0Q/zeJf5SMX9Jk8gZFCQAA0C6rQ6/n8PsKyeKoiAnkrxUtAABAsy0Lvd7FX2pMGPvjWOgNdQUAAKCBHk7i5wkljP0RezFXKm4AAIDmWJ7EoSkkjP0Rz7dA0QMAAMy+34be8NEySV9cJGdu5dQtSTyUxNcVkscbFD8AAMBseyCUm8v4XujNTxzWU7ixQuL4nz4CAACA2fXnUG5Lja05x9tWIXE84GMAAACYTX8qkdz9GPJXQY1bbJQd7ipxBAAAmFF/CMWHp/5SIGmMw1bfC9UWyNnv4wAAAJgtvwvl5jTuKHDMKkNU5+JlHwkAAMDsiPsm/hjK9QbmbZexJPT2ZKyaOO7wsQAAAMyGmOD9PZRbDGd1geNuCOPt5fhrHw0AAMBseLVkQvfngsf9zzGSRgvjAAAAzIj/VzKhi72NRXsC3x4jcfydjwYAAGD+LQ3lt8nYXeL4+4NFcQAAABptb4WkbnmJ4/+5wvH/lsS/+2gAAADm329Dua03quyreEPJcxyQNAIAAMyOD0L53sDfVjjPfxU4btwG5IHQW90VAACAGfC7Cklj3K5jQcXzrU3ixfQYP/Yli7EH86Fg2w0AAICZsiCU27NxLh5SdAAAAN3w+wpJY5ynaO4hAABARxyokDi+rdgAAAC64YZQbV/F3ys6gFa5IIlHk3heUQAAg6r0Nh4L1RfFAWC2nJ/EriR+Suv444oEAOi3MlTrbdyr6AAaL253tDOJHwbqeIkjAHCWIvspGqYK0C6Lk3gwie9G1PESRwDgXxaFM/snlg2rqQI0s97fEXrTDbLqeIkjAPAvVbbgiPGBogNolIVJbE/i24L1vMQRAPiXQxUTxz8pOoBGiIuYbSuRMEocAYCz/DqJXyomjssVH8BMOy+Je5P4umI9L3EEAP7poYqNib8rOoCZThi3JvFVWmefDr3RJbuTeDKJwxJHAKCMv1VMHHcrOoCZ9VlaV3+YxH1JXDTkNS9IHAGAIpZXTBptwwEw23YlsSLnNRdLHAGAIqoOU/05iV8pPoDG+0ziCADk+aBi4rhf0QG0wj6JIwCQZZzVVB9SfACt8LrEEQDI8odQfX7jDYoPQOIIALTfqxWTxh+TWKT4ACSOAED7fVkxcfyLogOQOAIA7bcyVB+mukPxAUgcAYD2u3eMxPG3ig9A4ggAtF/V+Y3fJ7FA8QFIHAGAdouJ37cVE8cDig9A4ggAtN9vQvVhqg8oPgCJIwDQflvHSBx/o/gAJI4AQPv9tWLS+HMwvxFA4ggAdMKxionj24oOQOIIALTfOPMbH1J8ABJHAKD9xtm/8QbFByBxBADa7y8Vk8Yfk1ik+AAkjgBA+/1YMXH8q6IDkDgCAO23PFQfpvonxQcgcQQA2m/HGInjfyg+AIkjANB+r1ZMGn9JYoniA5A4AgDtFhe2+bli4nhA8QFIHAGA9htn/8YHFB+AxBEAaL9x5jeuVXwAEkcAoP3+WjFpjMNb/03xAUgcAYB2i/Mbj1VMHA8pPgCJIwDQfr8N9m8EQOIIAGS4d4zEcZ3iA5A4AgDtd6Bi0vhjEgsUH4DEEQBot5j42b8RAIkjADDSOPs3Pqz4ACSOiggA2m+c+Y03KD4AiaMiAoD2ezVU379xkeIDkDgqIgBot3H2bzS/EUDiKHEEgA5YG8xvBEDiCABkeDiY3wiAxBEAyLA/mN8IgMQRAMjwfTC/EQCJIwAwwspgfiMAEkcAIIP9GwGQOAIAmf4azG8EQOIIAIywINi/EQCJIwCQ4TfB/EYAJI4AQIYHgvmNAEgcAYAMbwfzGwGQOAIAI8T5jT8G8xsBkDgCACPcEMxvBEDiCABkeCiY3wiAxBEAyGD/RgDKeEPiCADdEuc3fhvMbwSguCMSRwDoFvs3AlDG4iRO5/w+xP9+nqICgPawfyMAZdxV8DfiRkUFAO1hfiMARS1J4ouCvxP7FRcAtIf9GwEo4uIkDpb8rXg2GLIKAI13QzC/EYDRLkhiQ5oA/lTx9+LLJHYlcVMSCxUpADSP/RsB6Lcm9Fba/i6Jk2P8RmTFyfT48Ty3KnIAmH1vB/MbAThj7YSSxVGxWZEDwGxblCaA5jcCAAAw1A3B/EYAAAAyPBzMbwQAACDDe8H8RgAAAEYwvxEAAJikixRB890QzG8EAADGd14Sq0Nvi6Unk3g9nNn79ybF02wPB/MbAQCAYhYncWMSG5O4K4ndaYL4eRKnM3KHCxVdsx0I5jcCAADZ7s5JDLPiE8XXbOY3AgAARWxI4qMkvkviZMnc4VnF12w3BPMbAQCA8hb2JZN5ucNGxdVsDwfzGwEAgOpW5eQNcXjrEsXUbOY3AgAA41iUkzu8r4ia/wGb3wgAAIxjcU7u8IQiarYbgvmNAADAeG7MyR02KKJmeziY3wgAAIznnpA9v3GBImo28xsBAIBxvZKROxxSPM1mfiMAAFCH4xm5w6OKp9luCOY3AgAA47k6J3e4SRE128PB/EYAAGA8D2bkDaeSOE8RNdvbwfxGAABgPFnrpuxXPM33ZTC/EQAAqG5J6K2aOip32KmImm1pML8RAAAYzy05ucM1iqjZtgTzGwEAgPG8kJE3/KR4mu/FYH4jAAAwnm8ycoe9iqf5zG8EAADGsTwnd7hTETXb0mB+IwAAMJ7tObnDpYqo2bYE8xsBAIDxvJORNxxRPM1nfiMAADCOBUmcysgdnlFEzWd+IwAAMI6NObnDzYqo2ZYG8xsBAICei5K4LfRGJb6bxA9JnAy93sTjodd5tDOJCwb+7tmMvCH+7YIaru28JK5PYlcSryXxdRIn0uPvT+LyMY8fjx1Xfv0uPebRJJ5K4kK3hfmNAADQdTEhuzNNCk8XzAViUrWq7xifZ7z23TGuLSact6QJ3U851xRHUi6pcI6Lk3gr47ifBlP0zG8EAICOiu35HUl8O6S9/2ES25JYnSaWUdxu4+mBRG1hEstycof7K1zbdUm8EHo9imXylAdLnueqNAnOO+62rt8s5jcCAED33JHEN0Pa+e8nsSbnb/vnM96VxNac3OGqEtd1axJfDDnGyYJ5ylclznVt6A3FLXLcPV2+WZYG8xsBAKBL4jzAg0Pa9yfSBLCoJ9O/i3MN92XkDd9VSGhPpce8N4lrwpkezzgM9dECuco1Bc6zPL22ovlPpxPHLcH8RgAA6IrNYfg8wdjzuKrksS5J//Z4yN6GY2/J48aFaPIW0nklJ1fZlfP3cQGgr0rmP/d0+cYxvxEAANovJmK7w+ihnZdUPO7nBXKH2yfwflbnnHN/xt/G3ssDA6+9PP33safyhSHH+6jr+Y/5jQAA0G6xB+9QGL0y6hVjHPvNArnDJRN6X1lJ68lwZnjroCdD/vDTuUWA4jDcP4ZqK7W2xtJQfZjqn3z/AABg5sWk7bMRbfo4p/GqMY+flzh+OsH39mzOuVcP+Zt1ff/9DbdHMVvGSBx/p/gAAGDmk8asEYa31XCOd3Lyhqcn+P5uyTn3poHXx3mNR/sS2iVukWKqzm/8JYl/U3wAADCzYpL0+RQSurxVSTdM8D2en3PuFwdeP9c7GhcHutItUlzV+Y3vKToAAJhZsSftw4z2/Cchf9XSorL2VjxV43lGOZJx/o/6XndHOHvfSQpaGsxvrNs/hBBCCCGEqBB1eyMnmVtR03kWh+orm9bl5Yzzn04T1zhkd65n9C1pSzlbgvmNEkchhBBCCNG2xHFnzrl21niu9Tnn2jGFNvjmnGtYG84MUY37TV4qbSnH/EaJoxBCCCGEaFfieH3OeY6EeoeO3hXKr2pat5UFej3n/vleKUt59m+UOAohhBBCiPYkjhck8XXOedbX3P7NGiZ6bIrt8BMFyvgj6Up5S8e4qc1vlDgKIYQQQojZSxx3z0MHUNbCNHum2A7fV6CMVwdK2zLGTW1+o8RRCCGEEELMVuK4psA5rqq57Xtxzvk2TbEdnjevc7dUpRrzGwEAoD0+DtNf3TRvfuOFU3z/eYv03OwWqcb8RgAAaIfbC7Tjr5/AebO2/Jj2fMKFobf1xqjrudttUt7SUL0L3fxGAACYLUdy2vAfT+Cccf/GUxnnfGIeyiGr1/Ult0l5W4L5jQAA0AYbC7Th75nAefOGqa6dh7LIWhzoE7dKeeY3AgBAOxzMacPHXsHzJ3DewxnnjFtjnDcPZXFbTlmc73Ypx/xGAABovmUF2vD7JnDe1TnnfH2eymNrsEBObZYG8xsBAKANdhVow98+gfO+HKY/NDbPZUkcz7mup9wyxW0J5jcCAEAbfJTTfo+rjF5Q8zkvD9mrl8ZYPg9lcbhAPnPYLVOc+Y0AANB8Fxdow09iS4wXcs75xTyUxc6BZDkrkV7g1inG/EYAAGi+Wwu04V+o+ZzLQ35v4+4pl8PVfdcUh6puzrm+dW6dfEtD9WGqDyk+AACYGU+H6c9vfLPAOTdOsQziXpKf9517U+it5pq1v+Qut06+LWMkjhsVHwAAzIzXC7Th69xL8ZYC54s9fwunWAb9w2b7ezrfybjGd9w6+cxvBACAdjhSoB1/YU3nigvsfFvgfAen+P439p330yQW9f23nRnXeDLMzx6TjWJ+IwAAtMNPBdrxdSVIr6XHO5FzvmkNA40LAx1LzxnL4cqB/35jznWucfuMtjSY3wgAAG1xqkA7vg73pMf6MIlPcs533ZTe+/6+c24e8t8X5JTPdrfPaFvGSBw3KD4AAJgpeaub1pE4Xp8mYDFW55wr9kbm9XDGIaSvhPHmQW7rO+eejNcdzLjW1wqea1no9aIu6tKNZX4jAAC0R96w0RiXjHH8FUl8lx7nj0mszznXGznHuzN93aExrmll6M1RjMeJq6kuyXjtYzlJbp6Y3H4cOrhQqPmNAADQHh8XaMvfMkaCdnQg0duec64dGce7KX1NTEQvq3hNsdfvs3BmgZtVOa/PS3Tz/v65kN+r2TpLg/mNAADQJnsKtOX3VThunKc4t/BMTB7nei335pzrxhHHuzacWcjn5jHe70t959pa4PVxnmPWcN77Mv52U/qar5M4v0s31ZZgfiMAALTJ3QXb81eVOOb2vmTrdDh7sZvDOedZMOR4cV7k3HDXx4f897jNx7okludc14N953mlxPs5lHG9h0f8TSyvEznJcGtVnd/4czC/EQAAZtHFodgCOd8kcUXOseKwzfcG/u72gdccD+W2/ljTlzTuHXLOuFpr/8qnn6XJ8LBkdu41cfpdmR7AJ3Ou+ZqB18fFcOb2q3ysizeV+Y0AANA+RTuIYtIXVwddPpAk3ZW2+Qdfv23IufK2/3g8TR5jYnd/OLOIzbvh3FVJ12Qc50jozZe8OZw9PDa+h5Uly2dtzjV/FXqLAEVxPujRLudBy4L5jQAA0EaXhvyewLJx94hzna5wrHeSWDxGwtsf6yuUT0xkvyt5ntjpdmEXb6Y/BPMbAQCgrW6tKWGMC+LclHGeH0oeLy5mM2q/xj0lj3X7GOXzVInzxB7HK7p6I+0O9m8EAIA2i6uAnhwjaYx7MObt+Vi0lzCuoJq36un2gsc6lb63cVwazqzqmhVxbuOqLt9E/xPMbwQAgLZbEYbPV8xr819f8PhxClzesM+Xk7i8wLHinMf3Qv78w+tqTKyzznWoQOLcar8KvZ5D8xsBAKAb4hYYjybxZugNLz2ZRux1+zj0holuLZjgDboy9IagHk+PGf/3rdBbDKfs8eL2HbHnMW6LcaLvePtDb4/FhTWXS1xBdd/Atb8WxttbsjW2hOrd1RsVHwAAQPtV3b/R/EYAAICO+DqY3wgAAMAIK4P9GwEAAMhwbzC/EQAAgAz/HcxvBAAAIMP/Vkwc31N0AAAA7bc0mN8IAABAhj+MkTj+TvEBAAC038uh+vzGf1d8AAC0yPIk7k/itSQ+T+JEEqeSOJnE8SQOh97+55uSWKK46JJjwfxGAAC67aY0KSzTHo4J5XNJXKr4aLvVofow1YcVHwAADXdBEq+M0SaO8VMSWxUlbbZljC/IOsUHAECDXZLEkTGTxv54XpHSVi8G8xsBAOiei5L4osakcS6eVbS00ZcVvxAfKDoAABrs3QkkjXNxh+KlTZYF8xsBAOiebUPatx+m//6aJBb2vXZREtclsT19TZG28g9JXKiYaYtx9m80vxEAgCa6OPS21Zhr1x5N4uYSf39jKDYv8lFFTVu8OkbiaH4jAABN9FRfm/abJC6vcIy4f+NbOe3luOXdeYqbpluQxPfB/EYAALojJnwn0zZt/N/VYxwrDmHNG7p6vSKn6ezfCABA19zX16a9v4bjLU/idEa7eYcip+m2BPMbAQDoloNpe/azUN8w0qzt7V5S5DTdy8H8RgAAuuP8vvbsxhqPuzaj3fyaYqfpvg7mNwIA0B23pO3Zj2s+buy5PC1xpI1Whuq9jZYVBgCgiZ5O27N3TODYn41oO+9R7DTZvWMkjmsVH6k43ONmxTCWu5J4P/RWdTuRxAFlCkDNLvDb8i+bQ68HcBJbZLwxou38hGKnyfYG8xsZTxzq8W0Sp5K4QnFU8nrG9+xxxQNATfalvy0xsblUcUz9d/1WRUOTVZ3feEjRdd6Fofekbu6eeDf0nmRSzq4C3zdPhwGow46+35YfktikSCbizRG/55J1GmtZqN7b+IDi67Q4TPloOHvM/gLFUlocHnO8wPftoKICoCbrBn574vYRixRLrd4f8lv+sWKhyf5QMWn8JYlfKb7OemzgfnhWkVS2vOB37oSiAqBGq8PZD4A/SeIyxVKbk0N+y7crFprs1WCYKsXFoanvDtwLTymWsayQOAIwT2Ki+FXfb01MJNcollraS4O/43EdiIsUDU12rGLiuE3RdU5c9ObLgfvgScUytjhU9WTwsAaA+XHJQPIYf5PMqx/PLUN+x59RLDTZbyomjT8n8WvF1ynXhLOHs8TYrVhq80SB751V2ACYZPL4zcDvjkVzqtsdzu1ttCgOjfZAxcTxbUXXKTeGcxdveV2x1CouSPBusB0HAPMnzrkfHIl2m2IpLY4kGnzY/ohioen+VjFx/L2i64zrk/hp4PN/P1h5bVI/NHGJ9Lg4QXwyGec0vpXEekUDwJTE+Y2nB373NyiWUm4eKL8vtZtoupUVk8b4JMqWC90Qh6cO9jTGJ2gXKxoAaK2t4dzF2a5SLIUdHCi/6xUJTVd1mOqfFV0nXB7OHWYRn0Bep2gAoPX2DrQBvg29eZBkuzZYRJAWOhSq7d1oUZz2uyCJz4d8/sbnA0B32gKDi+XEqSpGnWX7qK+83lNetMGv0iSwbOK4X9F1whtDPvuPFAu0VmzYPDsirOYL3bVhSHvgacUy0t3B1B5aaGuoNkx1naJrvfuHfO5xiOoKRQOttTCj3n9W8UCn7RtSL9ykWM5xWTizLkScE3q1IqEt9ldIGuMKrLrb221VOHclNU8XQeIIdNeyIW2DOIT1fEXzL3FV9Pf6yudmRUJb/HuoNkz1d4qu9ZXep0M+97gVx4WKBySOQGc9P6RueF6x/MtTfeVyh+KgTbZVSBrjQjp6G9tt14jP/jFFAxJHoNOuHFE/GI4Zwu195bFdcTBf4tCAe5N4NYkDSbydxKNJrB0zifsymNvI2eK4/JNDPve4Cb2J3SBxBHgnWDhv0JrQm89o5XnmzdI0WcwaTvpBEssrHHtdhaTxQNDb2HYvjfjs9ygakDgqHiCc3bPWH7d3tDxiO/yYepL5tDGJHwsmdN+nSWYZL4by+zau9LG02oqgpxkkjhJHIL+eODWkjvgi9NZJ6JJLw5k9Ll92azAffh/KL1rzYonjx0Vxfp7g8WmmvSM++586+EMAEkeJIzDavhH1xN0dKoM4hWdu2tcbbgnmw3+Eaiudfl/iHA9XOPavfTStdkXG57+3A+8/JsZxzvATSbweek8P41yFU2nE5PlIEq+E3oT3K+bpOlcn8XgSb03hPM8k8X4oNjw9ll/slY4r632YlteptAy/SuK10Nsz9gJfNYljx8SG5abQe/gap3v8EHrzyE+l/xv/f1x07uW0wb18nq839p7cmsRzaV34efp9Hrzmg+lvQ1xk7xp1dyfdNaKe+Lwj7z+uMv9J+p7fDaZyMQ8WJfH3CknjXBQRext/LHnce300rfdkxuff5uWklySxM5wZZlIm4nzQZX3H2pT++8U1X+OV6TV+1nfu4xMoi4uSuC+Jjwfe58KMv1mQNsaKll9sdD6Sc0wkjk0Xk5nNaaJY5bf8k/R3d9GUrjd+93cM+e6XiW/T5G2Zurszsh44b2z5e4/7Vr6fvtfD6f0IU3fvGJX2jwXP8XDJ437gKUrrxc/3WMY90NYntOvSxs6w9xw3OP46if2h1xtwPGQvGrUnnNkUuY69Li9NE7IPR5yzrsRxYdpoejOcu6lzXuJ4fai2MvPc6nuXTKkBH68zbjHzWvqZzvVGxM/28jGPH48de12+S495NPT28GryfqcSx/HcnvG9iA9OvkjvvcM59cpcMrZ1wgnj02H4XLW56/0kvd7PwvAVt0ctpjbJ341Zrru7VgeN+hwOtvg7vih9f/9IH7YYScO8qdoIm0vw8vxb6A07LXrMOA9ytY+l9W7JuAeOtfQ9bx/xfuMS4xtGPCxZkjYKD+d8b66reE3xx+fuUKyXYpzEMb63jWljo0hDcFji+PgYddVcfDahH9wF6T0d399POdfwZaj2pDgOP3wr47ifhun1FkkcZ8OyvsZkf8Sh2g+mv6XD5opfGUbPL+9PcOreDunuEUnV8fT7Peq3/6rQ2w7sWMgfXXB/R+ruLtdBr2Rcw5Ut/J4vCGe2IvkyffhSp3jP3Kg6pYjlYzbC/qvAOV4uecxtPpZOeD3jHnithe932LyMU6HcMuK3htFPsteWOE78YY9D2uKk+tMlvptlE8d4nk0lksVRiWNs4OyvIWmci301fq6x0fdCOLOPVtF4sOR5YsP5aIvrT4ljeZuGJAjxO3pfKL6w2J6c++mbmhri56f1zaiewqIPc2Jd8GSB78G7NT4gmqW6Wx3U82DG+R9r4Xd9X9/38dIJtU3amHAzAX8Yo/EVewaX5hx/bclj/iUYotoFC8LoYUoxHm/hA5phiVOVVeCuHtEAKbp1yd6csq8zcdw8Rv0ylzjGxt97NSaNc7FhzM80NgS/CMN7PIqc/6sS57o29BYGKTpcT+LYfo+F4b3pZef6XVKgPoiN1XF6HuM5Ph1x7Kq9g7F35LuQP7pg3KHps1R3q4PO2Biye1PbZO7hztEJJHcr0wcOh1SpFPWfYzS88p4qxRVRj5U4XhwWs8hH0gk359wLt7Xs/Q5bPvzTMZOWweOtL/i3c3OYYo9vXHExPql+f0KJ45o0QZtLAuP8l0dLJI5LhiSNR9NjXN933Ni7EvcDjQttfB2Kz3ccxx1pgzt+tnGe+DXhTC/PkoLvs8iqkMsLNJAljt3y/IgkqerwtSKjgqou+d+/bUDdPUOrC3w3vhwz6Z2lulsddMalOddwdcu+6zFpv6rmY68IZ+aK3qVapagXKyaNfyqQNJaZO/m30Ft5lW54JkxnzscsuHzEe3x0zOMODvsquprcmhH/vsj8wboWx9lb4FzxIVL/8NTYQNoZ8ldGXRJGD4kbjHF+iGMSnDc64pWc8+/K+fuYCHxVsm6+R+LYasOGaR4N4w1fu6XgvVW2Mb44fUAz7Fh19XDEB0h5w+0/CdXm881a3a0OOlvW5/5Ii77rJ2psEy1MvzNxJeKTfcfXaUNhuyskjYdyKqvVJZPGDySNnZO3/Hqbtk24b8R7vGXM4145cLxba/hByRviVFfiWKSh+lrfP8fhWKtKHD/WTx8WOMekh0Svzjn//oy/jT0HBwZee3n672MvwQtheC+qxXHa684wmS0IloRic52fKnncUfMn47nq3Dfy/jCZXrCm1N1drYO+yHhfHzb8u74r1D89Y1Q8r2qljG2hviGqMfl7OPTmPpZJGu1D0y0LcxopJ1v2fkf1rq2v4dhv9h1vUw3Hy+upqytxXFaijogrRlZZ5OKqAsd+bwqf/+c59/qoRUyeLNDojY3vp9Mk+48Nr0sljtlWjHiw80ZNxy8yj7jMuTaF7P0M6/ZRgesvm6A1qe7uYh20L+N9nW7wQ7T7ppg0xrhW9UrZBtwvJW+y79PkMS58sy7955dDuS03Yvy3pLGT8hZM+rpl73fU/MFNNZfl5hqO99KUEscFofjqp+P0Puctg38qFF99sqpnc65h2PYD6yaQGEgcm21UYrSipuPvLPB9fLPgseLvetbqm1dNoHyuLnD935ZsczSp7u5iHZT3e7Whgd/zO6acNH4aoIK/TPlG/TGJ3yv2zrorTGYRhlk1aiW6V2o6fp2T2/MaGMdrLJe8eqKO8ikyhG35hD//vGG5g43Qi/oa3Z+G7jxckziWrzPfrfEcl4X81VWfKXisRzKO8cUEy+mtAt/3nS2tu7tYB+XNy9/VsO950bnGdcZ2TVKqiAvZfD2lmzSOkV+pyDst7ynhKy17v6MaH7GRVsd+THOrrtUxXy+v12GaiWMdT+HXFzjP+gl//ufnnP/FgdfPDWGL+/N1aV8tieNwsUf8qwl+R4omfMcK1leLw+j9CmPsnmBZXV/g+34sFB/F0KS6u4t1UF7vXJP2g14fqm+TVTVOh+orMcM/hyp8O8EbNCamsZfRHo3kzaN7sWXv970JJ8kba2xc39OyxPHiAue5ZQr3wJFQbFuQ/oZQ15ZHlzgOtzmj0Xf+BM43bMG8uNVH0cWptob53WrpiwLf+TtbWHd3sQ66NbRn2sv+MP3exn2ao4zrV0m8XfON+ff0h0TCyJy8pb2fa9n7zdvyZtuYx1+QNiLreJLftsTxvALnmcaeoVn75J1OP8O4UfncXmlvdbBekDgON2qe7vsTPOeqNLmKm9yvD+XmAR8K87sQx2MFvvNFh/g2qe7uYh20IeT3qJ0XgImLk6IPjJEsfplWhL+VMDJE3pYPT7Xs/W4o8J2ZlT2n2pY4TvM8WTbnXENcKOPNvjK+tIP1gsTxXJeFZo3MuKDA923SWy2tCcWG6BW5jibV3V2sg9YV+HyWaXLB9MS5j/eG3pOq/wm9uQGDi9zEJDE+Yfxz6PUsLldsZCjSA3RXC99zkQ2U43Ch1RLHViaOK0P+3O+5f763o3WDxPFcWcM+Z/E+yRs6eGpK9e3JAt/7DQWP1ZS6u4t10I0FPpt1ml0AzbW4QEV/Rwvf9+ZQvMc+DtW9UOLYqsQxOlGwATpr1obpz72Zr9g9Y2X/Wsa1bpzBe+WZKdYfWYqsrlp0xc2m1N1troNGuSTMxhx2ACakyFCmzS197++UaIDEeSZbJY6tShz3FbiWWey1kDjOn6wF62axJ+WNMBuJ47MFPuu9Lau721wHjbKkwPu5XbMLoLmu63DiGJe9LjLsaT6HQEkcJydvq5PdM3rfShznx8KQPydt1nwdZiNxLNJLeLhldXeb66BxEsc7AwCNVaQRurnF7z/OAT5asUE7jSFQEsfJydtT8maJo8Sxz00NTBzz9qH7aUrXUWRRmx9aVne3uQ4apcjUl65tawTQKkUms29ueRnEBsg3FRog0xgCJXGcnNiDdDrjOu6WOEoc++QtNDNriWORhc9OTulaVk7oWma57m5zHZT1fvLK/lHNLoDmWiFx/Kc4qf/9io3bj5O4WuLYuMQxpJ/dqOt4SeIocexzR861rm9gI/4fYTr76hXpiaq6wuus1t1troNGWRT0OAK0WpE5CXd0pCxiQ+u5MRq5z6TlKXFsTuK4O+M6PpE4Shz73JVzrbc2NHFcPIVrmXTv5yzW3W2ug8ZpT5jjCNBgC4InhINiz0GV4U8x4j6q10gcG5M43pZzLed3uG6wj+PZtubcK9sbWLdPc4ht3nWcaFnd3cU6yKqqAB1wOqei72IjMf4APlmgbIbF6VDf/BmJ4/wmAzd3uF6QOJ7t7px75eUG1u3T3H+yyLzDNtXdXayDimzvZR9HgIbLW5nu+Q6XTVx84c1Q7Qn24xLHmU4cL0vLL+tanpI4ShxTd4b8+XKz5niB79u0ekrzruNAy+ruLtZBRbb3WhcAaLS8H9cXFdE/fxA/qtAA+aPEcWYTx8MFruVwh+95iePZNoX83qpZG1Z4oMA9Po0FWIrMcdzbsrq7i3XQTQXezzLNCYBmeymnon9FEZ3VePyyZANknE2nJY6TsXOgwZ+VDCyQOEocQ7G9CGdt/tbLodjKopNWZFXVnS2ru7tYB+V9R06H6aziC8AE3ZdT2b+liM4Sf8R3hN6cnCKNj0MSx5lKHK/ua6gdT89naJXEMc8VBe7dN2fsmreGYvP6Jp2YFNnHcUPL6u4u1kF5e50e1XwAaL71OZX9Ny17v7Fx920Nx4n7h71bsAGyXOI4E4lj7Pn4vO9csRciPgE/lXE9uySOEsfUyQJJ2OVTvJ7LQvZ2GqsK1k+TTtqK9EQtbFnd3cU6KG+v09c1twCaL28Y0cmWvd+5OZ1X1HS8Fwo0Pu6TOM5E4tj/WfXvEfhOxvW8I3GUOBa4T6a9mElMNuLG93H45aKM1xXZnuKZCV9r3sJCRRfGaVLd3cU66JFgsTGATvgsp8Jf2KL3Otf4uHsCx6x7AQqJY3029p3j04HG9s6cByddnJcjcTzXzlBs6Oc0FgB5PD3fnpzXPVXgmic9quTFnPMX3QKjSXV3F+ugvPUSbtXUAmiH53Mq/BtbmDi+UeMx49CnExnlV/VcEsd6XJzEsfT4PyVx5cB/vzHnmtZIHCWOobdYSpHhjQcnfB1zQz/j8Ma83rflBa/5ugle78cZ54315pIW1t1drIP25byHSzS1ANrhlpwK/7YWJo6x0bV4Ssl31UUzJI712J9z/AUhe47R9g7WCRLH4T4pmIhNapXQVeHM3n9PFPybItty7JnQ9Z4f6hu+2KS6u4t1UNaqtV9oZgG0x6KcH63HW/Re+4cm3TWl5LvqU+t7JY5j21awcXww45peK3iuOERxV8iecyZxbLZ7QvHtHOoemhcX3vk2nBleWrSn7tpQbIjtZRMor6z5jXEI5qUtrbu7VgedF7K3FXlOMwugXbLmerze0vf5UY3Hzdr8uOo8mWcljmNZGc6shPl5TkP7sZA9nK5IojU3JG+jxLG1FvYlb0ViU03nvTKcvdBN2XvslTA/C/tkrV5adrXQJtXdXauDluXcWzdpYgG0S9ZS2sdanCDXNX8zq/FR9en4czk/xidqLJdpJHTnTTFxjE/c5xZ9ig23VTmvz9uWZlXBz2pPS74nEsfRiuyP2B9PhPEWGLs5nL334CsVjnFJyN+/8FSod2GfFRnniovDlN0/skl1d9fqoKxe2+OhmwuMAbTa4pA9XPXSlrzPwcbHhzUdd1MYPQTsoorHzFul7h81/SAvmFJCd9EUE8f+sttasAyyhlrdV+Cz/zr05nRJHNvvw5LJ4xehfO/jleHcnsJ4j104RgKad537ayyjN0acIy4Os7LldXfX6qCs3tLdqguAdsra16otC+QMG5J7bw3HfW0CP5qvF2jo1bGn2RUFznNHDedZH8ZbVOSCJNaF/E25HwzVemcOZVzX4RF/c1U4sypjm1YfljjmJ3XHSyaPcw37p0Ovh+bygQc/sYdqbejNiTs4IpG5doIN/DrnD2Z9129pcN2tDir+2czFtaoLgHa6KqPyf7HFieOJ9L1XtTwMf1L8QxivpzZvaNk4jbB+txQ4Tx0LJG0vcJ6XR/xtXJSkv0c8DgG7O+cccZW/Mk/fn8y5tmsGXh+H9c3Nd3usZXWBxLGe702dcWdN1/1yyB8Cf80Yx4/DYo+OOPa2Btfd6qDh4sOPkyOu92PVBEC7vTfiB+DbFieO/0gbOlWGT50fRu9TNs4CBasKNibr2KD6uQLnOVTDeQ4XOM9XQ/5uTcbrjySxI/SG4e0NZ8+rKft5ri1wbSv6koa5xvGBFtYDEsdi7ptS0vhgzdf9Ys754kOrKj1FF6ffyWHHvKfBdbc6aLQ1U3jYAcCMypoHs7rFiePcD/3WEse6IqPhsW3M63ynYIMyPi0fZ/PuOFzup4LnWjvGecr0zmwu2cgdFusrXON5oVgvb3/EHoULW1gPSBxnJ3ncOqHrfjDnvLEXqcxQ0Fg/fDMiCV1fw/XOZ92tDhrtkTB6WLZFcQA6YNQm120YjvdmgR/i+P7j0/FR+5rFoVFxSNGpEYlc1aesl6d/W3ST8f5zvpg2VMqsVHjriIZe1hC2P4bePJ+iFqV/c7rk+4mNkYvTY+wpWR63j3F/PFXiPEdDPXNMJY7NF797x2pOGL8Z86FQEXFO3Fc513EkTSAvGfL3sb6JvXNvjfjbA6G+/SHns+5WB5VvL9ynWgDoho1h9BPELiSOgysAfpr+XfyBPJnTwCozNygmbnEI8A8he0XbsklkbAjGFQ0He4hjY+r50Ft056cxzxFXNIzDZB8d8r7ieXanZXZqzPO8n8QHBV8fzzXuvnmXFiyb+LmtanEdIHEsLz7o2FvTdzhu4bFkSte9OP0enyhwbbFn73CaKB7NeCB0JK3f2lJ3b1cHDTVqSkXsBdXbCNAh74/4QdjQscSxSHyVNizK/lBuDpMd4jY4VGrtBM5xfMj7Wj+B8/xfgc+grt6ZTSF/vuclLf/+SxzHa0zvqfDQJCYLz4TeyIP5EIc7xuGrn1f8jp5KH0qta2HdHUdOvKcOOsfTYXKLtgHQIKvD6KFHbROHW8VFDGJP6/2h15P2RtoQiL2B8Un8yb6I/y4+cY9Dnm50q0ztM4oNvMN9n0dMWuO+c/eF8TZYHyb2PuxLzzF3rrhs/80dKW+J4/gWpw3o59P64ru+ezf+79H0HnsyfdgySz00cQGWe9K68EBa5w3WgXHUQexh3RXKD5NvYt2tDjrb+WF4z+i7vvoA3bQ7FFsSHJA4At2xKwzvNb9C0QB0Uxy6NGw/roOKBiSOQCddFIb3Nt6jaAC6bdT2HDcrGmh14nhyRDyteKDTho1GelOxADDqRyKumrZE0QBAZ6wJwxcGulDRABDFRR6G7dVkyBoAdEN8WPxlOHd/31WKBoB+ccL7sA2u1yoaAGi9PaF9W3QBMCHXh3P3JouL51ysaACgte4ZkjTepVgAyHLbkB+PuDHyAkUDAK0T97w8PfC7v0OxAFDE1iHJ417FAgCtsiKJ7wZ+77crFgDKuHtI8viYYgGAVrg8iW+D4akA1GBTMHwFANrmsiS+CWevnmr/ZgDGEuc+DA5j2aZYAKCxSePXfb/psdfxKsUCQB2uTOLIQPJ4v2IBgEZZEc4ennowiYsUCwB1ihsDvzSQPD6pWACgEeKWW/0jiB5RJABM0m0DPzxxtdWFigUAZtbmcGaf5q/SJBIAJu7iNGGMP0DHk1imSABgJp2XxGfpb/ZzoTeCCACmKi6cs0ExAMBMW5vEGsUAs+X/A+mH8HFdZ3PaAAAA6nRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtbz4mI3gyMjJCOzwvbW8+PG1mcmFjPjxtbj4xPC9tbj48bXN1cD48bWZlbmNlZD48bXJvdz48bWk+c2luPC9taT48bWk+eDwvbWk+PG1vPis8L21vPjxtaT5jb3M8L21pPjxtaT54PC9taT48L21yb3c+PC9tZmVuY2VkPjxtbj4yPC9tbj48L21zdXA+PC9tZnJhYz48bWk+ZDwvbWk+PG1pPng8L21pPjwvbWF0aD5TPlAmAAAAAElFTkSuQmCC" style="width: 144.00px; height: 44.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="integral 1 over open parentheses sin x plus cos x close parentheses squared d x"&gt;

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x222B;</mo><mfrac><mn>1</mn><msup><mfenced><mrow><mi>sin</mi><mi>x</mi><mo>+</mo><mi>cos</mi><mi>x</mi></mrow></mfenced><mn>2</mn></msup></mfrac><mi>d</mi><mi>x</mi></math>

1

Câu hỏi tương tự

Cho ∫ 1 2 ​ + 3 m u [ 4 f ( x ) − 2 x ] d x = 1 . Khi đó ∫ 1 2 ​ + 3 m u f ( x ) d x bằng :

1

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG