I1=∫23(x2+2x−4)3x2−6x+5(4x+3)dx=∫23[(x−1)2−5]3(x−1)2+2[4(x−1)+7]dx
=∫12(u2−5)3u2+2(4u+7)du=4∫12(u2−5)3u2+2udu+7∫12(u2−5)3u2+2du=4J−7L
Xét J=∫12(u2−5)3u2+2du.Đặt t=3u2+2⇒u2=3t2−2⇒udu=3tdt

=2171(ln17+1417−14−ln17+517−5)=2171ln(17+14)(17−5)(17−14)(17+5)
Xét L=∫12(u2−5)3u2+2du.Đặt ut=3u2+2⇒u2t2=3u2+2⇒u2=t2−32
⇒udu=(t2−3)2−2tdt⇒3u2+2du=u(ut)udu
=2t/(t2−3)−2tdt/(t2−3)2=t2−3dt.Khi đó :
L=∫12(u2−5)3u2+2du=∫214/2(t2−32−5)(t2−3)dt=∫214/217−5t2dt=51.2171ln∣∣17−t517+t5∣∣∣∣214/2=2851ln(70−217)(25+17)(70+217)(25−17)
⇒I1=4J−7L=2174ln(17+14)(17−5)(17−14)(17+5)−2857ln(70−217)(25+17)(70+217)(25−17)