Đ ặ t x = tan u , v ớ i u ∈ ( − 2 π ; 2 π ) d x = cos 2 u d u ; 1 + x 2 = 1 + tan 2 u = cos u 1 Đ ổ i c ậ n : x = 1 t h ı ˋ u = 4 π x = 3 t h ı ˋ u = 3 π
T a c o ˊ I = ∫ 4 π 3 π cos u . cos 2 u sin 2 u 1 . cos 2 u d u = ∫ 4 π 3 π cos u . sin 2 u d u = ∫ 4 π 3 π cos 2 u . sin 2 u cos u d u Đ ặ t t = sin u ⇒ d t = cos u d u . T a đư ợ c I = ∫ 2 2 2 3 ( 1 − t 2 ) . t 2 d t ha y I = ∫ 2 2 2 3 t 2 d t + ∫ 2 2 2 3 1 − t 2 d t d t = − t 1 ∣ ∣ 2 3 2 2 + 2 1 ln 1 − t 1 + t ∣ ∣ 2 3 2 2 = 2 ( 6 3 − 2 ) + 2 1 [ ln ( 2 − 3 ) ( 2 + 2 ) ( 2 + 3 ) ( 2 − 2 ) ]