Square root
VBT
Calculator
magnet

Câu hỏi

Tính các giá trị động năng của a) Một electron có khối lượng m c = 9 , 1 . 10 - 31 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAoYAAAB+CAYAAAC51NAkAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABUrCIHcwAAF3NJREFUeNrtnQ+EVdsXx5cxxkhijCQjMTKSJ5E8SZ4hSUZGJCNJIkmSRJIkiTx5RsZjjGQkkTGSJJIkSSRJMoYkGUkkyRiJ9zurc+5v7tzu2Xvf8//e8/mw1Xvdu/e+6+x9zvesvfdaIgAAAADQCvR5ZTFmAAAAAEiGNq8MeuWKVx565ZtXfgTlu1deeGXcK0Ne6SxIn7u9MuKVn17ZyyUEAAAAiIeKvDNe+eyV/xyLCsXzOQrEdq+c9MrXqj4hDAEAAABisM4r0w0Iwtqi312TcZ93euVdnb4gDAEAAAAist0rszFEYaV8CQRm2qz3yhNDPxCGAAAAABHYIv7ewf8SKh+80pVSX3u8ctWhDwhDAAAAgAZZIb6Xr1pUvffKWa/0e6Wj6rN6uGOHV8a8MmcRZpcT7mdn0CdXrybCEAAAAKBBqpdj9fDGIfFPJNtY7pUHBmH2IxCSSbDfKzNeuRGIVe3fKjHvh0QYAgAAADTAoSoh9Vp872EjtFvE4Z4E+jjqlUmpf6hlN8IQAAAAID66RDwTiKhnXlkSsR71HIYtK19NoJ8mr2MXwhAAAAAgPodlfj/h0ph1hR0GuZXB70AYAgAAAMREl441Q0gSoWV2hYizOwhDAAAAgGKzPhBPZxKqb0uIOJtEGAIAAAAUGz10MiX+4ZEkWB4izkYRhgAAAADlYkOIOBtEGAIAAACUix1SPzVeB8IQAKA8aKiI85LNchE2Bigup+sIszMZtY0wBCgR+rapSxHD4oc9+Ch+OiSNqK9xs7555YX40fCPi7+cAemj8c40NdX34Ab8DZOU3sYafPioV6575bn4GTTmgrmqc/aT+AcR/hb/oEIbl7ileFIjyt5INt5ChCFASVCBd02iJXXXmFznJH5cLvidxYEX4GuNzRGG5bSxiteT4h9iaHSefvbKBfEPLUBz84f8voS8OsP2EYYALYzmvrxrmOj6sNT0S/eDm89Pw2dnA4HYiVljs0j8paIvIbZGGJbPxifriNfauarzVL2Hc5Z5qkIYD2Lz8qBGFP6ZcfsIQ4AWRZeC63kIX3plX+BJqaWy1GwSk29zuFG1CiqqT4jv3TF5fxCG5bFxXzAn6/XxY/BbltX53lqvXDKIRN0S0stwaDqO1txrV+fQB4QhQAs+GCdCJvbRBurZ6JXpkHrUs3gAUzvTEQj1j+K2LIgwLIeNtwX9qNe/2+IflLGh4u9ZSB3qbdrM0GgahmRhTuTFOfUDYQjQQuiN5HHIpN4RoT59MD0y3CjOYHIjGuz2WANiBWFYHhvvlvCtG+MRXgbvSfjScj/DpPCcr7pm6gX+xysrEIYAENdjEibizsUUm68MN4vjmP43dH/XEa98kMYPESAMW9/Gg4Z+PUphnupvXc+QKSR6XcK2EuhWoL8le88hwhCgRRgPmczvJH6aplWB5yHshrEL8/9frGhqrPcyv+SuHtwx8feDPUEYlt7GGw1zSUPp9MSoe7WERx6YESILFAmNFHHbcazqtduCMASARjhgmMxHEmrjlOUhu4rL8CvWmNpDT44eDXkQX0EYltbG2lfTkvfJBNo4b6j/HsMnV5YELzUvJJqX+2hG/UQYAjQ5vQYPhHoPklqG6LA81J5xKX4FUF5j+cwyhGFpbXzH0B+dW0mEgtL5bgp7c5AhlAvHJFoc2dqyH2EIAHEeNhMJt3XGctNiv6EbbxCGpbPxkKU/ZxNs66KhHT2p3M3wyBwNL6R7S/XQ0R6vHBZ/+8OkNHZwas7hxQhhCFBiNltuIkmHlNGsCqYg2F956DhxC2FYKhurJ9B0SEbnVE+C7a20/HbyRBdTOF6U8IDsWW4JQBgCNDGPLDeQNPb9PbS0eZ7LYmUSYVgqG5+y9OVBxvcGFaJ9DJFColsBhh3E4TqEIQDUstpy4/ieUrvHHNpdzOVBGGLjX2hEgE+WvhxKod0jljbHEmxri8TfO5dFGWui8Tsg5kgQ/yAMAaCWi5ab4GRK7f4hxTk9h2iBott4v8N86Umh3VWWNvUgxDKEYaExxbucQhgCQC3TOd4EZy1tv+DyIAyx8S8eW/rxNsW231vaTipzEcIwPa4afk8HwhAAKvQ63ATTnMR3HdpnDxPCsOw2XuEwT8ZTbP+6pe1phGHh0TEUduBvE8IQACrYQl9oGUyx/VGH9gldgzAsu42POMyTfSm2f9Ch/Q0Iw8ITFpJsAGEIABVGHG6C21Jsf69D+3e4TAjDktvYJeXZphTb73donygCxedIxi//CEOAFnzo/Sfp5tYcELdArG1cKoRhSW3cFswBUx9+pjxHOhzm6XOGSuHZLngMAcDCq5yF4WpxW7pZy6VCGJbUxhsd5sdMBnb46iBOCS9VbJaGXLutCEMAqPA9Z2Ho4onQsptLhTAsqY0PO8yP2xnY4Y5DP3YwXApNZ8h1SyvLFMIQoAmxLVGlvcdQxJwar1LOcakQhiW18XXJ90RyhWvCPsNWFIZpjt9CCkPNx6qbKjXG0k2vvBM/6XQjqGtcT2RNiO9K12CeGnvttVcuiZ9LMg5tgTfkhvixouaCNqaD+pczliGHiZulF8DFaznOpUIYltTGTx3mx9kM7HDRoR+TDJdCUy9Y+Y1WFYYqrv4UP/SGhr+4b3jYuAq5zmCy2R5asxLtRI/2WcNwfLTUr4mwNzGeISV+ONzsh1Lug0uy91tcKoRhSW3s4tXfk4EdXCIIfGC4FJrBjMdOZsJwifgna1RUqYtdN8+7LEU1EoRzs/jeRdeYRjpx1zTwG3Qz8VQD9euDs5sxDSkwK/kvD8049OE+lwphWEIbL5JiePWVnQ79SPt0NMTjQh1t0ZFie5kJwzmJHpTyskP9pyTdgJdnI9bP3g1Ig/cOY+9Gyn2479CHT1wqhGEJbfyX4/NhWwZ22O7Yl9UMmcLyRtJJZZi7MBwWPyivFl02nnD0erjE6rkSQ3S+t9TdEfQ1av0vGdOQAi6Bc18VQBh+5lIhDEto40HH58PmDOxQJJEKjVMbpFxXatIOL5TrHsMur7ywDFbdS9Ue8n39/7VH8W8Gk03d4su88sCh/jA663z/iVd2BW3rcoHtxNcs4zqUZkmjlERJenP3VXFbHmpP8fq55Ev+yjBHGJbQxnsc7wtZxA9c4tiXXQyZQlKrkbak3F6bFOBU8j6Jnlbrliz0/NU77NEbUbjpA/VezU1kb4i4jSo8EYYIw7QfPGnmS3aJj4bHEGFYRhsfcJyfHRnYodOxL/sYMrFQzaBbxz4EL8R3Erj/1m5hyyL817IijBFbENBjId+r9tQ9CARaGFHSAVXHoHor/nHxKPXzYEQYpiEMXTOPpJk03kUYsscQYVhGG//jOD+zOPDhGoye/fDpXHP1+K2JUF/ty/9oRr9jt2GMXMrKmOOWwVrPoOdk4QZ70+TqttR/1aLSn4n5ZLFt0hGuA2GYVpywt+J2Mj6th4+LMHzEMEcYltDGY473haxw6cu/DJlYfBbzyuEZcfcQ1x6mPZPh73hk+B1TRehEvYMhQ1X/fs2hftsm4FrX6IAs3E9o2wNiy4dJ5geEYVrC8IJj2/tTun73HNq+zTBHGCIMm0IYjjFkYuGSv16XmU96pafO99sCvfKiRohlGQ/5b8cXiFQ93W1iDtR7pebz62T+JPOEYxu2MDPVS8QrZD5or17kLof6bXtJNjNfEIYpCcOVjm2n9Zb30aHt6wxzhCHCEGFYAg5LY88Ejbl8Kxinj2u0kN6zD6UswNSptTUQoxelsRjQ+lldVt4Z1LFZEjxItU7cN853yXzsNvUytidwc3hXI1IrKYz0OPgyx/pviPlgC0FDEYZpppy67tj+4YTbdd3jOMwwRxgiDBGGJUG9gVFjNuuL9mhGzqRuSf4ZN5JU50wnKzXURmfVZysnkKelsWwi3x09kherxNz6Bur/JvkFGAbodbwR6TxYlWC7Nx1vFnu5RAjDEtp4FGFYWtSpdCh4adc4xl+De3Sl6Lh7E4xPHSdDQnDxBZhiAD6s+tyhqonc10D9a8TNI7lJouUf3GCp/yCXGDLgtOON/7W4bY9weSt2fYvcyuVBGJbQxiNNKAxHGDJQBN4YBunJ4DPq5ZiVaDHZTDESdT1fTwhpkOrK6c4rDdZvS8O3gksMGWEL5F4pul1iacQ21FM/Lo0tL3RwaRCGJbTxwSYUhmcZMpA3tmjsupyr+/OeS/S9Sqb9f5XTkv/K/GbPzgQfxtNcYsiQ7mAMuzwA9GTcjgbq1uXqS7IwheUnh3aYAwjDstp4b4FenFzjGBLgGnJnp9iD4lY8cnpCOEpqrxnLJKgcfvgpje0rlKA/phPVxISCrFkuZi98vcCreihlrcwfkqqkktSwTRo760nI93Y51D/OJUEYltTGOx3n4KIM7LDIsS+kxIPcGbE8UFYHwks3a0aJGr5CzMvI+hCtLCGfilD/dskvFRlAGLqH0CWHcdRyMfBAnHX47BCXA2FYUhtvc5xPfRnYYaljX7YxZCBvTMEgNSVLZQn5RMT6Ta58XUYelvnMJlEwpTz6KeytgnzRA1tfEhSEd2pe0J47fKeby4AwLKmNu6Q4h7P6HfvSy5CBPFliEVWVlHdPY7Rhiu9WEXVzMd7YXorbiWqAvNCHk3r2Pkj0uFrD8rvHfoXDd59gfoRhyW3802GeDGRghwGHfmhfibkLuWJK0vw+mLA/JdoScoWwrAy6jDwt8fIP2lzzJ7nEUDA2BuNdH5Z6SGU2mAs/g7+rd1FT3GkIKd13aNpz6xKu5jgmRxiW3MavHebJ7gzs4LIf+D3DBfLmisNAvRSj/j5xS+nSHrH+3Za6N3CJoYWx5QRVsbkMMyEMS27jG5J9RqJ6HHDoxwTDBfLmvWWQqvdiScoTIc4JrGuWvgO0KhvFbT8iIAzLbmOXA1pZZBtxSc93juECeeKSY/V0zDZs6bpexaz/o5AGD8qJS27mvzATwhAbO+3tu1EAO2S11xEglKNi9xYujtnGN0sbO2LUbRO2e7jE0KKsFPuG+peYCWGIjX+xWNxiiaaNLYKAzulFDBfIkzuWQXo+Zv1/Wuqfiln/EUv9y7nEzmyR9OLtFa1MtsD1+tfhd+5kWCMMsfH/se3HncugD3MFEKcAodiyheibS9z8wqcl3c2+k3hLEIYlFIZ9YvcWPmNIIwyx8QL+kXzjB/aKW9B6gNzYIelvWjflL9awHJ0x6m6Thflia8swlxhh2KLC8LbDb+Q0PsIQGy/kL8nXy+4SqmYjQwXyZDTlCdJu8WrEPQG2WUgphDAsnzB02URPbnCEITau70z4LOmFZrMxbGl7hmECeWM6zftF4kdeH7RMgs0x6z8n5vzLRI5HGLaaMNQN9LbMKRp+agnDGWGIjety2dKPRym2/TRHUQpgZb1lgI4k0MaIpBvZ/bEQuw1hWC5haAtPox76TQxlhCE2DmWdwxzqSOmlzrYveA3DBPLkjKTrzVOmxZwfOQ6LLJPsGJcYYdhiwnC/w+86yjBGGGJjKy8sfRlMoU1bhq7HDBHIG5NLO4l9DrY0eHE32NqWqW1vXiqMCfwLzYIeJJm1jPkrmAlhiI2d2Gfpy3gOv5/QUpAr3ZYBmsRp3mOG+j8lUL9pmfqj401B91F2MByg4KwQ835gLbcxE8IQGzuj+89Ne3VnE3426DPXFBpuiuEBeTNkmaD9CbRxL2XPxmtD/dcM39tUNUF3MxSg4Cz1yluxh5VqT7kfh7xyP3h4/wj+1P/WAPOdLWDnZhSGPcELsu7X1qDJetpWI030YmPnMW3qz6EE2zphaWuIWx3kzQ3DAP2cQP22wNlx928ss0yygyHf0xRinyS7ZOkAccf5lGWsX5N0T9+rMH0m9hAbzb4twxYXsmjCUF9wvxj6ugUbW9F581LS9+K1B+KdQPRQWHQyfJd0vXmm/X8/EvBu2IKE1ntIdXnlTfDvz1vEywGti3p93lnG+bkM+nFf3A7z6Lze2sT2tgnwIgnD5QZRWN3fXmxsRU8omw4x7k+gjROWecNJZMidfsvkHEigjTFD/fcTqN+WI7Z2b4jGdKsctlGPYQ/DAAo+R01BeGeDl6O02SCNnfT+0qRzyxbhoBLCpChxUUccr8c4NnbCth++O6aI/yZEz4CCY8oVOZfQxJwxtHEigfofWm4w1ehyXCU0wXchTRgUmxOWB+hUhh4Gl/A4SWczyoMDjr+tvyD9nXHs7yw2duaqJH+wq83yrCKKABQGkzv/ZgL1r7FM/LUJtGEL27FafK/hQZnfU9jsS13Q2vQ4vPCMBZ6XrLBtzg9bGmumbRoadPit42+7X5A+/2jgenRgY2duGvo1GqE+017+CW55UBRWWSblnoQ8HmkebBGxL0nU84Ru5/JDAVGvwkkx7/vVh2oehwl2S7Tg4QNNYntdTXjU4G8bkfyXlL849rUIy9/NZuPLFjHX5fib70m6WcUAEuOo5SbSlUAbJq/HjYR+x6cGbjIqRglkDUVkj8WTomLxbI5en26LYA0r+wps865AuI5E/G1a3gXXZWtO1+aqFNv71uw21tAxXw3Pk1PixxatpTfoc9h3vyXkfAFIFNNbzMME6rdtMN6f0O9wvTE+DZnAAHmhy6yHxZwuUj3cuhd4eQH6OySNe+hPFMjeGtZFg4N/CeyaRnrFuaB+bSeLQ0G68mPbTqPXbB02jozOvXGxn6J+GJRvls+qU4RDj1A42i03+CRu5rYwMkmJtFWWiag3kONSnFOEUG50HOpS8BXLA/11MA+7CtZ/3Tese6ymHB/8+wvU96zzf+/N6Hdtk3BvnI6xndg4EXS/+r8Owi/sOui8+YNbIEB2D6vJYMLOBW+SE8FDiTR3UITxeSDwFJiW0/TE/PkMvTtpiN7aTfa7uPyZ0BsIj0/BPVD/HAtenCH5ca7L2heC5850MK/ngqJ/fxv828XgszgmAADg1wMhzKumHnv1CupWCD3YsbxFfvPemt/ZxzAAAAAAEPlT5vdE6WlM3ad0RPI7qJAFF6tE4QeGAAAAAICP7uXtKtlvflIlDP9mCAAAAACUk3WycKl8JSYBAAAAKCfVcUuHMQcAAABAOTleJQr1RGwXJgEAAAAoHwOy8CTyFkwCAAAAUD40uHJ1oO5TmAQAACA5NE3aoPi5Re+Kn2tTw538ED+At6Yy1GW7bkwFOaN5kKszKLGvEAAAICH+Ej9rxA9xS7GkInEvZoMc0CwOl2vG43nMAgAAEB8Ndvy85iGrKZbOib93a3HVZzW91WjNZ49hQsgQzWTyouYFZQizAAAAxENzm96tEXmaIm275Xvt8rv3cC3mhIw4VjXu7nilB5MAAADE46gs3LCvRT2ELonWd9YRhuOYFDJCx+hNr/RjCgAAgHh0Bg/ValGnm/cHG6hjoo4w/IppAQAAAJoH3Sv4uI6oa0QULpL6h1PmMC8AAABAc6Cewid1BN3xBuvpk/onlF9iYgAAAIDm4FYdMTcRsa7XderagYkBAAAAis/pOkJOc8lGDVDdEwhNDRPyTBpbigYAAACAnFgv9Zd+92AaAAAAgPKgYT3qLfs+xzQAAAAA5eKI1PcWbsc0AAAAAOVBs5PM1BGFU5gGAAAAoFzsl/rewuOYBgAAAKBcPA4RhuSVBQAAACgRy0JE4StMAwAAAFAuhkKE4SimAQAAACgXV0KE4W5MAwAAAFAu7oUIw35MAwAAAFAuvoYIw05MAwAAAFAu5kKEIQAAAACUjP8QhgAAAACg4DEEAAAAgF98CBGGSzENAAAAQLmYDBGGAwnUvcgrd71yBDMDAAAAFJ8zIcLwcsx6u73yxCvfvbIBMwMAAAAUn74QYfjNK0si1rnWK++8MivEQwQAAABoKm6FiMOxCHUdFN9L+MUrmzEtAAAAQHOxIhBy9cThsFfaHOpYL/7SsX7ntVdWYVYAAACA5mSTQRyq0DvklZVVn+8IvnPMK0+Dz/30yoXg3wAAAACgienxyoSEB70OK7p0PCK+5xEAAAAAWgj1DB4PRGLlEIl6A38Ef38vfpibS17Z4ZV2TAYAAABZ8D9Xy3IBO3M5vQAAAMx0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bXN1Yj48bWk+bTwvbWk+PG1pPmM8L21pPjwvbXN1Yj48bW8+PTwvbW8+PG1uPjk8L21uPjxtbz4sPC9tbz48bW4+MTwvbW4+PG1vPi48L21vPjxtc3VwPjxtbj4xMDwvbW4+PG1yb3c+PG1vPi08L21vPjxtbj4zMTwvbW4+PC9tcm93PjwvbXN1cD48L21hdGg+UzLLeQAAAABJRU5ErkJggg==" style="width: 102.67px; height: 20.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="m subscript c equals 9 comma 1.10 to the power of negative 31 end exponent"> kg chuyển động ống phóng điện tử của máy thu hình với vận tốc 7 . 10 7 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAOoAAABTCAYAAACRUZvzAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABSRUGiRgAACTtJREFUeNrtXX9kllscP5LMTCQzmYlXMnNdMckk15jMlUwkk5nETCZzjUlmJjGZTBKTSZKRK5lJJJnJxGSSKzHXZGYiMzOvGfc+575ntfvsOT+ePc85z/c87+fDsT/eOef7fJ/v5zyf8+t7GAMAQIdfg/KPwzIBlwNAfIw6JupDuBwA4mF/UFYdE7UVbgeAeOh0TNK1oOyD2wEgHt44JupjuBwA4uGYY5Lych5uB4B4uBUiEf+6tgelkJI87QrVvwHZCwDxwAmzvINEHQ5k9VO4HQDi4fwOAl2xUH91ULZCRG2D2wEgHl4yu2ua3SGSbrLSUhAAAIaoFV+7z0GpsNTG2xBRn8HtABAPZ4KyEpQmS/XXsN2zve1wOwDEh00Zej1C9lbA5QBAC9Mhor6AS8oPh1hp/W8MriCJIxGy9zLcUj44GJTBoKyzn3tGKaNBSEC+djjHShvfi0IGbogx4vOg3AlKC8vPRoAo2VuVtFLX5/BMNy0DP8Ff8gDbfcJjjWhn0s9Ks6lx3/u3oNwWXySf8S70XFNpVPqAIFG/gpv/oTIoN4Py3ZMOrZ+pj4vx316Lr2tR8X8bomPy8QtbF/E8iTdTVGkcllW5X+YE5bODfeIL44PyOB6UeYmNy+JZaiRqbkQRgx9Yac+tT/gj9AxbYk4hEXoJkpSX5jIl6AHxopc9GiK0Cjui7Js0DFJOxveSOriaOOPROww/x6s0Kv2LIElXypCg+0Wnucz8GstfYrv3su71zGWFCGqZFPah8z4aYXt30krPEP2allMuGT4G6xFjct8m3doUdk0nGIp9VDxrI/H32Rche6uTVjpBlKgtZUJQ3tMu7nihM6KTGomYNaRG1CbxlYuyiS8d1Saou56VljOi6l5KI/AtYi6lDusHaiSS5Z2QYM3M7nan44rxSDkcqt0ecvAXe10SfONEiVqtkej9KbRxS1H/K6LvtBBh67WklQ5GzMy5/JLdLHPZy/3fYNCZUiTqlMKe5ZQ6eC6BVcs8XQTfaVRMJ1oP3hcaE3E5Uef4oWTjEKRQjDfZ55qo7Rp7BlNsa1jRDldeh4m9qw8hG2eSVng+9KIbHD9QPZMvhiOXzP/xghBRKzSTXlsJx6ZhHNU8O6V9zlFDud6kle7M4ZLF+bhBiePHwctdeE6IqDc0tryx0Oa0pmM4Tlj2JlKpO1MjPsnooSB7/SMqX+dd0djSbaHdHubHUl44pmeTVjiyY9CfhcaXyd51yF7SRL3C9BNbtRba1eXc5cs4NRm/o6iYTjzzvZ3M6VJGDyWTvcgcTpuoMxo7Fiy2vahpeyDjdxQV06nsT27K8KFks5jIHE6XqHUs2ysanmra/pLxOwrH9LzvQdfA5Ps4IXvpErXHgKidFtvvMmj/JKGYHvA96GSyF5nDaRN10oAopy2232zQ/q2M3s9QhC31vged7MQ/MofTJSpXOrrzyluWFdEBA6LOEYnpj74HnCzdCw8CZA6nS9QmA5IsOfDDqkFnUUUgpod8D7ghiYMnwEXSRL1mQNRJB36YYvSuMow6ONDge8DJZO8FcJE0UZ8yGpfyPiE4Tl1gtGafrcneTTH+AOgSddaAIIMO/DBsYMdzh++lkdGZ0LIqEXBhjh9ENUl85yKxdAejlbkyquNo9D3YZLIXF+bQJmolo3PN/QUDO2zPPqtk74LvgdYI2estUX8zJKqLwxS/G9riYg3zZES7d3wPtNsSh/4JDpInapshOVyk8qTUaYxEtHvK90BbyHBcA6Imw2VDcrhYvzxoaMtFB7Ysspzd6qCSvbgnkj5RrxqSw8UQpsLQlk7LdkRtABn1PchkU+q4J9IPot41JIeLCZwDhrbYXiK5m5H0z0T2doB/XhD1oSE5XMHElgeWbVhiu7Mueo2TCtlbBf6BqJaIajM1y2mWw8vMRiSOnAL3QFRPiTrKcniZmSx9xhVwD0T1lKjh2wG+5VX2pnJPJIjqjKhjIGq+IZO9L+Ear4h630Oi3kfIJJe9V+Ear4ja5SFRBxEyZjilkL2H4R6viNrB6Gx4MF1H7UTImEG2SP4GrvGOqBcMyVHpwA+mJ3kuImTMILtEqBuu8Y6orYbkcHH/SzWjsynfe5xWyN5quMc7oh4yJMdZB35oNrSlgJDRYxSyN1dEZSz6VvpwOefAD+cYrYPjXmNJ4sBrcI23RP1kQBAX9xhdNLBjEeGSTPbWwD3eEnXCgCAuOmKTI3dIRpBA9k7DNV4TdZDR2A1ksp1xCOGix7LEeT1wjddENRkbThDwg6uxstdQ5bOphXu8JmqVAUE+OPDDHNNPJFUiXNS4J3HeDFzjPVE5PmpsKDqwoUigs8it7O2Fa3JBVJOULDbXLwsG7Q8jVPYue+vgnlwQ1SRVp807hEyWZpoQKmo8kDhuFq7JDVH5JoJvGjtGLLY/yrK/9jG3srcPrskNUVXzEC6W4WYz7CRyL3uPwj25IuoJpp91tXHcrYrptzE2IEz2JnsxA5c/ojLxXlW2tFlo85KmTawsJBi39MM9uSRqJ3N/obHu+XERtgaqY0fH4J5cEpV3zl8VtmykLH95RpBNRXufER56jHkqe/lOKZ4Ai5+0KApVwJ+lAKIaoVtjT5oJAvo0beF+3QSy9wZhu/kJn++KgG8haPMkMaLydz/v4Cu3n8mT5PHyHjTUo4Vlm5ZjLziiIOnOoKf2Zf1MjKgcfAZYNRObRpJ11deUy2HM9CaQvfOEbTbNUfuYkM2VTL80kVVWg16FTSssWcbJI6IDktWPrakJZe8AYbuXDIm6Qchm0/tJs7r/5JHCpskE8fVWUe84KGiGs8zPhedNw6B3ladWB77Qv2Bo7+sM7XymsGtsD/WpMkogg0MMjEuc+Im43d8Ng55CgiyeumY6RseyfZVDVnbf05DrkOEzv2K4qiI12bvK/EyD8Yj414kH8zkRkOsxSbpd/mal1ClnM1AF7YrY4EMlvhoQdZqqIGxeVUyWXQb1ykP2chwT40/d1/SEI3v4UtGy+NIX90hMXSmK+nk7LjLI80mgx0w/S/1WlDWmT/GCDCEpyt4vntjfqvhacRK73I7WYomcstLh8NnqWWkf+Noe7NwQY9tfQLfyRkEEwor44vC/Dxm2PdoaKnEVdpuVdlh9ER1lUZR1MWHGfxsW/1vWCbT/BXacdMw5TB6gAAAAdXRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtbj43PC9tbj48bW8+LjwvbW8+PG1zdXA+PG1uPjEwPC9tbj48bW4+NzwvbW4+PC9tc3VwPjwvbWF0aD7iFGE+AAAAAElFTkSuQmCC" style="width: 36.00px; height: 12.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="7.10 to the power of 7"> m/s. b) Một thiên thạch có khối lượng 1 tấn bay với vận tốc 100km/s. c) Trái Đất, được coi như một chất điểm có khối lượng M đ = 5 , 98 . 10 24 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAoYAAAB/CAYAAAByiAOBAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABUrCIHcwAAIElJREFUeNrtnQFkV90bxx+TJImZzCQxSWYSmSRJzCSTiUmSV0aSJBNJMklMkiSRJMmMJEkykiRJZJIkI0mSGZPMzIz3f5935/fv7u7ec5577zn3nt/u98Pxf//vu98595x77jnf85znPIcIAAAAAAAsJVYE6UuQ/lXpKZoEAAAAACA9m4J0JkgPgzQWpOkgzQZpJkh/gvQmSHeDdDBIqzytw7WQKIQwBAAAAABISZcSff+mSCwYbwZprUf16Ix5TghDAAAAAAABjUF6kFIQRtNUkI55UpcfEIYAAAAAAOlpoYW+eHnTrZLrM5TwXBCGAAAAAAAa1gTpq0VRWEs3SqpPr+aZIAwBAAAAADS8cCAKa+mfguvCls9JCEMAAAAAgPScihFP79W/3xak5aG/5dAvO4PUr/5GIgx/B6mpwPqMGJ4HwhAAAAAAIIZmmg87UxNN40Hal+L3u0nml3ixoPocj5QJYQgAAAAAIORqSDD9DNL6DHlw/MJnBmE4EaQGx3XZQPNxFrm8dzRv6YQwBAAAAAAQCroZJZb4f7fkyIu3mE1by7sc1qVBicFauJyNEIYAAAAAAHJOhsTSGQv58S0pcxpheNphXQZC5ZxQ/w7CEAAAAABAyCsllD6TvW3euxpheM9RPbaEBOnz0L+HMAQAAAAAELA6JJR6LObbqRGGDx3Ug7ewa4dfOERNC4QhAAAAAEA69iuR9MFyvmx5nCtQGF4L5X8g8t8gDAEApdJO86fiAADAd2qCykXw6c8JgmzIcjlh6+RwzH+HMAQAlMZamr+s/RaaAgCnNNJ8fDp8a/k4TPMWPBchZJ4kCLLLlvvBT/obZqcJwhAA4AN8v2gfzQeF5QFnC5pk0cDco6wTj4P0i+bjjM3SfHgMDqw7qlb7fJNCh+fin+9fvRmkR0Eao/mwGDOh+vAND+/rpD71BvvEDag2/1f1HZ9po/lTv0OqT/wO9ZVpNWY8UmKpk9zH+CuSRwmCrNdiGUOhfPdoxh8IQwBALKPk7h7QWnqDZv4/LIjuq0kwbTt+D9IFJbrLhm+FOEvzflhZ+8W3IJ1XwgakZ5Vqv9+RdvVRGPI75rAvXzL0Ew4AfYkWHp6oV54m1HGtpfx7Q3neMCxMSxWGty1NLj6bx59bqF8nxjlQMLsLEIVlXBTvI+xjqbsBgSf3F2os4ROEuphn00ogrihJEN4wCFu2XH1UdXlDC68VS6r7aXQRMSuDdE71k7j29E0YnokRr9H3z32FrYczhn7PQrieLYjvYupl65BLS6hPjBnGh9KF4RGa369/bXjppjTs6Ys+lnPS5I+CzcttGO9AwbwqQBSO09LaCspCf4KQ+qBE86qEgbvHICa/BmlbgfXoS5jguW531fOu0Fi3eg31ebtErEKuWKEE9IThm/NFGG6kZIvyL1WX5pjfbQ7SFY1e4F2O1jp9h3F16reU94jKb04wLni3ldyuVP+vlBPMcw9fciv99etIaxofUB8OAGWwhYqxFl6o+ET+MKFdTqbIZ7uyAMTlM6cEm+t6PEgo/0EGMcd975NGMLTj81w0ifenmDN9EIZ7KNlSzAcwGoXz67uEPNgytrPO3mNTwqLKhmvI8VCeF4V9yksfw0bNS0/qCL7xJsNEOSL8KABwyXABopBFy7qKti9byF4ntMu+jOOlzsJ7voR6nMyZb5ILzngdW4RssixIpzIYUcoWhgco2RUi7Q0fK0KWsLit5d119D73x9ThuoV8N6i2qO1CSHZovD580p1ykvGJMxkmys9Ujl8QANGBpAhr4cOKtu9yjYjLY0FlMfVR0979DuoyQu4swVyfJMvhGMVvsVcBntj5TtsfGb+7MoVhj+a5Xjno91zXrXXyXqPnLdhauNZCX6kZ2Hibui3FGOWtMOxK2eHXePKC2yjbqcIuaBLgATcKEoa7Ktq+9yj5FO4yi9YB12EvziWUYfNGiDaNdelqBQUh+6x/DxlDXitBwT530h2qsoThdk3fnMopgjZp5tyfHmkD3bsdd7C4Ggjldyrl4tVbYXikDoVVg2HVrnMUB6Bs1mRc1KSx7PNAXdVTpn2atjlhqYyzBlFg45aZVkp2/t9vuc1uafpSlbaUa7di8Onckwli546nwpCfVbflfcZCGRdJ76LlM/tiFol5dw+3hhZVaa2xXgvDtH5OvR4884WME+ZFAqB8ooPrZzSJNVo1FhMW47a2RpcbJuF3Fsq4Scl+XbZPmW/T1OVahfoPW39MW4HNngrDp5rn+UV2XKj4+9GFvTnq8buNupbk3U3h9qzFhOQ2WZdhDPFWGKZ1qj1Z8vN25LCkbCMAymVlzMCKGIPFTI62/S3PG8abPP6GvN2dZC10FR1iQiMqwEI+eyYMDxqeZ8BiWYOkP6Da5OH72h55zisW8ryWcwz3VhhuzSCubpf4vGGFHra21OuJalA9TtPimzQa0CxW2GkYA2yHlOEQMbog2L9zTJK6AwT3HbXfI02ZG9C9FvDYI2HI86LukAz30bUWy1tP9XcRRvh2qbeU38+4M5Tfo4x5eCsMo47NkuDXZZ5yvBbT4aUnk4cxloGSaYgZwE+gWaxhChbuQty8JDfuK4MlLM51vnP70L3EIrpoYXjW8CwvCv7WeF72KT7wUVoYhqk5Z34ctupnKL+siz9vheGrGPFkElhvS3rWXRQfruGSUBgewlgGSiZ6KOKXGhxAfjYZvv8pR+WeEpSbxa9RNxa7shhe1pR5AF3MS2G4jBaftI2mYw7KPUH+7iyGWUd/g3yzb26HhTzD32Z3jny8FIaraOE2CP+zJHTNn5Ke9TstDtfAFpj3QmGIa55A2UTdHs6iSawxaPj+Hzkqt53c+GU/LaEuukX2QXQxL4WhJKrIWgflmuKw8kGv5pLfEeuDt2TX6t0byu9Ozry8FIYHIg/zXvOg0VS0T1R0i2NODchNwuf9gHEMlEx3jCVpNZrFGmMlWjCmDWWPWhaGrqyft8jvaBQQhot5TeWFaPtuKPt8ye/oKtk94MfGpUn6G+omb4QDL4XhXYr3hZH4GRbpiNyt6XAHhMLwMsYxUDLRwLiX0CTWaBWMAYcdlv9MUH5an6snhvw6HNRDt329B93MO2G4TtDv7jksf8hQ9liJ7+cQ2b+NKHwDkY07or0UhtEwNbuEK29Oewt6xqaY5/wgHMjCqRPjGCiRHTF98pL6jnA9Y34OCsaAHofl3xKUn3ZyMo1tLmILftCUh37qnzA8Ieh3LkNhHRWU31HCu+HxtmbFv2ApT+luahGpz1XDRcPUhAOmPhE8WFGOyA9psd9COPjouOBZXQSDBSANTwUr6/vqg29Hc6VGcr2gS4vXYUH5aa0ApiD+PK7Z9OFit4ak0DtwxfFTGErm6h0Oy99N/l0qwYfQavE4b1jMtxLCMBqmJhyC5p7gwYrwHYizAoSd9bcIG/ERxjBQIpsyfPiTymLEAwAOTeWfpF3vGnQLyp9JuUDdR8VuEx4hf33FIAwX00Bmt685x0YRiVh6X+A74UM2tTAy90uoa90Lw2jsrfBx9gHBg911/ILDTp5JV0z1CxvxGMYwUCJ3LAwEfHjhNLk5XbgUkNyb7lIYSsX/5pQTkeQ+bVunhd9rBG0zuph3wnC7oG/8LKAdfgvE6aoCnoP76DdV5pOSRHBdC8NomBpO60P//ZAHVriRmMFpo+FvbDl9A2CLdaS/GSNtmlP9fheadgFTJQtD6aSR1gXnviBPrnveqz511klYC/0UhscFfeNJAe3wVPAcroOjN4UWhxzMe1mJ33jdCsPoSd7ocXbJtsgnhy/5GJkdt5cJV9NfMX6BErnscHDg+Fxb0MT/IYmk4PpUrWQBkNYRXuouw7srWZ38+RaHpOvUXqJreSsMh6jcE8lpFi8u/QzZN/adKucNFWOddC02SzmVHA1TczPy3yXbItOOnq2V/kYp1920IvG/iasbAEXRKLRk5U1XHK2Q6wlJO7m2WkjedZaJWhp5gcfN3SnzZv+zEc3CA3E2/RWGbwV9YqCAdhik8nYY+aR87fa2D2rMrSe8EobR8C/RMA7LhAORi6u8osE6p5RYjHJd+Iw9GL9ASUjv8LaReMVc5UMqRfriJTEpeIbHGfJl36nxFH1BesvKMo24eVpnlpcqCkOJlbyIa2AlJ/J/OCh3WWhRw76FayznP5xhoVW3wjAapmY2QeBJVr+bLT/b6ZgyTiT87RfB880S7qEF5dGjPnAOfvxGCYdpcicO2dG8qv60knZ1HTbjp+AZnmfMe3fKvsACtEmTX1PI0hJN5/Dpei8MV5IfVnJmP8l8o22fjn4cGvdsH8qr3Wnvejz1RhhGw9S8SPg7yf3D3Rafa1PMCuhVwt+uFX4ULzB2AQ/hwaBdDaiXlHCcJTvicLyi4vC7oG2GHT/Dc+H7yTtZpVkoxI3R2xPai+/x7sDnWRfCcJewDxRxW81e4bNssljmkMPxrl0tNF8XNBd4IQyjYWrOZOz0Nq+Y4pVENOI+WyzXJ/z9EWFHPIOxC9QJ/A3wqVl2kfhF+S2HVQsvIgn0+9EDYTiRs4zzGfoDC2J2M+Ct4asUH45mgLC7Uk/CsEf47ncW0A5Fi9TaLUMcJmer5bq0hcbfvgLazgthGBemJqlh7wpetK37h+Mi/OtiD0qdsbdi7MpEJ/lzLN918jH4eYMa+F/lqBdb/Kt0hZlkvOKxz+UhHcl9yb8tlJNFHE5R/FY3C+pWDHl1JwwPCd97EX6iq4XP0muhrCv09/CrLdG7XInby/R313K6oPHTC2F4IMXqVRI82sZR+I4YsfrcMGn+IbdbNhCGEIa+wN/Hi4x1u1+hPiudKF0eRpPEc5uwVFZ/zn4/WpA1CcLQDVK3giKswCuEz5L3zuYBKm5euFVQH/JCGEZX1UMpRKSL4JncKF9iVtQ6R9Jtwhd7D+MWhOESEIY12In8W4b6HapIn5XePHK7ZGFoc8F6OEe/v0bVsigvNWF4VfieGwpoB2ng5zyHv04WPC9sr5IwjPou6cI37CH3R9CvUfqI3tJVwwGMWxCGS0gYMnwS8WbK+vFJ6MaK9NuvwvZwNVlKhOEry2XuIdkOSlwao/w3pkAYliMMbwvfcVG4jCn8T8FzwqcC2610Ybg1pnBdOIMWQQPO5HienTH5jQh+95pkvkSNGLcgDJeYMAxbD9OIgYsV6beXhO1xxFH5kis6XVxRxmP7zxzfwACGPAjDAoRhFmv9fip+TuivkjCMhqkZNfx9g7ARs2xHsEPs95iVvClA70qSXTv1FmMWhOESFoYMxxCVBj3+Q9U4cbpe2B5fHJUvOU0+5KjsZpLdhJGUXlL1TrJDGPotDDkMjq0wXmnuol9TYLuVLgyjYWoGBb+RWCV2WerUktA30tXDRYxZEIZLXBgyG1OIw8MV6btDwvY4brlcqY/jNUf17qZ0t6PEJRa22zH8QRh6IgyfU/HzweOC+1CpwjAuTE2n4HeS05BpT/ntzfEypB/DLoxZoCLsIJkVfbgi7cGhVyRXhXH4lg0Wy31QkkBfTvG+2lktLfy7Q/isvBeGt6gaW8nAIdETxhyjR+KALRns0hxBb6LF2y28hSzdwpA4l0vrBsBSQXIn81SF2uMcyZ3MGwtq/1rqslhP3jqPu6HqFM1HdshjccG1eH4Lwxt1KAxvoMv4RTRMjXT7TGKhS3PSKE5oSi+23yjsfMN43aCCfBJ8Gxsq1B7S2I/sl5fVp4gXuvdSCi5bvp5dalEdtfZFr8Dro+ynlgfxWXkrDI/WoTDEISfPiFrpjgl/d8yiEOuN+e2DFHU4Lux8R/G6QQXpJvtuH/UMi7YvwjGDw27tS5E3b1fzDQzTtDA+oSQ8jA3ixkIWhUlXjuWxHmIy91MYSmNYFnHoTBrH8B90GX+IC1MjvXRactjjmSCflpjV7Tjpw+VEeSzsfOvwykFFMQmhqg3MPO58TiGCRpXo4hPfNXcU/t9mJbz5Kro3Cb/rFeRvI+j+lYS89wt+m9V6eBiflnfCUHoQc2UB7bBS+Cy96DL+EPW3+Zrit12Clz0pyOdpxoGMQoOzxJn6E143qDAmX7erFWyTRpLdYZw1DSqLiSTw/sGcdUkKbn4hRR68cE57Bzcf5mnH5+WVMNwjfHcbC2iHNcJn2YMu4w/RMDVpfAJXkSzuj4647ei0sbx2U7mhIACoB0whU6p8KvAYLd61yJN4sdsWyv+94DdNOZ4/yVKYNWZr2ntnP+Dz8koYNlLxh53yzs+t6DJ+EBemJq2fkSQURtKAt54Wb12k3UJmpDca7MUrBxVnAsJQO5myIPpB2eP8XYsIQmad4Ldvcjz3Ec2ivC1Hvnsp3dZyHz4vb4ShdG7uLqAdJP7N/KyIFuIJB2JeTlpn1Ikcq5K46+v2ZaiHZDXOW83L8MoBJisIQwEcyPm8ai/2zZxWY8ic+me2LvIVd/dp3u9wqyYvSbiarNdstdLCQy62IzBsJXlg7DF0G6+EoSQSwYEC2kHiX/sd3cUfomFqXmbIQ3IxfJy/YH/M393NuMqXbu0AUHV0IaYQR8wNHwXWkqzXzenExw5Lz9+WQhx24XV7IwyHqfgbfuLoEzzHQ3QXf4iGqTnrqPOdjPyGfZ2itw/8pGzBZA8IB6xTeN0A0Al8I4Wy3eGiVeczOmG5HtIbdO7hlXsjDCV+okXsEkjiHV9Ad/GDuDA12zLkcy1l52M/glGydyJJIkz/pXy+NgAsFXTxzQ6ieawjuZs56xWdg1RsIH/JlvgEXrk3wlDi2zfsQTsU5esIBETD1ExmzEcSSPOBYRVzJ0c9fhH8FwCw8b3icJZd+HCdycqW5zSvLgbjaUd1+kCIFVsvwlASNWS0gHYwnQHgb2QluosfvLS0cugh+Ym7LTEDJZ8AXJ2x7M0ksxbexeu2Sie5i/vmW3q0xN7dEU1dm9G1rXKTsvlfS1hB5dxiI7FCwfrjhzBkTP6tMwU8w4wH4hQIVxJRgXYoY14SHxr+AJYnrHA7c9SjXzi578crhzCEMPyPwRInqSqxkczWwnc58jcFMHYZLNgUzucQXr83wvAqlRs/sJVkQeCBB8Qd2GhxtHIN36oQ/Xc3c9ZjhGTxkVbjlUMYQhj+R5JPLk4F2uWJoG915MjfFAKk02HdTJZQxDP0RxjuKtlwIglVsx1dxQ+iYWryRq2fofQT7jeat1xmhWMSSq7Be4XXDWEIYfh/xhLqeQzd2hqS7da8i+KDJQpDUySIAXQBb4QhH/Y0xRq+4rB80+HUn+gm/hA9sHE5Z37fMky4u3KW2S0s5zxeN4QhhOF/tJD9OHpgIbzYNW218mG4vLsYJmHocivZZIU6gm7gjTBkrpdoPHlboigFKYgLU5M3KKlk2yScrhewEskTggdAGC5FYXgqoY4j6NLWMIWnYRFuI/C06dBfj8M6rqbyb9OAMJSzRdAnlzsoN+4sA8LIeUo0XAxvx+a9o/BeiomWt7JWWKjHZ0FZk3jdEIYQhsZvZhe6tBWOCPrTSUtlbaPyAvqvNJS9G13BK2HIjJawkDC5HLxGF/GHaAd5YiHPiykmWhuOpi3CsobxugHQWpheommswAdJpg3j0R2L5TWQ3sd6yGFd1xisT7iT3j9h+A8Vf2ONqf6IFuIJcUfHz1rIVxLk2qY/wRFheQibAMC8iPicMIljKyc/HNDZFGj/iYNyn2vKG3dY372Ew371Jgx5DND5vvKixuZ2cpNh4fIF3cMfzpGbYKSSgyDcEVZYqscDoTBswitfwFo0gVfwltxOZYFxyYWE7+Osg7KOKcHyR00Mf9T/P2Hx+/cJfndfyXwXsgsrWp+h3B2O6nxSU+YJx+PXDZo/vMORMPi07S1yG4dvqQjD2repex6bkQlOG8rC9ZseEReqwsZpxDaBSNtqqQ7SMDUfK/yeeeW3W318N9XENEU4jOMLfTGr9xk1kdi+lm6nRqzYFkjvyByaYin5MzarBa+uzvcpvw+3bizUWSpdudK8TCjvN+ULQaaDRe6kRmB1etg/TIcyixaG3A8/kHsr3jIl3l0EdgeWiQsxMGtRiOg+gEsW6yHdtr5TkffK7XFXiYoPpI8pOe1wkgIyDgj6Lr/HDgtl8V294xR/BZXtCfy58LvkMadrCbxHtlKZwnRd8MAKtMVyeTojwBlHdWzRiMKwyPLNcviF/BKGRPHX0toONXTa8P3DfcUjRhx3zCTH609kdxvFdCF3LR2tyHvlawHfqoHTFBrgCT4DL79DF4GC1yas2tmSbnvruoPSnfSepPp2a2Br/IRhAdZb4PO8JP3Oic0t/OeaxYyrRecNYb+651EfWSkYj+dKWqifIr1vah4XrBalK8o4LQ9SsoPcX6A9mtDxt1os4yDJJ59/KvieeZDp0QxI/fgUSud3ShH1gtK7e2yneEshHwxodFCnI5Q+DNDtOn1/pw0T/pcSLCIs9HXWS1vXHZ7TCH2X1rqfwj417VE/6RM+c1mhfe46MCA0GBYpVdnFqwtWkd6kbStCfpyj7UWL9Wgj83aCzSun6pkkX68OfA6lM0rpRRT3++PCb/1SgnBhIeYqjMixDHWapfo6jLLWMOnV2nhlSc/XahBQTyif+0DS9uAfcn/X7WyKfrXcg77C7fxV+LzPS3xO3SHOWxnyGy5gcQIswIOUaeuKneDXO1iB2Nxa6EmwgOgSW0N3VPS9j3q+mq4yZyl7sO0x9fvNoW+LxRVHBbhO8Vs4vOXpelvzQMb6dNfB++J2Zt+5KU09WAT4cPihxbDw4OdMe7ipWSMgfqi+6BqpQaCsrdloe71K+R3cKPG5rxvEXKOwziOG+gEPYMsAH0r4IuyYPKGwo/QmSxMef6DtFgY5Nse/yTGRzqmOv42qdehiBis2r7/NV+T+xhbu+1fJzdZxlCaDcKpXd49DBssP13nAEysVhRYKputCWTwe14z3PFZ2qQl9WiMaigoHdtdz61ujWuTcyPgdcPqm+lJXCf2JXbSSXFwm1Ny+LuZ3reqZf2t0BWIJewCb+3m7Y5ayTyjcsXnbIa0pOWw1OJ/x+U+psiccTJQzakDkLW8OIbFUr21KuhfzBD4PrybvW44EIQ/GHEh+fcF1OkhmZ/toOu3pu2HRNGYYS66qxavP44BkATKjLH/PlLCaMLzHUSr+VPkGMt8qM0f2T2AnwTtRHCZokvRRIPLOV5OqnCIOMnFfvicYW16q9IfMt44hbq4nPLU8waShFg0/zxbyI3JvSVnqh1OS/L3a8Xl4x2ZlDZnN2Zen1EB8kMq9jqxNCd4vwgnziCfvgccr3gq+YxAgn5SYbayjPsZ+xbcFE7mpf7FoKDMG5R6NNY7fWZHXqxV9V/zhAuvGVuSbGfvLtPr+MdcA4IjHBQ06G9DUpcNijrei+ODIA2WV+a3EVS1NKwvCO7WAuqWE4OY6qWMDLXZO7y3xeVjE9qlnmjJYyC4WaI1y2f4s7DgyAd+j/Er1p+lQH+N2YIvhMyUEeZdhJ/njhtOq+v24et5xJXoxhrnpL11qTOLxZkz1j3Bf+ar+26D6W8TIBcAxaU5gZ02/0MygQKLB6TeW8AxdlGzN5O1ItgqyFZddY1rwygAAAPiA6SYZW2kITQ0KZJAWnmgtg23014eLrWY1y1gZTv8AAACAU5IONDShaYAHhCMMXC7pGXjbvhGvAgAAQBWIC080imYBHhA+Lc9btuvRJAAAAIA7WijeWngZTQM8IHxryDU0BwAAAOCWpHuk96BpQMn0h/ojnyTFVi4AAADgmLh7Kjk+HkIIgDLpjvTJTjQJAAAA4J5fMcLwKZoFlAhbq8MBo8+iSQAAAIDscHBZvt6sdgXRrJpoXwRpX+jvNlH9XDkGqgHfLBS+Wg1+hQAAAEAGeOvXdFdrLZ1Uvzme8N+3oDlBCf33eqQfXkSzAAAAAOnZGyMI+e5pvrqrdiE5O+4P0F8fwnVBehgjCifQnKBg+CaTUVp43/pBNAsAAACQjlU0fw3Xv5FJVXd5+lH1d3ziM+6u12E0KyiYU7TQv3UtmgQAAABIB1tZooGpf5DsHlm2Ln6j+G3kQ2haUDC8jfwgSLvRFAAAAEB6+HDJZETQcZw3qaXlHiX7H7ageQEAAAAA6gOO5zYdEXMzQdqaIo/bCaLwE5oXAAAAAKA+2BkjCjkdTZnP3QRheB1NDAAAAADgP220ePuY0+MMeT1IEIbdaGYAAAAAAL/hUDNfY4QcC8XmDPmNUPw1eMvQ1AAAAAAAfvOY4i18JzLm9ycmrxdoZgAAAAAAv+lLEIWfM+bXlJDfGTQ1AAAAAIC/cOiY3wlCbn/GPPcn5NeB5gYAAAAA8JekeIMfc+R5jeJ9FQEAAAAAgKe0U3IQ6r4c+X4hXIMHAAAAAFBXPEwQhby1vDxjnpsI1+ABAAAAANQV6ynZWngzR74XCNfgAQAAAADUFRc1wrAzY54NQfoek98HNDcAAAAAgL98SxCF00rgZSHpNPJlNDcAAAAAgJ9soWRrYZ5DIu8T8uxCkwMAAAAA+MlJjTA8lTHPvQn58TV4DWhyAAAAAAA/GdYIw70Z8mPh9ykhvydobgAAAAAAfxnVCMM1GfLr1+R3Es0NAAAAAOAvUxohl3bbtzVIfzT5taG5AQAAAAD8ZVYj5NLAIvJtkJ4m5DWu+W0zXgMAAAAAgN/CMI3F8LYSf8cS8rqf8LvtNB8Wpx2vAgAAAACgXCY0wnCzMI/aDScHg3Q9Ia/DMb/bqMrH3ckAAAAAAB7wSCMMzwt+f1n97UP1/5O2kjdGfsfX4v0I0liQVuM1AAAAAACUj+4U8SQl32vcEhKBfHNKo/r3k2T2V2xRgpAPquBACgAAAACAJ3BImhmNOOT7jvl6uwaVtgZpkP6eZv4dEXdJPou1mIh7gvQzSHOEW1AAAAAAALzjvEYY6hJb/HZG8poT/I7FYw+aHQAAAADAT56lFIW/gtQRk893w+/4sEknmhsAAAAAwF+WBemKUBRy6JmkW1EGNL9jn8R1aGoAAAAAgPpgA837EL6j+fiC7H/IW8Yvg3SRFp8ujuMSzVsG+bdfg3QnSNvQtAAAAACI8j/PypYs9667KQAAALx0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bXN1Yj48bWk+TTwvbWk+PG1pPiYjeDExMTs8L21pPjwvbXN1Yj48bW8+PTwvbW8+PG1uPjU8L21uPjxtbz4sPC9tbz48bW4+OTg8L21uPjxtbz4uPC9tbz48bXN1cD48bW4+MTA8L21uPjxtbj4yNDwvbW4+PC9tc3VwPjwvbWF0aD7zqVvxAAAAAElFTkSuQmCC" style="width: 102.67px; height: 20.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="M subscript đ equals 5 comma 98.10 to the power of 24"> kg chuyển động quanh Mặt Trời với tốc độ trung bình ( đối với hệ quy chiếu nhật tâm ) v=30km/s.

Tính các giá trị động năng của

a) Một electron có khối lượng <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mi>c</mi></msub><mo>=</mo><mn>9</mn><mo>,</mo><mn>1</mn><mo>.</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>31</mn></mrow></msup></math> kg chuyển động ống phóng điện tử của máy thu hình với vận tốc <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><msup><mn>10</mn><mn>7</mn></msup></math> m/s.

b) Một thiên thạch có khối lượng 1 tấn bay với vận tốc 100km/s.

c) Trái Đất, được coi như một chất điểm có khối lượng <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mi>&#x111;</mi></msub><mo>=</mo><mn>5</mn><mo>,</mo><mn>98</mn><mo>.</mo><msup><mn>10</mn><mn>24</mn></msup></math>kg chuyển động quanh Mặt Trời với tốc độ trung bình ( đối với hệ quy chiếu nhật tâm ) v=30km/s.

 

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

a) Động năng của electron là: b) Động năng của thiên thạch là: c) Động năng của Trái đất là:

a) Động năng của electron là:

b) Động năng của thiên thạch là:

c) Động năng của Trái đất là:

1

Câu hỏi tương tự

Cho một xe ô tô chạy trên một quãngđường trong 5h. Biết 2h đầu xe chạy với tốc độ trung bình 60km/h và 3h sau xe chạy với tốc độ trung bình 40km/h. Tính tốc độ trung bình của xe trong suốt thời gian c...

20

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG