Square root
VBT
Calculator
magnet

Câu hỏi

Tính 5 11 + 9 20 + - 5 11 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAyAAAAETCAYAAADOAWJCAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACjj/tgzAAAImFJREFUeNrt3Q/kVef/APBHkiQjmUwyMkkmMTOZyZiZJIlkkmRMJpOMzFcmGTOZTCLJZBIzmWRikiSJSZIkMplMIknykbHfeX73ZnV373nO537uPff8eb14fMe3z733vM/zvO/7ueec5wkBAKB+9mTtnxfaUSGhpQ71jIX/CQkAwGh90VNw/Z612cJCS8W+f6VnTHwpLAAAo/FZT6H1MGtLhIWWW5y1Bz1jY5ewAADMzJaeAiu29cIC/299n/GxTVgAAIazrk9xdVBY4CUH+4yTdcICADA9q7P2tKeoupG1OUIDL4nPg1zrGStx7LwrNAAAxSzN2v2egmoqayuEBvpa1h0jvc9KvSE0AAD5FmTtdvjvLSW7hQZy7ewzbu5kbaHQAAD0Nytr5/oUUReFBgrpN34uBEtWAwD01e9h2iehc0sWkBaX5n3UZxwdFhoAgJf1W27XvgYwfTsGjKXtQgMA0BEfLn/ap2C6LDQwlPN9xlN8SH2l0AAAbTc/9H/o/O9g1SsYVlz96lmfcXU3dBZ6AABorROh/+0i+4UGZuSrAWPrlNAAAG016LmPP7I2V3hgRuKmnXcGjLFPhQcAaJu4stXjAcXReuGBkVg7YIzFZ66WCQ8A0CYXBxRGZ4UGRur0gLF2RWgAgLbYPaAgig+eLxceGKl4tfHZgDG3V3gAgDYUQ1MDiqGDwgNj8W3OpN9qcwBAo50fUAjF3ZsXCg+MxStZezBg7NlvBwBorE8GFECx/U94YKx254y/z4Snud4MnY1hAKBt4uZng36B/StYdhf13LjNDp2NCPuNwYfBFchGWpy1P7N2RCgAaKHDYfCvrzuFB/VcKbbljMOjTm9zvBo6l5zvd0/uKiGByoubN20InQdifwmdX2fjmulxFZH48Gzcu+Bq1k6GziXtt4UMcr2ZU/TEX2RnCRHqudLcyhmPbznV5bqaczJG1S4JM1RanEj8GAYvV/hPooja1/2SAl52Pmfs7BAe1HOl2qpWrYb3S+issW0TaqikeC/vrzljN67Ocy5rv4XOfbJ/5/zbp92JiPvZoWNdcPUD9VzV5F0F2aQrleNCCZ31viQLlRRvoep3xeNa90tmfp+/eX6LVt6k5U7W3hFeCDeCZz9Qz1XN9pxjvK1mHb9VJc2W9wk1VEq8QvHzgPH6+TReZ3U3WQ/a4OkToabF8h54/as7mQf1XPniBONuznF+qkuN18kSOmssQpYINVRGvKpxccB4XT/E68XlRfN+edsr5LRQLHD+MC5Qz1XWFznH+mdwFWRs3ihptvyzUENlzMmZLMzkl604qbmekwd2Cz0tk7fpYFxNzp4DqOcma17orOroFsmSHSqpw64RaqiM4wPGafyldvYIvgSfBg/2Qfzl9E7OWDgsRKjnKuHbYJGIUsWlMp+F8V6muxc6l7eAasj7RXZUv/R8mfMej0M9d8+F6dqS+I5cLkSo5yrh9cTxb9fFRmt/T4BvCgk02tIw+OpE/PKaP6L3ibd4/ZWTzK84FbTAtZwxcE54UM9Vyi854/WW8IxOvOftUbBHB7TJmVDefb17Q/4vSp4HocnWJPr/RiFCPVcpqf1T1grRaPQ+9e8eN2i29xLJddRL5b4W8jcrjF+YHsClqfL2x7nn+xb1XCXlPbN1XnhmLnbMP4On/KFNUptTjeO5jPOJ99zvtNBAy/R71HO19GXw3NZY9T6EaiMkaLbliaT6ZEzvu6vA+853emiY7xL9fqkQoZ6rpNSV+0NCNDM3ewL6pZBAo32TKIhOjel93wzp1VU+d3pokLiM9YOc/n5BiFDPVVre7ZPxR7O5QjScdX2C+YqwQKPdTkwCjo7xvZ8m3vuq00ODbAvlPmuFek49N1qbE2P4UyEazqWeQH4tJNBoS0P6KsTWMb7/rwXef5nTREOcy+nno1zqGtRz4xGvYub9cHZJiKbv3T6BjB02Li3mkhI008cFJgAbxvj+Rwq8vyV5aYIlYTK3OqKeU8+N1vFQ/qItjXYmEdB4m8aPoXOJ+E3hgkY4VGAC8NEY339rgfc/4zTRAKm9bzYJEeq5WliXiO8+ISoutQpOv/Ywaye7Hfg1IYRaOlVgrH8wwUQe21Swbj31dyPk335ldSLUc/UQv48eJyZ4FHRsiA7b72HRuOHNYuGE2rg+4QlI0S/LlU4VNbYi0b9/EiLUc7XyQyKGq4QoLd6X+vcIOuzzFl/rbNbWCC1U3pMJT0DmFMwrm50qamxfon9vESLUc7WyIRG7b4Qo7dsRdtbedtksECptKkz2GZBQ8AvTPbXU2Y1EkbdAiFDP1UpcDetZTrxuCVG+mPSejLHDPm8HuicLqJYi43f9mD9DkRx03KmippYl+rbNB1HP1dPpRKyWC9Fge0rorM/bleDhJqiaZwXG7sdj/gwPC3yGX5wqamp3om/vESLUc7W0MxGnL4RosHgPW1yuLW4GdqlbCDwdY6e9F2wqBlVSZLzvH/NnuFfgM/zmVFFTZxN9+y0hQj1XS6mrm+d1y+mLD4bGtaE3hs7mNbFDPxtRp72v00Jl3C0wZk+O+TP8VjBvQN3EW1XynnF6IESo52rtTsh/vmueLjhzcd3juBrO91n7awQz50VCChN3usB4vV6BCYhCjTpKrZRzUohQz9VaajneDbrb6DtvDOqFGXTa37M2Vyih0snz+a8443zo8NcCn+GRU0UNfZ/o19uFCPVcrW1OxOawLjY+b2ft3JCd9kfhg4naUnCsjvNXnDPBFRCa6VqiX78hRKjnam1RIi43dKvxi0t1/jFEp7UBE0xO0Z3Ij054AuIZEOpmvkk16rlWuJOIi31+ShAftjk8zQ770MmBSifP5+N01gQnIPZKoG42Bs9/oJ5rgx8TcdmoO5U7e348jU67X8hgYr4uOE7Hdb/62QLvfdppomYOJPr050KEeq4RtiZi8p1uVK6VoXPbRJEOGzv3HCGDiXi94Di9Nab3L7IKywmniZpJ3Uu/RohQzzXCquAKfuUsm0an3SpcMDEnCo7Tz0b8vkWfQTnoFFEj8XbFqZC/stwsYUI914rx/sx4n4x3Q/5GTO6Hhclbmkigz9uTMNqVe37yhUYDpX4RvSpEqOcaJXXF823dZzL2FCxsgMn5X8HJQFxWcEFJeeF5+9DpoUZSy1sfFyLUc41yNFghrLJuFOi01kSHySq6BvzlrL065Hss7BZg01ldxTNi1Elq9aAdQoR6rlU/OhzTbSZnXZjsZmdAscnBrYKTgj9DZ4WUouJtXnFloKfh5f09Uu9z22mhZn5N9Om1LYvH0TD8Ltt1aG37gUQ991/vJuJxTlqcrFRhs02IYOJey9rNaXz5xvvZ48PpcaWU5w/axf9d1P2i2pu1SwP+blOB13e7CnXzJNGn55uAmICo5xplTiIeT6XFyUrdO2itZKiG+IxH6lfcmbRvugn7qwL/9mOngxpJ7YD+uIUxMQFRz7XBvWBH9MpKLbl5VIigUuK96g9H+EUddz1f8cLr/17gbxY6DdTI2kR/PmsCYgKinmukU8Gtl5X2QIeFWom/2sQrFX8O+eUcNxo82DPxiJYU+NtLwk/NpHZFbuMthSYg6jn93HLylZ4hmoBAta0OnWc64jiO9wDH+1rjJkt/d/87Xi2Jv/D+GDrPhbyV81pFlnPcLeTUzMFEn96lMDMBUc810rZEPzksPVY3ER0SHmiN64lkHSc1i4SJmjkZrA5kAuK8trGe2xBs0FhpO/0yBK23OhR7XgTq5nKiX78nRKjnGmlFSK8YyQTl3R9rtRtohxMFJiBrhIkaSi3Ba1NN1HPNNDvYIb62HdYKAdB8r4fO7VV5ifqaMFFDsxL9ekqIUM812tNEDpil20zO9pwT435vaL7DIX31Y6MwUUNvJPr1H0KEeq7RriVywArdZnK+CTZngrZaFtJXP64IEzX1UaJvnxYi1HON9ksiB3yk20zOoBVCfhYaaLzTIX31421hoqY2Jfr2CSFCPddoPyZywCbdZnJuDzgpO4QGGm1dgcmHddKps+2J/n1EiFDPNVrqFuPtus1kvBas9w9tND+kd1K/m7VXhIoa+zbRx/cIEeq5RvskkQMO6jqTsWvACTkrNNBoqWV345fWu8JEzR1L9PMtQoR6rtG2JHLAMV1nMm4G6/1D26RuS4ntc2GiBRNtq7uhnmu2jcFzYJUzaIv680IDjRUfKE+ti+4XIZoitQKOva5QzzXb2kQOOCVE5Zo1YLYcb7uwJjI005Ks/RUsS0p7nEn09w+ECPVco32QyAFnhKhjXtbey9qrY36ffQNOxJdOATRSzCl3CiTi2UJFg1wMlphGPddmSxM54GrbAxSf0u9dkWYqdC4NjfoS8XtmgdAqcQWUW4kkHNdKnyVUNMyDRL+fL0So5xptfiIHPGhzcDaH9AOhcSv5UfxS83rW7g+YAUrE0Dzx158/EvllnzDRUI8SfX+uEKGea7Q5ifPxqM3BOVugwz5vX83gfRaHzrr+va95PYz/EiFQvvdD/i/A8WF0u8DSZE8S36lzhAj1XKPNTpyHx20OzqNpdNjYzoXpbyqzesBM+ULWFuif0DhfhM5DiIPySLwlywOKNN1U4vsU1HPNl3cOptocmKvT7LCxPczaZwVeO16G+3pAIXI0eOAUmib+MnY+kT/i2J8nVJiAgHrOBKS9vhyiwz5vt7t/vzL8+wBpvKd1Xda+D51LS/0euHHbBTRLHP97Qv4tJ3EVLMuOYgJiAoJ6zgTEBOT/Z60XZtBpi7Y4a/4uuEQHTbMl5C+xGycl8X5j97uj8DABQT0nD7wcy1aLs9wjY+qocdZ8IHRWTACakzPiZfvbIf+Xnfgl9ZpwofAwAUE9Jw/IA4PES28/ZO3ZDDtp/MXzZNY+Du4LhKaIl+XjLVTHQmcFq0Hj/0boPITu1zEUHgoP1HPygDxQWOxk8b6/+MDRT6HzYFNcXWHqhRYLkPjw0pXQ2eDmSLeDrhQ+aIy4UtUn3S+gvOc7Yo7Yn7VVQgYKD9RzyAMA0/VhGPwAbbxnNV7liL+uxY2v3GIFCg9AHgCYkXfCv89xxIcaj2dtZ3di4mFyUHgA8gDASMXL9p7hAIUHIA8AAAoPQB4AAFB4APIAAKDwAOQBAEDhAcgDAAAKD0AeAAAUHoA8AACg8ADkAQBA4QHIAwCAwkPhAfKAPAAAKDwAeQAAUHgA8gAAgMIDkAcAAIUHIA8AAAoPhQfIA/IATNPsrB0a0DYJD8gH8oHCA5AHYJTm5AygQ8ID8oF8oPAA5AFQcADygcIDkAdAwQHIBwoPQB4AFByAfKDwAOQBUHAA8oHCA5AHQMGh4AD5QD5QeADyACg4APlA4QHIA6DgAOQDhYfCA+QBeQAUHIB8oPAA5AFQcADygcIDkAdAwaHgAPlAPlB4APIAKDgA+UDhAcgDoOAA5AOFh8ID5AF5ABQcgHyg8ADkAVBwAPKBwgOQB0DBoeAA5AOFByAPgIIDkA8UHoA8AAoOQD5QeCg8QB6QB0DBAcgHCg9AHgAFByAfKDwAeQBQcADygcIDkAdAwQHIBwoPoOV54B9Na/AXjIJDPtDkA/mg+RMQY1WTW01ANINCwWECoskH8oEJiNylaSYgBq2m4FBwyAeafCAfmIBomtxqAqK1cFB80KJ4HjUB0eQD+aAm+cAERNNMQExANAWHgsOXuCYfyAcmIHKXJreagGgGhYLDBESTD+QDExC5S9NMQKA2FByAfKDwAOQBUHCYgIB8YAKi8AATEHkABYeCA+QD+UDhAcgDoOAwAQH5wAQEMAEBnrPuPyAfKDwAeQAUHIB8oPAA5AFQcADygcJD4QHygDwACg5APlB4APIAKDgA+UDhAcgDgIIDkA8UHoA8AAoOQD5QeADyACg4APkAhQcgD4CCA5APFB6APAAKDkA+UHgA8gCg4ADkA4UHIA+AggOQDxQegDwACg5APpAPFB6APAAKDkA+UHgA8gAoOAD5QOEByAOAggOQDxQegDwACg5APlB4APIAKDgUHCAfyAcKD0AeAAUHIB8oPAB5ABQcgHyg8FB4gDwgD4CCA5APFB6APAAKDkA+UHgA8gAoOBQcIB/IBwoPQB4ABQcgHyg8AHkAFByAfKDwUHiAPCAPwLQLjqkB7aDwgHwgHyg8AHkAAFB4APIAAKDwAOQBAACFByAPAAAKD0AeAABQeADyAACg8ADkAQBA4aHwAHlAHgAAFB6APAAAKDwAeQAAQOEByAMAgMIDkAcAAIWHwgPkAXkAAFB4APIAAKDwAOQBAACFByAPzMCCrO3P2hHHAQAKD9RGyAPj8krWvsrak+7BP3Yc0FhvZe3zrJ3I2vmsPcza06w9y9pUd/zcydqprB3I2oaszanw8ax44Xh+z9qj7nE86x7X/e6xfJu1D7I2SxdA4YHaCHlgcuZnbW/3C/vFg3/sOKBRFmdtX9b+LJD8+rVn3SJ+TYW+UPdk7dYQx/Iga19n7TXdAoUHaiPkgfLMy9r/QueXz34H/9hxQCPEQv1AdwLxz4japaytmuAx7enzhfpii//fb6FzNWQq59897X45uyKCwgO1EfLAGM3N2heh8wtg3sE/dhxQe/FqxbBXPFLt79C5pF+mZVm7NuDz/NXNCYv6/N3K7iRs0GTkataW6i4oPFpLbYQ8MCbx/u3d3S/pIsXFY8cBtba9O0n4Z8ztdPdLb9w+6o7nQZ9hQYHXiJOMKwNeI/5S+J5ug8KjVdRGVC0P/N2Ug5ydtV3T6JRV7ZxNOQ4ow2clTDxebGe7Y3RcNudMpo5P87Xmdj/voFuy3td9GKMpExA1heMwAclpU3U/uHhP884w/O0Xjx0H1NL6kicfw04EitqQ854XhnzN+GDm9Zyc8ZZuhAlII6mN1EYmIGPslDuydjf8eynnYtaOhs490Jdq0jmbchxQpjfC4NuUbofOyk+xoF8UXn7wOl6+j0vZbsza91n7Y8gvte0jPp7VoXNVot97xeUkF8/gtZeHwQ/m38vaq7oTJiCNmniojdRGJiBjdLN7AHH1l88HfIkeq0HnbMpxQJn6Pd9wI3T2vpiu+AD75WlOQOJzFAtHdCxxzOfdVrBnBO+xP+TfVgaj9jgxhqzIpqZQGzXbnKaem7gqzYrEv1lUg87ZlOOAsuzo0/+/H0FBE1/36TQmIQdGdDxnct4jTkxG8eB7vBUrbznfT3UrRuxhYvzMESI1hdqo0eYmzs2jtvwaUPfOedMgg/9f87132cX9I3z91QUKpxcf5J4/w/f7OPEeo1z+95tQzhUdiO4n+vY8IVJTOI5GeyWkN8pttF8a0jl/McggfNnT70+O4T3i6lBFl/X9ZAbvE38dynuwMn6GxSM8rtcTx3JE92KEzib622IhUlM4jkZbmTg3V5segFMN6ZynDDJablZPwR4fIJ8/pvf6quAE5OcRTqZ627kxHNeFxIRnmW7GiJxJ9O81QqSmcByN9mHi3JwxyBwH1EHvsrsfjvG94v3pd8P47i+Oa9qnblHZMYbj2pl4z6O6GSV9Z30kRGoKx9Fo6xLn5pRB5jigbmPglxLeb3codhVkmIdptxd43XHcovJG4j3jcr2LdDVG4ESir60XIjWF42i0jYlzc8IgcxxQdbPDv3tZxFuFlpfwnq+GYs+CDLOj+MXEa94Z43Glruzs1d0YgdQSqZuFSE3hOBptS+LcHDPIHAdU3Yu7hB8v8X2vFJiArJ3may4Jk9ttPUr9Mn1bd2ME9ib62TYhUlM4jkb7InFuDhpkjgOq7rsX+vryEt+3yEZX052A7CzwmuMszj4t8P5v63LM0NZEH/teiNQUjqPRjibOzXaDzHFA1T1fvansXbuLFOvTfZj2dIHXfHeMx/R+gfffr8sxQxsSfewHIVJTOI5GO5k4N5sMMscBVReLlfhcxIclv++mAsX6m9N4vbiU8FTi9f4OM9/VPc+cAsf0uy7HDKWW4PxZiNQUjqPRUj+2fWSQOQ6gv9SvuNOdLKwuUPzfK+G4HhU4rvlOPzOwKNHHLgmRmsJxNNofiXOzwiBzHMBwE5Cb03y9zwpMQE6XcFxnCnwOy6QyE7N8Z6kpHEerpa72zzLIHAfQX2od8+muVpVagaqsVb5+DJ4DYfweh8ndaojaSG00OXOcF4MMGF5qJZ/p7mVwuUDh/1UJx/VNgc9xyulnhs4l+thSIVJTOI5GejdxXq4aZAYZMNj+kL9r+Nxpvl7qknRsWyowsYrtT6efGUqtgrNWiNQUjqORUncPnDTIDDJguALqxDRfa16Bor+sZy82FvgcbpFhnBP4f7oTYdQUjqN5diXOyyGDzCADBruZM+bWTPO11hScgJSxNOHagp9luS7ADGwONiNUUziONjruxweDDBjO/DDa+1dTK2o9b++VcGxVmgzRXO8FzxmpKRxHG50Nbr80yICh5N2mtGGI19tSsOgvY/+NVwp+lk26ATOQWgnnphCpKRxHIz1JnJcFBplBBvT3w4CxdmXI1/ukYNE/p4Rjm1vws2zTDZihh8FzRmoKx9EmCxLn5IlBZpAB/c0Og/cweHvI1/yuYNFfRkE2p+BnsRcI4/7uWiVEagrH0SipZwzPGWQGGdDftgHj7NgMXvNowaK/LEU+y2FdgRn6Nox2Lx3UFGqjavs8cU6OGmQGGdBfvw0D72dtYcsmIEd1BWZoU7ASlprCcbTJiTD5va50TscBtTNoB9d1M3xdExDaaGmij/0qRGoKx9Eo1xPn5G2DzCAD/utSn/F1ZASvawJCWz3N6WNPhUdN4TgaIz4/+XfO+XgWWrTwhEEGFNVvr46458coVqY6YgJCS/2S6GfLhEhNoTZqhA8S5+OiQWaQAS+bl7U/esbVg6y9PqLXP1TDCcgh3YIR2BvsN6OmcBxtsCtxPr4zyAwy4GUHwn/3KHh/hK//aQ0nIF/pFoxAalnOI0KkplAbNcLPifOx0SAzyIB/9Xvw/JMRv8fWUJ2NCIvuA2IjQkYhdV/4dSFSU6iNGuFRsAO6QQYUEhPi3Z7xtG8M77OxYNE/r4Rjnlfws7g1hlG5GPJ3RJ8rRGoKtVGtLU+cixsGmUEG/Kv3AdlxPXj9UcGiv4wHcl8t+Fk+0j0Yka8TfW2DEKkp1Ea1lrrN+LBBZpABHb0Px/40xvdaULDo/7CE436/4GdZqoswIqnVcWxIqKZQG9XbT35kMMiAtHU9Y+h0Ce/5d4Gif90Ejn3QbTGzdBNGJPalZ8FzIGoKx9FUj4PbLA0yINdbPcnybOg8KDtuNwoU/ptL+BybCnyOu7oJJX+PvSZEagq1US29kzgP5w0ygwzaLu7r8Vd4eWOksn6ZOVmg8P+shM/xSYHP8bOuwoil7hHfIkRqCrVRLX2VOA97DDKDDNosPnx954Vxczlr8yuUpMvaffxogc+xT3dhxF5L9LmTQqSmUBvV0uXEeVhukBlk0FbxIfBrL4yZ+N8LS/4MRZ69KKMIOxWq8SwKCpUX29PguSM1hdqobhYlzsEtg8wgg7aKVzku9STEVyf0OVKF/9USPsfvIf0A+jzdhjH4Ikx+FTjURoxO6pberw0ygwzaKO76/Vt4+eHqST7sej0xlqdK+AxTFZgE0U6vJ/reESFSU6iNauVM4hysMsgMMmibeDvH6RfGyb2sLZnwZ/ouTHb/jaUF3v8bXYcxupTT9+4Lj5pCbVQb8ap+3vLytw0ygwza6GRPYbOsAp9pTYEJwMYxvn+RJXhX6zqM0a5E/1sjRGoKtVEtbA0WMzHIjAN4yYsrPT3M2sqKfK54VeZBYjwfGOP7H0y89z1dhzGLz1/l/WpqV3Q1hdqoHlK3X71hkBlk0CYHesbGOyW9b3y2ZGtIr+TzfWI8XxjjZ0wtl3hA96EEp3P64MNgNSw1hdqo7j8kXDLIDDJokxf32ojLer5X4nv/1H3ftxL/blVIr0I1ZwyfL3W/bmwrdCFKsCHRD9cKkZpCbVRpOxOx/9QgM8igLV68t/xZKHdJz+fPVlwv+O+vJsb0hjF8xs2J97yoC1GSeIXjXk5f/FmI1BRqo0q7khP3J1mba5AZZNAG23vGxPoS3zuuLPWw+76fF/ybbYkxfXwCeWSjbkSJ9uX0xfgDwgIhUlOojSppRSLunuMyyKAVNvaMh49LfO94H+ydIYqm+AvwnyF/V+hR3oa1sPv57FZLVcQlsfNuCfxciNQUaqNKOhDcymuQGWS03NqeIqbM+05XvjD5iO3kNP9+R2Jc7xjhZ03tQP2xrsQEnMzpk9eFR02hNqqc2SF/JcdzQtRxuiGd87RBBv/xfuhcKXg+DnaP+f3iVYu4rGB8luKX8N9fbz8Y4vWuhfFflYhfGHdz3ueKrsSEvJP4bntXiNQUaqNKSd0+bAGJrlsN6Zy3DDJ4yepuv/+nIu2PIY9jVci/DWX7CGKVd/Uj3pblcjmTlLc09I/Co6ZQG1XKpeBW3qR5Ib3kZPz/ZzkOqJV469PDCk0+Yts7g+PJ2xk67uC+cAav/VpiorZLd2LC1iW+2xYJkZpCbVQJqSXktwtRxycFC4f3HQfUxhvdovyfirXXZ3hcP+S89ukhXzN+8Z7Ped1juhMVcSOnn34lPGoKtVElHMuJ812TvY644dadgp3zN8cBtbA45O8dMKk2qrH3U857HBni9fIe8LXPAlWSt0dN/MFhjhCpKdRGExWvpuddcdopRJ3LtRemWUAcquDMrSnHAaPw6jS+cMpum0d4nN8nJg0LCuaOs4k8AVVzM6fPfiY8agq10UTtz4nvn22Ob/xSXtftZE/C8A+Rxku9H07w15amHAeMUnwG4npFJx8Px5B445K4jwa8X1z+8MvQ2UOh19Lu2B/0t/FZkC26ExW1MWec3RYetZHaaGLmhfznLj9tUzDi0nx/dQMyNabCYqr7+vF9NjkOmIhY3F+p6OQjtoNjOu54uft4SK/wcr7bUiuCxduxFutOVNzvOX3Y5FltpDaajD1+HPjXByUXGVsdB0zEnApPPmJ7c8zHvzxrh8NwSw7HPVKOlPAZYVTWBBsTqinURlX7Ds5b+GWjEAE0V7wSFG8d+Dp0dv+NvzrFWxGmui3+953u//dN99+655k6yttczi/VUK7dOePxkvAAAE2wLAxebcdVEChPvPrxV84E5C0hAgCa4ttQzqpzwGB5z37YRwoAaJS4z8OgPX/i7YduL4Txj8FBK1/FlRYXChEA0DQfB5uewaTk7fthXx4AoLF+HVAAxfvS5wsPjEVcBn7QfiuXhQcAaLIlOYXQPuGBsTg6YMw9y9oK4QEAmm5nGLyR3BLhgZF6Mwy+9Wqv8AAAbfHbgILoJ6GBkbo4YKz9LjQAQJvEKx2DVuR5X3hgJAYt/BBvg1wmPABA22waUBzdDJblhZnKW/r6U+EBANrqeHBvOozDgeA2RwCA/5iXtRuh/wPpS4UHhrJiwOTjTtZeER4AoO3ivej9luY9LzQwlGsDJvUrhQYAoGNzcK86jMIXA8bSdqEBAHhZv3vWH2VtsdBAIfFq4lSfcXRYaAAA+uu3P8hvwgKFXO4zfi5kbbbQAAD0tyBrt/oUUZ8JDeTa02fc3M7aQqEBAMj3etbu9xRST4ON02CQN8N/b716EKwkBwBQ2NtZe9xTUF0PbiWBXnNDZ/PO3gn7u0IDADA9H4b/3lJyUFjgJd/3GSfrhQUAYDgfK65goPV9xsc2YQEAmJkdPQXWw6wtERZabkl3LLw4NnYLCwDAaOzqKbSuBM+D0F6x7//eMyb+JywAAKPVu8PzUSGhpY7UbfLxfwhpvPQ0sSebAAAA6XRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtZnJhYz48bW4+NTwvbW4+PG1uPjExPC9tbj48L21mcmFjPjxtbz4rPC9tbz48bWZyYWM+PG1uPjk8L21uPjxtbj4yMDwvbW4+PC9tZnJhYz48bW8+KzwvbW8+PG1mZW5jZWQ+PG1mcmFjPjxtcm93Pjxtbz4tPC9tbz48bW4+NTwvbW4+PC9tcm93Pjxtbj4xMTwvbW4+PC9tZnJhYz48L21mZW5jZWQ+PC9tYXRoPvfkKi4AAAAASUVORK5CYII=" style="width: 128.00px; height: 42.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="5 over 11 plus 9 over 20 plus open parentheses fraction numerator negative 5 over denominator 11 end fraction close parentheses"> A. 9 20 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAJoAAADkCAYAAABg1z2mAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACMJCpdlQAAC85JREFUeNrtnQ9k19sbx4/MTCaSJLkiSZLEdWVyZSRJMiOTTGYkSZLI9ZNJYn6SJJEkkxnJJElMMklGJpMkJkmSmCQzM+7vPPbZ/X33vd/P5zyfP+d8/71ePG7c7fx73jufc57zzxioRKu1LmvXrD209tXarLV5a3PWflqbtDZi7ay1P2gySIMI5l4kqL9T2idrF62tpRkhjs3WniSI6Ie1Z9bGrM1YW0j42dlIcG00K5RyNqYHe2PtmLX2hE9rkjinre2ieUF6nAcxIjmdIp0Oax9i0pGer5+mbl6kl3oRI45DGdJbbW08oXe7QJM354wyThQXc4p3KkFsZ2n65mIoRggfrbUUMKmYTRDbYZq/OehPEMGpgvL4KyGPn5EYoYHZlNDbzMfMLrN+mr8miG0CVzQ2jxOc/6DgvC6Y5OAu47UG5U+H44sOQaw3yUFdCQCvwS2Nx7hDaD7GTc8deV7CLY3FVofDf3nK94wi33bc0zgMOhw+6inf7ca9EH8a9zQOHxzOvu0x71lH3pO4p3FCGq5epddj/k8U+W/BTfXPEYWjuzzmf0uRP6GOBuCGwtH7Pebfq8j/MW6qf0YVjt7rMf+Divxla/gKXFXfTFVZaFuNbhv4DlxV3/yqstBalULrwVX1zVyVx2jCgqIMF3FVfaPpTQ55LoOmVx3CVfWN5tjcEc9lmFGU4SGuqm9mFU72vbj9RVGGMVxV33xSOHnEcxnGFGX4hqvqm0cKJ0/VgNC+46r65q7CyTIrbPFYBs165w9cVd8cVc48fa53PqZHa3y0kfnbVRYaY7QGYFrhaAlBrKii0MZxU/1zWdmr9XnK/6ki70e4qf7ZqBTae0/5f1XkPYybGoNhpdhOVmmMeA0XNQaypVuzwC7rkkUevbuvFFovLmoc/qN0+luzeA1VXs4b/bWk+3BPY/FM6fhXJvtdtHICfciku/+2Fdc0FmuiQb/G+Z9Nui1E8nm+YpYv5H9T5PMBtzQmci/GuxS9zWQ0SZDt1kuxNvnvOrN4JkAudHkZ83uHDXvRmhoZgz0x6a9419pg9DkcMNXfDwc1wAmj25ioNVkF2FaS/mvF73CrUBP1bgPRmCyLuCQge61MYMJvit99SfM3Jx3RmGs0mjQsPcuzEP1bej9ZUroXjdt+zxne4JQ65MZ1pnQhmlAA5OoZuQoBvKNZW91DM0EeNhr3oeE3NBPk5aaiN+ummSAPWxS9Ge8MQG40x/t4rRhyobkL7SbNBHmQa9xdKwtyan4VTQU+wxkybttNM0Ee+gzvCYBnZGDvurHoDs0EeZDdGa6jdJzXhFzIeQLXCXhZy2yhqSArsuPCde5AthFxpTtkRg6gfDRcfAwe6TSL10vFCUwmBYdpJsjDOZO8himf0m00E2Rlg3G/JCx3q62kqSALMpCXPf9JbwTIrHMvTQVZOeoIXYj45NQU1xhAatrM4qmmpNeK5Taiq2bxpDtAqs+jfPrumORlpLfRZGA1TQZaZGbYbxYfsUgaf8m9GfKiyk6aDNKwz8RfxLcQ9VryJkEPn0bIw66ScZbcgC03+JyKBMigHgqjhTEWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACo+BvDygyhYQgNQ2gIDUNoGELDEBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAI/K7tdPWhq09tzZjbdbavLU5a7+sTVsbtXbFWpe11hquz7aS+ry29iOqx3xUr29RXf5rba+1FUjAHxusXbT22WR7V3I+ctaeGqnPKmvnrb3PUJfv1i5bW48sinXIlUgoRT1m+tLazirW6XzUa8WVT/7fWNS7zSX8nPR2F+jh8rMnRw/msgVrA4Hrs8Xam5jyfLV2ztq6Cr+3I/pjixPdpLVNyCUbfZEYfD/V/MhaW4D67Lf2M6EMqxVpiJgmYtKQceqfyCYdJ03Yd8GfWmvxWJ+ehD+aoZRptUXljfuUdiIfHYdMdR6hH/JUn66EPMczptlubSomzZ/RrBwS2JzwefkQzbS6onFM6QC4NQoRdFu7bu1jRrH1FVyfjqiXqZTXr2gmnZWtCROkL9bWIqd4Ko0/3kaxoywTiVcphSbjnDUF1WVtNMCPy+t8AXlccgwHoAInKjTW9QKm7icSepVKdqWg+jxOyONrQROQdkeY5DiyWs5KsxiELG2kSwV/wmaUQpuNHJiHI448igyrDAbqoRuCv8oaaMRDHp0pwiX9OfJpc8T+FnKOzcrZ6KjLLeS1yIoyx3wsoEeJY0AptAcF/tGU2zMP9Rp3CHsLMvt3OGOfx7xkdvpJIbSfGdOXWNw3R9onPNTrlCPP28hscaF7qUEeBsjvrLJXy7Lbo0+R7gYPddps3BsK1jWzyFpKYkELUWzIN2uVY7UsEfYXjjSnPdbL1VNfaGahlUbNhwLmO6EQ2oGUaf5mqrf6IAw78v7QzEK7WtIQWwPme8eD0E4p0jzmsU7HFfn/0axCW5othY5ia5yyP2WajxRp7vZYp05F/peaVWh3o3HLvsD5HlY4ZXvKEM2cce9/87lBsVVRp9fMPas3NixCFB0KJ38JUK8finq14/7aEdq7lOlp9s89ClCvx4pyHML94egueHY4bKo741ziHuO02qLX4YyelOlptiOFOJ8wqCjHKO4PR9I+Lgkgp93CM6dw8NEa+AMS+4z7wzGS4IjhlGmtNLolrRBjo26jO/3F8bxAvEtwRNoDxnuUQtsfoF4HlGXZigT8057ggEkPM9glC3EUrpZEz4wzwQFdGdI7qnRuiPjVKmVZDiMD/9yNafyJjOn1G3/bjtLSpizLMWTgF9mWFHecL+uC81Wlc0MMwFuVZSGW5pljMQ1/J0eat5XODYWmLDeRgl8qBVZl6/WaJhMaW7s9sjum0Q/mTBehwTJeGj9H0RAa/EOlWNdkQTPBWwgNBFkiKr/0RU7Fbywo/Rt1KLQbyKJ4rph/r/UVeYfY8ToU2gCy8D8B6C84j15TOwFbbRyNgG2ByFWd5WcdL3rIp1vp3JWBhgksQQXmYaAB8H6lc0Pcf7HWsKgelAtlDXvfc8+pcW6Ik16dyrJwg3cBHDThD4Vorlg4WIW6s/HRE3JJcOmiue/btpd4q3BwT4ByaM6rfkIm+ZC4WOmdsXLhSlugvEcUDj4ZoByaLUsPkEq+QfB0SWPK4nnIg7KaC/5CROM1y2EXkUv2wXjpszfy79D3tmrGRiMByjFaI2PFhkN6rdLF8vemOvfrtyscPBmgHK8VE4GVyCYdEgUfKxvkVvNZwSmHk+cClGGuBsTeUKwwy6+JkgtUfqtymTRbun3GrzYp8h9EOtlnebJDthZundYcdeuucmijA+lkm1nJgw07aqiX/W7CvMpSiWum+tdmNQylW34kMLsrUL4y9us17oj6dYezxz2W8VUVRd5QlMaq5BmdkI+g3o/ydT1PuFMx6/OxXajduJfBtiEhN2fM8tt+Ql5FujT2mVL+/KTD4V0eytjjyPMFEnJT/khEyBsLN5n/P1Z2Wvk7x0z4C/lcgdpuZJRM+abCIwHzLl3Wkl50tfL3yt+2qvR6XpGfzzUm/oHYpSA2JHCgbNwR8u3JHWb52mna5aMTJtx7UOcceR1BSvF0muWPuZ4NEJrYHI11HlYYWO/NkN6bAL2MbIFKeppnAinF02HiL2Kphn3MWI+djplgn+febJ6ZZvIna6aGRJb3sa4zCenmvfNjveMP8gxyqsxm437rshqW96DxXVP82wPyaX6ekO4d5FQZecPySw2KbKyg+t03xT5FnbSjlx20ijBCrVmR+/yvO8ShCZ/I465PDVcdZIoBTdWoyGZM8aeFJNQQ916TLMjLe+yVtjtJ4Hgg4XdlrHYUOcWPMyZqVGRi1zzVWwbxQ8b9pvvzyFwz8BHj5/nshqG1hkWW9hnFLMhd/zczhnJmo7HddmQEaXp22SRw2SyuWcqT1L/M4rbsuejf09H/G4x+ti4PAP8PovX7+yBonhQAAABjdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtbj45PC9tbj48bW4+MjA8L21uPjwvbWZyYWM+PC9tYXRoPp5HmUgAAAAASUVORK5CYII=" style="width: 24.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="9 over 20"> B. 299 220 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAMwAAADkCAYAAADU3cupAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACMJCpdlQAAD6ZJREFUeNrtnQFkVt8bx4/MTCZmkiQxySSJJJOfGUmSmZEkk4kkSSaSv0km8jdJEsnMZEYykyQmSZKRmUkyJkkyMZnMTPQ/z3/n/XXfu/fe89z7nnPufe/5fng02s6533ufc+85zznnOULUHvulXZI2Ku2VtEVpy9JWpa1I+yVtXtq4tEFpXdLqc6ijXl3bHWkT0r6HdCxJm5Y2Jq1P2oGcPo+i6CgU26TdkPZV2p8UtqoaUHsOtJDDPFLXlFTHF3UfNkMHqMQm9ZVYTdlQKtlbafsy0LJT2vOY6/op7aW0SfXV/B3zu8vK4RqgA5Ror+KLojN6iNcdaumLaPQz0s5Ia4zp6sQ5J3U9D0IH6NW8mUzZU8tvNyr7SUTdlxKU0yZtLqbxn7X8PIqio5BccNBQgvZCWp0FHfS2fRNRZ2eK8pqkvY7R0W/peRRFRyHpdNxYSjZiIXIU5RQ3qnTe2RgdfdDhDzSYXIq4gfQZv6n6wlukbQg91N3SuqXdlfY5ZaPpNahlJKKOzwa+ZjvVYDlKxwno8IOpCjftg7TDKQMG7xI2GIroNBvQcTamjouG7tW1mDqWlDNCR4E5X+GG3Q19SdKWu5yg0QxWWV9LTH2rEVGktF2l7zE6pqCjuGyU9iN0owYMlt+mvh6cBrNcpTM8iyn7ieH71q/R0gcdxST8WR6zUEeH4Iep04Y2/7FUbhRbNZp+puxiFkVHIaEu19fQYLLRUl3XmQ0m7Rv0taZcG/3xV5o6BzzWUUjCYeQjFuui/vIXRoNZSlF2q6bMX5Y0XWbU2+ihjsIyHrgpEw7q62N+ZZKubr6lKW/ckp49DC2XPNRRSOrE33VJv9XbzTabmWOZjoTlzmnKe2hRky4KOO2hjkLSJezNtMcxxWgwxxKU18Ior8einueM+nd5pKOw3A7ciFaH9Q4ZbjCnGOV1WdTzgFF/n0c6CkspGvPCcb3nGA/maILy7hkuLyk9jPqfeaSjsAyLtX0QRxzXe4LxYPakDFxE2WGLeo4z6qetwhs80QEsjp2i9mUkeSizGTtaq+BF/vZ6ogM4bjAfE5b3K2NHq2c62klPdADDdAuze2NWMu77C8ELld/wRAdwPLhM+gbjvBU7LWvifB1GPNEBDDMg4tMxJd3jz8loc8qyJs5q7AlPdADDjMU8jNEU5XH229hePPiNcQ2TnugAhvkY8zDSJPrjLOgcs6xpknENC57oAAZpFObXKj1lPOTZHDjaD090AEcRsrTLPoYFL3FgnUVdnHVYPz3RAQwS5RTV7B0/zYww2VyH9czAm7koOoAh6M0Ylcapmozy3Bnqhxk72oInOoAhzkQ8gCEDZc8LXhqnDRk62muPdAADvIt4W5lIsHBTuE8WGOQFo+6nHukAVXIo4uYfN1T+DqajfbKk7zuj7lGPdIAqeVvhxj8wXMco09kuGK6XO/a445kOkJJKq5NpzsX0MX60xZezgJHWS5lMVfSY6Wg9nukAKaCsmuHk5D9U18MG/2E+dMoZ3WSgvqvM+pKmsCqKDpCQQbF+4q3Dcp0vmQ+eghBpz3ikQMVIAidLkzqqKDpAFQN9FydcNatBMefhU9bPJEvmW9RLILhQcoFRz5zHOgAD6iaEFxO63HhE+YI/JnhrTqtBNG2/Lc1x0L9bVCSvPyJwQX/HyVEw4rkOoGFCuJudjmu0z0Wy7kYSu6W6J5yc0aegA0QRPj7hccbXQ2fULBp0MJoN3x0o/z3jb5qhA1QinKonL7PCTeoNmvYYdZrQuxNyMGI742/fQgeoxH5RvrjS1unI1dKmvoLjalBNA99VFcFbVm9xuvZHajywP6YsTji2DzpAmB2ifFkFHZPd4IFuXS6x32rADR3gX2gOILjKluYFfDhLpI05ToAOUNanngnc2BmPBoacNV/t0AFKNIrymP4nkX7GuRa7oLqkdzPQAUpQ3D6YMIEmKbd6pP8+463cDR2AoJnjYIYTymW13SP9uxhv5SnoACWCifgWhH+nUnHSIR2ADkA8FOV7y307+oBzhsp96ABEcKk+TVAedFQvjY16RPYH+VCQQzfDTmO5TTUQrCmCjlwTXJhHs8j/OKy7tBNwf8b3QBd+pfHAoRp4lkXRkVsui/Ls+i533JWWnM9mfA96GV2YWjjHvig6auYGdzqsu0X8XZ2b5UM8IPSZ9Ydq4FkWRUduCedBdrkXIrjchr5qTRndAwqX61IP1UKerqLoyC3HRHmM/pzDuveK8rVpYxndg/Aauag1VnU5f5ZF0ZFbOkKfbtvLuin6RemC6Ki+CbF+Mu1wBveAVubq9tM/Evk/grsoOnILrVxdEva2wya1zxncgxaxPjVULR6MWhQduWWvMLsF1oT1Z/B1/RFzPfTlPVEjvYQi6Mgt1CVayFljIdvh8B5cEfFrq6hrs7sGnmVRdOSWbYJ3GKhrm3So/5XQn8mysQaeYxF01HwEJSs76SDYQHvZ486mn88o6OCjjtxDOyNnc9pYbB4aRJzWvCjI+Wg5UN7TohZFR+4hZ5zKaWOxdaQCJeWg7ClzMfVS1vzbIt+b4Yqio6aoz3FjIdtj8MVAXZEhEb8s5IMaLDfl+AVXBB0gh1AEiJKej2n69ZRPeEDaPugAPnJERB9E9Fu9fYdVMGErdADfORjov9NJv5Rp/qJywHroAKCcuoL03YuiAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAt8QcGK6ihwcBgaDAwGBoMDIYGA4OhwcBgaDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2GS/tEvSRqW9krYobVnaqrQVab+kzUsblzYorUtaPXRYZ3dAz3tpP5WOVaVrQWn5r7TD0jbAle2xTdoNaV+l/Ulhq+phtUOHUTZJuyrtUwotP6TdlLYV7m32gQwqR/ljyN5K2wcdVXNVfUWiro/+b1J9bVZifo++Pv344lRPexVvYp39lnYdOlKxS9pMxPV8l3ZF2pYKf7dXvTSiGs+0tBa4fTp6lTP8sWxPpTVAB5uj0pZirqGJUQY1iqmIMmgc9w/cPxkXHDhY0F5Iq4MOLSdjGv9IwrIa1PVGddE60Ax4dDp2srQP3BcdJbpi6nydssxGabMRZS6pKCKIYWfM535ORVS6VP84OECsVyHNbml3pX1O6Wy90FGRNvXWr1TXLxX5S0trTCDkm7TNaBbRVOrXfhBrMfs0A+13CR2N+s/N0FHGZjWQj6rrqoE6BjTdTFCB8xVu1l0DocbzMW/HSjYIHWU8i6nju6FAA3XN4sLT59A8ytko1iaxgjdpwHCXYpHpaMvqAfqso8QpTR0mw9m3HH0xC8G10A0as1BHh+CHd896rqMUxYqbO/pd5dglzA6NlgdoJmtsCD2YzwbejFFcZzraE491RDX+sL20oOu1poHuQnNZH349YrEuikJ9YTjaksc6CJrLWdCUfd6CrouaOh+iuawtJCzdkAkH9fUx3871nuogehnlbrOgaafQLzzd4nNjqRN/Y/D0yW11UOdm5higw0MdJd5oypy3qEv35ez3ucEEZ49HHNY7xXC0Yx7qILaL7FYTEKOauud8bjC3Azei1WG9Q4YdrSg6OOMIsjMWNZ1j1H/A1wZTioq4ns3lPJSjHuognjLKPGRRUwej/gFfG8yw6g8fcVzvCcZD2eOhDgqNrwj9/hubG73qGZreI1aW3dgpC6fIq442hrN+c6DrJ0NXI9w4P4720VMdnP07Tx3oesa4jk64sTu6M4wC5VnHqMg2QlbiEcYx+aJH8zBOeqqDs43ARf6AW4zrGIcbuyNu/wVNQDZ4qmOF4ainc/AiIPsKN3bHWMyDGPVUx0bBW2rjYuzQLXjZcpCWyREfYx5Eu6c62pkN5qgDXceY19IKV7ZPY8wDmPZYRxfTSV2kQMpT4/WeuM99l8c6TjOd1MX8xybmtZyAO9tnOOLmT3mu46ywt10gKQ3MazkDd7YLLcOPSn90wHMdt5lO6mKgXc+8FszFWOZMxI0fgo7/72bkOKkrONdyHy5tl0oTc7QVtxk6arLBYMuyRQ5F3PTj0IEGA9bzVhQjdY8tHWgw4F8qzTFMi3wff+daxwM0GEDQko9wUm/KTrkDOsq4V4MN5h7c2zyDYv0apA7oWMe5Gmww1+He9gfIZ6GjIj0iPxOX3HkYTFwahI6OC+e4ugEdkXQznXSjo+4nlsY4ZqIgA0RXOo4yndRFfuPNAosvndIfurGPoYP1JeM4qYvMOB3Ma8GJywY4LtwnbSiKDk7q2eMZaMcGMkvQIaLBRYm2TxUumo4PDEd1ke+Ak2/tC9y9Omg+IngWIyXUboCORIwxHPWCg+vgbDV4ApevbpA4H7iZtDixEToSwzmoyUXwhLNM5wbcPv1gdSZwI+nnZuiwNnYYc3Ad4zkZSxUOevsGFyN+ErV5rntedDQyHNVF3oP3jAH/Rrh/Mmg2eDI0CNwKHVUzq3HWFQfXsJKDRlsoKJwYPJaBEmRvhw4jcLYq25z/aGHUfwtNIH00h3Ya7oIOY3BSHHVbrJ8TUm5DE0gXQVmUthc6jH/1fmgcdtBi/XdE9sdtFIbgEnea2DvoqF4aU/QIczPLeddxV+O0ry1e47sMG2uhCM4RLAs3GRhLPFb17vdExz6hj1LZWObfKPTLc3ajKei5LMqz0rs8Gq/Up571TMe0xnFtZAk9qanzDZqCnl6R3clTLWp8QfVe8kzHGeH+YCXdhGU3mkM84U1NpxzWHVymQl+DJs900Djna4zzLhvuljWr64uq7xOaQzzHQv3Zcw7r3ivK13SNearjvOaNf97gtV7R1HUKTSKaDvUGK92sPsv10dt0p+pDT1QYeB72VAeVN+PgrU9bF77E1DOFJhENTUotCd6OOxf22XMd+zSRq17LX5dVRMbiuxCLOXIysn6PdVSK7pnO6bxV82K5jGZRmZ3q5v/Jme3wVEeY4Ziy026fpi7fq5hyh9AsKrNNrC15yJuTTXqqI4rHMXWkye8ct8MTOyoZYc+82UkPdei4q3FyTth6i1jLU4AUsAmhvu9sTp1sUfDXjhVFBxcK8f6MqI8Wbl4Tlbcp0ATq9Zi/pbHMaTSL6P7rVE6djOyOZzrSDNZHNHUvqTHKK0bEcEx1aUEE9Tl2MrI9nulIS6tYOzovTQh9WY199qA5AB97DLSY9KZYWxM2J+2XWNtuvKJ+nlf/d0v9bk0m4vsf3avsR39wWKIAAABmdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtbj4yOTk8L21uPjxtbj4yMjA8L21uPjwvbWZyYWM+PC9tYXRoPj7N30YAAAAASUVORK5CYII=" style="width: 32.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="299 over 220"> C. 199 220 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAMwAAADlCAYAAAAfgRgMAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAADc9JREFUeNrtnQ+EVtkbx4+RMcaIjCRZkWQkiWRlrQxJVjKGJEkSyUoyImuNkSz5yUqyJElWhmRkZC1ZGStryMhIMiRJkhgZY4wM8zvP7z3v/t6m997zvO/ce98z93w+PBqaued873mec8//Y0x5WWPtkrUbBgASWW1tyNqstUVrM4Hms91an7Wr1h5Ye29tztpna/Mu3xPWhq0NWNuFDsiSLmuD1j65QFkMNGDEYX53DrXYoL2xdtHaWnRAs3Ra+9nadELhhBIwm639keJEEuh/WXvktCyk/O6cc7gOdIAWecnnrX301GYhBMxAQk38zNpx93VMauqkOecra9+iA3xt5gHXVtZ8/mdaHNT3E/J1toHn7LY2lfAcqcFPogOWssrauQYCpdUBI7Xt3wl5OtjE82TUbyxF5yA6QGizdsba2yY6l60KmPYUp7i4TOedTNE6gI64A+W0G1GpfrKlprtp7Yq1JwEHzJ2EvLx2X8rldrrnUvQeQkecvHAv7qlrJ9cbgrwVYMCcTMnLmYzS+MmjdzM64kMmH7d6fmddYAGzKaXW/JwwitRsUymtLzeODvB9iUIImIcp+bifcVqDHt0D6IB6PAgkYL735CPrIdP1Jn1SUCYQuyPWAQmMBBIwY5585NEef+xJ81LEOiDggOnx5GE2p3TPKdLtilAHBB4wlz15GMkp3W2KQY+zEeqAwANmypOHmzmmPedJeyJCHRBwwGxS1I7Hckz/D0X6WyLSAYEHzBFFQfflmP4NRfoDEemAwAPmuqKg9+eY/jFF+g8j0gGBB8yIoqD35pj+AUX6slW4LRIdEHjATLbY0XqMbhHq9kh0QOABM9tiR2tXOtrhSHRA4AEz3+K2v7CgyMPFSHRA4AGjqRUP5pwHzdfhTiQ6IPCA0RwzdCTnPEwr8vAgEh0QeMDMKQo578WD7xR5eBSJDgg8YN4oCnk45zw8UuThQyQ6IPCAGVUU8mQAjvYxEh0QeMDcVhSyjP6syjEPmnVYnyLRAYEHzFHlCFOe67AeZlAzl0UHBB4w2hnqmy12tA+R6IDAA0Z4pShoGTJta6GjjUWkAwIPmF+UtfOJnNL/U5H2aEQ6IPCA2ah0tJc5pa85b/puRDog8IAxriA1zvZji/pQVyPTAYEHjGzx1SxglPVSWR5VdE/paMci0wGBB4zws7LQn5vKtQ/L5YIyPbF9EeqAwANG+EtZ8P+Y5u94lJMg7zTgZGLtkeqAwAOm23WKNYUvd940smRemkty1UftQskPinSmItYBgQeMIOcFvzD6WnPCdaJl+211jkP+ldsJZK+7HNj9JOHvDpn89pCURQcEHjDGte3/MI01Nxqxy655MmTy3cdSFh0QeMBUkVvUpjN0MJkNr70356nib7rRASslYKq19JBp/p5OmdC7ar6+YOobxd8+QQestICpZbdry4+4TrV0fGV78IL7WWpxWSLyu+sP7Ex5lmY4dgAdsJIDJkt8Z4ktuA43OiD6gNmt7CegAwgYo1vztQcdQMBUVhX7Dr17hg4gYCr8pqiV+9EBBEzlUiFfrTyODiBgKmiOQ9qFDiBgdHeo/IYOIGAq1277Ztjl9MrV6AACxj/8Kv2B79ABBEzllJYy3GNfFh0ETMBIx9d3sv4tdAABU1nF6zt6aBQdQMBU9sn7TqKUNVar0AGNMFrCgJGVub799LJsvg0d0CgvSxYwckDEa7PyL0Yti45S0Wn8yysWVlAN1msq1zkkaZFO8yF0QLOcNLqtsb0rQMt5T/DLl3QrOqBZuozueobQLxLdYO2x8d/J0hl4eZRFRymRzuSYaewAhuuBNc0kL7KXPe1ueqkQ9gZeFmXRUTrkxJIDzvFnTXOnlkgnVE49kfN5W3nk6FHP13HW5TP0Y1HLoqMUyHoimeyS00fmTT6HyM27578voBPaYSqnp0x58vOrqZw4GSpl0VE69pr8Tlss6hqFNqfjlklfFvLcdZbXBFoWZdEBASIjQDJ6N+xpOsp5wpes7UAHxMi+lKbjgqt9b1s7HHhTpSw6IHC+rWm/ywienDR/JoABhlh1QOCsKknbvSw6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAlsYhhJTUCBsMIGAwjYDCMgMEwAgbDCBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPNlp7ay1u9YeW5u2Nmfts7V5a7PWXlkbsXbFWp+1dnTkztYaPU+tfXI6PjtdH5yW/1jba60NV86PDdYuWntrbbEJ++wKaw86MmW1tQvWXjah5aO1X6ytx72zLZArzlEWM7In1nagY9lccF+RpPzJ/z1yX5v5lN+Tr88gX5zls2cZNbHPFqwNoaMptlh7lpCf99bOW1tX5++2u0ojKXgmrG3C7ZvjhHOGxZxt1FoHOtTstzaTkoc1imdIUIwnPEP6cd/j/o3xYwEOVmt/WluFDi+HU4L/ToPP6nD5TWqi9RIGOg4W7GTNFngsOqr0paQ51uQzu6xNJjxzxo0iQgqbUz73U25Epc+1j2s7iO1uSLPf2jVrr5t0thPoqMtuV+vXS2vWjfw1S0/KQMg7a2sJi2TqtWufm8qYfTMd7X8adDRpP3ej4wvWuo58UloXMkjjkqeZCXU4XedlXctgqPF0Su1Yz66g4wsepqTxPqOBBmmapQ1PnyI8vqTTVCaxal/SpYybFNNKR5tzBRizjipHPGlkOZx9uaAvZin4ackLGs4hjV6jH949GbmO6ihW2tzRwjL7LkvZ6NFygzCp0LakYF5nUDMmMaR0tPsR60gK/qX2Vw66xjwBuoVw+Xr4dV+Oacko1BuFo81ErEOQuZwPnmefzkHXGU+aNwmXykLC6gt5UEB6A8rauT1SHcIJxXM35KBps/EvPF0Xc7CsMv8fg5dPbk8Baa5V9gF6I9RR5W/PM1/lqMv35RyMOWBqZ4/vFJjuuMLRfohQh/CNad1qAuGuJ+2pmAPm15oX0VNgurcydrSy6ND0I8SO56jplCL9XbEGTHVUpOjZXE2h7I9QhzCqeOZ3OWrqVaR/KdaAue3aw/sKTveQolC2RahDhsbnjX//TZ4bvdoVmp4yVta6vlMrnCJUHbsVzvquAF2fFLq6cONwHO1FpDo0+3dGC9D1UJGPg7hxcfS3cBQoZB13TWtHyKr8Tj8mLI55CuNwpDo02wiKOD/gsiIfI7hxcaTtv5AJyI5IdcwrHPVoABWB2FvcuDiGUwribqQ6Oo1uqU0RfYd+ozsth2OZCuJFSkHsiVTHHmXA7C9A1w/KvPTgyvnTlVIAExHr6FM6aRFHIIUUvNGT9rnvi1jHUaWTFjH/sVqZl0O4c/7cTnj545HrOGny2y7QKB3KvBzHnfNFluEnHX+0K3IdvyqdtIiOdrsyL8zF5MzxhBd/Cx3/282ocdKi0OTlN1w6X+pNzMlW3G50rMiAYctyjnyX8NIPoIOAga95YspxdE9eOggY+Jd6cwwTJuzr74rWcYOAAUGWfCw91FtOp9yIji+4vgID5jrunT1XzNdrkHrR8RWnVmDADOHe+XeQT6KjLsdMOBOX2nkYJi4zRK6OW3rG1UV0JNKvdNLOgpqfLI0pmAcl6SAWpWO/0kmLON94rWHxZaEMLnmx99Ch+pJpnLSIk3F6lXnhxuUMOGCKP7ShLDo0R88eaIF2NpDlhFwiWrsoMe9bhcum47nCUYs470Bz3tob3H15yHxE7V2McqB2BzoaYljhqD8WkA/NVoP7uPzyOomval6mLE7sQkfDaC5qKmLwRLNM5yJu33xn9VnNi5Sfu9GRW99huIB8jATSlyodUvvWLkZ8aVbmve6h6OhSOGoR5x48VXT4O3H/xpDZ4EdLOoHr0bFsJj3OOl9AHuYDCNpSIcOJtdcyyAHZ36AjEzRblfOc/9ikSP8yIdD8aI7sNNyCjszQHHHUn2P6miHl3YRAcyMo09a2oyPzr95Hj8NeyTH9q6b1122Uhtol7jKx921B6Uqf4pjJbmY5dB3XPE47lmMe/2lhsJaK2jmCOVPMCYxV7rl0d0aiY4fxj1Llscy/y/iX52wlFPycM1+eSl/k1XjVNvVkZDomPI6bxymhhz1p/k0o+DlhWnfz1CbXv5B0z0am47gp/mIl34RlP+GQztJNTUcKTLt2mYp8DdZEpkP6OW9TnHcu42ZZt8tfUnovCYd0fljSnj1VYNrbzZdruoYj1XHaU+OfzjCv5z1pHSEkkul1NVj1ZQ3knJ7UpptdG/pBnY7n3kh1yPOeFVDry9aFNynpjBMSycik1IzR7bgrwl5HrmOHZ+TqRM5fl8+MjKU3IaYDcjKxwYh11Bvdy/pM5/WeiuUcYVGfze7lLwZmGyPVsZTbKc9udvu0NPkepzz3FmFRnw2msuQhNCd7FKmOJO6lpNHM+c5pOzzZUakY9gzNDkeow8c1j5Nrhq3Xmco5BRwB2yDS9p0M1MmmjX7tWFl0aJEh3k8J6cnCzZ9M/W0KMoE6lPK30pc5Slgkt1/HA3UysauR6Wims37Hk/aM66M8VowYDrsmLSTQHrCTiW2LTEez9JjK1XnNDKHPub7PNsIBYmwxyGLSX0xlTdiUtVlT2W48735+5f7vsvvdFXkQ338B4ZwYqgnfOCsAAABmdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtbj4xOTk8L21uPjxtbj4yMjA8L21uPjwvbWZyYWM+PC9tYXRoPrUe4V8AAAAASUVORK5CYII=" style="width: 32.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="199 over 220"> D. 9 42 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAJoAAADjCAYAAAB90g0eAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACMJCpdlQAACgJJREFUeNrtnXFkHlkXh4+oqKpStWLVKrUialWpqqhVJWqtqihVVbGirFpVK5bP+lRFLf2jVqy1VEXVilAVUVVLVNWKFVZUVFWIqLWqSlRUVIT97vkysfNOMjN33pk78859n4ej+SOZO3PPr3funHvuuSKwFZ3G+o2NGJs09trYirFVYx+MLRubNTZubMjYEboMsqCC+TUQ1D8Z7ZWxYWMf0Y0Qx6fGHiWI6J2xx8amjC0ZW0v43ZVAcNvpVggzFDOCPTP2lbGdCa/WJHEuGDtK94KOOPdjRHIlw3V6jc3HXEdHvot0dfuio9TvMeI43cT1dht7mjC6XaXL2/OLMk4UwznFO5cgtiG6vr24GyOERWPbCvioWEkQ21m6vz24mCCCywW18X1CG8uBGMFj9ieMNqsxX5fNvppfJ4htBlf4zcME598vuK2rkhzcZb7mKZ+nOL7oEMTHkhzU1QDwHtziH09ThOZi3vQkpc3ruMUvelIc/t5Ru99atLsT9/jDjRSHTzhq9zNJX4i/gnv8YT7F2bcdtr2S0vYs7vEnpJE2qgw4bP+RRfvduKn+nLdwdL/D9m9ZtE+owwN+tnD0Fw7bH7Bo/yFuqj8TFo7uc9j+KYv2NTW8A1fVm7mKhdYjdmngB3FVvXlfsdA6LYV2DlfVmw8Vz9GUNYt7GMZV9cZmNDnt+B5sRtW7uKre2GybO+/4HpYs7mESV9WbFQsnu17c/tviHqZwVb15ZeHkccf3MGVxD29wVb15YOHkuRYQ2ltcVW/uWDhZvwq3ObwHm/XOd7iq3lyw/PJ0ud75kBHNf2wj87crFhpzNA9YsHC0hiA6KhTaU9xUf36wHNUGHbX/m0XbD3BT/dlnKbSXjtp/bdH2GG7ygzFLsX1T0RxxBBf5gaZ02yyw67pkkVvv7lkKbQAX+cN/LZ3+XNbLUOXlP2JflvQk7vGLx5aO/0Oar0WrO9DvSrb6t524xi/2BJN+G+f/JdlSiPT1fFMaF/LfWLQzj1v8ROtivMgw2swGHwmabr0Ra9N/u2R9T4AWdJmO+buzQi5aW6NzsEeSvcS7rd0IXofXpPp8OGgBLoldYqKt6SrAgdD1/7T4G6oKtdHodi2YkzUjLg3IjkQEpnxi8bfTdH970hvMuSaCj4aNY3nWgp919NMlpV+DedvhnOENdqlDbtL2lK4FHxQAuUZGSiGAc2zWVo/TTZCHfZK+afgZ3QR5+cViNDtDN0Eeui1GM84ZgNzYbO/jtGLIhU0ttF/oJsiDlnFPW1nQXfO76CpwGc7QedsxugnyMCicJwCO0Yl9WsWiUboJ8qDZGWlb6divCbnQ/QRpO+B1LXMbXQXNohkXafsONI2Iku7QNLoBZVEofAwOOSHr5aXiBKYfBWfpJsjDd5K8hqmv0gN0EzTLXkk/SVhrq+2gq6AZdCKvOf9JZwToV2cfXQXNciEldKHi011TlDGAzGyX9V1NSacVazWiH2V9pztAptejvvpGJXkZ6XnwMbCbLgNb9MvwoqwfYpE0/9K6GXqiyiG6DLJwUuIL8a0Fo5aeSXCOVyPk4WhonqUVsLWCz+VAgEzqoTC2MccCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr/sGwiCE0DKFhCA2hYQgNQ2gYQgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgRj4UT2sAxV6S1jgI8HNzTmLEnxpaMrRhbNfbB2HtjC8YmjN001m+sEze2Nj2BE6sW2l5jw8b+kubOx1wNhHccl7YeHcaeSbWHm+4KRqVVKe5Q1mljh3Bv6/CDVHuK7vEcI1iarRm7hourp1eqPa55MBCD6yOnHxjbjrurYaexxQqF9o2Ue775b8a24fbyGZXqDqA/XbLINuwubi+X/gzOKZpPjS3HtDUfzBn1/rqCD5UNNHRxwNgZYz9ZjsZb2SDuL4ePjL2tUGgzW7Tx3Fhfkx8Sf2QUmsbj9iAD9zyMdPzbEoV2aYvr/xQZuZq97koGsd1EBm6JOnp0C+G5EtqOLUR9veAv6CVLoa0EH0PgaG4U/l+/EHR2WUL7PnLdcQfPeCJDuOQikiiejsjcaC0YAaQkoWn74aDsosMR5Zql0O4jC/edfz1hzuZCaNFwxkmHz6pfp68shLaMLIrlSKSD/4xMvssQ2kToepMlPPOQ5ahGtkeBE/D5UMdqak13yldo0ULTaPxq6JXdU1IIx2audgKJFMOtSMdesgh3FC20cHC4zMj8jIXQvkQi+fky0qmPYn7PtdB+DF2rp8TnH0Vo5bw63oQ6VH/uqkhoT+XfRe0y+dpCaF8glXxMRjq0P+F3XQvtjqzH7E6W3AdnLYT2GVJpnkHZHP2XCoVWFWmJA2uSf+mrbdkvjZkRNoHRdhXaC+TSPNORzuy1+BtfhXZGyE1zQnQt0XbB2lehDaQ81zkkk51D0hignM0w//BVaNcleVseewgyossoL6UxBaY7w9/7KrTxhGcaQzbZGYl04uWMf++r0F4kPBMbjDPSJ5t3+ghC+/+XdtzzzCKbbOw29loaU7K7EFrqF2c/0snGvYI60Eeh3Yl5lhlkk40LkQ68k+NavglN05LitvMdQTr2fGLsnRSXFu2b0L6KeY5RpJONJ5I9+t9OQttqn6dmr7CXMwPfSfHb1XwS2rGYZziFdOzRlJZw/TCtadaB0BqY3uL+byEdezT6PxfqPC2t2V3QtX0R2lbZGrPCBpRM3JR80X/fhbZDNhd90bjiPqRjz3HJH/33XWjR/4iaYMAOpwxo9D+8GVZrS3QhtNQPAModZGQs0oFnHLRRZ6FF/yOqDSObbEQ3V7jKCK2z0KKbcG4jm2x8LI0lmHSiuwuhNXA1cp/3kE12okflHHPYVh2Fdko2V92GjESPyrnhuL26CU2P7lkWqm07d3yrWhnlBTQuFs7B+13I/UdoBaNlHhZC7eniOeVBEVrhYYzweVX6M9kYCK1QdNQKL5a/DEY3QGiFoQviU6E2XgWhH0BohdERhC02rv+3rGcXg6fCrorwBmDNkO3GVQitaG5LYyLBQdyE0IomnPKjgdmjJbWrc78BoWZaWwgtfB6C1hD5vMS2N/bJHkYSfgvtW2ms9lNmKdKNTJk55OC30KLlUE+X+Pz75d9MmSvIwV+hRetknC/x2cPLWjqK7kYOfgpNY2/hAoJfl/jcB6Vx7XQcKfgptBPSeKzjkOPn1K9JPUpSS4pOyuYjfPqQgn9C65X4QixV2CIy8E9oB8X+pOCy7Coy8Eto+up6I623TstGY4+EtlfWF8ZbTWRTSMAfoUWzY1vJOG/AE6FpJuxci4psSVjb9EJo6sQZad0cuhHc74fQOqW1kzVb5hjF/wE3MgCsgwTexwAAAGN0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1uPjk8L21uPjxtbj40MjwvbW4+PC9tZnJhYz48L21hdGg+CHLCtQAAAABJRU5ErkJggg==" style="width: 24.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="9 over 42">

Tính <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>11</mn></mfrac><mo>+</mo><mfrac><mn>9</mn><mn>20</mn></mfrac><mo>+</mo><mfenced><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>11</mn></mfrac></mfenced></math>

A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>9</mn><mn>20</mn></mfrac></math>

B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>299</mn><mn>220</mn></mfrac></math>

C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>199</mn><mn>220</mn></mfrac></math>

D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>9</mn><mn>42</mn></mfrac></math>

  1. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>9</mn><mn>20</mn></mfrac></math>

  2. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>299</mn><mn>220</mn></mfrac></math>

  3. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>199</mn><mn>220</mn></mfrac></math>

  4. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>9</mn><mn>42</mn></mfrac></math>

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Tính tổng số nguyên x thõa mãn: − 5 ≤ x ≤ 5

3

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG