Square root
VBT
Calculator
magnet

Câu hỏi

Tìm số x thỏa mãn: x   :   2 5 - 1 2 5 = 1 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAtgAAAETCAYAAAAMFHHvAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACjj/tgzAAAHbNJREFUeNrt3Q+klfcfB/CvJElGMpkkkkySyMxkEskkSSRJkkiSSSIzSRIzmfxMTDIziZkkmUiSJJFkkkQmySSSK7kS+z3fzmmdTuc833PuPffs+fN68WXW7Z77fM5z359vz3me7zcEKL/92finZZxQEoDC+rEts79VEoBi2dcW1DezMVlZAAorZvSNtuz+RlkAimFXW0A/y8YcZQEovNnZeNqW4XuUBeC/tbktmONYqywApbG2Q45vVRaA/8aaDqF8TFkASudYhzxfoywAw/VFNl62hfGdbExRGoDSifdj327L9Jjxy5QGYDjmZeNJWxCPZmOh0gCU1oJmlrc/UzNfaQAm1oxs3A8ffpS4V2kASm93h3x/kI2ZSgMwMSZl41KH8L2qNACV0SnnrwRLrwJMiE4PwbwIjVtGAKiGuHTf8w55f1xpAAar03J81ksFqKadXTJ/m9IADEZ8ePFlh6C9rjQAlXW5Q+7HhyAXKw3A+EwPnR9qfB2sGgJQZXH1kFcd8v9haDzwDsAYnQqdPyY8rDQAlXewSw84ozQAY9Ptvuu/sjFVeQAqL24e9qBLL9ihPAD9iSuDjHQJ1bXKA1Abq7v0gvhszgLlAejd1S6BekFpAGrnXJeecENpAHqzt0uQxgcbP1UegNqJn2q+6tIbDigPQDpER7uE6DHlAait70P3iy9WlQLIcblLgMZdvWYqD0BtfZSNp116hH0RALrY3iU44/hWeQBqb29On9ilPADvi5sGdLsy8XewLB8AIUwOjY1mOvWKZ8EnnQDvOR66X5XYrTwANG3N6RcnlAegYVFOWMYrFZNqUIOl2fg6NHaujPehxysxcY3X+NR8fOjzRWhsthB3LzuajXWhsQEDIA/qmAf3cvrGUqcQQPcHG+PYWeHjnp2NQ9l4lHP8eeNVs8EudwqBPKhZHmzJqcU1pxNQd2tC/a5exyfhj4bua7qOZcSGssTpBPKgRnmQdxV7g1MLqLM7oV73XserS2O9QpUacS3Yg04pkAc1yYNtOcd/P9Tj9kKAD+Q9qBJXDqnaPYXbmk3vnwkecUthq66APKh6HsQJ9MOcY9/hNAPqJgbjXznBWLWtb3cNoZG2jguhsZwVIA+qnAf7co77UXAVG6iZvE1l4lPyVVrLdO2Qm+nb8YvTDORBxfNgWjZGgmVeAd5cUXiQE4jHK3Ss83PCP94jeCQ0ltiaFd6/0hJvj1mYjfXZ+F/Iv9qfN7Y53UAeVDwPvg+WegUImxNN4NMKHeuNDscXH+xcOYbvFR+Iut5nQ7WzGciDqufBXBcaAEK4nROElyp0nDs7HF+8+jRpAN/3ZR9N9ahTDuRBxfPgbM4x33P6AVW3PBH+6ytynPG+wKdtx3Z4gN//i9C4GtVLQ43Nd7pTD+RBhfNgReK4VzsNgSr7IycAH4fq3Cv3TduxnZ6ghtLrMl/bnXogDyqeB3nP9lx2GgJVtSAR+ocrcpzxHwmtm0fEB5Im6orRwR4b6u9OP5AHFc+Db0J9nu8B+NcPifCbV5HjbF+Ga9UEvlZcXeBhDw11xOkH8qDiefBJyL+K/6PTEaiauMnB05zgu1KhYz3Tclxnh/B6e0NvV62mOA1BHlQ8D/JuQ3wR7HILVMzWUI97AuM/JF41jyleSRnGR5Ifh97uvVzhNAR5UPE82Jg4btunA5VyKSfwYgOqylPt68J/s3PajR4aqqfoQR5UPQ/iP2ryli285rQEqmJOIujPVOhYW+8zH+YDNSdNsEEeyIM3fkkc+3ynJlAFBxJht6FCx3qleUwXhvy6O3poqF85FUEe1CAP1iSO/ZBTE6iCOyH/9pAqPWzzc2isxbpqyK+7oYeGusipCPKgBnkQl0YcyTn2+05NoOwWJkL+NyUaiHWJOr8O1dnEB5AHvfzjJq8GS5wmQJkdSoTcZiUaSkO9q0QgD2qUB6kafOc0Acos7/aQeBVlhhINxPpEM/lFiUAe1CgPWpdI7DTuOU2AskptjX5FiQZmS6LWG5UI5EHN8uBcsHU6UEGpHcX2K9HAHA75D5LavQzkQd3yYHeiB+1zqgBldCERbkuVaGBO59T5lPKAPKhhHqQ+Rb3sVAHKJt7/lrdd71MlGqi7ObVerjwgD2qaBw9C/nNA05wuQJmknuA+rUQDMz2nzreUB+RBjfMgtVzfOqcMUCb/S4TaNiUamPWaByAPOtqY6EXHnTJAmdxOhNp8JRqYbldobigNyIOa58GsRC+645QBymJ6ItDcfz048V73blsCf6Y8IA/kQe592HHYjwEohdQmB+6/HpytXWp8UmlAHsiDN35N9KT1Th2gDI4mwuxrJRqY6x3q+yQbM5UG5IE8eCO18c4PTh2gDC4lwsyycYOxrEt91ygNyAN58K8lwa7CQMlNysZoyF93dJIyDcS1DvX9SVlAHsiDvvrSK30JKPuVAusyD8a6LrWdojQgD+TBB1KfrHooHCi0zYkQ+0WJxi3uPPZX+HBllrlKA/JAHnR0ItGbNisRUGTHEyG2U4nGrf0h0njbzQplAXkgD7pKXfyx8hJQaH8kQmy1Eo1LpweZtisLyAN50HetWsclJQKK7EUixKYr0ZjFzRAettXzkLKAPJAHSVMSvemlEgFFldrBcUSJxuVsWz1PKAnIA3nQs8fBjo5ACa1OhNcFJRqzA221/E1JQB7Ig76cCW5hBEootVuWFUTGZk1bHc8pCcgDedC31EoiW5QIKKJjifDao0R9Wxoat9a0fgowWVlAHsiDvm1N9KjjSgQU0elEeK1Tor7EdWz/bqnf1WxMVRaQB/JgTNYletRpJQKK6HoivL5Uop59nI0HLbWLtbUCC8gDeTB2C4OdhoESSi3RZ9ve3sQn2W+31C3+90xlAXkgD8ZlcqJHvVAioGgmJYJrVIl6Eq9KXWup273QuHoFyAN5MH4vE71qkhIBRTI/EVp/KVFSvMJ/saVmcROJT5QF5IE8GJjbiV61UImAIvkqEVqWkso3qVmjt/WKGyLMURaQB/JgoM4metVXSgQUyYZEaJ1SolytK7A8ycYCJQF5IA8G7tdEr9qgRECRbEuE1k9K1FXr5gfPsrFYSUAeyIMJcTzRq7YpEVAk3ydCa78SdXS0pUZxA4nPh/S68V7OuGuZB3pAHtQpD7YnetUxpyFQJCcTobVZiT5wsKU+8cn2Ya4T/lvzdZd6G0Ae1CgPNid61UmnIlAkpxKhtV6J3rOnpTavsrFqiK/99n75P70NIA9qlgfrg+eFgBJJPZm9Won+1X6/+tohvva80LivM77u194KkAc1y4PViV51xikJFMn5RGitVKI32q+ebBria7dutxyvks3wdoA8qFkerEz0qvNOS6BIriZC6zMlenPl5HVLTXYM8bUXtzTTOE57O0Ae1DAP5iV61S2nJlAkTxOhNb3m9VkR3t+id+8Ev15cDSDurrkxNG7feR18ogDyQB5MT/Sqp05PoEieJ0Jrao1r80VoLLn1T0GGbetBHtQ1D6Yk6vHcKQoUyYtEaE2paV3iR7HPCtRM4zjgdAV5UNM8mJyox4jTFCiS0URo1VH8SPZJwZppHHOdriAPapwHefUYdaoCJtjFNTsbjwvYTC86VUEe1DwPTLABE+wSal3+qmhjo1MV5EHN88AEG6hEYNVpgj0zNHZEK2Izjfd+TnKqgjyoeR7k1eW10xYwwS6W2KxuFLSZxnHMaQryQB7oV4DAKpMpobjNNI5FTlOQB/JAvwIEFgDoV4DAElgA6FcAAgsA/QpAYAGAfgUILADQrwAEFjBhZmTjcDZ+Ugr0K+QPCCxg7D7KxsFsvGhmxYiSoF8hf0BgAf2bno0D2XjelhUaHPoV8gcEFtCHadn4NjS26u6UFRoc+hXyBwQW0IOp2diXjaeJrNDg0K+QPyCwgBxxy/C92fg79LaFtwaHfoX8AYEFdDA5G3v6aGwaHPoV8gcEFtDBpGzszsajPhubBod+hfwBgQW0Nbad2XjY/J1/nY2r2TiRjaPZuKbBoV8hf0BgAb272/xdv5mNr7PxcYevOanBoV8hf0BgAb2JmzUsTHzNLA0O/Qr5AwILGKy7Ghz6FfIHBBYwOGc1OPQr5A8ILGBwzmhw6FfIHxBYgAaHfoX8AYEFaHCgXyF/EFiABgf6FfIHBBagwaFfIX9AYAEaHPqVfiV/5A8CC9DgQL9C/iCwBBagwaFfIX9AYAEaHPoV8ocymJ2NH7LxVzZGm2/mqWwsEViABqfBoV8hf+jPF9l41uVNfZ2NrQIL0OBAv0L+vDUpG8uzcTAbv2fjUTZeZuNVNi5mY+44v3/83qebE9T4PZ+ExpXgmSV5U2dl42kPv9jLBRagwYF+RX3zZ3I21jcnvi8SP3S8JWL6GCemf+R83zvZmFqCN/W7Hn6p47gpsAANDvQr6pc/X2bjZGhcof6nj/Ftn6+zNDSuVKe+754SvKk3+qjT9BKetAILMMFGv0L+jMGGbDzo8AON9jhxfNjHa8X7lZ/3+H1PleBNfdbHBPtLgQVocKBfUY/8iQ/hxfufz2ZjdzY+D417r6N41fVwDyfu5z28zqd9TkjLMMHu5wr2TIEFaHCgX1GP/IkTv8mJr/kt8cMfTPz9j0PjSnc/t57sKsGbeqjHY7krsAANDirXr1b2Obcp8zgjfwZvSeKHv5jzd+PV8MttXzu3+f/jle+THb7frVCOhxw/6vEfDusEFmCCDSbYJtjyp939nB9+NLy7raTd0ZC+7SPePnIsNJYC/CaU64HABdl4nFOb/QILMMEGE2wTbPnTyY+JA+i0a+FXLX9+rsK/2DNCY8m+e6GxuUxciSXe0/65wAJMsE2wMcE2wZY/3axPHMCmtq+P912/XY4vrms93e+/wAJMsMEE2wRb/rzzUeIAfm77+vPN/x83q1ngd19gASbYYIJtgi1/PnQv5wButXzd1pb/v93vvcACTLDBBNsEW/509mvOAcR7j+Nyf5+Ed+td/+F3XmAV8Oc2eh9Q9gbn97geeSDL5E+pJ9hbEgcR/yV3vuWAZnvfTbA1VA0VDU4eyAP9ChPs7haF9HrYb/97t/fcBFtD1VDR4Eyw5YF+hQl22sseTuRb3m8TbA1VQ+3TiYrXcooGJw/kgX6FCXY3Z3s4kZd4v02wNVQN1QTbBNsEWx7oV5hg9+ZA4kBOeK9NsE2wNVQTbBNsE2x5oF9hgt271YkDWeu9NsEGE2wT7DI2OPQr5M9/JTaJ1zkHssN7LbDABNsE2wQb/Qr505/bOQfyi/daYIEJtgm2CTb6FfJncI3wT++1wAITbBNsE2z0K+RPfzYmDuYj77fAAjQ4E2z0K+RP73YGDzoKLAATbPQr5M9AzGn+sHkH84P3W2ABGpwJNvoV8qc313o4ka95vwUWoMGZYFPxfrUy1Gcd9DPyZ+K0bjKTt1Rf/LPJft8FFmCCbYKNCbYJtvzp7rOWSXX8YbckDugrv+8CCzDBNsHGBNsEW/50Ni0b91t+2E3ZmJSNVzkHdNDvu8ACTLBNsDHBNsGWP52dbPlBT7T8/ws5B3TB77vAAkywTbAxwTbBlj8fWtfyQ97JxtSWPzuQc0CjoXGVG4EFmGCDCbYJtvxpmpWNp80f8EU2FrT9+YrEQS3zOy+wABNsJcIE2wRb/rxzseUH3NLhz+NKIXn3Ye/1Oy+wABNsJUK/Qv407Gn54U7lfN2VnIP6vcfXmh8aD0VOdZ4ILECDA/2KKubPotC4hzr+YHH1kOk5X3sk56Be9vBaU7Jxu/n160r65s4Ojd0r/2rWbaT5j5IlAgvQ4Eyw0a+QP/Eq8t3w7kHFxYmvX504sNTfPx7SV8mL7ItsPAvdN9zZKrCAijtngo1+hfzJ90vLD7Wzh6+fHPJ3dfw65+9uan7No2x8VMI3tfUh0LyxXGABFXbPBBv9ijrmz4zQ2Fnx08TXfdvyA/3Wx/e/mnNg17r8naWhcQtJ/JoVJX1Tvwu9PXl7U2ABFRU3InudyIr455ZtRb+iUvmzK7y/0ke8/WNHh6/b2/I18V7ifq4oH00c3OdtXx8favy7+WdHSvzG3gi9L28zXWABFbS9xwxcoVToV1Qlf5blvFi8pL4vG2uzcTq8fyl9UZ+vk1oH8mE2Fja/dn02njT//+WSv7HP+phgfymwgIqJFw4e9JiBF5UL/Yqq5M/Pof+FxFeP4XUm9TnZfHuVfGbJ39x+rmDPFFhAhcRnUK70mfs/BreKoF9Rgfw51eeLbx7Ha/3Qx+vEK9jzKvAGH+rxeG8LLKAC4vM8a5qN6kUY225w8eJK3PdgVWgs0wr6FaXLn709vmC8R3vTOA98do8HHO+9XlyRNzvep/6wh2NeJbCAElrWzOz4CeVomJjtl0eb3z++zgYlR7+iDPkT17S+HtL3Rw/q/uBNideKq418UrETYEE2Hucc826BBZTUyjAxTa3b2KLk6FeUJX/iOtXxSnZcLu9leLfTYLzhO65RPeiP6OKKIWebr/H2teKW6WsrfBLEjy0Oh8aDo2+POS5zuFRgAYB+BSCwANCvAAQWAPqVfgUILADQrwCBJbAA0K8ABBYA+hWAwAIA/QoQWACgXwEILAD0KwCBBYB+pV8BAgsA9CtAYAksAPQrAIEFgH4FILAAQL8CBBYA6FcAAgsA/QpAYAGAfgUILADQrwCBJbAKbFE25isDUPM80K8AgcVAzM7Go2z8pBQgD2qeB/oVILAYl4+zsT0bT5rvwxIlAXlQ8zzQrwCBVRO3eqjheMc1ZQZ5IA/0K0Bg1cGKITTTOLYqNcgDeaBfAQKrDq4MoZnGj4QnKTXIA3mgXwECq+qWhOFcrTqk1CAP5EGyX712GgJFMmqCPSanh9BMY8OYo9QgD+RBcoI96jQETLDLbX4YztWq35Ua5IE8MMEGTLDr4MchNdTlSg3yQB6YYAPlM5IILQ/YvS+uR/sqTOzHwI+zsU+pQR7Ig39NSdRqRImAInmWCK0pSvSew231uaskIA/kwYSbmuhVz5UIKJInidCapkT/mtYMcWvSAvJguD5K9KqnSgQUyYVEaM1Won/ta6vNw+AWGpAH8mAYFid61S0lAorkfPBgTS9i43zUVpvdygLyQB4MxapErzqvRECRnEmE1ldK9Mb2trr8HdyfDvJAHgzLmkSvOqNEQJGcSoTWWiV6425bXb5REpAH8mBo1id61SklAorkZCK0NirRB1dOXoTGAzeAPJAHw7E50atOKhFQJAcSoeWp+BCutdXkiJKAPJAHQ7Uv0auOKRFQJFsSofW/mtdnWYeaxIa6OjTWZQXkgTyYeCcSvWqbEgFFsi4RWj/XvD6pVVbuZ+PX0HjoaZHTCeSBPJgQpxO136BEQJGklj76vca1+TT0v7Xxs2YjiA32E6cXyAN5MBDnghWvgBKZlQitazWuTeoB0F5G3Pwg3jtowx6QB/Jg7P5K1HahEgFFMikRWiM1rcucbLweQEN9O+L3irtm2rgH5IE86N9ooqZ20QQKZyTRCOoYXN8PsJm2j+vZWOK0A3kgD3oyJbgQBJTQpUR4zatZPWaExtq2/0zwOJqNyU4/kAfyINeykL71BqBwUk9nr65ZPfYPoZm+HTeCh59AHsiDPKldHE8rEVBEhxPhtaVm9YhLF8bluP4IjYc840oALyewqT7OxgKnIcgDedDRnkTNflQioIg2BpvN9CLeBxjXto1XU440G+6rATXVJ5oqyAN50NEvwUUgoIS+TITXGSXqKj4AurL5j5C/w/ivXM1SUpAH8uA9F4LbGIESSj2hfVeJem6u8ePkK+NoqjeDLZdBHsiDVqmHTGcoEVBUz4Kl+gbps5BenaXb+FX5QB7IgzdmJOrzwukFFNmZRIhZp3Vs1ob0DmSdxmalA3kgD97c/pFXm0tOK6DIUhspbFSiMZuWjeN9NtT4iYKPPUEe1D0Pvk7U5oRTCiiyDcFKIhMtXr0a6aOpHlYykAc1z4NTwdV9oMTmJULsDyUaiMWhsQRXLw01Nt8pSgbyoMZ58GeiLp85jYCiy9s84aXyDMyCPpqq9V1BHtQ1D+LW8a9z6hHXHfcAPlB4ZxPhbuODwVmWaBy2AAZ5UPc8WJmox1WnDlAGBxJhtkGJBmp/Dw3VElQgD+qaB6kt0n9w2gBlkFoO6SclGrg7PTTV+coE8qCGefB7ohbrnTJAGaTud/tTiQZuTQ8NdZ0ygTyoYR48D3ZwBCriasjf0dG2vYN3L9FEtioRyIOa5cGniTrccaoAZXIkuHoybKl7L91nCPKgbnmwI1GH404VoExST23bcGbwUldq7FQG8qBuefBbcLEHqJC4puir4D7sYXuqoQLy4F95u1y6XREopTOJKwefKNFQa26CDfKgTnnweaIHXXaKAGWUuvdtsxIN3Imcev+oPCAPapQHBxM9aL9TBCijT4LdxIZtd0699ygPyIMa5cH1RA/61CkCVDHgXobGvdoMzpacem9SHpAHNcmDWYnJ9T2nB1Bm+xIht0qJhtZQVysPyIOa5MH2RO854vQAymxusG36MG3LqfUs5QF5UJM8OJ/oPUucHkDZXcsJuSfKM1DfdanziNKAPKhJHkwPjSX4uvWd+04NoAr2JK4kLFeigTndpca/Kw3Ig5rkwZZEzznk1ACq4OPE1QS7Og7O/S413qk0IA9qkgep20PmOzWAqjiXE3bPgtVEBqHbsojxHzfuvwZ5UIc8SF3QuebUAKpkXeKKghUuxq/brTgXlAbkQU3yYHei1+xwagBVEq9QP84JPfcIj9/d4B53oN55cCOnz7zIxlSnBlA1h3KC71U2ZijRmHX7hOCy0oA8qEkeLAz5V6897wNU0pyQf2/c10o0JvHTgU5Xq143Gw4gD+qQB0cTE2x5CFTW6Zzw+7NixzotG1+GxkM3E6nbJwPfON1AHtQkDyZn42lOf7nkFASq7PPEFYZlFTjGuEXvo7bjGs3GmTD4hzm/7FLH8041kAc1yoOtwYP0QM1dzwnBX0t+bBsTIR/H7Wx8NoDXitvQP+nw/W+Fxk5mgDyoSx7k7Rh8z6kI1MGanCAs+xqtF3poqG/HwXG8zuxsPAydb7P52CkG8qBGebAkUdttTkWgLu5MUKP5rz3vo6G+vS+w339QfBE6X6m6EqzEAvKgfnlwMqem8R8eNjIDaiPvo9PYLKaU9Lhu9dlQ3+5kuauH7x0/5j0SOq/EciI0HvIB5EGd8uCTkL861W6nIVA3d3NCcVdJj+mbMTTUt+N+8+8vDu+uuMRNEeItNXH91pEOfyc+Nb/BqQTyoKZ5cDinho+Cq9dADa1PNJcyileNroyjqfY64hWbH4JbQkAe1DcP4tKHz4Jt0QE+cDMnHDeX9JjiVaafJqiRxqtWcTOFuU4dkAc1z4P9oXoXaQAGYnmo7sYz8aPdn0NjG/jxNNEXobFBz6bgPmuQB/Igis/pPMmp03qnHFB353JCsgr3E8YmGO+bjA8k/RYaDz7F1QVGW8bL0Pio80ZobEDxU7OBLnZ6QKXIg8HYm9M3rikPQAgLQvenwP9UHgBaxKvXf+dMsJcqEUDD9zlhuVF5AGjKu/f6pPIAvBPXdH0cuj+sYqklAGKv6LZySLzVZqYSAbxvU7BZAADd5a17vUt5ADr7o0twxvvtpisPQG3FXRtfdOkR15UHoLs5OQF6SHkAautEl94Qlz5cqDwA+XZ3CdHR5gQcgHpZFLrfGnJAeQB6c7FLkP6mNAC1c7VLT7ipNAC9i1equz0pvkJ5AGqj2wPw8XbCBcoD0J8NXUL1brBsH0Ad5C3hukN5AMbml+CeO4C6OhrcLggwcNOycSd0fuBxnvIAVNbCLpPrB9n4SHkAxifeY9dp6b7LSgNQWbdD54sri5UGYDA2BvfgAdTFvi6Zv01pAAar0714z7MxW2kAKiN+ajnaIe+PKw3AxOi0PvZFZQGojOsdcv5KNiYrDcDEmJGNex3Cd5fSAJTe/g75fj8bM5UGYGLNzcaTtgB+GWw4AFBmcTv09ltDngYrRgEMzWfZGGkL4j+DjxABymhqaGwi1n7hZJnSAAzXqvDhR4nHlAWgdP7XIc/XKgvAf2OTUAYotbUdcnyrsgD8t3a2BfOzbMxRFoDCm9PM7NYM36ssAMWwpy2gbwT3YwMUWczom23Z/a2yABRL+85fJ5QEoLB+Mrmm6v4PPzeIgjLDM0oAAAD/dEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1pPng8L21pPjxtbz4mI3hBMDs8L21vPjxtbz46PC9tbz48bW8+JiN4QTA7PC9tbz48bWZlbmNlZD48bXJvdz48bWZyYWM+PG1uPjI8L21uPjxtbj41PC9tbj48L21mcmFjPjxtbz4tPC9tbz48bW4+MTwvbW4+PG1mcmFjPjxtbj4yPC9tbj48bW4+NTwvbW4+PC9tZnJhYz48L21yb3c+PC9tZmVuY2VkPjxtbz49PC9tbz48bW4+MTwvbW4+PC9tYXRoPu8PEPwAAAAASUVORK5CYII=" style="width: 116.00px; height: 42.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="x space colon space open parentheses 2 over 5 minus 1 2 over 5 close parentheses equals 1"> A. x = 1 B. x = -1 C. x   =   5 2 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAASoAAADlCAYAAADk87r6AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAC5BJREFUeNrt3Q/kVecfB/BHvpJJZJJkYpJMEkmSJDKT5CuSTJKYJJOMn8wkiZ+fZDIjSWYmkmRmIjOZTPxkkiQmyUxGJkkS/Z5n595fp9u995x7v/fPk+/rxYd8u9/7tM+5ezvn3Oc8TwgA7S2LtVgbgFwtjPUg1imtAHIzL9aeWA9jvYy1QkuAft1oBMkw65o2A/3aMIKQSrVLq4F+XR1BSKVLvxlaDfRjxYjOpo5oNdCvcyMIqRex3tNqoB+LR3Q2dUGrgX59NaKgWq/VQD/S/KbnQ77c+yPWZ1oN9OtoS7Dc1hIgJ+/E+juY4wRk7LOWkLofzHECMpIC6UFLUO3XFiAne1pC6s9YM7UFyMntlqA6pCVATja3hNSTWHO0BcjJtZagOqYlQE7WhjcnZaag2hRrlvYAOfghdJ9JfjfWt6G42b5Mu4BRWxp6fwTmUShWVkjBtUALgWE7E6b+7F5aqjhNFF2oncCgpXWgXoTBPmx8OVgRARig/4ThrZDwa7CrDDBFc0MxV2rY600djzWh3UA//hVGszBequvBTXegD5OhmJbwYygme6Zv8p4OMazSQnlLtB0YhPQQcportTUUkz5TkA1qtc+HwgoYlrT8y8ZYJ0OxosJUz6zmaykw7NBKl41T2Zj0v8GjOcCIrIr1U59h9a32AaO0Jda9PsLqY60DRiltCvF16P2ZwblaB4zj7OpxD2F1VMuAcVgeiqkIdYIqhZp12YGxWNJDWO3ULmBc0sqhdVZnOKdVwDjVeabwiTYB43arRlgt1iZgnDbXCKpJbQLG7U5FUO3SImDcqu5VndAiYNyqdrs5rUVADv4SVEDuLgoqIHenuwTVV9oD5GB/l6A6oD1ADnZ2Caod2gPkHlSbtAfIwe4uQWXDByAL/w6d16QCyMK5DkF1QWuAXNztEFR7tQbIwYIOIZUW1nN/CsjCgQ5BdVlrgFzc7hBU67UGyMFkh5D6WWuAHMzocDaV7k19oD1AN2ln43Wx5g15nCMdzqYOOQRAJ3tiPWgJjWehWIJl0I+xrOsQUj84DEAn20P1Jgu/xVo1gLEWhfYbkN6INduhADq5HOrtXJzq8BTGWRjrfpv3vDmCS03gLfd3D0GV6qfQ+2TMNR3OpK7GmusQAFVu9BhUqR7F2lfjvdPl3LHQfgv3tLLnhPYDdRzqI6iadbfx+8tDMeUgmRWKzUVPhmIFhNbfSZs5bNN2oBcTjUuwl0OudFZ1wqUe0K90FnRqSAGVzqqOh+IbP4ApS5dwZ2M9n2I4PQnFOlM7gvtQwBAvB9N9pnQj/HwobrinbwefleppKG6qXw/FxNBTjWBarn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORmRqz1sQ7HuhDrQaynsZ7HuhJr0RTfP733uViPGu/5MNaJWO9qPdDNRKytjQB5Eutll7oXa3YfY8yP9WOX970Va5ZDAbRaF+tM44zpZQ/1eY/jrGycOVW97wGHBGjaFuv3NkHxrGZQ3e9hrDWx/q75vt85NEDTrlDcH7oUa3+s1aG4NxUal3VHa4TK6hrjLA3Fvai6Z2qCCvi/dON6ouI15ytC5XDF789rnHn1ckm57y3t58Ye/zvf5rrofx9ysqLiA3uly++ms7OfW167qPHzdCZ2ps373Qhv7810QQVjdLfLB/ZZ6XKx1fEal3PpsvDLUEyBOBT6+yZRUAkqCF9VfGhXtPmdj0p///006ZOggjHaWvGh3dHmvlRzGsKtt/wsSVAJKt4Scyo+tGdbXv9D4+dp0uiSadQnQQVjdqfLh/ZG6XW7Sj/fM816JKhgzL7t8qF9EYppDgvCq/lSP2oZb5GXamA1Vjsr/nEbS5d8j2Mt9NlHUAmqUVsWqudTNf+83+ceQSWoxqXOQ8s3fOYRVIJqnC7V+Eeu8JlHUAmqcfqi4h942ucdQSWoxm1TxT9wi887MG4zQzEVoVNQfaJFQA5+6xJU32gPkIPTXYLqpvYAOdgeut+nmqNFwLjtDW6oAxl7LxSPx3QLqhPaBIzTtVA9h+LaNO6P1RNgzMqTPbtNUWiupCCoBBWM1KpSOKVLv6qVFD4SVIIKRumd8PrmDmnZ4bSZw/PQ/xZagkpQwUCVt7QqP8t3ucuH+LKgElQwKpOlD2bapGFWh3tWvWyhJagEFQzM/Fh/hc6bNGyo+CCvFVSCCoatvGLnzjZ/P1Fxn+qgFgLDdCBU73CcXO0SVBdqjrU4FDffZ2k7UFdaG/1ZI2zSt33dNg891iWontYYKy0b01yNYVLrgTrSWc3t8OqG+PKK11ctpFf1+1/XOGsDeM03pZDZW+P16T5Vt1nqn3b53R2N1zwIVlyAaW9uKGaKL6143eelgDnfw/v/Enp/7m9leLWjzQaHCKa3feH1b+bSZV275YIPll5zr8cznOMVl3+rW16fbp7/2fi7Yw4RTG9ru4THnVifhWLtqHOln6fn+Jb1OE7V3KH7sT5ovHZrrIeNn//sEAFnQ++T+Db1MU6agf6ox3HSWdu7DhHwXY/h8fEUxjrRwzjpjOp9hwdIDtYMjnQPa8cUx1oYisdsqsZK96aWOzRAU5oT9Wuovn+0bkDj7agYK307uMBhAVpNNM6s0jSBNB0gTeJMN8zTc3xpjtPMAY+XvuG71BijOVZ6lMaGDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkL+VodjPIG13lzbpTXtmpv0O0m5RaR+CtNvT77EuhmKX8skw+L0PAN6Qtps7EutB6H3T4OaWdym41mslMGhzGmdFz/sMqHaVdpxaobXAIKyfwhlUVb2IdViLganY3QiTl0Ou70OxETFAT/aNIKDKdTkUGxED1LJlxCHVrG+0HqhjcazHHYLkbqxjoZhqMD/WjNLvpakHH8TaGutkrHt9htVuhwCocr1NeNyKtbGP90o34n/tMajSfKx3HQagk71tguNky5lTv+/7tIewOu5QAO28E+uvlsA4OsD3X9M4W6oTVCnUZjskQKtDLWFxbghjbAj1pzvscUiAsnRpV57UeW+IZzSHawbVBYcFKGudjvDhEMdK3w7erxFUjx0WoOxiKSAujWC8gzXPqqy2APwjzQZvPmyc7h8tHcGY80K9e1UbHB4gmQzjmRl+vUZQbXJ4gOREKRiWjnDcM4IKqOtqePVQ8Ch9UiOoPnJ4gORsKJYM/nDE426rEVTLHB5gnCZD9aJ6M7QJyDmobmsRMG5bg7WpgMztrAiq7VoEjNvR0H1bLWuoA2N3rktQfac9QA5udwkqG5QCYze7S0jd0B4gB92+8ZvUHiAHZzuE1HWtAXKQlpXptB3XKu0BcrCrQ0id0RogF+32+XsY7OUHZGJth7OpzVoD5OJam5A6pS1ALtqtlpDmTNnAAchC2oX5XktIpV2ZF2kNkIvj4c1F8ewwA2Sj3Q1027UD2Zgb3twV+Yi2ADm51BJSp7UEyMkXLSF1XkuAnGxuCanvtQTIycrw+kPHaWPTCW0BcpHmRf1ZCqlfgrXPgYzMC8WOy82QSg8fz9YWIBdpGsJvpZBKf7YaApCNdNZUftj4TuPsCiAL6YHiK6WQSpM7F2gLkIsZoZh20AypP2K9py1ATsobiKYVOpdoCZCT06WQehRruZYAOSkv2ZImdq4e0bjp3tfOxiUnQEeHSyH1NNa6EY59vjHuSocB6ORAKaSex/pwhGNva4x702EAOtkdXn/IeMsIx34/FPfB0rifOhRAO1tbQmrHCMcuP5aTzuLmOhxAq02hWN+8GVKfjHDs5eH1ZwfPORxAq7T5wtNSUBwc8njp27zFsbaHYmXQFy1nchsdEqBsTXh9Talx1z2HBGi95HqUUUil+sJhAZrSpdfDzEIqlY1KgX8sDMWDxbmF1BWHBkhaV+fMqbY7PEBaifNmpiGV7pV5tg+muRQC1zMNqVRfOkTAzIxDKtWyXBr1P7XtSsfoREfPAAAAlHRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtaT54PC9taT48bW8+JiN4QTA7PC9tbz48bW8+PTwvbW8+PG1vPiYjeEEwOzwvbW8+PG1mcmFjPjxtbj41PC9tbj48bW4+MjwvbW4+PC9tZnJhYz48L21hdGg+hikhXAAAAABJRU5ErkJggg==" style="width: 46.67px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="x space equals space 5 over 2"> D. x   =   - 5 2 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAYQAAADlCAYAAABTYoCYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAADCZJREFUeNrt3Q+kVNkfAPAjSZJIkmTFSrKSSJIkkbWSPJFkJYmVZCXLT35WVuLnJ1lZS5KslUeSrLUiK1lJ/GQlSawkayWykiTR7xx3nqbZmTsz78+d++Z8PnxZ782b8/Z7Xuc79557zgkBgEFaGWOZNADkbUmMJzHOSAVAnhbG2B/jaYx3MVZLCUC93WkM2FMZN6UZoN42V1AMUuyVaoB6u1FBMUi3jGZINUB9ra7o6uAbqQaot9EKisHbGB9JNUB9Lavo6uCSVAPU23cVFYRNUg1QX2l9wJswtbeJ/ozxlVQD1NvxlgH8vpQA5GdOjL+DNQIA2fuqpRg8DtYIAGQnDfxPWgrCIWkByM/+lmLwV4xZ0gKQn/stBeGolADkZ1tLMXgZY560AOTnZktBOCElAPnZEP65eCwVhK0xZksPQD5+DuUrix/G+DEUk84rpQtgOK0I/W898TwUO6GmArFYCgGGw7kw8b2J0hGbaUHbEukEmJ7SOQRvw+RuWnc12MEUYNr5b5i6HU1vheLENQBqbn4o1hpM9XkHJ2PMlG6A+vpXqOYAnBS3g8lngNoaCcXjpr+EYlFaenLo1RQWhXQgznJpB5g+0mZ2aa3BjlAsTksFY7JOT3uqKABMb2lb7C0xTodiB9SJXiksklKA4SgO6XbTjQkUhf8FW2IADJW1MX4dZ1H4UfoAhs/2GI/GURQ+lzqA4TMnxveh/z2R5ksdwPBeLbzooygclzKA4bUqFI+Y9lIQUvFwbjPAEFveR1HYI10Awy2dxNbLbqqjUgUw/HrZM+mlNAHk4V4PRWGZNAHtnA3V7cQ5iMhtEnVbDzkZ8WcPKAh5eNAlJ3v92QMKQh66zSWc8mcPKAh5WNElJ2f92QMKQj6eKQiAgqAgJJcVBEBBUBC69et3/uwB8nGopCAclh6AfOwpKQi7pQdAQUixVXoA8rGvpCAskh6AfPwndD4TAYCMjHYoCJekBiAvDzsUhANSA5CPxR2KQTpAx/wBQEYOdygIV6UGIC/3OxSETVIDkI+RDsXgutQA5GNGh6uDNHfwifQADN6cGBtjLJzidr7pcHVwVBcADNb+GE9aBufXodiaerK3j9jYoRj8rBsABmtX6L419+8x1k5CW0tjPG3z/ndizNUVAIN1NfR+ZsOxCbSzJMbjNu95N0z9LSoAevB36O8gn19D/4vG1ne4MrgRY74uAKiHO6H/092exzjYw3un20AnQvH0ULvjMWdKP0B9HA3jP/bzYePnV4XiUdJkdoxtMU6HYsfS1p95FmOntAPUT/qUfiNM/ZnR6SrhVHCLCKDW0qf6M1NUCNJVwslQPGEEwDSRbv2cj/FmgkXgZSjOOdgdzBMATGtpEE/zAGlC+GIoJp7T00ivm+JVKCaXb4diAduZRgFYJX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1NyPGphjHYlyK8STGqxhvYlyLsXSC75/eezTG88Z7Po1xKsYCqQcYvJkxdjQG6pcx3pXEoxhzx9HGohi/lLzvvRizdQXAYGyMca5xBfCuj/h3n+2saVwJdHvfw7oEoFo7Y/zRZkB+3WNBeNxHW+tj/N3j+17QNQDV2huK+/dXYhyKsS4UcwdJuh10vIfBe10P7awIxVxBr1ceCgJAxdIE7swur7nYZfA+1uXnFzauJPq5FXVwmuZzS5//n9M5LvvnA/lZ3WVguFbys+lq43rLa5c2vp6uLM61eb87YfpOKisIwNB7WDIwvA7vbzO1OtnDbaB0O+nbUDzaejSM78klBUFBACryXZfBYXWbn/ms6fs/ZZInBQEYeju6DA67W16f5g3GHi+9N80/9SsICgLQZF6XweF8y+t/bnw9LW5bnlGeFAQgCw9KBoc7Ta/b2/T1/ZnlSEEAsvBjyeDwNhSPry4O79cb/CJlTCPvhJhmMVB7uvxyW5puFb2IscQYg4IgxHAWhJWh+3qEsf8+ZHxBQRBieAtC0svmd3eMLSgIQgx/QbjSwy+52tiCgiDE8BeEr7v8gmeNKygIQuRRELZ2+QW3G1cA8jArFI+YdioIX0gRQD5+LykIP0gPQD7OlhSEu9IDkI9doXweYZ4UAeThQDCxDJC9j0KxLUVZQTglTQDD72bo/mzszYzzY7dTIAvNi9LKHj0d2/lUQVAQgCG0tqkIpFtG3XY+/UxBUBCA4TMnxsPw4XGZM2K8KRksjikICgIwfM6F9nsVXS0ZLK4qCAoCMFxGmgaAezFmN32vbKO7142rCAVBQQCGwKIYzxr/+F/GWN7y/c1dBowNCoKCAAyH5hPQ9rT5fnqSqGwe4YgUAkx/h5sG9gslr7tRUhAu9djWslBMQs+WdoB6SWcnv24M6unporklrz1RUhBe9dBW2k57bPfUEakHqI/0Kf1+eD8xvKrL67sdmNPt57/v4SoEgAH4oWkwP9DD69M8Qtmq5S9LfnZ34zVPgh1SASoxPxQrh1d0ed2/mwbyi328/2+h/32N1oTillJ6zWZdBDD1DoYPnwRKt4PaHXN5pOk1j/r8xH4ylN82Wtfy+jSJ/Ffjeyd0EcDU21AySD+I8VUozi4Ybfp62qdoZZ/tdHv2/nGMTxqv3RHjaePr13URQDXOh/4XG20dRztpRfLzPttJVyELdBFANS70OUh/PoG2TvXRTrpC+Fj3AFTnSI8DdJpj2D3BtpaEYnuLbm2luYNVugagWmlNwa3Q/f7+xklqb3eXttLTSIt1C8BgzGxcKaTHP9NjnmmxWZo4TvsUpTUCsya5vfRE0ZVGG2NtpS0stusKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYALWhOKM9gsxrsd4Hooz3N+E4mz1lzH+iHE5xskYI2Hyz3MHYECWxPgmxpMY78YRbxoFYpNUAkxP8xqf8t+MsxC0i5sxVkstwPSxaQJXBN3ibYxjUgxQf/sag/a7KY6fYsyWboB6OlhBIWiOqzFmSjtAvWyvuBiMxQ9SD1Afy2K86DBgP4xxIhSPkC6KMaPp59IjpZ/E2BHjdIxH4ywK+3QBQD3cbjNI34uxZRzvlSakb/VZENJ6hgW6AWCwDrQZoE+3XAmM931f9VEUTuoKgMGZE+NZy8B8fBLff33j038vBSEVj7m6BGAwjrYMyqNT0Mbm0PtjrPt1CUD10i2h5sVnj6bwE/qxHgvCJd0CUL3Wx0w/ncK20tNIj3soCC90C0D1LjcNxFcqaO9Ij1cJdkcFqFBaHTy2aV26v7+igjYXht7mEjbrHoDqjITBrBS+3UNB2Kp7AKpzqmkAXlFhu+cUBIB6uRHeby5XpS96KAif6R6A6pwPxVGXn1bc7s4eCsJK3QMw/EZC98NzZkgTgIJwX4oA8rAjOBsBgGhPl4KwS4oA8nC8pBikhXLOWAbIxGhJQbggPQD5uF9SEDZJD0Ae5pYUgzvSA5CPsieMRqQHIB/nOxSD21IDkI+03faLDgVhrfQA5GNvh2JwTmoA8nKrTTF4GmOB1ADkY0OHq4NtUgOQl5ttisEZaQHIS7vdTdOag1lSA5CPOTEetRSDZzGWSg1AXk6Gfx5+s1laAPLSbiJ5v7QA5GV+jMctxeAbaQHIz5WWYnBWSgDy83VLMbgoJQD52dZSDH6SEoD8rAkfbl53NRQb2gGQkbSu4K+mYvBbcDYyQHYWxvijqRikTezmSgtAXtLjpb83FYP033YvBchMugpo3rTuQeNqAYCMpI3prjUVg7QIbbG0AORlRigeJx0rBn/G+EhaAPIzGj488Wy5lADk52xTMXgeY5WUAOSneSvrtABtXUXtprmJPaG4VQXAgB1rKgavYmyssO2LjXbX6AaAwTrcVAzexPi0wrZ3Ntq9qxsABmtf+HCzuu0Vtv1xKOYpUrtf6gqAwdnRUgx2V9h283YY6apkvu4AGIytoTj/eKwYfFFh26vCh3sjjeoOgMHYHIqJ47EB+cgUt5eeHloWY1coTlp723JlskWXAFRvffjwTINBxyNdAlC9dKvmeY2KQYqvdQtAtdItm6c1KwYpluoagOosCcUGdXUrBtd0DUB1Wk87q1Ps0j0A1Ugnm92taTFIcxn2LgKoQBpsb9e0GKT4VhcBVGNWjYtBipW6aPz+Dxah6L4wEIZEAAAAq3RFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtaT54PC9taT48bW8+JiN4QTA7PC9tbz48bW8+PTwvbW8+PG1vPiYjeEEwOzwvbW8+PG1mcmFjPjxtcm93Pjxtbz4tPC9tbz48bW4+NTwvbW4+PC9tcm93Pjxtbj4yPC9tbj48L21mcmFjPjwvbWF0aD76AvepAAAAAElFTkSuQmCC" style="width: 61.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="x space equals space fraction numerator negative 5 over denominator 2 end fraction">

Tìm số x thỏa mãn:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#xA0;</mo><mo>:</mo><mo>&#xA0;</mo><mfenced><mrow><mfrac><mn>2</mn><mn>5</mn></mfrac><mo>-</mo><mn>1</mn><mfrac><mn>2</mn><mn>5</mn></mfrac></mrow></mfenced><mo>=</mo><mn>1</mn></math>

A. x = 1

B. x = -1

C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>5</mn><mn>2</mn></mfrac></math>

D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>2</mn></mfrac></math>

  1. x = 1

  2. x = -1

  3. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mn>5</mn><mn>2</mn></mfrac></math>

  4. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>2</mn></mfrac></math>

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Thực hiệnphép tính sau theo cách hợp lí nhất có thể:

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG