Tìm số tự nhiên nhỏ nhất chia cho 3, cho 4, cho 5 thì có số dư lần lượt là 1, 3, 1.
Tìm số tự nhiên nhỏ nhất chia cho 3, cho 4, cho 5 thì có số dư lần lượt là 1, 3, 1.
TT
T. Thanh
Giáo viên
Xác nhận câu trả lời
Giải thích
Gọi n là số cần tìm.
Ta có: n – 1 là bội của 3, n – 3 là bội của 4, n – 1 là bội của 5
Suy ra: 2( n – 1) ⋮ 3 ;
2(n – 3) ⋮ 4 ;
2(n – 1) ⋮ 5
Do đó: 2n chia cho 3, 4, 5 đều dư 2. Nên 2n – 2 là BCNN của 3, 4, 5
2n – 2 = 60 ⇒ n = 31.
Gọi n là số cần tìm.
Ta có: n – 1 là bội của 3, n – 3 là bội của 4, n – 1 là bội của 5
Suy ra: 2( n – 1) ⋮ 3 ;
2(n – 3) ⋮ 4 ;
2(n – 1) ⋮ 5
Do đó: 2n chia cho 3, 4, 5 đều dư 2. Nên 2n – 2 là BCNN của 3, 4, 5