Đặt x=cost1;t∈[0;2π)∪[π;23π),dx=cos2tsintdtI=∫cos2tsintcos2t1−1dt=∫cos2tsintcos2t1−cos2tdt=∫cos3tsin2tdt=∫cos3t1−cos2tdt=∫cos3tdt−∫costdtJ=∫cos3tdt=∫cos4tcostdt=∫(1−sin2t)2costdtĐặt u=sint⇔du=cost.dt⇒J=∫(1−u2)2du=∫(u−1)2.(u+1)2du=41∫(u−11−u+11)2duJ=41∫((u−1)21+(u+1)21−(u−1)(u+1)2)du=41∫((u−1)21+(u+1)21−u+11−u−11)duJ=41.(−u+11−u−11+ln∣u+1∣−ln∣u−1∣)+C=41.(−u+11−u−11+ln∣∣u−1u+1∣∣)+CK=∫costdt=∫cos2tcost.dt=∫1−sin2tcost.dt=−21∫(sint−11−sint+11).d(sint)=21(ln∣sint+1∣−ln∣sint−1∣)