Square root
VBT
Calculator
magnet

Câu hỏi

Số viết thành hiệu của 2 số hữu tỉ dương nào sau đây ? A. 7 3 - 23 5 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAWwAAADkCAYAAAC8Cx64AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACMJCpdlQAAERBJREFUeNrt3Q+EVdsewPGfjCSJJMlIJBkjiZEruRJJMjIiSZLEleTJFcmVJMM1MpJERjKSIRkjI5EkVxJXkoxEkpEkkoyMRG/97t7ndmbfvfafc/aftc/+fvjR8947+5zf2nvN2r+99loiAOqoz8T/TNww8cDEJxNfTXwzMWtixsRrE+MmzpsYMDHfwd/RZaLfxJD/Xd/4333W/y36m96bmDBxyeHfUTnrTfxwLL7QLOgg3SbOmphu8Xr45neKWxz4Lb0mRvyOuZXfMer3OWjRZQc77GmaBR1gsT9K/pbhtfHIxIaS/uiMZfg7rplYyimSzqIW/1LmHZdoGlTcljZG1HHx3cSZAn+LljM+5zQw6+NUSe64g521xlaaBhV2yO9U875ObptYkPNvOSX5lz83ccokM+VgZ/2BZkGFHS34erkr3gPAPJwt6Dfog9dVnDrRfnV0dD1C06CidpV0zYwW+IdH7xwm/f9eR8bNMz/03z0m9vrfaSbFb3jC6RNtTNzssLfRNKigNf7tfdg5/crEoHi14OUm5gU6OZ15sdvERfGmx7Vy3RzK8LdstnTU+gC1O8XnLBSv1p70OdleTqNwyy01Nn0CrXXtrTnXxtZG3BrNo3lQQU9CzucXLQ5A9IHl4xbKClnMutCJCG9DRr89bXymzmp5n+A3/M1pFO5MIFHvCx7Z/kE5BB3kSMi5fDGDwYd+7tcUnfb5DH7LxZBrMotBVG/CEskaTqe5NPnN043emVhZ8Hd4bmmsHTQPKkZv+z8GzuNzGX7+Jn/0nKTD/uqPkNvpVPP6HepEgt+wn1NqruYHI1/8RipSj6WhPlMOQQUFp72N5XAMLVEmnSZ4uI3jjEu+70LMl/j53NxlB9xvSs4+B8oxjbhK06Did6tv2hzhtnLdBONWi5/f/FzpXo45G435/jc4rX5a05SY6yV9B8oh6MS7VY3tOR5LR6dvJb91eIblZ4k0z1fGD8R8/zFOq5/Oy8+HjGW8x28rh8xQDkEFNZcQJgo43u8JR9lpV8XTa+9jQQOnfkbYyd2Rcuc72m7rRmkaVIy+XdhY1Om7tDftLallkqyWnXZph0YnerOA37At5rsPcWrNVeZ7+7ZX4XfRLKiYgZIGHE8SdNg7U36m1t31xZ0VDnTYuzm13NAr9qlIlENQNcNN53BPgce9mkOHXaSokojesSzh1HKDrRxCzQpV9FB+Lr5UpN8SdNguP8CPeuh4k9PKHS8tjTRAalBBugC/buW1veDj7knQYa9zOG9RG6awE40jbNuQ6aIwXaQHSGxA4jc3cLnEaBu48cKMQ2zr6jLnEsi2w55y+Lv3iX01w0U0rft/VXkiDKSzW4pfGzsrNyR8w5LVNKs7bOUQfSLMtvdAOnFvCrq6pnSfpbPeQJO65ZzwRBjI+3pqDIIWOPidF4XcZWsZhKVUHWQrh+wjNUBqUTtFuTpFdjLke1KzrshtEOUQoHVRG2dvcey76mh/Quauvb+HJnTXoGS7BCRQZ4siOuunjn1X3RQl+Bq9LkV7ktG1u14Lu0oAWYmaIeLSC2i6o/oXid5/8iR32W6JKocsID1Aatcs19QTR76frhPyXJLvQakbPmynWd3wp6WRJkgNkFpXxKh1Y8nfS7cleybpdnkPvuXIaLtktnLIAVIDpHZQ3NpaT++gL0jyDYLj4pF4632jBBsjyiE8cADSeyzhL54UvXOUjqZfZdRJB0NH6SyvWoLzlgaZJDVAapst11N/Cd9F51BraUa39ZvNodOmZFoC22ahh0gNkNqjkGvpikPfT+vPuuu6bpygJU9dz+RNG502ZVMHyiHfud0BUgtbne+pVOMhnda5hyV6il9Y6CbhzCQruRxyh9QAqSwMGanq7uarKvY7Fov3El2SDYQb8TvNX2455DCpAdoa/GiHt7XCv0d3wnmdsMOeovnz94vYyyFLSQ+Q2OYOHfRoP5B0zvY6ToN8DVsSf5/UAIktCblTPdtBv2+5eHVqyiIlm7Yk/gipARKbkM7f73Bbgg6bNfMLvoVrlEN4gwlI5nSNOq3bMR32C06H/FwQyiFAO/oD187tmg7yGjHLKZGfd5akHyU1QCyds9w8X/mueAsrdbq4F2zmcWoU95dSyyHLSQ8QSedVNz+E+0vq8+LI1ZgOm1X8cmArhzwkNUAkfb7TPDdZF3mq0wJp++mwi2ebonOM1ABWOn2veU6y/rtu7yvsEEoihdoSkexu0gOE0lF086JOL6Wes6m6hYeOhbpoSfZfpAYIpbf595quFX1JZkWN/3Axra9AtnLIcVID/Ife4jfPP9bZVStrnI+FER32GKdLtqLKIStJD/AfYzJ3x5i1Nc9HVEmEV9MzdtmS6MekBviPkaZrRPdCXE9K/tn0wNZh/0J6smUrh5wgNcAczUulfimwM9LauO7g4upsiwOWPmSaUyZbUeWQVaQH+NeZpmvjq4lfCzz2Tf+4fY7m5rqlDxnktMmWrRzylNQA/zredG18M7G9wGPv8Y/7vGJ36d8Z9GVLb68+Wjrsk6QH+MehwLWxq8BjrxavTq7H/Z+j+bEtsTrCqZOtrWIvh6whPYDsDlwX+wo8dvPr7jqqd3Xz6wch/YfW91dw+mTrilAOAWx2ytwNZ38r8NjrZe7aJK7OZba9ks5yFhmLKoecIj3g7vOfB4tFzSWe59/V7hVvp5rgzuTbUnyWPgz90x+Q6eyNvJaWCNsCTWOS0yd7UVv7rCU9qLFNMndN67LjTcLvretu35Lwh3/jJnozztOk5buyUXeB5ZBnpAY1pqWITw511hqnE3730zGfox33kGSz1OloyOfr6/mrOYWKLYecJj2oKS1JfHCss07zPsRUws/T/92WFnO0WML3cHwlTOHLzfaIxuwlPaihbrFvj1dm3EvxG9LeGWjHm+ZFHK2vT4d8jpZhlnAK5ce2nQ/LIKKOgrvFuBR7U/yO8RaPobPCTvoDueZyif5bZ4Gcs+RH/8Dt4/TJvxzy2dJwZ0kPakYfkD13tLP+JOnWDtlR0PfSstEf4i2pCsohQGGDlyeOdtYaF1r4Tadz/D76gsxBqccu8M6XQ16RGtTMfIc7a411Lf6uHX6Zo93j69RGrU8fNrGc0wUA8tNj4oh4U/DuiDczbEa8PRYbof9ZF27SB5D6NqXWq/V1fJamAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQC38IDILcB0RRK79AYmlwwbXEUGHTQOBDpugP+BEo8Me6fBczqfDJugPONHosOmwuY4IOmyCDpsOmyAokYIOGwDosOmwAYAOmw4bAOiwAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUJR1JtaQBgBwW7eJaRNXSIW7ukz0mxgyMW7ijYkZE7Mmvpn4auK9iQkTl0wMmJhP2oCOsczEYRMfTPwwsYGUuKfXxIjfMf9IGdqRj5pYTxqBwjxt4VpNG49Is3u3PWMZNvA1E0tJK5CrrQV01hoHSbU7tJzxOYdG1rpXH+kFcvOwgM5aSyLzSLUbTuXc2F9MbCLNQOY2FDS6Pkuq3XC2oAb/ZGIV6QYyNVbAtfvdxEpSXb6jEQ006f/3OjJunvmh/+4xsVe8h4szKRr+CSkHMrOmoMHWLVJdvs2Wjvq8eA8fk1po4owkn1Gyl9QDmbhUUIe9hVSXa5GJtyGj3542PlNrae8TNP7fpB9om86P/pZzGeSdiROkunwXA42jc66zeALcm7BEwuutQHvOBa6pKVLSmXoDDX0u488/kaDD3k8zAC3TMmRwCi5zpDvUeFMjX8rh8+dL/HzuEZoByGxQ9FaYI92R1jY18r0cjzMa02HfoCmAlmjHPB24no6Rls407DewPkzI85XxAzEd9hhNAbTkcOBaei8suNaxf5k/+o28I+dj9TPCBnIxFbiWTpGSztToRG8WcKxtMR32EM0BtD0Q0hlZi0lLZ9K517tNrHCgw95NcwCpPQpcR4OkBHmMBILrZS8hRUAqYW8ma4e908QC0oN2RD10vEl6gNQmY+5aX5m4Lt5DyXWkC2lcjjix2IkGSKdHWlsdc8zvwFeQQkR5KbwwA2TlqrS/NohuIaYv3HSTTjTri7hlW0R6gFR0Hervku2iTneFFfjguyHh2wutJjVAakOS34p8j4Vd0Bldh3TWnBRAejqbKs0GIa2GroHfRbrrRcsdL0PKICylCrTmpBSzQUFjPXweTtZIcNrRDaFmDbRjwL+u7oj30ozO/PiaY6etawytJe2dTSftTwQafQ9pAXKjiz3pXGt9Y3jQ79Cz2n3mA51251rp30o1N/i0fyvH6Booji7upktC6G5SSbbqixtpLyelnUV3VP8i0RP3TwpLPwJldN5aTnnYRqf9t/DKe0fQdUKep2j4Nya2kzagFBtN3G+x075O+qpJp/zoK67P2viLPcJoGyjNLn/wlPa6Zf/VCtF51Rf88kYWDzT0Sfcy0gqUQjfvvSzp1yRhdU3H6Wj6leQzdegZJwBQ+mj7S4pr9hwpc9sNv0H1LavZHDrtCVIMlEpXzfyQ8HrVvoByZsVog+n8TF0wXde71p3RW6mJNeIAKQVKtTZFp8312iG0zj2c8harsdsz04aAculONklWAxwjVZ1FNwMdlHRLQf5O2oDSJVmzZIY0dSZ9ZfZ1wg57inQBTniR4HplIbcOtVSSz9lm/zmgfP0JrtUB0tS5dC2CJGsaUBYB3PAy5lo9SIo627YEHTa7qANuiKtlD5Oiznc75iR4QYoAJ8Ttzs4m2jWwOeYkmCVFgDM+0mEj7gWbeaQIcMI4HTauxnTYvPYKuGEk4jq9RHrqYT8dNlAJxyKu0+Okpx52CCURoAoORFyn+0hPPXQLDx2BqnfYO0lPPSwSpvUBVXAo4lplY96aWCisAgZUwZ9iXxMbNRFVEuHVdMAdY5br9BapqY+dER32L6QHcIZta8AjpKY+bA8ypkkN4IwVlutU17infl0j1y0nwiCpAZxx3HKd3iU19fLe8ld7FakBnDFl6bC3kJr6sC2xyroEgDsGLNfpA1JTLw8kfIrQClIDOGGeZXStd8G9pKc+bK+kHyM1QCx9f+FXE8tyPs5Zy3V6iiYon54AOjn+inizN7pzOs4SE29DToJJmgCIdFi8GVTBJRx06dOdOfQHP7hO3dMl3uT3sNue8RxufSZDjqXrYi+lKQCrvRK/rZ5ucL0xg2PpQ/8PIZ//VLzlJFCi0zEngXbcQ5LNUqejIZ//zsRqmgGIdDdBh92IM20cp9tyB/xc8i/BIIGphCeB/u9ancazWML3cHwlTOEDkvicosPWuC/pX2rZZBlZPxSvlAkHfEp5ImjH25fyVm5awtcg4CQAknma8jr94V/bRxN8tpY5Bv276bBptl2k3x3jLZwIjXrWSRPbA+US/bfOAjln4rWlBMKC50A6p1q8Tht3svr/Xy8/NwVZYKLfxEXxptMG/z+66e4e0u6eHW2cCGlCb7X+EG9KEoB0uvzSRN7XqY6yh7n7ddvpHE8AfUHmILdVQNt0VHwlp+tUR9nnhWdKlRppP82o4bU+rXNGWckLyJ6WNq6Z+NbmtToj3jrX+xhQVVePeGvc6hS8O+LVsrRhZ5tC/7Mu3HTbb3CtV+82sYb0AYWWSbQOrQ8Mb/oDrs+Ba/WreA8fn4j3vOqK30GvJ32t+T/7FCtGUHBfKwAAAJB0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1uPjc8L21uPjxtbj4zPC9tbj48L21mcmFjPjxtbz4tPC9tbz48bWZyYWM+PG1uPjIzPC9tbj48bW4+NTwvbW4+PC9tZnJhYz48L21hdGg+VlRnmgAAAABJRU5ErkJggg==" style="width: 57.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="7 over 3 minus 23 over 5"> B. 5 3 - 3 5 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAADmCAYAAABFyUm8AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAADpVJREFUeNrt3X9kV/sfwPGXzCS5JLlmEsnMJJFcSXK5ksk1I0mSq3+u9EeuyFxJZlyTuTIxc2VmxmSSSVxJf+SKTJJJJJnMRDKTSez7fnXO7t337LzPeZ/P+fX5nM/zwYuS9uH13vv1eb/Pef8QQZi9JvaQBgBV1W5i3sQIqQBQNTtMnDexaGLVxH5SggprMXHCxKCJaRNvTSybWDHxxcRnEwsm7poYNtFjopW0FWfWL0R5xhPSjIrqMjHqF7Sk/UIL4JiJfaQxXz8WUOQ0zpFqVIw+kpnMsI/cNrGdtObjcQFFTqeum0g1KkSnnZ9y6Cv6LPsA6c3W/oJGc9dJNSqkL+f+smTiEGnOzqTkX+S+mthJqlER1wsaHHw0sYt0p7enoAa7Q6pRERcivsxn/H/Xkdj6N6n6504Tp8R76bCcoO88JeXpDRdU6I6SalTAYUuBuyHeSwlXW0xcE/c3tKdIfe10fduXnKer701cJtWogK0m3oWMtjpT/Ex9Pr7g0Jeekf7a9QeSOUdKAKubgf6ia+ayWEXQ5TiVZetkDXToHHwtzho3wF6M1veV/ox//mWHQneGZkif2HfCGjfAZnpdXxnO4ee3Svx6vFGaIRktaPOBJF4kLUCojnX95O8cP2csptBN0BTJnA8kcEHYVAzYDPn9RF+s5bk162xMoZukKZKZCySwj5QA1tnPB7+fHM/5s04wossvmfq25zvSAkT2l6kCPuunmEI3SHO4exJI3gApAax07VyvibY6KHS9NIebsFXdWui6TWwmPUBdzbaC59VtI0VuZmK+MV6bGBfvZcVe0gUUKuplxBTpcdMptZ2cMOkXvjZSCOTqVkRf5ORhR39J+r2retS6LjRuJ51A5l4JC4VT0XPgvkq2m/UfCCeSAFk5IPbHSVtJj5tBye+Ekn+EW72AtCYk/OqB3aTGjb6pSXLIX62h53G1kG4gk9HcIgOIZK5IMQdrrp3NxUsLwJ1OS1+FTFc5kikhvaVIl5XcF2+xsL5J/ZxjsdP9gB2kHXASXPI1ITyTy5Ru4te1crraesAvhFmdNrxIsQMi6QL9u4EBwknSUgzdwKzbUPQkVZfjneNGdt+TUmADXQXxVDbe43qF0Vw5RU+nvWkutn4mbC0D1tMbwpYkepH+FeHYtFIcNPGwxmI3TvqAb/tYXyToN29NHCNt5fjZb4CkxY6z7tGMdLmVbp98nmJWNMrorhx6qc4tSb5nlpMX0Cx0Xdyf/u99Fi/3dLXEDtJa3uhuKUFj9ZMyVJyO3l5LPsu2njNYKI+eqLDo2FBLDMFRcRP+77nuRFrJodjdJcXl6UhQ7M6SLjSZVr+PdPu//3rTVy3PuelDdUBPLnY5HYVbjACPPscbkmSPf9Zu7GPJVolc9tQukybg/+jFVAOS7Bi130hbuV46NBKblYGNdDvmG8dCN0e6ynXCoZF6SBMQSi/Hdl1zx50uJXsV00DnSBFgpfvDXfaZM30tWdyzuiFSBESKu9+VW8HqQNxtY1z0AcS7F9OPXpKi8n2g0AGpHI4pdCukqHzTFDogtbiFxZtIUblGIxpnmPQATuLuYmZLZckuRjTOJdIDODlDoatvZyMa5zTpAZwcZ+rauIWum/QATtqFlxF17ZeIBuLCHMDNVmF5SV37Q+xn0gFws0U4CaiuTVoa5w6pATKZurIFrA7YjpP+ldQAzrojCt0PpKdcbZaG0fO2eD4HuLO91JsnNeW7ZGmcB6QGSGTc0pcGSE355iyNc5TUAIksWGZGu0hNuXosRe4RqQESsR3VxF7xkm2yjOb0G6iL9ACJPJLw5VltpCacrsU5Ivnf9H3d8g3URxMAidi2fl0kNRvpreHzsnHbiB6hlPU2rCOWhpmhGVAR+juuC+FHxHsb2p7T52wz8Y6+5OaUxB/FrJdwHMzgs/TBaNgF1rPibWEBGlmLeAvdwx7J6KAh68cyMyGfpefSbacpNnog7ndEXkvxOe2Wb58XBUyVgSJcjek/WvAGJZsjk8ZCfv57E7tphnCfJNnt3w8l+WLeQ5aR3GN/+A1UwZy437Va6xIqvcQ67I6I18JSkkizCQudxkcTFxx+tk5HbTeLj/pDfaAqPibsR1qwDiT4+fqYaV7C94UzYIjRV0OhW/8tov9/n/x3sN9m8S6nvineK+7g/9HLcE6SdlTQdI39SAcbevXnscC0Vv+sb1X7TbyxTFU5nNZRiz+FXM05dFQ3xDcPKux4Af1o1X8M9Lt4y8GQgI7CRnJqFB3V3eD5AZrEVcmvwOnC4HM88klPp6C3TXxJ2SDL4p0zd5pGQZOO7GYlm0GCPn/Tda6c5pPTdFafs+mLhCm/0fTt7Mq6+Czew9en/rOJEb+w7SN9wDed4p2rqEtB7ov3fHo50I/077oh/54/ONDncb0m9pA+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPpWicwC9COiTvsRiaXQgX5EoSModKAfUeiIMgrdaMVz2Uqhox/RQBQ6Ch2Fjn5EA1HoKHQUOvoRGh2FDgCFjkIHgEJHoQNAoaPQAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVNVeE3tIA4Cqajcxb2KEVNSmxcQJE4Mmpk28NbFsYsXEFxOfTSyYuGti2ESPiVbSBhRih4nzJhZNrJrYT0qS6TIx6he01YShBXDMxD7SCHwzW0M/ShpPSHOyIfBkhsm/bWI7aUUT+7GAIqdxjlS70WnnpxwaQJ8dHCC9aFKPCyhyOnXdRKrj9eXcEEsmDpFmNJn9BY3mrpPqeNcLaoyPJnaRbjSRyQL61VcTO0l1tAsRyZvx/11HYuvfpOqfO02cEu+lw3KCRnlKytEk9hQ0gLhDqqMdthS4G+K9lHC1xcQ1cX9De4rUowkMF1TojpJqu60m3oWMtjpTPo9YcGiYZ6QfFafr277kPF19b+IyqY52M5A4XTOXxVubLsepLFtVUGX9gd/3OVJSvK5AI/Rn/PMvOxS6MzQDKkof5QSXabHGrQTT6xpgOIef3yrx6/FGaQZUVPCL/p2wxq1wHesa4O8cP2csptBN0BSoIC1o84Hf9YukpXhDfvL1QWaeW7POxhS6SZoCFXQ+8Hu+IBxyUcq3zQe/AY7n/FknGNGhCc0Ffs/7SEnx1orPVAGf9VNMoRukOVDR/rUWuvrgO9JSPF0712uirQ4KXS/NgYp5EvgdHyAlzfftFjyvbhspQoWE7TLSQtdtYjPpqa6olxFTpAcVMxMzg3ltYly8lxV7SVd13IpodE4eRpV0Sm0n+Uz6ha+NFDauV8JCYTSHvyT93lU9al0XGreTzsZxIGL4vpX0oEL0HLivku1m/QfCiSQNYULCj3reTWpQMYOS3wkl/wi3ejXUaG6RBkMF6cqBJIfO1hp6PmQL6a4fOi19FTJd5UgmVNEVKeZgzbWzInlpUSeCr9gnhGdyqK4e/3f+vniLhfVN6ucci53uT+8g7eXRBZF3Aw1ykrSgSekmfl0rp7t/BvxCmNVpw4sUu3Ls9IfVwXtcrzCaA/6lB2rotkg92dvluoG4kd33pLQ4ekPYkkQvirwiHFMDBIueTnvTXGz9TNhaljvdx/oiQaO8NXGMtAEbHDTxsMZiN076sqevt3W7yvMU30KjjO6AUD/7A4KkfYq7VzKi6+L+9KehWTxM1bdTO0grsIFeqnNLku+Z5SSgFHT09lryeU3+nMYBIkd3Swn6Uz8pq92En2xd+b2SQ7G7S4oBKz3hZ9GxL2k/5ZFQhjSZuoZHDxPU8+bGanyusBZnSSlg1ZGg2NGXCqDP8YYSDrfXbkjiFTlgpycXu5yOwq16BdKLQAYk2bE1v5E2IJLLntpl0lQ83f7yxrHQzZEuINZLh77E4Rkl0MuxXdfccYY+EO2EQz/qIU3l0P14Lvv6mL4C8V7F9KNzpKg8cfe7cisY4CbuWd0QKSrXvZgGekmKgFhxt41x8VTJDsc00AopApx8oNDVt7iFxZtIERBrmkJX3+LuvmQLCxBvNKIPDZOe8p2h0AGpXYzoQ5dIT/mOM3UFUjsb0YdOk57ytQsvI4A8C1036SnfVmF5CZDWLxH9iAtz6sAW4eQFIK0/xH4mHep86soWMMDNpKUP3SE19aE7otD9QHoAJ7brDX4lNfXB9hB1ntQATtosfUjPf+T5XJ0YtzTSAKkBnFyy9KEHpKZ+LFi+iXaRGsDJnKXQHSU19cF2VBN78wA3PZY+9IjU1I9HEv46vI3UALE2WUZzOiPqIj31wbb16yKpQYPTtaFHTOzI+XOuW/pQH00QTRtHFx6OiPc2tD2nz9lm4l1IA83QBGhg58VbLRDcxqhHKHXn0FdX6UPJtIi3sDBsCDydwzB4JuSz9Fy67TQFGtQpib8aQC+FOpjBZ+mLurALrGfF21IJi6sxDaQFb1CyOTJpLOTnvzexm2ZAA3sg7ncWX0vxOe2W2dCLAqbKDW9O3O9arfWVtV5iHXZHxGthKQka36cEhU7joSRfzHvIMpJ7LN7jIMT4mLCRtGAdSDisn5fwfXg0EKpgNmEfWvX73QWHn63T0QF/ZhW2FKuF9LuZrqGR1p4J6FVrxwLTWv2zvlXtN/HGMlXlMEBUSV+NfWhtVqP/f5/8d9DsZvEup74p3pKr4P/Ry3BOkvZkjqdopCShw+7fxXv9DlRJiz+FzLsP6ahuiJlQ7a7m2Di6MPgcQ2xUnI7CRnLqQzqquyE8z85sZDebUaPo8zddV8TpCWg2OgW9beJLyn60LN45c6cZJORDb/7Wc6x0Kch9/3mAJn1lXejfdUP+Pb8x9Hlcr4k9pA/4dzqrz9n0RcKUP4j4FOhHn8V7KfFUvGflI35h21fFhPwP3NSNh7bz4DgAAACPdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtbj41PC9tbj48bW4+MzwvbW4+PC9tZnJhYz48bW8+LTwvbW8+PG1mcmFjPjxtbj4zPC9tbj48bW4+NTwvbW4+PC9tZnJhYz48L21hdGg+e+8LigAAAABJRU5ErkJggg==" style="width: 49.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="5 over 3 minus 3 over 5"> C. 3 5 - 5 3 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAADmCAYAAABFyUm8AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAADpRJREFUeNrt3X9kV/sfwPGXzCS5JLlmEklmkkiuJLlcyeSaSJLk6p8r/ZErMleSGddkrkzMXJnMSCaZxJX0R67IJJlEkslMJDOZxL7vV+fs3n3Pzvuc9/mcn5/zeT54UdI+vN57vz7v9znvHyIAkI9dJnaQBgB11Wli1sQIqWhMm4mjJgZNTJp4a2LRxJKJLyY+m5gzcdfEsIleE+2kDSjEFhNnTcybWDaxh5Qk021i1C9oywlDC+CYid2kEfhmuoF+lDSekOZkQ+CJDJN/08Rm0ooW9mMBRU7jDKl2o9POTzk0gD472Et60aIeF1DkdOq6jlTH68u5IRZM7CfNaDF7ChrNXSXV8a4W1BgfTWwj3WghEwX0q68mtpLqaOcikjfl/7uOxFa/SdU/d5k4Id5Lh8UEjfKUlKNF7ChoAHGHVEc7YClw18R7KeFqg4kr4v6G9gSpRwsYLqjQHSLVdhtNvAsZbXWlfB4x59Awz0g/ak7Xt33Jebr63sRFUh3teiBxumYui7c23Y5TWbaqoM76A7/vM6SkeN2BRujP+OdfdCh0p2gG1JQ+ygku02KNWwkmVzXAcA4/v13i1+ON0gyoqeAX/TthjVvhdq5qgL9z/JyxmEI3TlOghrSgzQZ+18+TluIN+cnXB5l5bs06HVPoJmgK1NDZwO/5nHDIRSnfNh/8BjiS82cdZUSHFjQT+D3vIyXFWyk+twv4rJ9iCt0gzYGa9q+V0NUH35GW4unauWMmOipQ6I7RHKiZJ4Hf8QFS0nrfbsHz6jaRItRI2C4jLXQ9JtaTnvqKehlxm/SgZqZiZjCvTdwS72XFLtJVHzciGp2Th1EnXdLYST4TfuHrIIXN65WwUBit4S9Jv3dVj1rXhcadpLN57I0Yvm8kPagRPQfuq2S7Wf+BcCJJUxiX8KOet5Ma1Myg5HdCyT/CrV5NNZqbp8FQQ7pyIMmhs42Gng/ZRrqrQ6elr0KmqxzJhDq6JMUcrLlyViQvLSoi+Ip9XHgmh/rq9X/n74u3WFjfpH7Osdjp/vSdpL08uiDybqBBjpMWtCjdxK9r5XT3z4BfCLM6bXieYleOrf6wOniP6yVGc8C/9EAN3RapJ3u7XDcQN7L7npQWR28IW5DoRZGXhGNqgGDR02lvmoutnwlby3Kn+1hfJGiUtyYOkzZgjX0mHjZY7G6Rvuzp623drvI8xbfQKKM7INTP/oAgaZ/i7pWM6Lq4P/1paBYPU/Xt1BbSCqyhl+rckOR7ZjkJKAUdvb2WfF6TP6dxgMjR3UKC/tRPyho37idbV34v5VDs7pJiwEpP+Jl37EvaT3kklCFNpq7h0cME9by5sQafK6zEaVIKWO1MUOzoSwXQ53hDCYfbKzck8YocsNOTi11OR+FWvQLpRSADkuzYmt9IGxDJZU/tImkqnm5/eeNY6GZIFxDrpUNf4vCMEujl2K5r7jhDH4h21KEf9ZKmcuh+PJd9fUxfgXivYvrRGVJUnrj7XbkVDHAT96xuiBSV615MA70kRUCsuNvGuHiqZAdiGmiJFAFOPlDoqi1uYfE6UgTEmqTQVVvc3ZdsYQHijUb0oWHSU75TFDogtfMRfegC6SnfEaauQGqnI/rQSdJTvk7hZQSQZ6HrIT3l2ygsLwHS+iWiH3FhTgVsEE5eANL6Q+xn0qHiU1e2gAFuJix96A6pqYaeiEL3A+kBnNiuN/iV1FSD7SHqLKkBnHRY+pCe/8jzuYq4ZWmkAVIDOLlg6UMPSE11zFm+ibaRGsDJjKXQHSI11WA7qom9eYCbXksfekRqquORhL8O7yA1QKx1ltGczoi6SU812LZ+nSc1aHK6NvSgiS05f85VSx/qowmiaePowsMR8d6Gdub0OZtMvAtpoCmaAE3srHirBYLbGPUIpZ4c+uoyfSiZNvEWFoYNgSdzGAZPhXyWnku3maZAkzoh8VcD6KVQ+zL4LH1RF3aB9bR4WyphcTmmgbTgDUo2RyaNhfz89ya20wxoYg/E/c7iKyk+p9MyG3pRwFS56c2I+12rjb6y1kusw+6IeC0sJUHz+5Sg0Gk8lOSLefdbRnKPxXschBgfEzaSFqy9CYf1sxK+D48GQh1MJ+xDy36/O+fws3U6OuDPrMKWYrWRfjeTDTTSyjMBvWrtcGBaq3/Wt6r9Jt5YpqocBog66WuwD63MavT/75b/DppdL97l1NfFW3IV/D96Gc5x0p7MkRSNlCR02P27eK/fgTpp86eQefchHdUNMRNq3OUcG0cXBp9hiI2a01HYSE59SEd114Tn2ZmN7KYzahR9/qbrijg9Aa1Gp6A3TXxJ2Y8WxTtn7iSDhHzozd96jpUuBbnvPw/QpC+tCv27bsi/5zeGPo87ZmIH6QP+nc7qczZ9kXDbH0R8CvSjz+K9lHgq3rPyEb+w7SZ9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQP0tE5kF6EdERfsRiaXQgX5EoSModKAfUeiIMgrdaM1z2U6hox/RQBQ6Ch2Fjn5EA1HoKHQUOvoRmh2FDgCFjkIHgEJHoQNAoaPQAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqaZeJHaQBQF11mpg1MUIqANTNFhNnTcybWDaxh5SgxtpMHDUxaGLSxFsTiyaWTHwx8dnEnIm7JoZN9JpoJ23FmfYLUZ7xhDSjprpNjPoFLWm/0AI4ZmI3aczXjwUUOY0zpBo1o49kJjLsIzdNbCat+XhcQJHTqes6Uo0a0Wnnpxz6ij7L3kt6s7WnoNHcVVKNGunLub8smNhPmrMzIfkXua8mtpJq1MTVggYHH01sI93p7Siowe6QatTEuYgv8yn/33UktvpNqv65y8QJ8V46LCboO09JeXrDBRW6Q6QaNXDAUuCuifdSwtUGE1fE/Q3tCVLfOF3f9iXn6ep7ExdJNWpgo4l3IaOtrhQ/U5+Pzzn0pWekv3H9gWTOkBLA6nqgv+iauSxWEXQ7TmXZOtkAHToHX4uzxg2wF6PVfaU/459/0aHQnaIZ0if2nbDGDbCZXNVXhnP4+e0Svx5vlGZIRgvabCCJ50kLEGrnqn7yd46fMxZT6MZpimTOBhI4J2wqBmyG/H6iL9by3Jp1OqbQTdAUycwEEthHSgDr7OeD30+O5PxZRxnR5ZdMfdvzHWkBIvvL7QI+66eYQjdIc7h7EkjeACkBrHTt3DETHRUodMdoDjdhq7q10PWYWE96gErNtoLn1W0iRW6mYr4xXpu4Jd7Lil2kCyhU1MuI26THTZc0dnLChF/4OkghkKsbEX2Rk4cd/SXp967qUeu60LiTdAKZeyUsFE5Fz4H7Ktlu1n8gnEgCZGWv2B8nbSQ9bgYlvxNK/hFu9QLSGpfwqwe2kxo3+qYmySF/jYaex9VGuoFMRnPzDCCSuSTFHKy5cjYXLy0AdzotfRUyXeVIpoT0liJdVnJfvMXC+ib1c47FTvcD7iTtgJPgkq9x4ZlcpnQTv66V09XWA34hzOq04XmKHRBJF+jfDQwQjpOWYugGZt2GoiepuhzvHDey+56UAmvoKoinsvYe10uM5sopejrtTXOx9TNhaxmwmt4QtiDRi/QvCcemlWKfiYcNFrtbpA/4to/1RYJ+89bEYdJWjp/9Bkha7DjrHq1Il1vp9snnKWZFo4zuyqGX6tyQ5HtmOXkBrULXxf3p/95n8XJPV0tsIa3lje4WEjRWPylDzeno7bXks2zrOYOF8uiJCvOODbXAEBw1N+7/nutOpKUcit1dUlyenQmK3WnShRbT7veRHv/3X2/6auQ5N32oAvTkYpfTUbjFCPDoc7whSfb4Z+XGPpZslchlT+0iaQL+j15MNSDJjlH7jbSV66VDI7FZGVhLt2O+cSx0M6SrXEcdGqmXNAGh9HJs1zV33OlSslcxDXSGFAFWuj/cZZ8509eSxT2rGyJFQKS4+125FawC4m4b46IPIN69mH70khSV7wOFDkjlQEyhWyJF5Zuk0AGpxS0sXkeKyjUa0TjDpAdwEncXM1sqS3Y+onEukB7AySkKXbWdjmick6QHcHKEqWvzFroe0gM46RReRlTaLxENxIU5gJuNwvKSSvtD7GfSAXCzQTgJqNImLI1zh9QAmUxd2QJWAbbjpH8lNYCznohC9wPpKVeHpWH0vC2ezwHubC/1ZklN+S5YGucBqQESuWXpSwOkpnwzlsY5RGqAROYsM6NtpKZcvZYi94jUAInYjmpir3jJ1llGc/oN1E16gEQeSfjyrA5SE07X4hyU/G/6vmr5BuqjCYBEbFu/zpOatfTW8FlZu21Ej1DKehvWQUvDTNEMqAn9HdeF8CPivQ3tzOlzNpl4R19yc0Lij2LWSzj2ZfBZ+mA07ALrafG2sADNrE28he5hj2R00JD1Y5mpkM/Sc+k20xRrPRD3OyKvpPicTsu3z4sCpspAES7H9B8teIOSzZFJYyE//72J7TRDuE+S7Pbvh5J8Me9+y0jusT/8BupgRtzvWm10CZVeYh12R8RrYSlJpOmEhU7jo4lzDj9bp6O2m8VH/aE+UBcfE/YjLVh7E/x8fcw0K+H7whkwxOhroNCt/hbR/79b/jvYb714l1NfF+8Vd/D/6GU4x0k7amiywX6kgw29+vNwYFqrf9a3qv0m3limqhxO66jNn0Iu5xw6qhvimwc1dqSAfrTsPwb6XbzlYEhAR2EjOTWKjuqu8fwALeKy5FfgdGHwGR75pKdT0JsmvqRskEXxzpk7SaOgRUd205LNIEGfv+k6V07zyWk6q8/Z9EXCbb/R9O3s0qr4LN7D16f+s4kRv7DtJn3AN13inauoS0Hui/d8ejHQj/TvuiH/nj840Odxx0zsqGNC/gfc1I2HbOOiOgAAAI90RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1uPjM8L21uPjxtbj41PC9tbj48L21mcmFjPjxtbz4tPC9tbz48bWZyYWM+PG1uPjU8L21uPjxtbj4zPC9tbj48L21mcmFjPjwvbWF0aD5X6z6vAAAAAElFTkSuQmCC" style="width: 49.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="3 over 5 minus 5 over 3"> D. 18 5 - 2 3 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAWwAAADlCAYAAAB3V80dAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAAEW1JREFUeNrt3Q+EFtsbwPHHWitJJCtZVyTJSiJJklySrJW1JLmSLD9JkkSSJIkkSRJrJclaVpIkkSu5kkhWriSSJGvFurKyEv3O4529991p/pyZd2beMzPfD4/fn3t7z3TmnOc975kz54hU1xIT50wMCwDASYtNnDExY+Knia8OX2uPid0mrpu4a+Kdd92zJr57//mPiZcmxkwcM7GRWwz8a4OJIyZGTTwxMW3iW1P/0f703utfl0wMmOii2tpvkYnTXoL72RSuJexlJk6amPBdZ5L44P1dF3PbUUM60Dlr4lPK/vPdS+DbqMriLTRxyvtmDbo5riRsTdTXvMYS1pB0NPDaxGMTz7xrj2p4+uV0nCaAGv16vhTTh5KG9rP1VG3+FnjJ6kvMDXEhYQ8FjPznvulvej/TFkT8ctBpk4cRf8fnJpbTJFBh21oYUcfFD2lMoyIHOv+kc7mTljejnQlbk/B4yHWNp0iyOhL4O+TztD7W0jxQQQe8pPoz57gfMXBCQp0mjiZI1O1O2Doy/ivkmo60+LmPQz53ysRKmgoq5FABibo5Hnm5Bil1mDjcws+hdiXsRyHXczajL4OwkfY7758DZber4GQ9F7eo+nSJ+qCJj/LfPJOOWEek8eDhmcMJ+1TItUxkWEZvxM/EyzQflNwqCX/oroOS89J49rPMyxVzury+MWjiqjRWVKVJ2ge4Bcm88SrupTeF0B3w79xwMGHrlMRsyLUMZlzWsIQ/RGFqBGX2IqBd66/K7Sk+Sx9YPk+YsHXV2VJug70z3jdllGUOJuzrIdfxzTcSyMKmiL/3FZoQSupgQHu+mkH/Oej1Q9ukfYlbkd9I3IWE3Rkxun6cU5lhyxonaRoooYUBbfpchp+/WcLf2QgaZPE8KGP3HErYAxHXcTunMu9GlLmK5oGSOelrw2M5lPG72C8THOKWFJewik7YFyKuYySnMqPm8XfRPFAiOuXRvBrsQ44j3DOWCfsOt6W6CXusDSPsixFl7qF5oET8y/h25FiWrib5KG6/eEfCztmDiOu4m1OZ5yPK3EvzQEn78r0CyjtmOcpmd78aJuyZnMocjihzN80DJaEP7Oc2ddL55TUFlNktdnPZv3N7qpmw78dcSx57WUdNw+ykeaAkmh/YF/mm4QuLhN3H7almwh6LuZY81kZH7avNRjYoi8tN7XZNgeXavHxHwq5owj4r8es6l2VY3uKIn3QTNA2UyFP5b/OlIv3PImHzS7WiCdtms5osf+4diCjnNE0DJaL7wutRXjsKLne3RZ9l2+KKJmx9mmxzGkZWqzdehnz+bMYjeaCqBiT+cIMOqqmaCVvdtkjYumJkU46jeUbXQDYJ+w1VVO2EvV7sdwNLu2pkiYTvD/6EJgFYGxT2xq51wlZxq0Wary3pGk/9eRZ2OIJuIclJ6oC9fTF9lLeFa5Cwdf54Suy3cbQ9Mqwz4u+rL+2wsxiQzLmIfqnPo1gaW4OELd7IOcmG6foqbtSG6frPnob82VM0AyDzX8OjVE99ErYaSpi0P5voD/gc3cM3aKMafSCykSYApBa1n/42qqdeCVudluTnyem3/nJviuOyBC/b0+0h2ZQGSG9RRB98RfXUM2GnTdoz3ojb///rfiWc1wi0LmqFyADVU9+ErWy3coz6xt/K7QYyczOkr72gakjYKm4JUdzGUTyxBrLR6eWGonbVRAkTttoZ0VDi4p20/oYkAJH9IX3sBlVDwvbbIMHz07ZxhtsOtOR5QL/SdyeWUjUk7CDLQhqNbTwRNngC0tgS0qf6qRoSdph+SfY2ZFBMSmONNgB7zwL60jDVQsIOomunr0jwa7Bpkrb+uT9oBoCVoN35XgnvNJCwA6yQ4D2sj5roMfG4hdE2r6cD0Raa+ODrN1+8fgkS9jx6ksZ0wOjYP282JOlXkVygOQChLsmvhxNwIjoJ+xeHQqYyws6Ka2W0zQoS4FdBDxqHqBYSdty3+lwMWvzZtKPtfTQL4F964Id/87SzVAsJ2+96yDUlaSy/Sfi2qmGhm0NxcCjQcM/XP0aoEhK27cj6ecrPO5MwaU/QNIBfNl4bp0pI2H4HJPwE5t4WPrcv4RQJc3Sos375dadLkLDn0a1Pv0n4Ptet0tfabV+4eUfzQE1t8A1u9BzUTqqFhJ3kerZkVEZvgqS9gyaCmtF11ZNNfeAvYadLEnaANRHX8SXjsjT5/7BI2LdoIqiRbhPvZf4zIw6nJmEHuiDRx35l7YRFwv5CE0FN6PK9CZn/4J3d90jYoaIO9DyeU5kTFkn7N5oJKk5H0c2bOr31RtsgYQdaEHMdeZ0R12+RsNk2ElWmGzc1vxmsL8ksp1pI2FF2xlzHzhzL/hRTNrv5oao6pLFcb66tf+YXJQnbxu6Y69ieY9nXhfXYqKcxmX9izGqqhIRtY28bE/YeYUMo1M9IUxvXnTDXUSUk7KwSdp5TIttiyj5AM0HFXPL18aIOp9a5cd1crYNbUO6EPSDteeioFseUvYdmggpp3ldH3yreWmDZ4165G7gN5U7Ym2Ku42iOZS+MKZtN2lEVR2X+nvJFvsk795zqNbeh/Am7Q6LPZRzNsezuiHL1bUj2UEAV+DdV21Vg2bpH0NyJUUe4FeVP2CrqlJipHMvtiyj3KU0EFTDoa9d7Cyy7+XV3HZQt4XZUI2EPxVzLlpzKPRJR5mGaCEquT+bvm/O/AsteJ/P3JhnjdrTmvkMJW6ceJqXY/UTUk5Dy/hE2vkG56fOX5u2Kj+Vcnk5trpLGg/p78usGa9u5Ja15K25tr3ow5nrWZ1xeb0RZJ2geKLHNku5M07ziA7ekNQslfovRH1L8msknEdejT5iz3Js3bN58QlgrivLSqYhph5K1xmluS2uGLCu66GVt3d63cdj13MmonFMhn68NfSXNAyWlUxK2B3QUGSu4Nenp3Ox7y4p+3Ibr04T5OeKa7ktr88vHI6aANtM8UFI9Mf2mXfGYW5PeMmksV0tS4dfaMEWgr7G+irgm/cLpS/F3Hw/5vE/Cfgoor+4Eg7Cig7eFE9K1j/1e4p2R9A8N9LVWfTuqq6Dr1vnqKzHXpUn9kDSOGAvS4V2z/t2/RUyzcLoGykrb7mtHk/W08Dwolq5ZnvQqazanGzHrfb6Wszvnv896y18Fs95I+aH3M0yP+PoRk+w5aBdlpsnwhaPJ+qc34EKM7QXflH0F/b02SmNbyFaWK+kvDD1cdxvNBBXQ5XCy1ljLLUKHl3D1RYBRb/Q97U15zHox442wH3oJWt9a3MrPMwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA+kkQvgD5gHC0H1GxBAkb5AMSNkFDAwmbfsQNIqqSsEcqXpddJGz6ETeIIGGTsMkHJGyCIGGTsAmmFgESNgCQsEnYAEDCJmEDAAkbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJC3tSZWUQ0A4LYeE59MDFMVAOCmbhNDJqZM/DSxnioBWtJpot/ERRN3TXwwMWNi1sR3E99MTJq4Z+KaiQETXVRbtbzyEmqe8YxqBlLrNTHiJeakfU8T+S0T66jG8vu9gGStsZ+qBhLT6cSxDPvhTRNLqdbyelpAstYpkQ6qGkhEpzP+yaE/6vOkDVRv+awvaHR9lqoGEjmZc5/8amIz1VwuY5J/sv5h4jeqGrB2tqCB1LSJFVR3OawqqFHcoaoBa4ciBj4PvH+uI+PmlR/639eY2CONh4szCfrnC6q8HK4VlLC3UdWAlS0hifqSNB4+2lpo4ozYryjZQ9W7TddHf895GuSzieNUNWBlkYmPAaPfNS18pj6jmrTory+pfred892wN1QJ0FZXfX1S11xnsbKq13KKhG0jHKU/l/xLhVgjDbRPr68/nsv4849bJOw/uA1u8t+8j8IaaaCd7jb1x2s5fH6XxK/nHuE2uEcT8yffjTpMtQBts7qpLz7OsZxbMQl7lFvhniHfTZoUNoYB2umy1xf1IX2er4zvi0nYY9wK97zx3aSTVAnQ1l+8X7y+uDPnsvoZYZeL/4bpk+PFVAvQ9j45XkBZ22MS9kVuh1ue+W7QeaoEaCtdez1oYrkDCXuQ2+GOoDeoNGH3mVhA9QC1+4Xt3y97CVXkjgcx367vTNyWxkPJtVQXUDlRDx3HqR53rJF0u3iNeQl8OVUIlN71iP7OSTQOuSGt7w2iR4jpCzc9VCdQSm+FF2acp/tQ/5BsN3V6JOzAB5TJBgmfCl1E9bjjouS3I99z4RR0oAxGJfjYvpVUjTv0qW+SjczThu7V20l1A6UZXU8x2HLPCSnmgIK5fXt5OAm4Rac73gZMg7CVqoP0xGVdzvdQGi/N6MqPbzkmbd0LYTXVDjjDv5x3VJizLh3d7EnXWuubTee9hJ7V6TNTJG2g7fRluHu+wdRuqqU6dBMafXVVT72wOVIobqS9jCoF2kJXhr3w9UndUvkEo+vqJm+dTnnaQtJ+KbzyDhRNT1T/KtEvxJ0QtlSurI0m/kyZtG9TfUAhdJ+Q1wn65gcTO6i26trl3eSkSZtz4oB86FJa3TpiooVfwiOMtqtLD++9Lsn3JGEXMCA7uq76ite3slgooCvIuqnWao+2vyZoEOeoMqBlOpp+J/ksyZ1gYFVturvXlGVj+MrPLqBlo15f0reXZ3NI2veo4mpbnSBp76O6gMx1ef2wz+tjejJ6mmdN9NOa0JNsbHYD5ERmoDg6z31Zkk1daug7GCzHrTibPUtmqCagcHrI9nlJtsXyMaqt+v62aAhsOAO0h25F8d4yYb+huqqv36IhDFBNQNssFfs125zrWgNvYxrBfqoIaCvd48dmryCmRWogbi77MlUEtN12i4TNKeo1EHc6O4d9Am64H9NX/6aK6uELCRtw3paYhD1LFdXDXRI2UApxL9h0UEXVNxLRAK5RPYAzbsQkbLaTqIHDEQ3gKNUDOOMPEjb2RTSAvVQP4IydwpQICTuiAfRRPYAzeoSHjrV3IKIRcDAv4I5FwrK+2rsg4XtiA3DHQmF3zdobC2kAd6gawClRUyK8ml4TYUcYHaRqAKf0RSTsTVRP9S0Pufm6Fy/z14BbwhYIfKJq6uFoSAN4RNUAzrkd0l/PUzX18CakAWyjagDnTIb8Gl5B1VTfQEiyfkLVAM4J22KV/X5qoCNkdK3f1r1UD+CcJxK89HY5VdM+us5yq4nunMs5G/JtfZJbADgn7JX0w1RNewxJ40mv/1VT3fo069fDt4bc/AfcBiBRP9KXzoalsXqjJ6dylpj4SH91xx6JP/5HD+LcmEFZ+nBiKuDzX0njtVcA0Tql8VJZ0HSiDrCynlJ8EFCW7ou9lFvRHo/E7lRkjTMtlNMT8k39WvKfggGq4nRMH9XEfVGy2er0VsDnfzaxktvQPv8kSNgaf0ryl1o2h4ysn3o/uQDYeWPZT/XfS7s8drEEn+H4TljC13avEiZsjWkThyw+W6c5znvf+kHLgTqpfiCR6YR9VRPvhgSfr1OknyR4bx8GVw44mSJhN3/j6p9fJ/9tXr7ARL+Jq9JY9uP/M3ro7m6qHUjlbsq+qgOzEyZ2+KZL9L/rKpBzJt6HTIFwkIhDOr2piZ85h46yL/MtDbRkZwF9VUOnME9JY6kvHKOj4uGcbryOsi8Jc19AVk5LfolaX5DZL0xXloJObdw08b3Fmz4jjX2u93LjgdxG2q8kmwGVzk/ruxjskFniaRKdh9YHhuNew9DVJLNN8U0aD0BeSGNebdhL0OuoPqAwa6Sxd7wuwXsojWdEM76+qv9bN2667w2kdL560MSqKlbI/wFmLEIo7BmoSgAAAJB0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1uPjE4PC9tbj48bW4+NTwvbW4+PC9tZnJhYz48bW8+LTwvbW8+PG1mcmFjPjxtbj4yPC9tbj48bW4+MzwvbW4+PC9tZnJhYz48L21hdGg+WmYZxQAAAABJRU5ErkJggg==" style="width: 57.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="18 over 5 minus 2 over 3">

Số Trắc nghiệm Cộng, trừ số hữu tỉ viết thành hiệu của 2 số hữu tỉ dương nào sau đây ?

A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>7</mn><mn>3</mn></mfrac><mo>-</mo><mfrac><mn>23</mn><mn>5</mn></mfrac></math>

B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>3</mn></mfrac><mo>-</mo><mfrac><mn>3</mn><mn>5</mn></mfrac></math>

C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>5</mn></mfrac><mo>-</mo><mfrac><mn>5</mn><mn>3</mn></mfrac></math>

D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>18</mn><mn>5</mn></mfrac><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>

  1. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>7</mn><mn>3</mn></mfrac><mo>-</mo><mfrac><mn>23</mn><mn>5</mn></mfrac></math>

  2. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>3</mn></mfrac><mo>-</mo><mfrac><mn>3</mn><mn>5</mn></mfrac></math>

  3. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>5</mn></mfrac><mo>-</mo><mfrac><mn>5</mn><mn>3</mn></mfrac></math>

  4. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>18</mn><mn>5</mn></mfrac><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Tính ​ A = 3.6 5 ​ + 6.9 5 ​ + … + 3 m u . + 96.99 5 ​ ​

1

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG