Square root
VBT
Calculator
magnet

Câu hỏi

Số viết thành hiệu của 2 số hữu tỉ dương nào sau đây ? A. 2 3 - 5 7 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAADmCAYAAABFyUm8AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAADYFJREFUeNrt3QHkXWUbAPBXZpKJJJOZyGRmJiZJZkYmM5mRmUwykiRJzCQzM5KZTCKTTDKSmUwiSZKMTJLJyGSSjJmZmRl95/nu/eve+7/n3nPvPffcc+79/Xgon+9/8rznPPd9z/ue900JYDo2ZrFOGoB5tSaLK1l8JBXj2ZzF61l8lsV3WVzL4lYWd7K4ncXNLP7I4kwWx7LYlcVKaYNKPJTF/iz+yeLfLB6XktF+HQ63fyH+HSPutAvfVqmE/7sw5rM0SvwozcXc3+6V3Sk5+X5lWGTbKihyES9K9XBbJ+jBDYu7WRySYhbU9xUUuRi63iPVg73ULkbTbowvs7hXulkgj1fUmzss1YO9WlFDLMXXWayQdhbE6QqeqeikrJXqfM9VXOSW4pTUswDWVfQ8fSHVgxvhRk7iLmVxNLWWiqzuGfvH0pENWezO4kQWl8dsnJc0AXPug4oKndUNA5zvk7DfsnhmjL8Vif5pxMaJ9XgPagbmVKxvK3P1Qr/h6l9ZvCXV+V7pk7gTafJZm/i7t0ZorGOagjl1pOdevygl1bovi6s9jXCkxL//VLu3VqTQRVFcpUmYw2fserLGbaYO9jTA6SlcY1sqvlxlvyZhzrzVc4//maxxq1Qku3NR8OUp9qgOJTNGeMYiXpOWavUuJ9k+xWutbP+SDSt0NzQLc2R/z/39d7LJReXOdDTA2Qqu92bBXp0bgXlxsefePigl1YqvEZamu+P92foKrvlQKvaubpvmYQ7s7LmvYwuz+6WlWrvSbL5MOF+g0O3QPMyBH3vu66NSUr3jHQ2wvsLrfqzQsQCe7nNfH23f2zayqNDSVjFfV3zdlwsUumc1Dw13bsg9Hp9VfppakxUbpWt6PkmtLc+3V3zd5wsUOg1Pk61Po3/CFYvqT7cL38NS2Hy70vBv9iympMmKvJ4ZFrHVeiw0XiOd81nofANIk61N5W5aG38rXi/ZkaRhdid70zG/3kvT26EkdgRy3kpD7BvSmHukiIZ6ILXWyk17v7nY5ceu3DV3JA0+FtHUO011IFW3K3esRzVpUWOD9sz/THposHj/HMtKvkqtxcJLh7tPq9jFRpuPSXs9XUy2gGaxxLfbsWQq3k8fbRfCsnYb/kexq59VafB0OiyKWEIVxxTETt5/l9CzWy2l9TFoxnWX9LDARS/u/0kOtv45eb9dG5+k/BerQEpPZPHtmMXuU+mbvZgOzztO8QnpgS6xKe44R4e+IHWz9WJOw3wsNdBXHKrzYRr9m9kHpG52+p3zGjNGznKF4b27GyMUuyNSNhtP5zTITqmBQja1OwZFCl0URccRzMCPfRrjI2mBkTw2QrHbJ13V6rdbyQW/ODD26KjI7iinpao68TK1d+boahaPSA2Mrcg3tTelqTrH0vK9tZzwBZP7rUCxWydN1XSxexO/X1qgFDsLFDpfG01ZrOP5syfph6UFSvX7kEL3ohRN19mehJ+UEijdsHd1x6Voet7pSfbnUgJTMey0MR2Mit4bfCklMFVXFbpqbU7dn6nEyUX2tYfpOqPQVSfWxXVuHvhDsjcWVOHkgEL3gfSU56Es/kjdR7KtkhaoxGsDCt0b0lOOWEbyS0di45/tRgLVGXR86F7pmVz02jo/1v+93bsD6lHodkjPZOKD/G86EhqLg50xCdV7aUChc2DOBOIgjy9T9wlEa6UFZuLdlL8nHRPoPIDamZJQn+exM76QmvF1TmXH3vSbpARm6lJOoXtFasZzrKdb/GRF1413f/vaQ2ag+9noV+RiOzTv58ZwqCOJt7LYUuG1P29fd7NmgC5v5BS6r6VmsmTeyWJ7hdd+vn3dXzUDLHMxp9BtlZrR9E5dP1fhtR9NrfeAcd3XNQV02ZVT5L6TmtHsTrNbZd35WVn0Ih3IC/+5J6c3F+/mNkhPcTtS90lDL1d47U2p+9tZpxnRFHEY1JY0/S+EDuf05g5qguLi8JpbHcl7s4JfpzjEY09q7Uzce5TbM5qEmouzUK703Le3U2sLpbI/w9qSU+TOaYbinkrde8rNOi5rEmpuT4H7ODa7eKKEa8V2aP0OsI5zku0YNMKQ8VqNilzEO5qFmvt6hPv50ATXWZOWHzi1tCLBZhoFrcv5pZh1OOiaurs+4j39bRp9Me9TOc/n98lE3Ui/FH/VsMh9o2logAtj3Nsxcnq1wN+O4ejRtPy99dI26Y4qKKh3d+A6xR7NQwMcnOAev9T+/8dro6VPHOMIgjhk6kTq/748DsN5XtqLe7A9vq9jkbuWfNtKM6xoDyGn/UxEr+64oepoooicr2mRi3hfE9Eg0Qv7aErPQvTqYkMN76vHsLLGRS5ioyaigWII+klqfc0zyf1/M7UWyu9N3sMBNR7Oxnu2mEiI3XdiwiJmZ293xK32K5oYWZ1p9wj3Jns8AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEL4V5QWeI5ETZ8jiVXo8BwpdEKhw3Ok0IlZFLqTc57LlQqd50gDKXQKnULnOdJACp1Cp9B5jmg6hQ5Q6BQ6QKFT6ACFTqEDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAxbMii51ZvJfFmSwuZ3Ezi9tZ3MniVhZ/Z3E2iw+y2JXFSmkDmmBDFifbBe3fESMK4KksNkkjc27TGM/HtOOGZhluTRanS0z6J1k8KK3MqQ9rWOiuaJbBYth5fUqJ3yy9zJlVY454ph0faJp8ByvoTj8lzcyRN2pY5CK2aZr+DlfUANeyeES6mRMXa1jk/tEs/b2ak7C7WZxr/+/RE+ucSY1/Xp/FntSadLg5QkOcl3LmwJaa9uZOaprlns4pcMdSa1KiqPuyODTC+4o9Uk/DlTlhV2Y8o2m6xYvUP/v0ttZP8DcfT601dcMa42fpp8FWtzsEvff1j6n13i7ekd07xes/NuDV0D2ap9uJPl3eMpK0oeBQdp0moKEO9dzLf1fck3rbsLV4MepM0JGS//5bBQrdC5qBBorOwJWO+/ivLNZW/N/wa84z9azm6XYmTXfNTUxWDFuP59eHJnoudS+Z2lDx9dfnPE/XDVvzx/ffTPE6p4YUus80BQ30bcc9vLcGw+al+FjTdDve0eWe5qdZ+4YUutOagoZZ13H/fjqj/wbD1oLvF65WlJidenTMmWPpv8mHWXy/nTdsvWnY2r/4fF7BtZ4ZUuje0xw0zFdptutA84atpzRNt1g7tzuLh2tQ6HZrDhpolt9r531y9pxmmX3vMW+/ugekCArbkPMs3TJsna1BkxGfSw+UMmz1rnvGBm1IaOdhGM3vOc/SLqmpZ8NYKAyjyduuPTbRWCE9s7M5p2EupdaECFBc3n6R1qLO2Gep/4aAj0oNlDY6snKhZr25KHKPSw2UNmyNlQuOFZ2RVX1+fWK4aksmGM+RZOVC7ZxLy6e+vZOD8oete6WmerGb6tnUvUfX89ICE9ls2Fofseng+bT8HNcDenMwkaM5he4LqalWnBB2Iw0+3vCAXx8Yyx/J7twzFd+x/pqKn0x0OYvt0galDFvvlZ7piRXY+7P4JU125qTeHQz3bs4zdFZqpvfL8n57GFrGuZNxJNxD0gpjDVv3SU25ovd2KU3nkN3oFdqmCfp7YsCw1QRfyWINXEw0xDbNt6dQ7HTBob9jOc/MOampRrxfi1PEdrS70LGF8+UJip1uOCz3Z87z8pLUzFa8xzueBi816RdxyIgZJBg+bL2bvO6pjftTa5Hj3RGK3ZvSBkOHrV9JTf1sTPmzRr1xUbpg6LB1v9TUU5x7WXTN3UbpgvTkgGHrg9JTX6tT6z2c4SsMdzzn+fhWaupv2Pmu9taClis5z8crUtMMXw4pdL9JEQvu6QHDVl8SNbwRO08zgkX2vmHrfBi2sNhp4yyyv3Kei1elplk+HlLo7GqCEc/yYetq6WmWFxQ6GGnY+r3UNM+zhq7QV94SrNekpnnWJJMR0GvrgOdijfQ0z6pkeQn0OpHzTPwgNc1034BCd1p6MGztijekZv6Grj4Bw7C1O9ZKTzPtGNCoT0oPC+jDnOfhJ6lprn05jXpFajBs7Yq3pKa5Ps1p1KNSg2FrVzwiPfP163VXo2LY2hUXpKa58rZqOik1LKBYHH8155k4ID3N9V2fBo2DdB6WGhbQtgHD1nXS00x5n375vIVF9ZFhazW2ZPFuO+ExGzqtT03ieLZ+h304iBfD1uVxUHrKsSKLL1L/SYEzWWwo+Xrn+lwr9qVz0AeLatDRAo9JTzneSYN3EImC914qZ8ukU33+fmwu+KhmwLB1WfwiNeW5mIqftbp1zGvEIdb9zoi4lCwlwbA1b9j6jvSU51rBQrcUUbA2j/D396T+JxnFcPkB6WfBbR/wrG2QnvKcGbHQdc4GHWg3VOewNv45ZlWPZPFHzlB1r7TD/+UdJ2CbspIN2+W3rPgni7dTa2smoDVsvZ7zvByWnvINm5CYJGJh8IupNbsLGLbOvGd3oYTCFl83xPu3/clpRTDOsPWS1Ezf+ixeSa2lIF+l1ozQzdQ6w2Ep4t/jg/yYmIidgON93O7kUxUgx/8AJynopNo3KmIAAACPdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtbj4yPC9tbj48bW4+MzwvbW4+PC9tZnJhYz48bW8+LTwvbW8+PG1mcmFjPjxtbj41PC9tbj48bW4+NzwvbW4+PC9tZnJhYz48L21hdGg+pFRjKQAAAABJRU5ErkJggg==" style="width: 49.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="2 over 3 minus 5 over 7"> B. 1 14 - 1 7 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAWwAAADkCAYAAAC8Cx64AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAACLdJREFUeNrt3W9kXWccB/BHVVRFiamYmTEVFTNjZqpmSszMTI2amb6YvomJqikzVTE19qJmpkZVzEyVmaqZGVNTNTNqamZqVFVNTImomJjSPUdO7PbIc//l3HtPzvl8+L3qbc69z/n9vrn3yb3nhsBmTMQ6FeuspQCzSjXtijUfayXWg1j3LAmYVaplPNbJWMv5yX+gCcCsUi07Y52ItVQ4+ZoAzCoVsSPW8Vh3EydfE4BZZcTGYr0ba7HDydcEYFYZke2xjvVw8jUBmFWGbFusuVh3ejz5mgDMKkM8+bOxbucn836sq7HOxTod6ydNAGaVavgjP4nXYh2NtXuD2yxoAjCrjF72hvrpDreZ1ARgVtl6v901AZhVKu6SJgCzytZwUROAWUUTAGYVTQBm1axqAk0AZhVNAJhVNAGYVbOqCTQBmFU0AWBW0QRgVtEEgFlFEwBmFU0AZhVNAJhVNAFgVtEEYFbRBIBZRROAWTWraAIwq2gCwKyiCcCsmlVNoAnArKIJALOKJgCzalY1gSYAs4omAMwqmgDMKpoAMKtoAsCsognArKIJALOKJgDMKpoAzCqaADCraALArKIJwKyiCQCziiYAs2pWNYEmALOKJgDMKpoAzKpZ1QSaAMwqmgAwq2gCMKtoAsCsogkAs4omALNKTXyjCcCssjXc0ARgVqm+nbHud2iC7N+3WSowq4zWkQ4NsF4HLBWYVUZnPNbNLpvgB8sFZpXRmIx1pcsGWK8zXm6BWWU4JmK9mp/MlR4bYL1uxZqP9VKsMUsKZpVy7I+1GGsp1mqfJ71TreY/PzvOIUsOZpX+zAzoxKfqsCUHswoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zAOlCoU8UBWdIwurBDbyQGArjYbANkdOkKpLYJ+r+VqOCWxz5AQpgS2w5YHAVkpgC2xlaxEENoDAFtgAAltgAwhsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiSiVinYp2t4WO7HOtBoQC2nF2x5mOt5EF2r2aP7+gGYS2wgS1lPNbJWMuFIKtTYO+N9Y/ApgGeTvT5KOue07J5O2OdiLVU80XeFut6m2aCOvmsgoF9x2np345Yx2PdbchvxQ87PE6o06vl1QoG9hmnpndjsd6NtdiglzH7unicUBfHKhjWWR1warq3PT+Ri6FZ+07Zs41bApsG+aOCYf2309KdbO92LqztHzXxDwULXT5OqIMXKvrs+pxT0zmoZ2Pdzhfsfqyr+cKdjvVTAwL7YA8NBXVwoaKBPePUdPey6FpYe+/x7j6ffW7VwM4e790gsGmOyfyJWbG3sydn2XZotoe8Y4DHn0rM1lL+BJI2sg+/THdxgusa2N8WHken8IY6zHxrTy8O+ZntCdshw3smXqfAni08hoUNAlxgUyfZM9jWv1P9FevxId+H3xKz9bLTU55LNQvsPeHhTzPeDGvvFBHY1NlrhZmdHvLx9ybmatl2SLku1iiws8b4peW+Z/t5+xJbJAKbOmm9oNmbIzj+fGKuFpwagd1t05xq+TeBTV3taenjL0d0H2yHCOyePFe439cKL8UENnV1Ovz/R8ZHRnD81HbIiu0Qgb2R7AJWfxYaZapwG4FNXX2X9/AbFXllu15fODUCeyNnC/d5doPbCGzqbN8Ij516p9lrTovALnqlcH+/S9xOYEP5phPz9I/tEIFdlH2a8e/w8AVmJgU2DE1qO+S8pRHYRcX3kB9sc1uBDeW7kZing5ZGYLd6O/T2fk+BDeVKfQ1Z9uUJ2y2PwF73ZH6/1u9jdr3rcYENQ/VBYpYuWBqB3ap4adhu/kIusKFcqe2Q1y2NwF73fkh/mlFgw3CktkP+DWtfQ4jADs+Eh6/3+2vo/q1DAhvKcyoxR19ZGoEd8t/arS/Bsvd5TvXw/wU2lCe1HfKmpRHYmU8K92uux/8vsKEczwbbIQK7jZnCffq+j58hsKEcHyZm6GtLI7AnwtpVyFq/6mtSYMPI3EzM0FuWRmB/Fcr5BJXAhs1rtx2yw/I0O7DfKtyXzzfxswQ2bN5Hifm5ZGmaHdjZF4guh94+zSiwYbBS2yGHLU2zA/vH0PunGQU2DM5zIb0dMm55mhvYx0N/n2YU2DA4pxOz862laW5gP5X/xl4//vVQzoXQBTZszu3E7LxtaZoZ2Nmb7lu/fTm7TONUST9bYEP/Utsh2aUiJixPMwO7+JJrrsSfLbChvNns9JV81DywXwyb/zSjwIbBSG2HHLE0zQvsiUJDLIX+Ps0osKF8z4f0dsgjlqd5gX0+DP4C6AIb+vNxYmYuW5rmBfahwvG+GNBxBDb0505iZmYtTbMC+9F8+6P104y7BDZUxv6Q3g7ZbXmaFdiXC8faP8BjCWzo3SfBdojAjo4WjvPRgB+nwIbe/ZWYl3csTbMCu1OAVrVe0TLYDin9XVwIbIENA9gOuWJpBLbAhmpZTMzAnKUR2AIbquPFNjPwmOUR2AIbquPTRP9ftTQCW2DD1tgOOWZpmhnYw+ZtfbD57ZDHLY/AFthQHZ8lZuRnSyOwBTZUS2o75LilEdgCG6qj3XbIE5ZHYAtsqI7UdsivlkZgC2yojuzLru8m5uM9yyOwBTZUx4E287HH8ghsgQ3VcTbYDqm8bwS2wKbx2m2HvG95quOGwBbYNN5Mm9mYsjzVsDOsXdu2XZDdz3/7Cmyor9R2yHVLUx1HQnfXzzggsKG22m2HnLQ81TAe62aXgf2DwIbaeqnNXExbntHLvt7nSujtKnVnwtbeGhHYsLGFxEz8bmlGZyLWq3nwroT+Li16K9Z8/ht5TGBDLbZDlhMz8YHlGZ7sCzSzi7gsxVoNg7k29Gr+87PjHBLYYDuE/syE4V7Y/7DAhtpsh/xZxwf7H3VINmiaI4qAAAAAkHRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtZnJhYz48bW4+MTwvbW4+PG1uPjE0PC9tbj48L21mcmFjPjxtbz4tPC9tbz48bWZyYWM+PG1uPjE8L21uPjxtbj43PC9tbj48L21mcmFjPjwvbWF0aD7eCDbNAAAAAElFTkSuQmCC" style="width: 57.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="1 over 14 minus 1 over 7"> C. 1 2 - 5 7 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAADlCAYAAADDXTsSAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAC1xJREFUeNrt3X/kVfcfB/C3JElGvpLJjK9kkozJJEkkX0k+YpLJJCaTyYzJTJKYSSYZ+ch8zXyYmSSJyWRm4iuTycRkkiSSSZLo+3679+NzP3f33N/n3HPO5/Hgxf5Yne31vu/nPe9zz3mfEADysT7WGm3I14pYJ2Kd0woo3OpYd82//LwS61isJ7FexvpbS6AwK2MdjPWgOf/e1JLxWh7rs1iPmw1+Kegg0422eZJH/aLN47Ms1qexHmU0W9DBfNsKCLlU72n16JbG+jjWwx7NFnQw37UCQi4tXRdp9fCWxPoo1v0+Gy7oYM6bBZ3NHdfq4SyOdWSAgBN08E8zBYTci1ivafVg0unv4dD4qXqYpgs6aFhT0Nnc91o9WMAdivVXy7fEz7GmY50KjV90BB3072xBQbdVq/t3q9m0/8X6MDTuz2l3XtBBX9L8eZ7zcvVeaPxAyADSTb/revw7qwQd9OVE27y4pSXVPPMTdNBZute0/UZ697hVzAVBB1193DYn0nVv97hVzA+CDjKlQGu/Y+Gwtgg6qJODbfMh3Ye6RFsEHdRJ+zXso1oi6KBOdrXNhbR12SvaIuigTtpvqj+pJYIO6mRzh7mQgm5naOz8g6CDyrvUY17cjvVNaPxYsV67BB1UzRth8Ee40sa1M83ge1ULBR2UXT/PgPeqtNV6utF4tXYKOiibtA/cizDeh/WvBDuSCDookS9CfjuU/Bq81UvQwYSldxk/CfnvN5f2g1ys3YIOJuGTUMzGmqmuBz9aCDqYgKnQuK3kcmjcLJx+SX2aY9iljTbXaruggzJID/Gne+X2hMZNwykIx7Xb8ANhJ+igrNL2TdtjnQmDv1mv05ndKi0VdFD20EvL3lFebJ3e7eLRMkEHlbAx1tUhw+4b7RN0UCW7Y90ZIuze1TpBB1WSXqrzVRj8mdkVWifooIpnd38PEHYntEzQQRVtCI1bSfoJujTnvJdC0EElrR0g7PZrl6CDqko7F/ezO8qMVgk6qLJ+nql9ok2CDqru9z7Cbo02CTqosl19BN2UNgk6qLo/esy997RI0EHV9bpWd1qLBB1UXa+3jU1rkaCDOngo6AQdLOT5J+gEHdTCdJe5d1Z7BB3UweEuc++I9gg6qIP9XebePu0RdFD3oNupPYIO6uBAl7nnhTmCDmrhc/NO0EHdzWTMu++1RtBBXdzOmHeHtEbQQR28mjHn0sacrs8JOqiFIxlz7orWCDqoi1sZc26r1gg6qIOpjPn2k9YIOqiDRRlnc+na3DrtEXSQp2WxtsRamfNxjmfMtaOGID8XBR0L3MFYd9s+98+aJwHjfgxrS8Y8u2QY8tVr33pBR53tDb1fUvNbrI1jONbrofMLrG/EWm4o8j1V7/Uy3RfNawpQR1f6CLrZOjbCcVbH+qvD33mzgKWyU/Y+B3ibVlFTjwcIulRXw+A3827KOJO7FmuFIchXOlX+s8/B/VG7qKkbAwZdqkexPuhzjp3MWDWlnYUXa3++VjW/TQYZ3LOWsNTQ0SGCbrZuN//8hpa5sTQ0Xk59JjSub7f/mfQynHe0PT8rmgOQAuvJkAN7p3mdYkesJVpKDSwe4kt/mEpndactVcdvc6z7zdPsZzkN3rPm33/ftxQVls7CzuU0R9JZ3anQ+MWVHGwv4FuqtfZrORWXlqBfx3o+4lxIK6a0z9y+4DocUOLlbLrMk35I+C40frB43FzBzNbT5mrmemjcWHyuGWwbtA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADq76UaW2EeqZLOI40VdJhHgk4JOswjQacmEXTTNe/lEkFnHhkgQSfoBJ15ZIAEnaATdOYRVSfoAEEn6ABBJ+gAQSfoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYOF5K9aHsb6N9VOsR7Gexnoe61msJ7H+jPVDrFOxpmIt0Tag7FbHOh7rbqyXQ9TzZvBt1UpqbsOQcyTP+tuwdPdK86zs+Rib/kusN7WWmvqqhEF317Bk2zrCGVyvehHrmBZTM8ubl2/KFnRnDU1nB5phlPcAXIy1VLupiSMlDLlU2wzNP31Q8CBcibVY26mBWyUMuQeG5Z92T2gw/qv1VNyWkp7NTRua+daExq8znZp1O9bJ0LhVZFWsRS1/Lt06si7WnlhnYt0ZckAOGAIqbKakQbfd0Mx3vUOTfh+yUemHjF8HHJB0P96/DAMVlL78O13TTncYpOt26RpZntei13aZU4sMz5xDHZp0ZgxNSn/v0wHC7pShoIKOtX2O7xd8JvWpZWtvy2I9bGvQiTH+/Zua3yz9BF0KxeWGhApJJwOtt2Hdi/Vawf8NNzPm038Mz5yjbc2ZyeEY20L/t6scNCRUSOsPeOka97qCj/9Gxjx6bNma/W10J8czqmN9Bt33hoUKudry2d1XgmXzbJ03NJ2/jVLtyPFY6dfZv4Ln8qiPNS2f228m9N9g2dqHH1oac6GA433U51md3U6oglNh7seHSdwxkLVsfWLZOic9jTD7sP6LZtPytjL0d63OIytUweXm53XvhI6ftWx1A36LqQk15nofQbfT8FARmyZ47KxHznYbljmnWxrzRoHHPS/oYGTrQvYtWpatLa6FuYfqi/R+H0HnQioMt2z9Vmvm+zo0tjzfUfBx3+kj6NYbHujqj4y5M6U15TAVem/K6dQbsmVt1542/bTlWUWC7pYWQVfHM+bOjNaUx55gbzrIY9m6R2vKY3+PoNurRTDwsjXdE+tG+xI5Ebq/FtE7JGDw+fOd1pRLt51Y/TQOwy1b92lNuXR7gYgXXEO2tyxbq2F5l5C7oT3Q1clga7NK6PaLqxsdobs/M+bOu1pTLl9nDNR1rYGhl61+wCuRdMd21usUN2oPdPV5xty5oDXl8l6w5TOMe9m6X2vKpdN7Xh8E73KFXjZ2WbZ6a16JbM4YqF1aAz2dypg/l7SmXH7pMEjntAX6kvVSqQNaUx6dditJ98y5wRGGX7am7cxWaE85LAuNd8W2DtDDWK9rDYy0bL2sNeUdpPQt5A1fMPqy9aDWlMNmgwMjebvLstXdCiWwosM30XFtgYGczgi6q1pTDhfaBmZaS2BgdzOC7pDWTN5nwYaAMKrNXZatK7Vnsna1DcpFLYGhfGnZWk5pd4XWh/bTi7G9eg2Gcy8j6D7QmslJ98XdbxmMn4OtYyCPZesq7ZmMdL2gdWeF9PC+B41h/MvWa1ozGek2kt9aBiL9s/t7YDT3M4LusNYUL521tT6s/0fwaxCMamvIft3Aau0pVnog/8eWAUg3B7+qLTCyMxkh97PWFGtRaNw2MjsA6deh17QFcl22HtGaYrW+gDrtELxWSyD3ZauTiQJNtzT+UawNWgJj81VGyP2qNcVp3XIp3Rj8dkHHTdf+9jeXzLAQl60fa00xjrU0/WmsLQUe+7vmcd8yDCzQZauNagtwJMx/69COAo/9TvO4Nw0DC3TZekNr8negrem7Czz2v0PjOmA67oeGghpLl2UeZgTdJ9qTrz1tDd9X4LFbHytLZ5FeAkKdbeuybF2jPfnZGRoPEM82+/0Cj70hzH92dsZwUHPnLFsn8+3ytKXZHxVw2p6+tfaGxs7EL9oGe7shYYEuW49qTz42hfl7yk267hgSam57l8+/m/FzWjI+KlHIpfrMsLBAl62/ac34paXjg5KFnPuHWMjLVl/yY5a2frlXwpD70dBQczu6fP7Xac/4tO8OXKbaa3ioufMZn/3ftWZ80k7AN0saco+CZ1up/7L1ccbn38vex9jk6yUNuVRfGiIsWxnVkhKHXKr1hogFumy9Xcf/2f8D+9JYuqYjqNsAAACPdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtbj4xPC9tbj48bW4+MjwvbW4+PC9tZnJhYz48bW8+LTwvbW8+PG1mcmFjPjxtbj41PC9tbj48bW4+NzwvbW4+PC9tZnJhYz48L21hdGg+pAsbNQAAAABJRU5ErkJggg==" style="width: 49.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="1 half minus 5 over 7"> D. 3 14 - 5 14 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAZ4AAADlCAYAAABj7pG5AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAADKBJREFUeNrt3X/kVfcfB/C3JJNEkiQzJslkxsxXMjMyk3wlMpNk+ieTmYnJTCYxSWbyJclkEpkkmZgkX/M1kswkkSSTRJLkI9H3/d69H7ud3R/n3HvO/Zx7z+PBi02fz+fez/u+Ps/3Peee9/uEAMBcWxtrlWEAYBxWxrob66ihaLb5sTbFOhjrTKzbsZ7Emon1LNbTWPdinY11JNbmWAsMG1DAslg7Y92P9SLWW4akmd6Idaw9wbwoWGlCOhHrTcMIU+XqEHlQtH41zM081D1VYhP9EGupYYWJ9/4YJp1UOwx1s6TTZI8qaKR0zvZtwwsT7fIYJp10qm2eoW6OvRU31ONY6wwzTKS3xnS0842hbo5vxtRUD2O9Zrhh4pwaQz48j/WqoW6GT/s0wfn2v6cjlc4r1dJ/r4n1UWhdRPCkQHP9Zshhoqwa0xvTnwx1M6zvMeEcCq2LDPJaGGtfyH8F3EeGHibGkTFNPO8Z6um3KNadLkcja0b4mek88L0cDXbF8MNESOtrnoVqT6/9GWuPoW6G7zMNkNbslHE1SVr/k+fUmy0xoP72Z/5urxsSRpkcOptpf8k/f0+OiWeblwFqLZ1Czy6vsMaGoZ3paKQjFfz8BWHweqBjXgaotewbyHRq3hobhrK6o5F+qfBxTgyYeE56KaC20gRzN/M3u9uwMKzD7SZKH+hVuZXN9gETzykvBdTWzszfa7poyOa/DP0u5kG7kT6s+LE2OeKBiXU98/e615Aw6mRwegyPtWHAxHPQywG1zonZSlepLjYsDCut3dkSa0UNJp4tXg6opV8zf6sHDAmT+q4pe7+eJYYIaqfbbiZp4tkY6xXDQ931u7jgtOGBWjof+p+puBnrx9C6+GCt4aJu/tOned2ZFOpnTRhux/lT7YlohSFkrt0IFo7CJDkeRt97Ld0aOy08XWk4Gbe3+xymLzI8UDvpPjjPQ7mbf14IdpxmjE6G7re0fd3QQC0dDNXtQP2/0Nq5HsZ6tHNf40FtpStMi9zMcdhK9/mab7gpWzqNlv1sJ51ecwsEqK8vw3hu9DZ7zy8XIVCq7KWYJ4PPdKDuNrf/dn8OrcWj6Uq1pxVOPmmfyNWGnVGlhWVnM4211bDAREubgqa1OmmXkQPtiamsu5HeN/kwilfbh8+dTXW3ffjuaAemS9poOG2Hle5gnOc294OOfJYbUor6NNbj0H9x2ZfBduowrZNQOk13eYTJ50qwFQ85pX3Yfi/QXLdjfWDYYGq9E+vikJPPj4aPXtJlkGlbjGsjvLs55ugHptq/2280i2bDNkNHp7Qu57vQOm1WxoeK6aqZZYYVptbC0H+vxl6n5e1Yz19HNzdDNZdTXtNk0Iijn8cFcmG/IeNku2nSiuaZCiafs4YYpl7aif5+zkxIeeNUPP+QmiJde59uCpXut3MiDHc+d7a2G1KYeqsLTD4ygdzS50CHCx5Wp0rrAFxKCdMv3dk0z+7XpwwVRS0OrRXORbZX/8KwQSPk2RPuiWFiWGmbjVs5J57rhgsa448cmWBTYYa2NORf8+Pe7dAMm3LkwWbDxCjSPkx59nNyug2a48aAPNhhiBjVhhwTz2nDBI0x6LOew4aIMpwb0Gh/GCJojDVh8NZaMLL1AxptxhBBozww8TAOgxaazjNE0BhnTDyMw/EBE4+tMqA5jvXJgiOGh7JsM/EAbbv7ZMHnhoeyfBicagNatvfJgo8ND2VZGVxcAAyeeDYaHsqyKLicGmj5pE8eLDc8lGVhsCMt0PJt6H1PHihNv1NttsyBZjnVIwt+MjSUaWOfiedfhgca5WaPLNhlaChTrw8T7xoaaJQVPbIg3cfL5zuU6scezXbA0ECjfN4jCy4YGsp2r8c7nNcMDTTK9R4Tz3uGhjL1ujWCPZmgWTb3yIJLhoayXQrdL5tcYWigMeb1ONpJZz7eMDyUqddWObsNDdRCWmP3bqxlFT/ONz2yYK+XoBlSk6UFXEdD62qzlRU9zpJYd7o02nkvAcy5naF1VWl2+6p0y4Kyt615t8ekIwsaYH5oLdDqdqh7poLD3fNdHivdl2eplwLm1Edh8C3pr8V6p4THShcQ3e/y86+G1lZaTLmvBzRamoAOhnJuUXCiy8//M9brXgaYcxdyTDyztW+Ex1nZ46zH76H6U3vUxPWcjZa+bthLGxfHOtflZ94MLp2GunhUYOJJdTEUX9y5rseRzuXQOg1PQzws2GxpAnm74OH73dB9/yWNBvVxtWAWvGjnx6c5fnY6fXagfQal2xKK+Ya/Wc4M0Wyz52K/jPVBePk0XPrvdNXa/li3QvdTa27qBPWzd8gsmD17kb7/zfD3DRxfibUp1vehtVQi+z0PYm017M304QjNVqTS4fVXoXWZJlA/6ajj8hiyIB31HHbGg68rbLK0UHSHQ2mYCOko5WhFWZCOeg4Fn+uSOfK5WlJzpc9v0noAu8rCZEqnzH6I9WzEPHgSWvfZ+dibT/pZE1r3v0iXPv8cWudhU/PMdFT6/7TB57l2U6XPc7bEWmX4YKqkySJ9TpMuDDjdfnP6KJMHT0PrIoPfQusz46PtieZNwwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAWV4olSnkgVKV5oGBVSYe5IEy8SgTDyYeZeJRGq0Kx6Z8LBeYeJQ80GjKxGPikQfKxKNMPCYeE4+SB2DiaeLEA2DiMfEAYOIx8QCYeEw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMEGWxNof6+gU/m4XY73IFCAP5MEcWRxrX6wn7Rfg8ZT9fp91aTKNBvJAHsyBRbG+jvUo8wJMU6OtifVUo4E8kAdza2Gsr2I97PECTEujzYt1rcfvqNFAHsiDMXgl1p5YD/oM/jQ12oEBvyfIA3kgDyqyINYXse4NGPhparR1OX5PkAfyQB6UbH6szws02LQ0WjpXfVujgTyQB+OTzmXujnW3YINNS6Mdz/l7gjyQB/KghAbbFetOeyCfx/pvrGOxDsX6tQGNtrnAHxTIA3kgD0Z0vT2AV0LrWvVlQ87+k9po6fd9oNFAHsiD8UmLvt4Y8DXLp7jRzmd+jwcaDXkgD+RBvd4JTVOj7cr8Dse7NJ5GA3kgD+bI2SlrtFXh5dXIt0LrShaNBvJAHtTEmSlqtPQB6m8dzz19gLqux6G2RgN5IA802sj2ZZ77/o5/02ggD+SBRivVO5nnfaX9jkejgTyQBxqtdGljw5sdzzlt4b468zUaDeSBPNBopTmaec67unyNRgN5IA80Wik2Zp7vzz2+TqOBPJAHGm1kaTXy/Y7nmv57uUYDeSAPNFpVsmsONvf5Wo0G8kAeaLSRfBL+uRo5aDSQB/JAo1Xh9fbzmn2O6f4aizQayAN5oNGqkt3CfV2O79FoIA/kgUYbyt7QezWyRgN5IA80WqneCq39lmaf29Xw8mpkjQbyQB5otNIsiHWj43mlHWdXF/h+jQbyQB5otEK+yzyv3QW/X6OBPJAHGi23DZnndGGIn6HRQB7IA42Wy5JY98LLt6xdrtFAHsgDjVaV0yH/amSNBvJAHmi0kWzLPJcfRvhZGg3kgTzQaH29GutRKLYaWaOBPJAHGm1ol0Lx1cgaDeSBPNBoQ9kThluNrNFAHsgDjVbY2ljPOh7/Wsi/GlmjgTyQBxqtkLQa+feOx54JxVYjazSQB/JAoxVyKIy2GlmjgTyQBxott/fC6KuRNRrIA3mg0XJJq5HvdDzmwzDcamSNBvJAHmi0XE5mHnNLBY+h0UAeyAON9petmcc7UdHjaDSQB/JAo4UV7cPoztXIizUayAN5oNGqcjHzWOsrfCyNBvJAHjS80T7LPM63Ff+eGg3kgTxoeKMNeuHrWhu1DPJAHsgDjabRQB7IA42m0UAeyAM0mkYDeSAPNJpGA3kgDzSaRtNoyAN5IA+msNHGzeWTIA/kgUbTaCAP5IFG02ggD+QBGk2jgTyQBxpNo4E8kAdoNI0G8kAeaDSNBvJAHqDRNBrIA3kwl85pNI0G8kAejNMNjabRQB7Ig3FZGOv5gBcg/fs8jQbyQB5Qhp0h335E72s0kAfygFEtinUrZ6P9otFAHsgDRrE81uVQbBfWIxN+iK3RQB7IgzFbEmtTu2GehOG2AL8da1+sD2It0GggD+QBndbHuhfrYayZUM29KGbaPz89zlaNBvJAHjTbhjDeGyJt12ggD+RB9f4PrrZVcPpK42wAAACRdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtbj4zPC9tbj48bW4+MTQ8L21uPjwvbWZyYWM+PG1vPi08L21vPjxtZnJhYz48bW4+NTwvbW4+PG1uPjE0PC9tbj48L21mcmFjPjwvbWF0aD4BvpTLAAAAAElFTkSuQmCC" style="width: 65.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="3 over 14 minus 5 over 14">

Số Trắc nghiệm Cộng, trừ số hữu tỉ viết thành hiệu của 2 số hữu tỉ dương nào sau đây ?

A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>-</mo><mfrac><mn>5</mn><mn>7</mn></mfrac></math>

B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>14</mn></mfrac><mo>-</mo><mfrac><mn>1</mn><mn>7</mn></mfrac></math>

C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mfrac><mn>5</mn><mn>7</mn></mfrac></math>

D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>14</mn></mfrac><mo>-</mo><mfrac><mn>5</mn><mn>14</mn></mfrac></math>

  1. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>-</mo><mfrac><mn>5</mn><mn>7</mn></mfrac></math>

  2. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>14</mn></mfrac><mo>-</mo><mfrac><mn>1</mn><mn>7</mn></mfrac></math>

  3. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mfrac><mn>5</mn><mn>7</mn></mfrac></math>

  4. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>14</mn></mfrac><mo>-</mo><mfrac><mn>5</mn><mn>14</mn></mfrac></math>

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Cho hàm số y = f ( x ) = x − 2 .Tính f ( − 1 ) ; f ( 0 ) .

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG