Square root
VBT
Calculator
magnet

Câu hỏi

Số nào dưới đây là số hữu tỉ dương: A. - 2 - 3 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAMIAAADkCAYAAADKFPsaAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACMJCpdlQAACBtJREFUeNrt3XGkVXkeAPCfjCQZkpFkxMhIknjWSEYiSTISI2NlZBhjrLGyrLGSJFaSkbGMJ3lWHsmTZC39MdbKeqyMjIxIkpFE1pMk0f5+7nnmdLv3vvtu755z7v19PnwpY+7R9/f73nt+5/zO94QAnU3E+CbGxRg/xngS41mMFzGex3ga426MmRhnYhyIsVzaGAfrY5yI8SDGqwHiRVEYO6WSUfRu8a3+YsAC6BQ3YmyTWkbFzrf4BVgoXsY4LsU03ZFisr4aclyNsUK6aaKvKyiAcvwzxjvSTpN8UnERzMeU1NMUG2PMdZmod2KcCq1LoWtjLCv9f+nS6OYYB2Oci3FvwGI4YghogtkOk/PnGLsHXGj/Z5GFkO5HrDEM1OmrDhPzXNs3/6Cf+2wRxXDGUFCXlTEet03Ik0v4+duLb/t+CiEVzSpDQh2+bZuM00M4xq7Q/+XYLwwJVUunPuWbZveG+I18vM9CuGxYqFr75dI9QzxWurp0v49CmDMsVG2mNAGvVHC8o33+KtitSmXS3dz5zXTp/H1TBcd8r8+1wi7DQ1UOhHru7M72UQj7DA9VOVuaeJsqPO55hUCT/Cv8tumtSl/2UQh7DQ9VuRBaj1Tuqfi4n/ZRCFsMDzmtTbo9tLNMmsi9EG5LETk4GDybAOHwAoVwSIrIwcnQu+2LZ5jJwnSPQrgoPeTido9C0ACMLKzqUQQ3pYdc9LpidEB6yMWFLkUwKzXkIm377tYu5nfSQy4+71IE56WGnHTqc/Qo6GVERnZ0+TXYLzXk5EaHIvhBWshJp92m6Z6BB/TJRuqi194UOHXV2yA15ORMePOhGx0qBjQZ6unZX1WM6ylCpwWydo4KIatCWB3e7Gp3wlRWCLkVwpW2f+OkaawQciuEY23/vkumsELIrRD2hzffmolCyKoQJsLrm+q8LVMhZFcI6b7Aw9K/6d/Bs8dkJnW4vlsqgrS5zuufyEq6TPpTqQjSn+0mJSvpW7+8me6X4tcBspHWNddLRZBunq2TFnKSGvReLRXBrzHelxZyU27QlZ4w+1BKyE35UnZ6ifhWKSE35S3V6cbZRxUdN609DgfvTKAByi8Lfxbj4wqPfak47oRhoE5/DK93q67yVVPzr5m6ZRio05Hw+naQTyo89gfFOiQd9xtDQV3a+5R+VuGxy9s20q/QasNBHdJ7jl+WiuDLCo+9Nby+d2nacFCHXcWCeH4iHh3y8dLVoI2h9cqoK20FmGK3IaFq20P3Rr11xD1DQtW2lhanTYljhoUqpVOTR6F5Dy1pBEZl1ofWxrmmFcF1Q0NV2p8ua1J43zKVSE+S3WpoETwJ9hZRgTTJZkNzGxp8Z4iowvLQ7M4eWwwRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsCivhBixUAhCKAQhFIIQCkEIhSBEFYUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCPd2Lsj3E6xkyMezGexnge40WMZzEexrgS4/sYB2IslzbGxeYYk8WEf7XISAUyFWOrNDKq1seYHmDyd4sLMdZIK6Mkndb8bwmLYD4exJiQXkbBt0MogHLMxdguzTTZiSEXwXw8ibFBummir7tM2pcxrhX/PX2Tl68EpT9vinGoWBQ/XUQxzEo5TbOjSwGcKRbN/VoZ43jo/wrTIamnKVbFuN/h23rTW3zmttC6p7BQIfxX+mmKc22TM90zWLYEn7u5z1OljYaAum1um5Qnl/jz/9RHIfzeMFC3mdKE/H4In58W0wvdj5g0DNTpw9JkvD7E40wtUAgXDQV1OltMxF/DcLc+HF6gEKYNBXVJi+HHxUTcO+Rj7feLQFPNT85LFRxr9wKFcNpwUJd07+BgjHUNKISDhoOcfn26Pa+wWorIQa/F8iXpIRd/61EInlwjG78EN9LI3ESXIrhTLNghCxc7FMGjGB9IDTn/GqQi2CY15GJVh7VBOh2y5ZqsXAtvbqOwJiAbK0Kr0918AaQNfZ9KCzl5P7Qe8WzvY/RnvwbkInW4mAu927ekgtALlbGU9hHdCv23cEmNg/dIG+MgdcX+IsZPYfAGX5N+HRhV6b7Ad8VpzlJ0u7sR4z1pZVSkb/87YTitH9Ovim3YjISLxUJ4/qUgS10MV6SYUZXO71MXjH2h9bzBVLEQHrQYDksp47aOOBt6X0rtFKk95ArpY9y8G+NUaDUS7rcYjkob42pLjLt9FsJt6epsMlTz0oq6Ipfr6Kl5WL/3HLaY9gphnK0N/bWJd3qkEMbe7j5yoquFQsjC1QVy8rNprxBysGOBnDw37RVCLha68bbM1FcIOTgvL9B6VZRCIHt7nRpB673NFstkb1Vw+RTCyuB9atDz1MgWC7Kxr0chfCQ95KLbG3QeSA05+XuXQjglNeSk03bs9CTbBqkhF922YnuNFFn5sUMRpAf910kNuei2teIPUkPdPo7x1xg/hNbVnPVDOk7qZne/QxFcMwTUKTXyvdxl0ToTY/MSH+9a6NwZe42hoE7HQu8doKkgToel2RI91eHz05t0vFmT2t0O/fca2jngMVKTr07PKKeGwi6V0giLbe2eJvTEIj7/UGjdKW7/nMtB92saZCYM9njpzdB6BdSettOm9Od0Vehk6NzZLp0KfSbtNM3eUM1z2ekF438Jra3XMJIL5reJdOPs89C6OgUj8ctwcwkm/lxx/p/errNWWhlVm2J8FVqXOv8R43H47Q0585H+/rBYOE8X64GDMTaOY0L+D6p/hTv4tX65AAAAkHRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtZnJhYz48bXJvdz48bW8+LTwvbW8+PG1uPjI8L21uPjwvbXJvdz48bXJvdz48bW8+LTwvbW8+PG1uPjM8L21uPjwvbXJvdz48L21mcmFjPjwvbWF0aD5BLMVbAAAAAElFTkSuQmCC" style="width: 29.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator negative 2 over denominator negative 3 end fraction"> B. - 2 5 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAMIAAADkCAYAAADKFPsaAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACMJCpdlQAAB7BJREFUeNrt3X+EXVceAPBjRFRFiRUVUaUiomKEqBUVEaKqRoxQFSsqQlVVRZWVPyoiylojVtQSEbGqhoiIqhVqVa2oYUVFjQoVEVVRoiJGRMie473ozcu7M++9yTvvvnc+H77kn8w133O/c3+d8z0hQHc7YnwU48sY38a4E2MpxoMY92Pci/FzjIsx5mLMxlgrbUyCTTGOx7gV49EA8aBdGLulknH0Qvuv+oMBC6BbXImxXWoZF7tXcQVYKR7GOCbFNN2h9sn6aMjxVYznpJsm+iBDAVTjcow10k6T7MtcBI/jX1JPU2yOcbfmRL0e47PQehX6Yoypyv9Lr0ZfjbE/xqkYNwYshkOGgCZY6HJy/hhj74AP2t/3WQjpe8SfDAOj9H6XE/NUx1/+QX/uUh/FMGcoGJXnY/zWcUKeeIY/f2f7r30vhZCKZp0hYRSOdpyM80M4xp7Q++vYw4aE3NKtT/Wj2Y0h/kU+1mMhXDAs5Nb5uvSNIR4rvV262UMh3DUs5HaxcgJeynC8j3u8KpitSjbpa+7jyXTp/n1rhmNu6PFZYY/hIZfZMJovuws9FMJbhodcTlZOvK0Zj3tWIdAk34U/Jr3l9F4PhfCm4SGXc6G1pPKNzMd9u4dC2GZ4KOnZpG7RzpQ0UXohLEoRJdgfrE2AcHCFQnhHiijBibB82xdrmCnC/DKF8KX0UIrFZQpBAzCKsG6ZIrgqPZRiuTdGs9JDKc7VFMGC1FCKNO27rl3Ma9JDKd6tKYKzUkNJuvU5uh30MqIgr9dcDWakhpJc6VIEp6WFknSbbZq+GVigTzFSF73OpsCpq97LUkNJ5sLTi250qBjQmTCanv25YlJvEbo9IGvnqBCKKoT14emudsedygqhtEK41PE7nnEaK4TSCuHTjt/vvFNYIZRWCDPh6V0zUQhFFcKO8OSkOrtlKoTiCiF9F/i18jv9N1h7TGFSh+ufK0WQJtfZ/omipNekP1SKIP3bbFKKkv7qVyfT/dS+OkAx0nPNN5UiSB/PNkoLJUkNer+qFMEvMV6SFkpTbdCVVphtkRJKU32VnTYRn5YSSlOdUp0+nP0503HTs8fBYM8EGqC6WfhSjF0Zj32+fdwdhoFROhKe7Fadc6upx9tMXTMMjNKh8OR0kH0Zj/1K+zkkHfcjQ8GodPYpPZDx2NVpG+kqtN5wMAppn+OHlSJ4L+Oxp8OTc5fmDQejsKf9QPz4RPx4yMdLb4M2h9aWUZc6CjDFXkNCbjtDfaPeUcQNQ0Ju05WH06bEp4aFnNKtye3QvEVLGoGRzabQmjjXtCL4xtCQS+fqsiaF/ZbJIq0ku9bQIrgTzC0ig3SSLYTmNjT4hyEih7Wh2Z09thkiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoC+PhBizUAhCKAQhFIIQCkEIhSBEjkIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAlWyLsVkaKNmmGLdinJYKSrQhxuEYt2M8irFdSmiyq+0TdZhxRZppsj0ZiiDFu1JNk32XoQjSrdGUVNNU2zNdDY5LNU02n6EIHsZ4Sappqs2ZrgYXpJom+zxTIeyWapoqvd9/MOTboV9ifCLVNNmJjhN3UUoozfMxfg/e8VO4TzqK4Gbwjp/CpBP+VkchfCgtlOZwRxH8GmOttFCaxY5COCollGamowjuxXhBWijNlY5C+ExKKM3r4emPXqkQ3orxnPRQiq/D8l+Cr8f4ov0wvU26mERbQ/9TJO6E1szUVBgbpZBJcDasfu5QWsqZPsRtkk7GUVoH8DA828l0l4MZpYyZv4fhzTD9PuhKwRhYH1rfCoa93mAuxhrppqn+GvIsvEmx4KGappoNrdem/w6tj2npTdDSEIshLcTZIu2MizTJLn0r2B9aH9VSoTyr1Wq3FQPjLE3P3hvjVGjNSF3tleFFKWUSiiLdVq2m8df/gqkbTJDXYvxnwGL4QvqYNPti3BigGP4idUyatOj/n6H/OUvrpY5JvTrc7aMYTkgZk2o6/LH5x0qRisa6aCbWlj6K4aB0McnSyrdeZrfOSxWTrpc5TfekiRL82EMx2FqWiTfTQyHMShMl+CnYTBBWfFY4KUWUYKVuGWekiFL8phAghIsKAVone10hfC49lOLDZQrhiPRQioPLFMIB6UEhtDpvQxEOLVMIFvRTjL+F+jUJUIz5mkK4IDWU5HpNIbwvNZRiY6hvJe/5gGIcqSmEy1JDSRZrCsGmIhRjtqYIvpUaSjFVczVIzwavSg+jljrT7YqxYcjHOV5zNThqCBiltCXsrY6T8n5oTZF+1tMcdtUUwdeGgVF6J6y8iP6H0OpyvVovh+4NvtJWtOsMBaN0OfTek/TYKo6T9lu+2eVnXstwKwYr+j3016067X3Q78eunTVXgrSxiM7XNMLV0P8eBql1+wc9/Ox0u5P2XOvW4jGtTLPFLI1xNAy+3dP19v9Pna6n2j8vbf+UmnelvdW6tYJPi/XflnaaZk1Y3d5nvUa6Kpx0K0STpb/ip4dUAOmqMBdab4xgLKRbnHNh9Xsop07WaZ3BAc8BjPvt0kz7Qfd8+4E6vV26X4ml9kPzQmh9eDvdPvGnpa8Z/g/geGZ7Z4fiOgAAAHl0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1yb3c+PG1vPi08L21vPjxtbj4yPC9tbj48L21yb3c+PG1uPjU8L21uPjwvbWZyYWM+PC9tYXRoPg0qsCAAAAAASUVORK5CYII=" style="width: 29.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator negative 2 over denominator 5 end fraction"> C. - 2 15 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAMIAAADkCAYAAADKFPsaAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACMJCpdlQAACPlJREFUeNrt3XFkVnscx/GvmUkSc2UyiWuSzERyJcmYXEkmklzJjCTJJK65kkxc1+SaXGYmVzKSJLkiV5JkXEkyGZlJZiKZmZmx+/t6znR2es7znOfZzu85z/m+X3y5f9x2nnN+v89znnPO7/x+IkBx+1xdcnXX1TNXX1wtuFpytehq3tUHVw9cDbrqdtXEYUMetLq67uqjq5UqaikIxmEOJerR1uBbfanKABSrl672cmhRLw6v4wxQrpZdXeMQI+t6gs66knI9crWJw40suuAhAOF64qqRw44sOe45BKv1N4ceWdHmai6mo066uiGFW6EtrhpC/05vje5xdcLVkKupKsPQQxMgC8aLdM53rrqqvNB+VWEQ9HnEDzQDaul8kY45FPnmr/bvLlQQhkGaArWy2dXnSIcc2MC/fyD4tk8SBA3NFpoEtdAf6YxjKWyjU5Lfju2lSeCb/vQJPzSbSvEb+VrCINynWeBb9HbpkRS3pXeXphMEYY5mgW8PQh3woYftXU54VmC0KrzRp7mrg+n09/tuD9vclvBaoZPmgS/dUpsnu+MJgnCU5oEvN0Mdb7fH7Y4SBGTJc/k26M2ncwmC8DPNA19uS+GVyiOet3syQRDaaR5YujaJe2mngcME60GY4BDBghPCuwmAnCkThFMcIlgwIKWnfeEdZpgwViIIdzk8sGKiRBCYAAwmbCkRgtccHlhR6o5RN4cHVtyOCcE4hwZW6LDvuOli9nN4YMXZmBCMcmhgSbF5jmaFuYxgyMGYs8ExDg0seVkkBMMcFlhSbLSpPjPgBX2YobPoRScF1ln1dnJoYMmgfP/SDTNUVGlEajNnv6/K60+EYhfITOdIEEwFoVm+n9XuOl2ZIFgLwsPIPo7QjQmCtSBcjezfPbowQbAWhGPy/aqZIAimgrBP1g6qY7VMgmAuCPpcYCa0Ty+Ed49hjM5w/SEUAh1cx/JPMEVvk74JhUD/m9GkMEW/9cOD6d4HZwfADL2ueRoKgT48285hgSU6Qe+jUAg+udrBYYE14Qm69A2zXRwSWBO+la2LiHdwSGBNeEi1Pjj7ydN29drjjLBmAjIgvFj4gqtDHrd9L9juPpoBtdQna2er9rnU1OoyU29pBtRSj6wdDnLc47Z/DK5DdLuXaArUSnSe0tMetx0etqFnoWaaA7Wg6xwvh0JwzuO2O2Tt2KUxmgO10BlcEK92xMspb0/vBrVJYcmoh5EAanXRJPDtgMRP1FuLmqJJ4FtH6OI0K3WVZoFP+tNkVrL30hITgcGbVikMnMtaCJ7SNPAl+nZZlor1luGFvkn2NqMh+CKMLYIH2snGJbsTGvxJE8GHJsn2zB7tNBEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiqxQVJ0VQaAogkBRBIGiCAJFEQSK8hEEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyoN1VG4fBtmZXA66Gje5/q6uPhvffvK2urrmad7Xias7Y/m9z1etqNtj/vXQJW7a4uurqa9ABVjIehNeRz5lGvaRb2LHZ1W+uvsR0hiwGodNDCLTO0j3yb5OrK64+l+kMWQzCcw8h0J9GDXST/GpyddnVTMIOkbUg7PV0NrhOV8mnRld9FQQgq0EY8xCCZVc76DL5oqf3i1K4FVhNp8hSENo8nQ3u023yFYDzrqZD33IvXI24GgzuiNRbEG55CsJhuk9+TASN+p+rS1K4Px41WkdB0M+/lPLPoU/BDQTkiD4U21Pm/2mpoyAMRD7XBE2MNM4cWQ6CPuuIPujjHj821MM6CMKVyGeaFu7xY4M9yHgQtMNH73hdpNlgLQi9kc+jz0GaaDZYC0L0GqafJoO1IByLfBYdGr6VJoO1IEQf+t2guWAtCAeLfBYNwlEpjJwFTAThcZnPNenqTnAx3U4zIo9B2C2VD5HQF4vGgmBsp1mRhyCMyvrHDumrnPogrpUmRj0GQd8DWJaNHUz3RBhRijoLwh+S3gjTV8KsFKiDIOhcSvOS/vsG+j5GI02PrAbhV/Hz4o3WOBfVyGoQuqVw2/QfKTxM0ztBCymGQV/E2UUXQFbvGkXpIDt9VnBCCg/VNCgb9bbaLGFAvQShGB2e3eVqSCqfmaPYmaGFrkAQ6jEI0VDoz6r1TPyl73YzdIMg1HUQwva7+rfKMNyhOxCEvARh1XFXU1WE4Re6BEHIUxCUvvT/l1Q+ZqmZbkEQ8hSE8NlhroIwDNAtCEIeg6A65NviH0nmcuK9aIKQyyCoXRWE4QxdgyDkNQhK33xLMrp1jK5BEPIcBJVkTNM8XYMg5D0I6l2CMLC0LEHIfRCOJQhCN92DIOQ9COq9sJggCELZa4WbdA+CYCEI5WbLGKF7EAQLQVCfCQIIQun9JwgEwUwQRkrs+y26B0GwEoSLJfa9j+5BEKwE4UyJfT9N9yAIBKEw8zYIgokg9JTYd17oJwhmgvC70f0GQVhjLGa/79M1CIKlIEzG7Pd5ugZBsBKE7RI/lTzXBwTBTBD6Yvb5Cd2CIFgKwkTMPrOoCEEwE4TumP19RpcgCFaC0BBzNtBrgz10CYJQ6yDozHSHXG1LeTvXY/a1n+5g16MMBEGXhP0Y2e5iENKNHuZwKGY/H9MVbHtf4yCckvIv0b+RwizX67VTik/wpUvRbqEr2LVZyk92tRz8pk7LE0k+J+m1dWxH11ueLvI333r4KYaM603YATtT/AxfpbLZqnXtg0ofdh2IORPowiLMfG2c/hT4kLDzPU3xc7yWytcw0KnbLyTcxxsxZz19M40lZo1rkcqXWbqV0k+kfql+uafJ4N93hD6bLv+kk3cNSfGp4PVl/ZN0Abuagw6iHbraRb2ngt/pR2Tjpk1vlPWtfZa09Kxwk59C9uiszzPBz4jFlDrXYvD3Z9b5Lavf4sMpfUY9KwwGd4xgUJf4W8V+o9YT0J84t2X9ayjrGU/fMzjNdQDqWWPwM04vdO8FF9RfgzPQai0EZ6NxKTx4Gw46fgeHr7z/AQTd7jLIaG+ZAAAAenRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtZnJhYz48bXJvdz48bW8+LTwvbW8+PG1uPjI8L21uPjwvbXJvdz48bW4+MTU8L21uPjwvbWZyYWM+PC9tYXRoPj/hUrcAAAAASUVORK5CYII=" style="width: 29.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator negative 2 over denominator 15 end fraction"> D. - 5 15 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAMIAAADmCAYAAACH3FoRAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAACMZJREFUeNrt3V9kHWkYx/FHRFVVyUVERPUmoioiN72oiiq1FysqSlVUVOWmKlasULFWRZSq6EVFiahe5CJU1FpRYVXVqgoVVRUVVkVURKmoiKiQfR8z1ezsmXNmcs7MmZnn++G5a5Mz73l/mX/vHxGgfjpdtdMMsKzN1ZqrKZoCFjW7GnS14WrPVTdNgixb8jtqkvWKZkaWnU8hBFrXaGpk2csUQqCXRg00NbKqO6WzwRhNjSybTSEEu66O09TIqvaUzgZzNDWybDKlIJyjqZFV+nz/W8KXQ59cjdDUyLLxQMddpklgzRFXm8Izfhg3EgjBqvCMH8Zoh18LBGGIZoE1g4EQrLs6RLPAmuVAEEZpEljTGwjBlqtjNAuseRUIwh2aBNaclf+/9NIg/OzqMM0DK+al/JvgFVcz/s10J82FIjop8YdIfBFvZKoGo5UmRBE8kurHDulUTn0R10ZzIo90HsCu1HYw3YIwohQ5c0+SG2H6WliVAjnQJN67gqTnG0y4aqS5kVW3JJ2JN1qL3FQjq/rEe2z6TLyXafokaDvBMOhEnA6aHXmhg+z0XcEl8V6qaVBqNVttgzAgz3R49gVXD8QbkVrtmaGFJkURQqGXVdUs/PVGGLqBAjnt6vkBwzBD86FoLrr6eIAwXKXpUDQ66f+hxB+z1ETToahnh68xwjBOk6GouuTH5h+VSkPDvGgUVkeMMAzQXCgynfkWZXTrLE2FoosypmmLZoIF7yOEga1lS5iW9EZG1qOs3Rz2RmiTPro9QbDgg7CZIEEgCBXvFe7T7QmCBZVWy5im2xMEKz4TBIJAEESeEgSCQBDKf6+TdHtYMVQmCMM0D6wYKBOEfpoHBMFbeRsw4XqZIDChH2bclfA5CYAZsyFBmKNpYMlKSBBu0DSwolXCl5Ln/gBmDIcEYYGmgSXLIUFgUxGY0RcSghc0DaxoCDkb6L3BKZoH9aYr0/W4ak7494yFnA1G+QpQT7ol7FqgU+6IN0S61sMcekJCMM/XgHq6IpWHiL8Vb5Xrap2Q0gt86Va0R/kqUE8LEn3OxO0qfo/ut7xa4me+S+FSDKhoU+JNINK9D+K+7DoTcibQjUVY+RqZsCTxZ9Pp0u03I/xsvdzRPddKLfGoM9PYYhaZMSoHn1664v9/Xem6wf95uv2TLt6le6uVWgpeJ+tfptmRNY1S3d5nUUvPCve5FEKW6V/xqYQCoGeFCfGeGAG5oJc4j6X6PZR1JWudZ9DPfQDyfrnU69/oPvFvqPXp0s6+2vZvmhfFe/E25Xf8LpoPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgPvYoKmdFECiKIFAUQaAogkBRBIGi0ggCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZ0OmqnWawrcnVuKspo8ff5mrN8PGbd8zVbVdbrvZcfTV2/M2uBl1t+MffTZew5air311t+h1gL+NBWAp8ziTqFd3CjiOufnP1JaQzZDEI51MIgdY1ukfxHXY14upzhc6QxSC8TCEEemnUQDcprkOufnW1HrFDZC0I3SmdDcboKsXU6Go4RgCyGoTZFEKw6+o4XaZY9PQ+JN6jwIN0iiwFoT2ls8Ec3aZYAbjhanXfX7m/XU27mvCfiOQtCJMpBeEc3ac4lv0v9Y2rX8R7Ph70KEdB0M//LeHLoU/+AwQUiL4UO1Xh37TkKAjjgc+1zFeMJM4cWQ6CvusIvujjGT9q6o8cBGEk8JlWhWf8qLGnGQ+CdvjgE68hvjZYC8Jg4PPoe5BDfG2wFoTgPcwoXxmsBaE38Fl0aPgxvjJYC0Lwpd8dvi5YC8LZEp9Fg/CzeCNnARNBmK/wuVZczfg30518jShiEE5K/CESOrFo1g9GK18rihCER1L92CGdyqkv4tr4ipHHIOg8gF2p7WC6BWFEKXIWhHuS3AjT18KqFMhBEHQtpS1Jfr6Bzsdo5KtHVoNwS9KZeKO1yE01shqEPvEemz4T72WaPgnaTjAMOhGngy6ArD41CtJBdvqu4JJ4L9U0KLWarbZBGJCXIJSiw7MvuHog8VfmKHVmaKErEIQ8BiEYCr2sqmbhL53bzdANgpDrIOx32tXzA4Zhhu5AEIoShO8uuvp4gDBcpUsQhCIFQemk/4cSf8xSE92CIBQpCPvPDl9jhGGcbkEQihgE1SU/Nv+IspYT86IJQiGDoDpihGGArkEQihoEpTPfooxunaVrEIQiB0FFGdO0RdcgCEUPgnofIQxsLUsQCh+E3ghB6KN7EISiB0F9EDYTBEGoeK9wn+5BECwEodJqGdN0D4JgIQjqM0EAQSh//ASBIJgJwnSZY5+kexAEK0EYKnPsw3QPgmAlCANljr2f7kEQCIK38jYIgokgXC9z7EzoJwhmgnDX6HGDIPzHbMhxz9E1CIKlIKyEHPcNugZBsBKEVglfSp77A4JgJgjDIce8QLcgCJaCsBxyzGwqQhDMBKEv5Hhf0CUIgpUgNIScDfTe4BRdgiDUOwi6Ml2Pq+aEf89YyLGO0h3s+jMDQdAtYdcCv3fHD2mthzn0hBznPF3Btg91DsIVqTyJ/q14q1xX64SUXuBLt6I9Slew64hUXuxq17+mTsqCRF+T9HYVv0f3W14t8TPfpXAphowbjNgBzyf4GTYl3mrVuvdB3JddZ0LOBLqxCCtfG6eXAv9E7Hx/Jfg5liT+Hga6dPvNiMd4J+SspzPT2GLWuBaJv83SZEKXSKNy8O2eVvz/37Xvs+n2T7p41wMpvRS8Tta/TBewq8nvINqhD7qp90f/Ov0nqd2y6Y1S3d5nUUvPCve5FLJHV31e9y8jdhLqXDv+z1+v8q+s/hWfSugz6llhwn9iBIMuSHq72NdqPwG9xHks1e+hrGc8nWfQz30A8qzRv4zTG90n/g31pn8G+l7b/tloUbwXb1N+x++i+Sr7Fx+jD8NDMsd6AAAAenRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtZnJhYz48bXJvdz48bW8+LTwvbW8+PG1uPjU8L21uPjwvbXJvdz48bW4+MTU8L21uPjwvbWZyYWM+PC9tYXRoPg0vZqkAAAAASUVORK5CYII=" style="width: 29.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator negative 5 over denominator 15 end fraction">

Số nào dưới đây là số hữu tỉ dương:

A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>2</mn></mrow><mrow><mo>-</mo><mn>3</mn></mrow></mfrac></math>

B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>2</mn></mrow><mn>5</mn></mfrac></math>

C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>2</mn></mrow><mn>15</mn></mfrac></math>

D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>15</mn></mfrac></math>

  1. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>2</mn></mrow><mrow><mo>-</mo><mn>3</mn></mrow></mfrac></math>

  2. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>2</mn></mrow><mn>5</mn></mfrac></math>

  3. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>2</mn></mrow><mn>15</mn></mfrac></math>

  4. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>15</mn></mfrac></math>

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Chứng minh rằng : Với x, y ∈ Z thì [ x+ y ] = [x ] + [y]

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG