Square root
VBT
Calculator
magnet

Câu hỏi

Phát biểu các điều kiện đồng biến và nghịch biến của hàm số. Tìm các khoảng đơn điệu của hàm số: y = x - 5 1 - x " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAZQAAADmCAYAAADyWHPeAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAEPRJREFUeNrt3Q+klmf/APBLkiSRJMnETDKZyGSSRF6TJJE5JnnFK5NJ4jWZTOLnlbwmY5IkiUmSSWSSyYzJTCYxk5lkZJLjmOi9Ls/9/M7ds+e5/zzPOc/fz4cvdc597vuc7/3n+9z3dd3XFQIAo2xDjLekAYBerInxW4wvpQKAbqyMcTDG0xivYmyUEoDxdj+74M9n3JNmgPG2vQ/FJMUBqQYYb3f7UEzSI68FUg0wvjb26e7kM6kGGG9X+lBMXsZ4Q6oBxtdbfbo7uSrVAOPtbJ8KyjapBhhf6f2Qv8L8Pub6PcYxqQYYbydbCsDPUgJAXUti/Bm8IwJAj461FJPHwTsiANSUCsdvLQXlsLQAUNfBlmLyJMYiaQGgrp9bCsonUgJAXbtaismLGMukBYC67rUUlFNSAkBdW8LfXz5MBWVnjMXSA0BVX4fiN9sfxbgUGo32G6QLgHbWh/pDpzwLjZGIU4FZLYUAJOdD72NzpSmC0wuRa6QTYDKleUhehrkd9PFWMIIwwMT5T5i/EYW/C40ZH4EhsyD71HciNCYkSsNjTIfGEOO3Y6ztcf1p3emZ+LNsnWmO7zMxVkj92FoeGu+azPd8J6djLJRuGKx0Eu7NLvRlJ/6vMZZ2sY1VMW4WrPdB0G10XP079GcCrRTfB433MBBbQ6OhdLrmSXu85nY2ZXciZes9YpeMpT2h0V04faC4l92d1j3m6kSaUGudtEN/7IvxS5sTcabiCfu4xrbeC3+f86JTXLZrJkoaDHJDdnd8Kis4czV741NFBfrjQHbiXg+NIcM3h9l5KNLjrJMVTtjNFbazPvs0WvUioKCQjsMdMT4PjRGIe71TWSWlML9SA3hZ4+VXJSfriZKfX5ndydS5AHxk19BSXNLjsrs9FJUfgrY5GLiNJSfq7ZILwZ2WZddmX093Nu1ecLvvxKfAuzG+6bKoXJI+GLxHBSfpTOg8XevpUP4YKz0O+29odE1Oc2EslW4q2B0aPQ3rFpUPpQ4G62zJSdruZbL3c9+/IYXMgyUxvgj1xwRbLnUwOHtLTtKpluVTu0mze/ADdx304W7leY2iclLKYHCWlZygF1qWbw5Nnl6O1GWTfngnVHvH6VVWfMxbDwP0MBSP/Np0IPf1g9JGH62rUVT2SxcMzqVQPOJr6n6chrpovm9yU8oYgC2h2mjGV6QKBmd/yQmaXkL7OvdIwTwVDEqVMcNeSBMMzoZQ/j5K89+HpYsBe1ChqLwlTTA4VQbyuz/Ev/+50L/RbgcRGppn7aqQrz3SBINzvcJJOswTHCkok+VhSb4OSBEMzqclJ+i5If/9FZTJUtaWckaKYHB2lpyguxUUBWWIrB/xD0Aw1tIFq6hL5r8UFAVlyPyhoMDw+rHgBL2ooCgoQ+aaggKjeVH+SUFRUEZon5+VHhisD0ouasukiCFyuOBYPSI9MFiHwmg3zDNZikZ4mJIeGJw3Qvkw4bpiMioFZaf0wODcC+XP8e9JE0PknwXH6irpgcHIv9RY1HW4OfIwDIP/C53nRAEG4N1cEXkeykcefl/KGBJXOhyjV6UG+i/N2/0ovN6QuSDGXwUF5YS0MSQedThGD0kN9N/50P5FsFsFBeWWtDEEVofOj2W1n0Cf7cmdhGl+icW57xUNFDmT3cXAIB3xgQeGQ/oE1xwHKc1ut67l+9tDcTvKFilkwH7ucGxukxror/wMjPvbfD/15CpqRzkqhQzJ3XU+7kgNDO5RweWC5e4WFJSqvWjSNKypEX+xtDNHFnS4O0ltJ29LD/RPmjt+JjsBUw+ZpQXLniooKNMVtpUGM2yOXmw61vGXegxujbFynrfzWYdj8hO7APpnce6TXSoq75QsXzbhVtnPf1HhLojRdzDGb+HvHTeuhbkf/mRrh2Pxa7sB+utiqNdPf2Eofmv+44KfncqWSRcaIxSPr7LRqV9ld6nvzsG21sZ42mb990vutIGKlofGm+vrS5Y7njsBv6qx/m9D/XG9NoXGI7G0zHa7aKzdCtXnc+nlhdg1MR6H9nP0rLQboHcfhdd7YqXHWe2m6T2aW+bXmncMp0suEptblk+N8E+y752yi8ben6HeJGHfhPovHb7X4c7kbvaBCujRloKT9mGMY6Exd0l+rKM0TteGmtvZUXKBSJ8amz1r9uZOfN03J8P9UH/myWfZh6EyS7MPJe0eu6ZRHQxSCnPkQhcncjcNpAuyC0Cd7aS7oBV20UT4JHQ/pfGj7OffCbMjL6SOI7tifB7az82TXsbdJ+0wty7XPHk/7GFbZ2psJ92hvGn3TIx0l3C3h6JSNV5mx6FHXDAPjlY8EVMbS69ToaYG0RcVtvUklHclZvyku4ov56mQpLuU1I63Vpphfk/i70J5+8bWOdreVMm2Um+w1XbLREsfJi6E4iF7qkT68HIlO+a0k0AfHzekO5XUfTd1053JPtGlcbrSOyKL5nh7qUfX9WwbzW2lIVh22xW0HJepHSQ1qKcu6qnh/s/smGlGOl5T29z3ofEC5JdZAXGHCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhfUx9sQ4FuNSjHsxZmLcnsNtfBDjhxh/xXgR43qMjVIPMJoWxdgZ43BWOO5nF/hXBfHBHGz3cMH699stAKNhYYyrMX4vKRyd4scet78gxvOC9b+M8bbdBDAadyXTofH46loWd0LjkVbVorKlh+2/XWH95+0mgNGV7hzS46zHFS74F3rYztIK6//D7gAYfStCoy2l6IKf2lmW9LCNuxXWP592hO4e941iXHNIA4P0Rihu50jxzx7WvzrGo4J1TysoCgowPo6VXKhu9rj+5TEuhvlp+FdQFBRgiKTG+6ehuDfWijnYzq4Yz1rWfVlBUVCA8XKy5GJ1cI62s7tlvYcUFAUFGC9rw/w+9mpa0LLe9QqKggKMn6IeWb329mpXUH7pw9+koAAMwKEw/0OxrMut74yUj6xXQoiRjL5ZWfKLXJmDbXyQW98m12UFRQgxngWl7LHXi+yRVS+uZOv6yTVZQRFCjHdBOVryy2zrYd0Ls6L0KtsOCooQYowLyvqSX+ZUD+s+EGYb+Je5JisoQojxLijJLwW/zPc9rPfbbB1fuh4rKEKIySgo50LxW/Pd3F1szK3DHCgAE2JPSYXb28U6m43x30gvwORYmN2JdCoodR9Z5dtltkkvwGS5U1BQ6nb5vRx6b38BYER9Goofey2tuJ78NMC7pBVg8mwtKShVi8ONbPkfpBRgMqU34mcKCsqJCuvYklv+H1IKMLluFBSUqxV+vjlf/XcD/BuMNgwwBP5dcPF6WvKzU7ll31NQFBRgsm0uuYB1esExTSn8OFvmxoD/BgUFYAiUtaN0apg/EWbfqh/0W/EKCsCQKGpHOdZm+TUxpsPwjNmloAAMieOh3oRbzZcY0zD1qxUUBQWgaXvBBax1Tvj8uyvHh+T3V1AAhkTZuF6LsuVSe8uD7Gu/5r4OAP/vu4KC0nxhMT/T424pA6CdswUF5XCMVTGeZ/+/JV0AdLKvoKBcinExzE7t+5Z0AdDJmwUF5ffcvz+TKgDKTIfiHkapx9diaQKgzNclBcVowgBUUtQwf1l6AKhqKnQedXiF9ABQ1fsdCsqU1ABQx/I2xeS6tABQ19KWYvIsNF5oBIBadrYUlH1SAkA3Pg+vvx0PALWl9pMXWTF5nP0fAGq7nLs7eU86AOjGgVwxOSEdAHRjfZh91HVHOgDoRuom/CjMvg2vizAAXbmaFZM0/e826QCgG8fCbLvJx9IBQDfyY3ZdkA4AupGm732WFZNvYyyUEgDqSo3uj8Ps7IsrpQSA1EPr0xg3YlwLjfdHiuYsScXj5zDbo2utFAKwIlccWifCaveW+xsxHobZEYQ3SiEAyZnQeare6RhHYizK4qMw22byPBhWBYCcpwUFpVOkorJF6gDIm6lZTFIB2iRtALR6UKOY/BQabSgA8DfHKhaTNCT9UukCoJMFMW4WFJLfYuyVJiZMmhTuZIwvpQLqSz240tvu01nczb62SGqYIMtC4z2s5jQMz6UEgDqaL/f+2XKHrqAAUMmSGMfD7PtVrxQUAOpYHBodUv4IxZ1RFBQA2kptgkdjPAnVejcqKAC8Jk2tcKRGIVFQAHhN6hZ/ODS6v7/qIhQUAIUkHAqzc/a8DI1u8edinI5xT0EBoIrmlAw/xPg4tJ8A7ryCAkCZ9HLi2yXLrFJQAJjrOxkFBYCeXFdQAJgL1xQUABQUABQUABQUAFBQAFBQAFBQAFBQAEBBAUBBAUBBAUBBUVDoRZqHZ1tojHZ9NTQmdpuO8VeM2zHW9rj+tO4rMZ5l63wa40yMFVIPCgqjL00vvTe70L8oOZ5+jbG0i22kqRZuFqz3QYzFdgUoKIymraExSdt0qDet9PGa29mU3YmUrfeIXQIKCqNlX4xf2hwrMxULyuMa23ovxp8V13vZrgEFhdFyIDTaL9JcOodjbA6NtpMkPc46WeHiv7nCdtaHRltJ1TsfBQUUFEZMagBfWLLMVyXH1YmSn1+Z3cnUeZT2kV0DCgrjZ2PJcXW74GfT3c6dlmXXZl9Pdzbn26zvftAoDwoKY+tRwXE1E2Yfk7U6HcofY6XHYf8Nja7Jn4Tueo4BCgoj4mzJsbWxzc+8n/v+DSkEBQWSvSXH1lTL8qndpNk9+IG7DlBQoGlZybF1oWX5r7Ovp5cj10kfKCiQ97Dg2LqfW+5A7usHpQ0UFGh1qeDYehka3Y9Xh9n3TW5KGSgo0M7+kuNrR5h91JWOtTVSBgoKtLMhlL+P0vz3YekCBaXfzoV6b1CPWiwas2OsyuCR952KoKAoKApKmesV/uaNTkVQUBQUBaXMpyV/7zmnISgoCoqCUsXOkr93t9MQFBQFRUGpIv09Lwv+3n85DUFBUVAUlKp+LPh7LzoNQUFRUBSUudhnPzkNQUGBqj4oOc6WSREoKFDFoaBhHhQUKaJHb2THUdFxdkaaQEGBMvdCebvRPWkCBQWK5F9qLOo63Bx5GFBQ4G/ezRWRdByVjTz8vpSBggKtlsR4FF6f7ndBjL8KjrUT0gYKCrQ6H9qP1XWr4Fi7JW2goEDentzx8yDG4tz3igaKnMnuYgAFBcKqGH9kx86LGOtavr+95HjbIoWgoECSn4Fxf5vvp55cRe0oR6UQFBQ4kjtuLhcsd7fgeLtacVtvhUYj/mJpBwWF8ZLmjp/JjpnUu2tpwbKnCo636QrbSoNnNkcv3iP1MDxuKCj0KN0l/BxmG9bfKVm+bMKtsp//osJdEDAADxUUenQxd7wcqrB8akcpemv+44KfncqW+S0YoRiGypKSE7s5JIaunJNneWi8ub6+ZLnjuWPlqxrr/zbUH9drU2g8EkvLbLeLYLgcDNUmfHLyTpaPwus9sdLjrHbT9B7NLfNrzTuG0yXH3OaW5VMj/JPse6fsIhguqdH0l4oF5bZ0TYwtBcdBejx6LDTmLrkSXn8suqHmdnaUHHOPY7ydLbs3xtPs63fsIhgu6eWzu6HetLRng0dfk+BCqD9l8c4utpOOpWc1t5PuglbYRTB46Zn4rqwwvAjdzXWeTujU9/8fYTznPafRc6rOMfFhD9s6U2M76Q7lTbsHBvfo4kn2KXCmywJSFjPZ+tN29kn5WDhacd+nNpapHre1puKHm3R8vWPXwODsCPNTRDrFfikfC+mdku9CefvG1jna3lTJtlJvsNV2C8BoWpjdqaTuu9PZnWhqeE+dM9I7InP9uDP16LqebaO5rTQEy+5RS9z/AFuXyNwrfU9aAAAAuHRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtaT55PC9taT48bW8+PTwvbW8+PG1mcmFjPjxtcm93PjxtaT54PC9taT48bW8+LTwvbW8+PG1uPjU8L21uPjwvbXJvdz48bXJvdz48bW4+MTwvbW4+PG1vPi08L21vPjxtaT54PC9taT48L21yb3c+PC9tZnJhYz48L21hdGg+auLV6gAAAABJRU5ErkJggg==" style="width: 64.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="y equals fraction numerator x minus 5 over denominator 1 minus x end fraction">

Phát biểu các điều kiện đồng biến và nghịch biến của hàm số. Tìm các khoảng đơn điệu của hàm số:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfrac></math>

N. Huỳnh

Giáo viên

Xác nhận câu trả lời

Giải thích

- Điều kiện đồng biến, nghịch biến của hàm số: Cho hàm số y = f(x) có đạo hàm trên khoảng K. + f(x) đồng biến (tăng) trên K nếu f’(x) &gt; 0 với &amp;#x2200; " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAD4AAABDCAYAAADEfbZbAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABCWPayIgAAAs9JREFUeNrdm89HRFEUx6+RpG1a5pGRjLRpkbSKzHpEWmYMs8pol2QWSaRlRrTK6B9I+yStokXSIsMsktEikhZJhnrxIpr5zvtxzn3f2+Fsxrvfe77Pe/fd83HHmL9x4Odnl1wz/LEO6t9HA2fBwBsHjN+C+md6DW6CwVPEpqdB3Y0wAlUgsEdsvAbqroYR8IDAk58ZQtOZoLZudXthhS6ASIHQeAHUexZFqASEjgmNH4N6i1GEBv386CL0/fsQkelhP9ug1oGogkfgLq4QGa+AOo/iCOaB4BWR8WtQZz7uSvkIRMcJTOdAfa0kwrtAeJvA+A6obyeJ8KTWHRX6dqMnMqf5Ds2naFx9DVqVXjWFAn11Kja+k4MpmEb7jHZQs0icgLtbTsF4GdRzIjnRktReWChQL7EoOVGfn69gslGLprOgjheN7vEgab8rFJtx8VLcQFiKJWe07naT2PSd5mNWJTau+rp5xMY97cXlnNC0lU9qidB40YZxa9tFTbyk0SCsKsxH0yjNg0KuLeMlq61xLwgwITjXBBsMQVhq1wW8xI6lWpp4iQbtRlhLUkXc2qttXRsvMWKpNPYLYlgqyY6qZAsvsWGpU1t4KQmWehHumkaA3rMhOpywL9wnbxhHjqMgLNWIoddIAy9pYKkoxU6nhZc0sFQtgk7NcNBcESwVdkHKKCyUVgJhqYUQ48VOL9mOpJsOsdNLtqPXNhOdlhpiwUsajQU6LbUCxtWNA4FayUsw7tJwnryIFAhLjXW4ftzwnrURw1KdTkttseGluIEA4UOH6+8Z8ZIGlvr9zs4ZN05QimCpw1/XHbLiJQ0s9e5nf5BvzHhJA0stB0mNl+LGIjB22gMvLbhsHGGptit4SQNLufhvJxEs5Qxe0sBSTuAlDSzlBF7SwFLO4CUNLOUEXtLAUk7gJQ0s9bONHTD/NOqu46W4kQ0e+U6ZtVXEFy5qE7exenOJAAAAUHRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtbz4mI3gyMjAwOzwvbW8+PC9tYXRoPhK+2/gAAAAASUVORK5CYII=" style="width: 8.00px; height: 9.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="for all"&gt; x &amp;#x2208; " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAG4AAAA4CAYAAAAcjM0RAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAA1lpdWvQAAAkNJREFUeNrtnK9LQ1EYhg8LIiI2kQWxGEREhGEQsckwyYpBRGwiYxhkYJJhNwwRi8EgMjANGWJZEIPYREyCiBhEhCEiYwxhfh+7dfecGXbf494H3n/gfXZ37rnnhzGYxCRJSVZyIrmQVCRVSU3SiCAHhrSUtSwpSuoRyaG4NhiQ5CQfgLIorgWZ4C+w4UEoThiV3HoijOICUpIvz6R1vbgtD4V1vbjdP5T1LjmVrEjmJH0cZTrLdpvCLiULrC1altoQpi8s06wseiaCrx02Yfo1ZJN1YdAreXSQ9iqZYl047DlIu5fEWRUOkw7S7iSDrAqLskXai2SINWExa5H2HTyRBIySRdwGK8Jj2CLtmhX5+YVknBVhErZUU2A9mPRbnrYEK8IkZZloE1DClm1yrAeXQoi4GdaDy1ULabrVLsZ6cPk0/m5L6OqtCzWK85M6xVEcxXWQKsX5SYXi/KRMcf9rAv7GmRI2uZBf6wjrwSXsI3OG9eCiyzo/LcTdsB5srkOeOm4tByYbIq7EenCJh/xdauZZkX/TAs1zMBYSQBKWiewZK8Ll3CKPWxlAGbOMdZo0a8LE5cz3DmvCQ/eZ3DnIOzbNQ5AECL2IxmW558HwBA8cSeO2bKJjYt7wsCMUa8Z93UtX0vdN8+A/AWDdtL94qYf/D03zyg3dVNvDGqNB76P0dVNR11/CpkeN3yjOT/QFpEhx/rIoeaI4fyfqaeN2CxHFgaJXGx4ZzPuZKc4R/ZKyGojU8VDX8vSOlFpEySOV8wtYngTUx7v5LwAAAFB0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bW8+JiN4MjIwODs8L21vPjwvbWF0aD4h58XOAAAAAElFTkSuQmCC" style="width: 16.00px; height: 8.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="element of"&gt; K. + f(x) nghịch biến (giảm) trên Ky' = -3 x 2 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAGIAAABUCAYAAAB5huK+AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABTMkaS0AAABYxJREFUeNrtXX9kV1EUPzKTZEwmk0SSZDImk0nGJP0xM5KvzP4YSTKZSJJJ+iczSSKTSSYymSRjkslMZCaZRCZJJiYz85VY99h53t3be/fH93vvfeOdD0f57r17v9/P5717zz33nPcAGDocEXZd2Liwr8LWhP0VVha2ImxG2KiwkrDdTJd7nCaS1y0MBXokbB/TVz3qhb2wFCBpq8IuMZWVo1HYlypFkO0xU2qPBmHfHIoQ2UOm1g5vPYgQWS/Ta4arKeR9pM9bhdVKx+4UdlLYAB1jIsQfYXuYZjX2khsakbYkrNPi/HbDeeUOU63GsETWT2EHKmgD1w9vNEL8FraD6c4msExE4b/NVbS102CoOsWUp6NfIum6o1X4P4UQ15jydEwTQQsOh41RhRBPmfKtqJMI6nLYbodCiHGmfSu6iZx5x+3uUAxPLEQK7ntcbC1kCDHGtG9FD12hPlzKVxlC3GPaw+JlhhDnmJqweJ0hBO9TBMaHFBHmmZbwKKcIMcC0hMUeSN9CbWBq8lmfyPaAaQmPkZS7gSfpwMA1yVJCiNtMS3h0JkRYhI3wOCMwpoH3H3LHiYQIQ0xJPpiTRJgVVsOUhMdF2Jx8sJcpCY/9EGeBYILycaYkH3d1VrobOpmSfCCn4nA2X064ABzQyx1tNB/wyjlHYO7Sb+BM71yBwbufJMIzpiMf4NpgkUR4xXTkA9zs+UQivOVVcz7AjMBoDxqLG7dt5SguajDKOAgbeUI/IC6BnYLK0txlYNvPhS1Tm0vkv4co/MAQdhRRxc3/+u1GPt6a3UTQKqhT0RcrvIpwTFbVHHwGv7F+/I2T0m9wveeM3LVXejKWLD2RfGhTu2nZTwts3elKs6sehZiAuHjF9VZnH7V92PZEzFBLq7gsGwrx3aIvjOv/MWzXVy7pGMSR1MOO226iC/l9JSf30viMV8kV2Cjwi3JGcdi5Y0Baq+FiadniTvMhxGOICxBbHLd9VNgvar+vUvdN57LpqvUHNec30J1jM+RddkzUEMTh7JOO2qwlh+OeNIKs+ZzfmjWkTWk8r3eJYw/Q5600LyXbm3P8YwbBX5118CcSfFV0XobsFPghg+EGh6375CLfcOzP9wcUYZ3mQa94qPkCaVWbZ6S/5xE66A0swucQP6pb8yVKKfPCkvQFQ69auwOLEGzvok7zJUYTx0d1BKse3EQdzpInGFKEfxAwGVn1OIS5jCGhL4chaSqHu2Ei5A98prki0A1ulNYLbziu6Ac9mquiQxqSVoAzpb2hyWA9Ef3/CtPlFyZBwTmmyT8mDIRoZpr845ZGhBGmKJyPrhKCUxMDoRbUzy26yBSFwzzwc4u2BUYUQnxiesLhvGaeqGOKwuAST9j5Q66iybJhpsk/TB73P8M0hVvMqVzYKBLL8IDjEvk4NOkisWeYMvfYBZuTB3BbFJMFVLtgg0ybe8gpL3IsaVIhxCTT5hZdkJ0crAoAqlJsGJbArO2opiwtCaBdM0+0MYVuIO+49aT8vUYzT3BprAPIbyJRJQRPQ/XPyz5Ekzs//yiBJoiTatFbUiWH3VUIsWbQF4bVo2huF1MfA6/KBWnCPaY5XrdRpDv/EfCztVPxVCLR5MV3NZpVdr/i3BIdg7V5hYjY1tNK94jmuJsSgS8s2n8P9nGnFogzQtqLIMLlhGeDw07aduYAbC5StLlCh8Cuoggn56i65m4RRGhTkIN5rPheHNw7eC59vkKTtQ06QF9nd5SOxSztKEv8XVHG+1GwT6Y9W0E/uIJetuwH77rCvEhvzJKcC1X0NWzRD94RB4vkAQ2A+buaS1X2tQ/0BfLrNDccg4IB1wSzBuO3qyrLkqYv9K4ai7ouqKE7Y4bcxeg18lPk49c67g89pAnqI+prHAqcUPAfQW08ceOsmswAAABgdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1zdXA+PG1pPng8L21pPjxtbj4yPC9tbj48L21zdXA+PC9tYXRoPqCd2UsAAAAASUVORK5CYII=" style="width: 14.67px; height: 12.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="x squared"&gt; + 4x – 1 - Xét hàm số y = x - 5 1 - x " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAZQAAADmCAYAAADyWHPeAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAEPRJREFUeNrt3Q+klmf/APBLkiSRJMnETDKZyGSSRF6TJJE5JnnFK5NJ4jWZTOLnlbwmY5IkiUmSSWSSyYzJTCYxk5lkZJLjmOi9Ls/9/M7ds+e5/zzPOc/fz4cvdc597vuc7/3n+9z3dd3XFQIAo2xDjLekAYBerInxW4wvpQKAbqyMcTDG0xivYmyUEoDxdj+74M9n3JNmgPG2vQ/FJMUBqQYYb3f7UEzSI68FUg0wvjb26e7kM6kGGG9X+lBMXsZ4Q6oBxtdbfbo7uSrVAOPtbJ8KyjapBhhf6f2Qv8L8Pub6PcYxqQYYbydbCsDPUgJAXUti/Bm8IwJAj461FJPHwTsiANSUCsdvLQXlsLQAUNfBlmLyJMYiaQGgrp9bCsonUgJAXbtaismLGMukBYC67rUUlFNSAkBdW8LfXz5MBWVnjMXSA0BVX4fiN9sfxbgUGo32G6QLgHbWh/pDpzwLjZGIU4FZLYUAJOdD72NzpSmC0wuRa6QTYDKleUhehrkd9PFWMIIwwMT5T5i/EYW/C40ZH4EhsyD71HciNCYkSsNjTIfGEOO3Y6ztcf1p3emZ+LNsnWmO7zMxVkj92FoeGu+azPd8J6djLJRuGKx0Eu7NLvRlJ/6vMZZ2sY1VMW4WrPdB0G10XP079GcCrRTfB433MBBbQ6OhdLrmSXu85nY2ZXciZes9YpeMpT2h0V04faC4l92d1j3m6kSaUGudtEN/7IvxS5sTcabiCfu4xrbeC3+f86JTXLZrJkoaDHJDdnd8Kis4czV741NFBfrjQHbiXg+NIcM3h9l5KNLjrJMVTtjNFbazPvs0WvUioKCQjsMdMT4PjRGIe71TWSWlML9SA3hZ4+VXJSfriZKfX5ndydS5AHxk19BSXNLjsrs9FJUfgrY5GLiNJSfq7ZILwZ2WZddmX093Nu1ecLvvxKfAuzG+6bKoXJI+GLxHBSfpTOg8XevpUP4YKz0O+29odE1Oc2EslW4q2B0aPQ3rFpUPpQ4G62zJSdruZbL3c9+/IYXMgyUxvgj1xwRbLnUwOHtLTtKpluVTu0mze/ADdx304W7leY2iclLKYHCWlZygF1qWbw5Nnl6O1GWTfngnVHvH6VVWfMxbDwP0MBSP/Np0IPf1g9JGH62rUVT2SxcMzqVQPOJr6n6chrpovm9yU8oYgC2h2mjGV6QKBmd/yQmaXkL7OvdIwTwVDEqVMcNeSBMMzoZQ/j5K89+HpYsBe1ChqLwlTTA4VQbyuz/Ev/+50L/RbgcRGppn7aqQrz3SBINzvcJJOswTHCkok+VhSb4OSBEMzqclJ+i5If/9FZTJUtaWckaKYHB2lpyguxUUBWWIrB/xD0Aw1tIFq6hL5r8UFAVlyPyhoMDw+rHgBL2ooCgoQ+aaggKjeVH+SUFRUEZon5+VHhisD0ouasukiCFyuOBYPSI9MFiHwmg3zDNZikZ4mJIeGJw3Qvkw4bpiMioFZaf0wODcC+XP8e9JE0PknwXH6irpgcHIv9RY1HW4OfIwDIP/C53nRAEG4N1cEXkeykcefl/KGBJXOhyjV6UG+i/N2/0ovN6QuSDGXwUF5YS0MSQedThGD0kN9N/50P5FsFsFBeWWtDEEVofOj2W1n0Cf7cmdhGl+icW57xUNFDmT3cXAIB3xgQeGQ/oE1xwHKc1ut67l+9tDcTvKFilkwH7ucGxukxror/wMjPvbfD/15CpqRzkqhQzJ3XU+7kgNDO5RweWC5e4WFJSqvWjSNKypEX+xtDNHFnS4O0ltJ29LD/RPmjt+JjsBUw+ZpQXLniooKNMVtpUGM2yOXmw61vGXegxujbFynrfzWYdj8hO7APpnce6TXSoq75QsXzbhVtnPf1HhLojRdzDGb+HvHTeuhbkf/mRrh2Pxa7sB+utiqNdPf2Eofmv+44KfncqWSRcaIxSPr7LRqV9ld6nvzsG21sZ42mb990vutIGKlofGm+vrS5Y7njsBv6qx/m9D/XG9NoXGI7G0zHa7aKzdCtXnc+nlhdg1MR6H9nP0rLQboHcfhdd7YqXHWe2m6T2aW+bXmncMp0suEptblk+N8E+y752yi8ben6HeJGHfhPovHb7X4c7kbvaBCujRloKT9mGMY6Exd0l+rKM0TteGmtvZUXKBSJ8amz1r9uZOfN03J8P9UH/myWfZh6EyS7MPJe0eu6ZRHQxSCnPkQhcncjcNpAuyC0Cd7aS7oBV20UT4JHQ/pfGj7OffCbMjL6SOI7tifB7az82TXsbdJ+0wty7XPHk/7GFbZ2psJ92hvGn3TIx0l3C3h6JSNV5mx6FHXDAPjlY8EVMbS69ToaYG0RcVtvUklHclZvyku4ov56mQpLuU1I63Vpphfk/i70J5+8bWOdreVMm2Um+w1XbLREsfJi6E4iF7qkT68HIlO+a0k0AfHzekO5XUfTd1053JPtGlcbrSOyKL5nh7qUfX9WwbzW2lIVh22xW0HJepHSQ1qKcu6qnh/s/smGlGOl5T29z3ofEC5JdZAXGHCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhfUx9sQ4FuNSjHsxZmLcnsNtfBDjhxh/xXgR43qMjVIPMJoWxdgZ43BWOO5nF/hXBfHBHGz3cMH699stAKNhYYyrMX4vKRyd4scet78gxvOC9b+M8bbdBDAadyXTofH46loWd0LjkVbVorKlh+2/XWH95+0mgNGV7hzS46zHFS74F3rYztIK6//D7gAYfStCoy2l6IKf2lmW9LCNuxXWP592hO4e941iXHNIA4P0Rihu50jxzx7WvzrGo4J1TysoCgowPo6VXKhu9rj+5TEuhvlp+FdQFBRgiKTG+6ehuDfWijnYzq4Yz1rWfVlBUVCA8XKy5GJ1cI62s7tlvYcUFAUFGC9rw/w+9mpa0LLe9QqKggKMn6IeWb329mpXUH7pw9+koAAMwKEw/0OxrMut74yUj6xXQoiRjL5ZWfKLXJmDbXyQW98m12UFRQgxngWl7LHXi+yRVS+uZOv6yTVZQRFCjHdBOVryy2zrYd0Ls6L0KtsOCooQYowLyvqSX+ZUD+s+EGYb+Je5JisoQojxLijJLwW/zPc9rPfbbB1fuh4rKEKIySgo50LxW/Pd3F1szK3DHCgAE2JPSYXb28U6m43x30gvwORYmN2JdCoodR9Z5dtltkkvwGS5U1BQ6nb5vRx6b38BYER9Goofey2tuJ78NMC7pBVg8mwtKShVi8ONbPkfpBRgMqU34mcKCsqJCuvYklv+H1IKMLluFBSUqxV+vjlf/XcD/BuMNgwwBP5dcPF6WvKzU7ll31NQFBRgsm0uuYB1esExTSn8OFvmxoD/BgUFYAiUtaN0apg/EWbfqh/0W/EKCsCQKGpHOdZm+TUxpsPwjNmloAAMieOh3oRbzZcY0zD1qxUUBQWgaXvBBax1Tvj8uyvHh+T3V1AAhkTZuF6LsuVSe8uD7Gu/5r4OAP/vu4KC0nxhMT/T424pA6CdswUF5XCMVTGeZ/+/JV0AdLKvoKBcinExzE7t+5Z0AdDJmwUF5ffcvz+TKgDKTIfiHkapx9diaQKgzNclBcVowgBUUtQwf1l6AKhqKnQedXiF9ABQ1fsdCsqU1ABQx/I2xeS6tABQ19KWYvIsNF5oBIBadrYUlH1SAkA3Pg+vvx0PALWl9pMXWTF5nP0fAGq7nLs7eU86AOjGgVwxOSEdAHRjfZh91HVHOgDoRuom/CjMvg2vizAAXbmaFZM0/e826QCgG8fCbLvJx9IBQDfyY3ZdkA4AupGm732WFZNvYyyUEgDqSo3uj8Ps7IsrpQSA1EPr0xg3YlwLjfdHiuYsScXj5zDbo2utFAKwIlccWifCaveW+xsxHobZEYQ3SiEAyZnQeare6RhHYizK4qMw22byPBhWBYCcpwUFpVOkorJF6gDIm6lZTFIB2iRtALR6UKOY/BQabSgA8DfHKhaTNCT9UukCoJMFMW4WFJLfYuyVJiZMmhTuZIwvpQLqSz240tvu01nczb62SGqYIMtC4z2s5jQMz6UEgDqaL/f+2XKHrqAAUMmSGMfD7PtVrxQUAOpYHBodUv4IxZ1RFBQA2kptgkdjPAnVejcqKAC8Jk2tcKRGIVFQAHhN6hZ/ODS6v7/qIhQUAIUkHAqzc/a8DI1u8edinI5xT0EBoIrmlAw/xPg4tJ8A7ryCAkCZ9HLi2yXLrFJQAJjrOxkFBYCeXFdQAJgL1xQUABQUABQUABQUAFBQAFBQAFBQAFBQAEBBAUBBAUBBAUBBUVDoRZqHZ1tojHZ9NTQmdpuO8VeM2zHW9rj+tO4rMZ5l63wa40yMFVIPCgqjL00vvTe70L8oOZ5+jbG0i22kqRZuFqz3QYzFdgUoKIymraExSdt0qDet9PGa29mU3YmUrfeIXQIKCqNlX4xf2hwrMxULyuMa23ovxp8V13vZrgEFhdFyIDTaL9JcOodjbA6NtpMkPc46WeHiv7nCdtaHRltJ1TsfBQUUFEZMagBfWLLMVyXH1YmSn1+Z3cnUeZT2kV0DCgrjZ2PJcXW74GfT3c6dlmXXZl9Pdzbn26zvftAoDwoKY+tRwXE1E2Yfk7U6HcofY6XHYf8Nja7Jn4Tueo4BCgoj4mzJsbWxzc+8n/v+DSkEBQWSvSXH1lTL8qndpNk9+IG7DlBQoGlZybF1oWX5r7Ovp5cj10kfKCiQ97Dg2LqfW+5A7usHpQ0UFGh1qeDYehka3Y9Xh9n3TW5KGSgo0M7+kuNrR5h91JWOtTVSBgoKtLMhlL+P0vz3YekCBaXfzoV6b1CPWiwas2OsyuCR952KoKAoKApKmesV/uaNTkVQUBQUBaXMpyV/7zmnISgoCoqCUsXOkr93t9MQFBQFRUGpIv09Lwv+3n85DUFBUVAUlKp+LPh7LzoNQUFRUBSUudhnPzkNQUGBqj4oOc6WSREoKFDFoaBhHhQUKaJHb2THUdFxdkaaQEGBMvdCebvRPWkCBQWK5F9qLOo63Bx5GFBQ4G/ezRWRdByVjTz8vpSBggKtlsR4FF6f7ndBjL8KjrUT0gYKCrQ6H9qP1XWr4Fi7JW2goEDentzx8yDG4tz3igaKnMnuYgAFBcKqGH9kx86LGOtavr+95HjbIoWgoECSn4Fxf5vvp55cRe0oR6UQFBQ4kjtuLhcsd7fgeLtacVtvhUYj/mJpBwWF8ZLmjp/JjpnUu2tpwbKnCo636QrbSoNnNkcv3iP1MDxuKCj0KN0l/BxmG9bfKVm+bMKtsp//osJdEDAADxUUenQxd7wcqrB8akcpemv+44KfncqW+S0YoRiGypKSE7s5JIaunJNneWi8ub6+ZLnjuWPlqxrr/zbUH9drU2g8EkvLbLeLYLgcDNUmfHLyTpaPwus9sdLjrHbT9B7NLfNrzTuG0yXH3OaW5VMj/JPse6fsIhguqdH0l4oF5bZ0TYwtBcdBejx6LDTmLrkSXn8suqHmdnaUHHOPY7ydLbs3xtPs63fsIhgu6eWzu6HetLRng0dfk+BCqD9l8c4utpOOpWc1t5PuglbYRTB46Zn4rqwwvAjdzXWeTujU9/8fYTznPafRc6rOMfFhD9s6U2M76Q7lTbsHBvfo4kn2KXCmywJSFjPZ+tN29kn5WDhacd+nNpapHre1puKHm3R8vWPXwODsCPNTRDrFfikfC+mdku9CefvG1jna3lTJtlJvsNV2C8BoWpjdqaTuu9PZnWhqeE+dM9I7InP9uDP16LqebaO5rTQEy+5RS9z/AFuXyNwrfU9aAAAAuHRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtaT55PC9taT48bW8+PTwvbW8+PG1mcmFjPjxtcm93PjxtaT54PC9taT48bW8+LTwvbW8+PG1uPjU8L21uPjwvbXJvdz48bXJvdz48bW4+MTwvbW4+PG1vPi08L21vPjxtaT54PC9taT48L21yb3c+PC9tZnJhYz48L21hdGg+auLV6gAAAABJRU5ErkJggg==" style="width: 64.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="y equals fraction numerator x minus 5 over denominator 1 minus x end fraction"&gt; Ta có: D = R \ {1} &amp;#x21D2; " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAHMAAAA9CAYAAACeEVb6AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAA46CYqAAAAAohJREFUeNrtnb9LVWEcxr9cIhxcIkIuIReiQSJcJCQiRIg7NEhLhDQ4BBEi0toQ4tDiEHGHFgenSxAhIiJCSFO0NDhIhNBwiQgRRERE4sLt++Xc6Hjue37c7X3e83zg+QN8Ppzje95fV6R8XNVUhcBzXfNL0+pKJaBUNLuaTjcmtcZacLmjOY0J3dfcYC24TMVkWg41t1kLLk8TQu1pvc9acFlICLU8YS24vHUIXWItuDQdQj9oBlgNJhsOoV81Q6wGD3sKtx1C7Vt0jPXgMaj54hBqI92HrAePK5oTh1DLK9aDx3KKTMum5hIrwmEmQ6ZlT3OTNWHQyJH57//oY1blL7aqMl9AZDzLIX6PdkqcHYnWSSkzkBxrpikzrLzRXKDMcGLTgDXKDCe24P2AMsNKA/G1S3EBv3bLNp/bzBF6hPzaLSN1iXb7BT/aLQu2U/4bX7thvXZbBUa7U6wKg3t9TDJUWJf/fC8o1HY38NyL56xKf6svxGNaBUV+5pPpN7MFRS6yKr+xQ0inORJ/ayZYld9MSjTbkyXyY/fzhXjMM007R+QL1uQ3lyU6m5Il0QZD4yh/EFdH0rMmYHttKa03fyTa7QcH5Z3PDwE+cESB//NeokNIQpm4OZPorgR4yi7Szp+MhjI8L7PIJvprNURsO8dcn6PVOdbmN0VOgf3U3GJV/pN3PnObc6s4vMsQafcGcZsHCCPinixvh/LZURZsRLrjEHkgXHuEwk4/f0r5frzGenC4qNlKGejwZhEw1h0iVzjQwcN14Ocla8HjtUMkr4MB5Ln0XjBRZy14PEqItGN4nJoD5K5EE+TxK0hHWAseyd81sR1zw6wFl+GuRAt/QioAqqGK/AugC+2w6CmnygAAAFB0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bW8+JiN4MjFEMjs8L21vPjwvbWF0aD5WOBRoAAAAAElFTkSuQmCC" style="width: 17.33px; height: 8.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="rightwards double arrow"&gt; Hàm số nghịch biến trên từng khoảng ( - &amp;#x221E; " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAOAAAAAsCAYAAAB8B7QuAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAArbJhr3gAABVhJREFUeNrtnXFkX1cUx4+ImYgRUVE1I6Kqf0yJmpiIETE1UWUiovpHqKqqmDFVUTEjKmZ/VKmYmZpQVVH1U6aiZqpU1NTMqJqaihI1FRHjt3P87uPXX+/95d737rnv5bfvhy/hl/fe+b13zu/ed8657xGB/wtdrAnWEqvG2mRts3ZYW6wN1irrCusEq7cEG0dY86wbrCes1002yt9/mM/mWIdwScFeoJ+1wHrJqgfoX9Zt1piyfRLoF1h/BdonesSawSUGVaSbddGMHPWCesA6omDjNOtFBPt+Y32ESw6qwrCZrtUj67KZysZgWcG+BVx6UDazZvpYV9Iaq6/gyHxL0T6ZNr8LNwBlcEnRsZv1O2t/ThtvJbBvDUEIqhR8d1lTrIGm/5dRbJJ1lfVPDid/miMIlxL9QGQjIQBJOOVwQsksjnps30ONTGRoIMpIuM/TxpmEwZfpElwDaDPoCJz1gODIOGCmbyFO/qvHdO8gNWqNrn1IpnaFdZIaZY+epm27zPc4bkbQkHKF3At/CBcBmtx2jHz7CuzzcsTpngTQY8d2f7POmsRMCFK+eOZp20O4CNBixOF0MWpicxReorCx4Pj/5ZaRLpReM2r62DYOVwEa1CzOdjXi/s8HBuF0y/aHyF4SOR/Rxu887PoZrgI07v1s9zwfRD5OSGljq+Wey3Y/eVrhXFz3sO0AXAbEZN7iZDWlY/0QEIR/munhtOWzs0r29ZjjtrPrzF68yBrtQlXSO3s4ANcTjS5ZIuWXgPN6k97OVi4qn48xD5sQgAjAKAw4vs+I4jElq5q3cXot0XlZbWPDKwQgAjAWn5f0fcZynONNerMDR5PhTrveCMBq4qrTpWCBimVGtXlMHVSOQABWk5slBqDcDz4MyIp2Jz43F9rYM4kARADGwJUQ6Up0/CFq31rWrPnE5+ZoG1umEIAIwBi8cnyfgYQ2fOF5juWZLoMJ7ZIfoZ2KTIdBh7LtcLBjie3wnYreS2zXeqeMgKCauFa8n0tsx2HyX30/m9Au16LfE3AdoBmAKyXY8jX5lyP2J7LJ1Zo2AdcBmlPQ1wkTMRmyFvC5ZxDWEtnkap3rhesAzSRMGal2ceqn5J/4mi0pAF/CbUAs7lP5bV8ZKxSWeZZRekjZphsVmZ6DDmU3p0/1kNovKV/5R7pVNEtAD6jcJBDocOZ3cfD1BDZMWY4b8lCna0p2SedNax1Qklb9cBsQi2MeDv5V4uATJ5fVGBsBQXhKwbbPqEOWIoHqYvuVtwXEqMKxzzmO9635fCIgAHcUbLxjOc7HcBkQm1Xyq73FvB+84jiOrBN8r+n/FilsuVKsV40dsez/PlwFaPCpp4PLfdnxgseSjpd2bWe2DpN7AUEojycs2i8q9c9Hln0Pw1WAFiFvQPqJwh/YJA9Y+p7at5tdd2wrK+ifBdj3omCw2J6OtgwXAZpMUlj6XwJJulHk2TFH6c21et1mpMueQP3EY3/yA9Cuu+SgmWKG1AhP5jgPtqywdOf0wUWANineNmTThue0UZIsW4H7vuN5X9hvRvY6Ei+gLPoCp3oxtGlGUF/GcwRh9kDd02ZkznpcpYA/ZhI9rpa8ObgFSMkQhdXfio58eV5XPU75XoMWqiW4AyiDwQQjobSQvV/AxmGK80740PdTAJAEuSe6q+TcixSnf1Oyo2uRbZORdQaXH1SFMxSWfdxtDd/hCttYo7TPnAHAC+lMkRerPM/h1JLcuJbzXi+FjVJOkUzpKC4z2AtI1vAbapQspOsky0hKL6bU3qSDRNbQXWR9QulX1bfaKAGZrfrfNj8IkhH9kRqN4KjvAQCK8x9vGR1AwWyC2wAAAFp0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bW8+LTwvbW8+PG1vPiYjeDIyMUU7PC9tbz48L21hdGg+BpuVpgAAAABJRU5ErkJggg==" style="width: 34.67px; height: 6.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="negative infinity"&gt; ; 1) và (1; + &amp;#x221E; " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAOAAAAA7CAYAAABi1IYNAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAA3eJk3kQAABcdJREFUeNrtnWFkXUkUx4+IWBEloqJqlYiqflglasWKWCKqKqpURFQ/hKqqirWsqqioEhXVD1EqqqpWqKqoesqqqKoqFVFVVapWrYoStSoilrfneHN5fZ25mbl3Zu598f/xJ7y8d8+be/5v5p6ZuZeoWFpZcwYdJwBAUNpYVYPm0DwAwIAAwIAAABgQABgQAAADAgADAgBgQABgQAAADAgADAgAgAHLRAtrmDXLqrDWWBusTdY6a5W1qNr9GKujgBj7WVOsu6zXrK91Mcrfb9Vrk6x9OKUwYDPQxZpmfU5pa53+Yz1gDQaOT4x+nvW3Y3yil6xxnGIYsIzITpMLqueo5tRz1oEAMY6xPnmI7xXrZ5xyGLAs9KnhWtWzrqihrA/mA8Q3jVMPAxbNhBo+VgNpidWZs2e+HzA+GTb/gDSAAYvgYsDErtcb1q6MMd6PEN8STAgDlsl8j1ijrO66/5debIR1nfVvhiR/n8GEs5F+IJKeEMCAUThpaEOpLA5YvL+dapVIVyNKT7jTMsbxiOZLdBGpAQOGpsdgnGUHcyTsVsM3lyR/ZjHc20u1uUbTZ0ildoF1gmrTHu11721R3+Oo6kFdpivkWvgnpAgMGJIHhp5vZ47PvOJxuCcGWjG87x/WGVWYcUGmLz5YxvYCKQIDhqLf0HY+5sQmyX2KQse04f/nG3o6VzpUr2kT2xBSBQYMQUXTbtc9fv45RxOONbx/H+mnRM55jPGaRVx/IVVgwBDXfrprnj2ej+MytbHecM2lu548FaAt7ljEthspAwP6ZErTZpVAx7rlYMJ3ang4pnntTKD42tVx0+I63Uwnd4jil4yL0nyTGnA5Uu+SFFKeOrTpPfq+WjkTuD0GLWKCAWFAL3Qbvkt/wGNKVTXrwumlSO2ymBLDFxgQBvTFccN3aSu4l9Fpjb5dgROSvi1iaYMBYUAfmObpYjCdszIamhXaBtMRMGC5uVegAeV68IVDVbQ1ctucT4lnBAaEAX1gKoi0RDp+L6UvLavXVOS2OZgSyygMCAP64Ivhu3RHjOE3y/aVe7r0RIxLfoQ2SzIcLj2YB8zGhqHNDkeOw3Yo+jhyXMvN3gPCgOXGtOP9bOQ49pP97vuJiHGZNv0eQ+rAgCENuFBALJfIfjpiV6SYTEvThpE6MGDIIejXiIWYBNkL+NHShJVIMZmWznUgdWDAkEWYIkrtktTvyb7oNVGQAT8jbWBAXzyh4pd9JSyQW9VZeunewDHdLcnwHAbcpmyV9LFuUvs7ZZv6WaGwy8KeF1wEggG3OVNbJPhyhBhGNcd1uanTjUBxycqbxnlAKVp1IW1gQF8ctkjwPyKbT5JcdmOsOpjwZIDYjlCTb0WCAcuP7ldeZ4iBAMc+azjeVfX6sIMBNwPE+FBznF+QMjCgbxbJbu7N5/XgnOE4sk9wR93/zZDbdiVfjxo7oPn8J0gVGDAEhywTXK7LjuY8lqx4SVt2plth8tjBhHJ7wrzrRWX+86Xms/uQKjBgKFyegPQnud+wSW6wdJPSl5vdMbxXdtB/cIjvU06z6O6ONo8UgQFDMkJu5X8xkqxGkXvHHKRv9+q1qp4uuQP1a4vPkx+AtNUle9UQ02WO8ESGdtBVhWV1TidSBAYMTYynDem0ajlslCLLuuNnP7S8LuxSPXsVhRcYsCg6HYd6PrSmelBbhjKYMLmh7inVM7fU5cygKvSYluRNIi1gwJj0ktv8W96eL8vjqoco22PQXDWLdIABi6AnQk8oS8h+zBFjH/l5Jrzr8ykADBgFuSZ6FCi5Z8jP+k2pji55jk161nGcfhiwLJwmt+rjVnv49pc4xgrFvecMDAiskJUp8mCVjxmSWoobNzJe68WIUaZTpFI6gNMMAzYDUjW8TLUpC1l1klQkZS2mzL3JChLZQ3eB9SvF31XfGKMYMtn1v6F+EKQieptqC8ExvwcDAgADAgBgQACa14AbBl1D84Dtzv/OFIcL6juD5QAAAFp0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bW8+KzwvbW8+PG1vPiYjeDIyMUU7PC9tbz48L21hdGg+j9nflgAAAABJRU5ErkJggg==" style="width: 34.67px; height: 8.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="plus infinity"&gt; ).

- Điều kiện đồng biến, nghịch biến của hàm số:

Cho hàm số y = f(x) có đạo hàm trên khoảng K.

+ f(x) đồng biến (tăng) trên K nếu f’(x) > 0 với <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2200;</mo></math> x <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2208;</mo></math> K.

+ f(x) nghịch biến (giảm) trên Ky' = -3<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math> + 4x – 1

- Xét hàm số     <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></mfrac></math>

Ta có: D = R \ {1}

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x21D2;</mo></math> Hàm số nghịch biến trên từng khoảng (<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mo>&#x221E;</mo></math>; 1) và (1; <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mo>&#x221E;</mo></math>).

1

Câu hỏi tương tự

Viết phương trình tiếp tuyến của đồ thị hàm số ( C ) : y = x 3 − 3 x + 1 tại giao điểm của (C) với trục tung

1

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG