Square root
VBT
Calculator
magnet

Câu hỏi

Lò xo có độ cứng k 1 = 150   N / m " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAjIAAABxCAYAAADPn0myAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABFxpIngQAAFRZJREFUeNrtnQ+ElskfwMdaSRIrWUliJVlZR85JkkhyclZk5SSJJDk5kfwkSeQkyTqSk5wsSZJkyclKTiQ5SSJJchLJWlmJ3+/5/nb22t57nnnmmfeZeWbe9/NhiN59Zp7nmWfmM/+Vao81WfhGAQD8u2xYyWMAgNjoycKWLJzLwsss/DcLF3ksAF/Rl4WTWbjQpfe/LAuvu/j+obNYpeu6vHCSx5MGy7OwLwvXszCd8yIRGYAZFmXheBam9Lcx2WX3vyQLe7PwVt9/qN7awSz8lIUrWXiYhQ+6rPqUhY86PVJ+/ZKFzbpBBmDLfwwiw4hEpPRmYZua6XV5YniBiAzADAuzcExXoHO/jVhF5pHFd91uuB9AGo9k4ZlD2t5l4VQWliaUx27V8E5GG0i3zzx2veHv5TlFX1x8p63zD92KqZKZEBnoVhbo7+Z9wbcRo8hsCiAxEnZ7vIcjOdI4N8j/3dG9M9OG333UAppCD801nd5238uuwOme9pjHxgKkn2GlRPi+zcyEyEC3MT8Lh3XL3vRtxCgyEwEk5q0nOZBK5XFBnH/rd9Kf83dDWThjqFSlxT2QSN6bp77MU3SRBPmbtQ2keX0WRnS6/3JI95ss/KavMRRQPk3DSmspCuNhRRYOzAnS/XhVfRnnR2QAvhTIP+tK0+bbiE1kvgnUG3PCQ9q36ueZF99NNTPBugyRlQcF15BetQ2J5Ue5nycO70cmYi9pOO3bVXFP5twgIwT7G+w1KxpWekFxmAaS0Z8iMgD/nzd2qILAxCoyYwEk5rOaWSBQJyP6unnxXa54LelNG1fFQ02bEsubInAPHd7ThGp+SE0maX8oSedwg+lbaUjXaYrFdBhGZKCLkYL+oG7BulTqMYnMykC9MdcClkETjteUydl/Gd5ZakMG0uh86fCuzkeQ9sOG9F1uOG2mYaVvKR7Taol+RmSgCwVGurNfzelluKfzusy1uJ+gyIwGEpmNNaZ5nSqe4CpD38vauPZqVbyw4Y1qfuilKmuU/XSAJif/5vUoFdUxqxtOW9Gw0kuKyPQo6/pDZKDTmB1SlS77nwoqtd8SEpklqvpqxKrDSW9067rONJuG8o7UEMdJw/XHE8y3exze3ccIeqDu5aTrScNpGjA8szMUkelxD5GBLkM2tRss+U1/QiLTWmE/TeAdmPZNEcGZX0McC0saavsSy7fzHEX0lWq2ByqvUdD0sJJpyOs7isj0GEdkAIw9NzGLzIKcynp35M91Z8lzPV5jXKcN8ciqmsVdIDIS/mgw3ftz0nO44Wf50CB9kCBlO0oiMtCt3EhAZA7nFMQxbwAnPS2mydUyjLWsxvhWlLzDlM6LakdkJJxtKN07ctIy0uBzHIjwGQEiA+CF65GLTE+OFByM/JkebaDnYKJEnFZ1ichI2NlAurflpGNbRPLPsBIiA4DINMRe9e+5JfMifp6ySvJtyTPd7yHegx1SxtUhMjL5dyhwurfmpGNrg8+xaFjpDUUeIgOAyISldQ7P0cifp82qm2Ue4i3bY0dWfPUnKjIXldvk35BzgzbnpGFzQ8/QNKx0jiIPkQFAZMLR2l0ve4wsivx5lq2Q9Lkt/KuSuI8lKjJylt5xFffk35hExjSstEEBIgOAyASjddO+U5E/y+UWlavPJblXSuJ+nrDI2OTVJvdLiUlkGFZCZAAQmQhEZn1OWk7pSm1+pM+ybJ6K72Xj+yzij31bepPImI5lMIUQq4diERnTCjaGlRAZAEQmom9Wehd+VzOTgddE8ixvWlSq6z3Gv8ki/pMJi4wgvV5vVTWRkSFJ35N/YxEZhpUQGQBEJgKRWe3Q6paN38a02CxtIM2yTHxalR+D4HP/G5sVPw8TFxmlK+TPFfOHnC3U1wUiUzSs9DdFHSIDgMiEw+YMqLLwSLdOlwVK8zqLNIWYo1B2rpwIwMLERUbY75An7nS4yJjmaI1S1CEyAIhMuMK4amu7rOKWI0o2ek73AYu03IygrJPwQweIjPCrQ3443cEi87PhvjdFXg5JL6ysTHuu7I92kEaK9MDKELP0RMkQovSKftLllojrCVXPZpDSmydzrS6pmUUIkzqeT7rxMK7jWpmKyOxS9Z+8C4DIzPCL8nfC9Z9Z+MZTuq+oZlcszfK7SnueTBWRkWG6CYd8sKNDReZBwf2+jfRdD+rK/0nF+li2Zbhb8Z3Lt+eyr5BMjr+mhcU2rkvK0x5GdYqMfGgD2nC3aYuctLxByVAyji+rG4Z1Rh+gLgVE5p9Wz5RHkZm7JLe35rT/aRHv8QDP8LRFOq53iMgIcuL1K1V98m/dE8SbFpkUhpV6dL0pZz29cKiPB9W/t2SoEl5X6J2RuG63EZfMyVoRs8hU7dL7r26tbVQAiIyJIwEkZjZI67XOScHTFnH+GOAZ2vQYv+4gkVFaSqoK8AtV7+TfpkUm1mGlxTrfj1V4R3n18T7Lb8xmnlrZDtfHKvbAmL6zJSmJTNGuk3e12QEgMuUM62/1tm55yUqkjx5l5o2qZ/x8gWV8IeambFd284ZiPT3cRWRs77s1jHeQyBT1VDQ1rCQ9no8dv8vW+vhCzd/9REGa+5XbUKUp3EhFZPp0gdh6aFnsJ/QCxCYypsptja6sTmnR+VRTQfO2BpnZaBlXiEMEv7dMy+oOExlTg9IU6totukmRWa7iW8gy+x5l9aDMT5F5I08qioxco3Vvpk9aDmTVmqwUnN0cU8Rc9go6o+wWC+xqSe9gSz0ujahRXeb0zxH/Hv3bgxXup7Z84EtkerTVt3ZZDikARMYnPbqAOK9m9sjw3d1c1pNkE0+IDclikqrQImOTn/PCcOIi83OIStTh+8ybWD9qKTLzWupWmXMiKwNttg6Q76xsGGvucR3rtLjM9lbKBOQFlvd5yuJ+7sYsMvNzrvuH8rvpUqexWYWbE9F0iHWCZaoi01poSmXUTrfwQ+V+9MGPlnGE2L9lkWpu5U4MIuNyjMFkDT1UTYpM0bDSexXfEOI8C8mQfaRmJ9rK6MZhh/vYbdlTsk59WazzTrntvG1zOnsty7LrFplF6t/Lv37FSxAZRKZxvtUNCpd39LtjnHstrz8vwP3Pt0zL7kjfX7siI7gcY/C8zUZoUyKzTMU3rFTGNct3Ij2t7awue6rK58q8nyN9riMpfap8Lt/hOh5cnSIjXdCPWv7+EE6CyCAyUSETa186vCeXlUVnLa8donU8zzItse4lU4fICLJSp+rGircSFJkYh5XKOGfxLmSTuUGPz6Z18nu7K7suecxbtYvMQEvhKBOPRhQgMohMjCxQ1Xd/fe/QMr9oee1Q2KQl1h7kukRGcDnG4ERiInPfIAKxrkzbo8Ks8Ftl+c6P1hDXjpI4PsYiMmtbuisnVfzbPiMyiEw3i8zc3pnJCu+qam9FiiIT67BDnSKjlNsxBj/UVJb5FpmlyjzPJFZ2BfxWyvae+aumeFZY3FPb5761KzIb1deHscmkoO/wEEQGkUmGIWU/b2JSVZvPgsjEKzIuxxhMqupL8psQmZ9UeqvSQotM2U7At2qMq2wo8/t2I2hHZIZbrE4mIK1WgMggMqmxqoLM7EJkOkJkBJdjDGTy76LIReae4Zvtifg7DCkyZROL6xSZspPndzYlMvtafvdKeTg/AQCRCcZ6ZTcJdKzCNW13HkVkmhGZ2R65qscYVDmtPLTImIaVLkX+DYYUmcsBReZBSVw/NSEyx3MMfakCQGRSx+ZMp6kK17PZ5Cs2kRmN9N34EhnB5RgD28m/oUXGNKy0DZH5hyCriTS3fX9zVUWmtWCSCUFLFAAi0ynYbC9uu4nVvgRF5nik78WnyOQ1UG2CTfyhRWbCIOA9kX97IUWmbNi3TpHxfaajdQRy0NXVlv+Tg68WU98BItNRbLMoTG23rrcpmENtiGe7j0wnb4jXbp7PW8pcJrUhRcY0rHQ5gW8PkfEYgWxtnbcj6Bt6YwCR6Uie1VTZ2w5ZLAhwT7YncXfqEQU2uBxj8FyZj5gIKTKmYaUfEvjuEBlPEchpmg9VgEOfABCZaCibK3PW8jpbLSvDVQHuaYllWjr10EhbXI4xuBGJyKQ8rITIeIzAJpxVAIhMJ7G6poKnz7IM2RLgnjZZpmWgy0Vm9llVPcbgWMMiYxpWupLId4fIeIpACnObfQY4jgAQmc7iXU0Fj02FGGI1ic3cn88Rt9xDiozgcozB9w2KjGlYaTiRbw6R8RiBnJr7SZUvyRxUAIhMN9x/lYLHZhVUiIbQDot0vIr4fYQWGcHlPK6VDYlM0bCSbNrai8ggMoLNMsp2j3sHQGTiwVTQVdn3Ycyi7DgQ4H72WqTjGiLzFS7HGDxVX0/+DSEy/Sr9YSVEJlAEV1S9Oz4CIDLxctBw74cqXMdmf5IQu+naHJdwIuL30YTICC7HGFwPLDKmYbDhhL45RCZABLJ80aab+Bh1ICAyyWMqVKucjWIzN2UsgvcZ+86vTYmM4HKMwX8Cisxdlf6wEiITMIKVugBPdQkjACLTfqFapQJdaFFePApwPw9V+UTfBRG/jyZFRnA5xmBrAJHpb1iQEZkERUawmTQnk74GFLjC6deITNPsMdx7f8VrlW2yNh3gfqYjkKmURUY4oapP/t3nWWRMw0rbERlExhTBOYsHLoXXfJwEkUFkkuR0jfd9VjW7f8uARfynERkrblT8vj96FpmiYaVPKszRF4hMwiIjs9n/tHjoVxQgMohMihStNnJZ2bPRIh/4bD3b9CKvQ2SscDnGwJfImIaVrib4zSEyDUQgmchmK+uDeAkig8gkx/OC+97vcC1p+LwreZ5nPN5LWQ/ymwTeRywiIyy3eJ8hRMY0rLQjwW8OkWkoApttv2US3QbcBJFBZJJhqeFb7ne85vmS5znh8X7Keo/PJPBO5kckMrNl/2fVrMh00rASItNwBMcsHv7bNgpARAaRQWTCcqjgnsfbuOY3Fg0eH5XPQosKN4VdyfNWfzV9ovN+1ZzILDG816uJfneITMMR2Bw+Ka2iXgWIDCITO08L7nljm9d9VPJMfWxeNlIS571E3smiQM+rKr81JDImifoRkUFkXE+5tdn98VccBRKhW0VmuOB+79Zw7d0lz/RyA+8xlSW636r2Nib0Ra+WwdAiYxpWSnW1LCITQQTyoU1bvIhd1JGAyERJT0FvjHThD9Z0/dfKvFS3zuGlxcp84O2zhN7NVhXvQoqqxxhsriG+omGlGwl/f4hMJBHYHC4psrOWehIQGWtkx9kNugD3SdGGZ0drjKNsXsX+GuM6XBLXzoTy44iPCqBGhlT+njE+RKYTh5UQmcgisDlc8lWAQhmgHW5GIDJ7c3owprVk1b1iZUOAAm22V+ZxgF6S3pJeggeJ5ce8wzdjm19ms19PHSLTicNKoUWmbG5Tnd/HuG+R+cNDBJKRbA6XvB9xplulvj6KHrqPZw2LzIjFNyRC8G0Nca1Q+XtCPfL0HcgKJtNKoj2ee2OkwhtMLD9ey7mPqQjTedKzyHTqsNJswyWUyFxW5cdL1MXrkrh+azeC9yURXHK8ru3hkrdVXCuZZEx9VH8ozOXpXhao8iW7n3Xvgi/Glf2cg+NtxLOsoOfiL+W31/SQMm/XsLiNay8tKX8OJZYfpYwsmn8Y447EZccYtCMypukLqZfZF1U4kbkasHwrmzt7pd2Po6ywbmc9/rBlIXwngt4PeRZHsvBBMSkZ7FpGEjZ5TMMHVW0liPSuVt2raV1BT4xsTtcX4DlfMtzPTcdrSuF712frrwEOGO7nWoTplfL8iSeRuaOKe9lS70W/bfGd17Uf232LuOro7V1qEU9bWyDYHMv+rk0ru6rsCmHZDn1NQ5lHnsNLxeoq+FIIv6gg4b54pKrvz/FeV3o293iqoCFzUYXtJTWVERccrjeWWKVfxhpVfhzAgQjTvcKQbleRWWxofN9KvNwpW2FX5wT1Xsu46jhI9aBFPJKWRS4X36LKx63q6IbdruwLYbmZ4wGtem2JlSIy3Ue/7o2oIg+jys8Q01Hlvsngc/33Q3PSJvPRtqmZowImCxotTZ1Pc75EPvos3914yXtKTajlHU5ZvnPpnl8Z2T0UHWPgKjKmYaXdiZc9ly3f82PV/tzSQ5ZxTekyxBXJj39XKEdLWaULKenKfeVQMJ5x/EjOO8QlXern9Efgo4JYpsxd2ohMd9GnK/jRCpVGa3ipJVwaCHXtg9LrIFUuQSqasyrMUJKJnap4OO2drtSX5/zdgH72RX8r0pbCklwp69bpyvqqZYu56Myqn7OwXvmdw2XLgRpF5k7dLfqGkbl4MgWj6oaCj3We7quYv6TxfkpVOyPro+6ZWWuZn2YbTBcc8rAMrf2QJ2qSYaZrLPTkpmRM/Y0O83IMfPb/pmoqZKW7/GQNmWa+LvBs9zpAZDqT9bqV8L7mb6N1ifR7Hc+ONvPsBU9pnNQNlBURvZulFi1TSfddHcoWFIzphkvsXFf+JPVcBPd3qQaR6TNUwLcTKn926Dp0StVXJ4vo/26I64NyP+Azrz7+OyeuzcpugU+VuD5o8fr/XhM+W3OtIuMrvna7hfdouRqb09MjPUzPEZmuI/Q5VnXkoyFdGXxqMy1T+hvYqeI+92y1mjnOZNKxYBf5W5NQnrzlMf/FsGle6zEGLiJjmoC/J6F3vcvTe74VMK681VOx1v0dwwXd4snbN2IEkYGE6NXdttJKkeGHR7rVMj0nfNStpgc631/Q4jKU4P1Kg2OLvt/ruuExNede5d8v9P+d1r/tIZtEiSzlf6nfm8tqv5st+Xxufu/j8UKnY9qPog+RAQAAgJRBZAAAAACRAQAAAEBkAAAAABAZAAAAQGQAAAAAEBkAAAAARAYAAAAAkQEAAABEBgAAAACRAQAAAEBkAAAAAJEBAAAAQGQAAAAAEBkAAAAARAYAAAAQGQAAAABEBgAAAACRAQAAAEQGkQEAAABEBgAAAACRAQAAAEBkAAAAAJEBAAAAQGQAAAAAEBkAAABAZBAZAAAAQGQAAAAAEBkAAAAARAYAAAAQGQAAAABEBgAAAACRAQAAAEQGkQEAAABEBgAAAACRAQAAAMilB5EBAACAVOk3iMxuHg8AAADEzIhBZM7weAAAACBmJgwi84zHAwAAALHyi0FiZsOvamYeDQAAAEBjrMvCliwMZ+F0Fl5aSMxskN/KMNN2fY0NWVjIIwUAAIAQLK4gLbZhlMcKAADgl/8BTZK4eXLgArUAAADidEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1zdWI+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPms8L21pPjxtbj4xPC9tbj48L21zdWI+PG1vPj08L21vPjxtbj4xNTA8L21uPjxtbz4mI3hBMDs8L21vPjxtaSBtYXRodmFyaWFudD0ibm9ybWFsIj5OPC9taT48bW8+LzwvbW8+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPm08L21pPjwvbWF0aD7T6FNzAAAAAElFTkSuQmCC" style="width: 88.00px; height: 16.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="straight k subscript 1 equals 150 space straight N divided by straight m"> , Lò xo có độ cứng k 2 = 100   N / m " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAjIAAABxCAYAAADPn0myAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABFxpIngQAAFFxJREFUeNrtnQ+kFksfgEeSI4njSJLEkeRIIkmSRK4kOSJJkkSSJIlcV5JcciW5EkmSJJIkSSRJkkhyJVckSZJIkhw53G9/35lzz3vfdmdn952dndl9Hsb3udXOn3d35pn/SvXGwiQsVgAAAAARMCkJvyThVBLeJOGfJJyjWAD+Q38SjiXhLEUBED3zdVuXFo5RPHEwJwm7knA9CSMpPyQiAzDG9CQcScI3/W18DTy9Q0nYl4TLSXiahC/6G/+RhO9J+Ki/+z+SsEZ3ZMgHtI3fDCLDjESgTE7CejU26vLC8AMiMgBjTEvCYd2Adn4bIYqMyNahJPxt8W13h09J+D0Js8iHd26VyGd3OF1Duv+pMFz3lIdnGfG/ouoLi2XaOu/pXkyRlwmRgbYyVX83nzO+jdBE5lCKbHUG+bO7elRjxPD3vmtxm0Q+vHFNp7fXxn+b53SPVCgyVzykn2mlSFjX48uEyEDb6EvCQd2zN30boYiMVMbPM9L4QedlZsq/W5SEE4bGSHqqg+TDK1PUxDrFMpIg/2ZJDWlekYTNOt1/lUj3+ySc189Y5FE+TdNKS6gKw2FuEvZ0BBl+vKom5vkRGYCJCvmAbjRtvo0QRGatTkda+m6qsYXJeUgj/yTjGTIatZJ81ILk54UqLgXvkjCj5rRvVNkjmZ1BZgh2q/pGzbKmlV5THcaBvOgvERmA/68b219AYEIRGem9jmak7WKJUag7KnuKZjX5qAURuKclZOaBqn9KTRZpf8lJ53CN6ZtnSNdxqsV4GEZkoMVIRb9X92DLTLt+DfTbfVDymbKo+S9DXpeQj9o6nW9KvJ9/BpD2g4b0Xaw5baZppaVUj3H1REcRGWihwMhw9lv9jss38FC/67LW4lHgIrNcZS8MlSnj2T08e4HK3hDwXrmdsmhKPnywUNkvB6hz8W/aiFJWG7Og5rRlTSu9oYqMj7yhP0QGmsb4lKoM2e/LaNTOByoyklbTFNghB3EcMzz/DvmojR0lREZEse4RqIcp6XpRc5oGDWV2gioyPh4iMtAy5FC7oZy/MzNQkTGdNyJi0Ocgjmk5HZxd5KMWpqhyU6BvVb0jUGmdgrqnlUxTXsuoIuPjDiIDYBy5CUVktuSk54jDuI4b4pHdKAPkIxqRkXCvxnTvTknPwZrL8qlB+iBC8k6URGSgrdwISGRkhMK0KFnWIcx2GN/cnLyfbXk+YhMZCSdrSvemlLRsrrEcBwMsI0BkACrhekAi82sNPe4HOcIxv8X5iFFkJGypId3rU9KxvsZyZFoJkQFAZDyLjOwu/JiTlt0VxLvXcd3QlHzELDKy+HeR53SvTUnH2hrLMWta6T1VHiIDgMhUg81uldkVxDtP5Z/KOrOF+QhJZM6pcot/fa4NWpOShjU1laFpWukUVR4iA4DIVEPezsIqj1N/mxP34RbmIySRkbv0jqiwF/+GJDKmaaWVChAZAETGOXMsGqUqt7Jezon7VcvyEaLI2LyrdZ6XEpLIMK2EyAAgMp5FJm99h4TtFca/yyL+pS3KR6giY7qWwRR87B4KRWRMO9iYVkJkABCZirhp0RitqDD+1RbxH2tRPkIVGUFGvT6qYiIj1x5Uvfg3FJFhWgmRAUBkPIuM3Ak1kpOGUVXtLcc2O2WetiQfoYuM0g3yqComM3K3UH8LRCZrWukDVR0iA4DIVMNyi0bIx9x+3n1s0nBOa0E+YhAZYbcqPsV0t+EiY1qjdZqqDpEBQGSqYY9FA3QzgDpCwoYW5CMWkRHOlJCZ4w0WmQOGfK8OvB6SW8JlZ5osSLe92kGOMdiZhEtqbCRKphBlVPSHrrdEXI8qN4dBymierLW6kIRH+vk/dJDOwx0d17xYRGab6v3Apu4A0FaRuazq3ekzziXV2/qSpuQjJpGRaboHJerbTQ0VmScZ+f0Y6G89pBv/FwXbYzkx+X7B31y+vTLnCsni+GtaWGzjuqAqOsPIpcjIhzaoDXe9tsivlhmUF+qKGtvdMKxf9EHaUmixyDy2+G6OeCiH4xbpuN6CfMQkMoLceP1WFV/8u7BhIhPDtNIk3W7KXU+vS7THQ3o0pOyAwbsCozMS1+0e4pI1WXNDFpmiQ3r/6N7aKtpMQGR+YsSiUtjqoRxsRlrftSAfsYmM0lLyrWBDIw2py8W/dYtMqNNKA/q9v1LgN0prj3dZfmM269TyTrg+XHAExvSdzYhJZLJOnbyvzQ4AkfmZqZYVgo81HRst0pG166gp+YhVZGzz3R3uNEhkskYq6ppWkjvHnpcUgO72+Kxyu5TjQUaaZ6pyU5WmcCMWkenXltd9adle2khAZIyssqwMfFy+t84yLQsanI+YRcbUoTSF3xsgMnNUeBtZxn/HZ2psfYqsG3lRUGTkGd1nM/3QciC71mSnYJ/+uyLmclbQCWW3NX9bV3qHutrxz2psSm6jFpxJHfEM6fbdNj/O3oOqRGaStvruIctFCgCRyWPYsiLwcZBXLzLSlHzELjI273NaGI5cZA74aERLtI2LU/77aUuRmdLVtsqaE9kZaHN0gHxnedNYndd1LNfiMj5aKQuQp1rm83eL/NwPWWT6Up57T1V76FLTWKPc7wALNYS6wLJOkdlqWXY+zj2ZrsrveGlKPpogMmWuMfjqYISqTpHJmlb6rMKbQpxiIRnn1cRCW5ndOFgiH9stR0qWq4nNOp9UuZO3bW5nd7It27XITFc/b/86g5cgMohMIXZalt0UD+XQZ5mW7Q3ORxNERihzjcGrHjuhdYnMbBXetFIe1yx/EzmNuJfdZS9V/lqZzx3SV3YmpV8Llymugy4KzqXIyHzZs65/vx8nQWQQmcKctCw7H73KKZZpOdbgfDRFZATZqVP0GoNbEYpMiNNKeZyy+C3kkLmhCsume/F7rzu7LlT4bjkXGTnz5Y3678KjzQoQGUSmDOcsy84XNmk50+B8NElkhDLXGByNTGQeGUQg1J1pO5SfHX7zLX/zXx3EtSknju+hiMySruHKryr8Y58RGUQGkXErAOcanI+miYxS5a4x2OCoLqtaZGYp8zqTUNnm8VvJO3vmL0fxzLXI0+y6RWaV+u9lbLIoaBkegsggMogMIhO0yJS5xuCrKn4/Tx0is0/FtyvNt8jknQR8y2FceVOZ63qNoBeRGe6yOlmAtEABIoPIIDKITOgiI5S5xkAW/04PXGQeGr7ZUKeVfItM3sJilyKTd/P8lrpEZlfX33urKrg/AaClImN7YmfoAtCUfDRVZATZkVL0GoMit5X7FhnTtNKFwOscnyJz0aPIPMmJa18dInMkxdBn0e4BIuMMm8OxQhOA0w3OR5NFRihzjYHt4l/fImOaVlqPyPyLl91EmttVf3NFRaa7YpIFQTMUACLjkl0RCsCRBuej6SKT1kG1CTbx+xaZrHU/Muo0KfA6x6fI5E37uhSZqu90tI5ALrq62vVncvHVAO0dIDK1VGi+DpKzPX9le4Pz0QaRsXnn07Yy553M6lNkTNNKFyOocxCZCiOQo63vqfRrvxmNAUTGPbZD/VM9lIPtDdabGpyPtohMmWsMXinzFRM+RcY0rbQhgjoHkakoArlN86nycOkTACLzL2stG5H5HsphhmVa1jY4H20RGaHMNQY3AhGZmKeVEJkKI7AJJ2nzAJFxSr/lt/eLh3JYbZmWwQbno00iM15WRa8xOFyzyJimlS5HUucgMhVFIJW5zTkDXEcAiIxbbBoSH7sw1lukY9TQ421KPtokMkKZawzW1SgypmmlYUSm3SIjESxVY3cnmf6eDN0NKQBExhUvAulAbLJIx9sW5KNtIiMUvcZAbkqeV5PIZE0ryaGtkxEZREaw2UbZ63XvAIjMBFcsvrk9Hsphp0U6rrUgH20UmTLXGLxU/13860NkZqr4p5UQGU8RXFZuT3wEQGSysTnXw8cptDbXDBxtQT7aKDJCmWsMrnsWGdM02HBEdQ4i4yEC2b5oM0x8mDYQEJmesVnTcSWAcshb49KUfLRVZIQy1xj85lFk7qv4p5UQGY8RzNMVeKxbGAFiEZlpFt/ZMw/l8FTlL5Cd2oJ8tFlkhDLXGKz1IDIzaxZkRCZCkRFsFs3Joq9BBWXh9mtERsg7nGzEQxpGHEhIU/LRZpERjqrii393VSwypmmljYgMImOK4JRFgUvl1YeTIDKITGlOqnrPPRm0iP94i/LRdpERbhT8vr9XLDJZ00o/lJ+rLxCZiEVGVrM/tij0ywoQGUSmLKssyq/KXqfN6OvyFuUDkSl3jUFVImOaVroaYb2PyNQQgbxENkdZ78VLEBlEphTSYfiUk44TFcafN/L6vmX5QGTGmGPxe/oQGdO00iYVH4hMTRHYHPsti+hW4iaIDCJTij9z0vGgwrjzRl1PtDAfddEXkMiM1/2jql6RadK0EiJTcwSHLQr/ox7BAUQGkSnGYouOQhWV9jSLhmqohfmoi7TdX3Xf6Lxb1ScyMwy/a4zTSohMABHYXD4pvaLJChAZRKYoz3LSUsWhX5tz4nzY4nzUwXRP5VWU8zWJjEmitiIyiEyZCORqApvTH8/gKBAJIYnM9py0XKwh/xtbnI86WJqS9i0BpGuylkHfImOaVop1tywiE0AE8qGNWPwQ22gjAZEphCyWfafMW1xdTssMKPNFsX+3PB91sFaFu5Gi6DUGaxzElzWtdCPiOgeRCSQCm8slRXaW0E4CIlOIvPUIux3GdTAnri3kwzubq2gAHLJIpZ8ZU4XINHFaCZEJLAKbyyXfaqsGCJWbgYmMjGY89zC6MDmnd/2EfNRC2uWboa0vszmvx4XINHFaybfI5K1tcvl93KlaZO5VEIG8SDaXSz5SnPwL4fJ3YCIjyM4f0w6cHRWPYkhDMUQ+auFaSj6+BZjOYxWLTFOnlYSdHkXmosq/XsIV73LiOt9rBJ9zIrhQ8rm2l0veVv53Mi1IwiFdMbxSY8OhUrGN6DQ/0vmWYedptOetZKrK37I7qkcXfLNfmY85GOjh2bNyvtv95KMWJqvs9Ychnkicd41BLyJjWr4Q+/rLvOkelyJz1WP9lrd29nKvH0deZd3LfvxhZTfMeNeTMPyiJaXI6noRHNlpNZu2vVXstHw/VteUvguGNN0s+UyptO5X2WtqcD6qZo8hP9cCTK/U5y8qEpm7hro69o7nbYs6x9V5bDZt4VIH8cyyiKenIxBsrmX/1KOVXVV2DYKMjCys6OXoL5COrCBDuLsVtAGpDF8XkPC6ML3TZ0s870pNjWVT8lEVC1X+dQB7Akz3XEO6y4rMgKHzfSvyeidvh53LBeqTLeNycZHqXssBg+llRyfeKbvKupdh2I2q2OjHEcdWLTb4t3J3eNtZBU1GejsPCr4Tp1U9U0zCnzmNdr9lnu/k5I981CPUv+pOlM17KMPz8wLLQ9Y1BmVFxjSttD3yuuei5e8sC+V7XVu6v0AHflEP8cj7+KFAPZrLfDW2olyGcovs9++8i2Se4woqK3xRY5e8re6xgZhRoGddtOGC5iCN5Hr9u34r+U680RIuHQTfd7xs0d9M1oiqNIZzUv7doE5z1r+VNSZbyYc3pK5brhvrq5Y95qw7qw4kYUWNgt3JHocic9d1j75mZC2eLMEoeqDgc/1O9xd8v+TYk99VsTuyvuuRmSWW71Ofrk/PlniHZWptQ5qoyQszotw14pIpWYj3XocpKQY+/mffHMQnBS4Lko+VeEnuKfcS0xT7bzMrdC/hs+Nvo/uspM86Hh+38M6y6NFJg35fh7yF+DI9U8e6sKbkoyjXK3oPR3WnsG4uOBCZfkMDfDui+meTbkO/KXdtsoj+JUNcX1T5Cz7T2uMPKXGtUXYbfIrE9UWL1/9vR63ynpxukakqvqKjIGlDZ0/1f1/WlW6xv5W6F/O0wKjRgIIY8X2Plc+dFLIj70zJCuW77kUtDOA3ako+bLlV4fsXwqF53dcYlBEZ0wL8HRH91tsq+p1veYwrbfdUKG1/Y5jZVQF+VMVuiZVRJZt1NccUQJjIEPAvujcjvf1Xugc4ooP8/9f6z47rvzuJfECFyFT/G/27ldntd7Pjd+8M31WxKRaAKDjZIRsyxTW3xDNkoV3eVrhed3QBAAAA/CQg4+se5H8X9/AsmXLKm2paRZEDAACAK/Z1SMYhB8+TuXrTIqmDFDkAAAC4YvwMkJfK3bSP6fTRixQ5AAAAuGB6h2AMO3yuaZfLNYodAAAAXDB+ivBzx8+VkZ1RRAYAAACq5JSq7rC6l6qCWzsBAAAAxpHDf2SEpIot0TczROYPih0AAABCJ+sI8U0UDQAAAIRO1hHisykaAAAACJ0nKv0GUgAAAIDgSbsl+QDFAgAAAKEzkCIxP9TYJWgAAAAAQbMxRWT+pFgAAAAgBs6pn0djWOQLAAAAwSNn0nzsEpmjFAsAAADEwIYuiXmThD6KBQAAAGLgQZfIrKJIAAAAIAaWd0nMCYoEAAAAYuFZh8Q8TsJkigQAAABiYFeHxMhi35kUCQAAAMTAnCR81RLzPQlLKRIAAACIAdlu/VhNjMZsoEgAAAAgFk52SMx2igMAAABiYaviQkgAAACIkBVqbD0MJ/cCAABAVCxIwictMacpDgAAAIgFufzxvZaYSxQHAAAAxIKcDfNGS8xNigMAAABiYSAJf2mJuac4tRcAAAAiYXoSnmiJeZSEaRQJAAAAxECfmrjR+nkS+ikSAAAAiAGZPrqjJUbWxsxw/PwrSVhNMQMAAEAV3NASI7uUZjt+9k797PkUMwAAALjmspq4ydq1bCxUY4fpPaSYAQAAwDVntcR8ScISx88eSsIH/fydFDUAAAC45ISWDBkxWenomVOSsCoJfyRhpOP5fRQ3AAAAuOKImrgEsupwluIGAAAAV+zzKDESllPkAAAA4ILtniXmBUUOAAAALtjoWWIkHKDYAQAAoFfWJeGHZ4kZVe4P1gMAAIAWclf5H425QbEDAABUw/8AMts+0PTTc/0AAADidEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1zdWI+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPms8L21pPjxtbj4yPC9tbj48L21zdWI+PG1vPj08L21vPjxtbj4xMDA8L21uPjxtbz4mI3hBMDs8L21vPjxtaSBtYXRodmFyaWFudD0ibm9ybWFsIj5OPC9taT48bW8+LzwvbW8+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPm08L21pPjwvbWF0aD4QyEwXAAAAAElFTkSuQmCC" style="width: 88.00px; height: 16.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="straight k subscript 2 equals 100 space straight N divided by straight m"> , được nối với nhau thành một lò xo tương đương L và treo thẳng đứng. Người ta treo vào đầu của lò xo một quả nặng có khối lượng 3 00 g , lấy g = 9 , 8   m / s 2 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAgsAAABpCAYAAAC0/GC2AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABTMkaS0AAAF61JREFUeNrtnQ9kV98bxx8zSRKZTCaRJJNEkiSJJJOZMUkmM2aSyYwk+cpX5CvJV2ImM8mYSWYyJkmSmJlJMr7ylcmMmUwm4/u7z+9zPrr7dM+fe++595577/vF8fVN3XM/zzn3nOc8z3OehwgAAAAAeeWg1254bdxrC1774bWfXlv32nevvfPasNcueW07xAUAAACUh3NCEfgvRGMl4rHXmiA+AAAAoLjs9NpYSCWhtq15rReiBAAAAIrHbq99jqko+NsgRAoAAAAUh11e+8eiolBtjyBaAAAAoBi8SkBRqLYrEC8AAACQb64HbPAz4s+Pe22L7+9u9dopr/WLv2OiLKx6rQFiBgAAAPJJI1WuQFY39iWvtYb492fILM7hT4gaAAAAyCcPfBv6otf2RngG51d4qVEWlr1WB3EDAAAA+YI3+XWxmfN/j8R4FrsndG6J0xA5AAAAkC/6fBv5DQvP42yPGwplYQAiBwAAAPLFG7GJfyJ7LoJhhbIwApEDAAAA+WGHbxNvs/jcswplYRxiBwAAAPJDu9jA5yw/ly0UG1AWAAAAgPzzkJJLmPRJoiw8g9gBAABkzQHCPX9TOsVJP4nrjBOSMfgLYgeuwRnH2oT2/MJr3+j3OuyzXhulSiayYxCZNbg8bQdVStU+99oCVarQrfvkzxndZiB/YJlbCmXhCMSTGs8lY9AB0QBX4E3nqdiUwuYv/9drd6hSUAWEg7PA3aSK/zNq/vgvXrtNlcArAKIwK5lbCxBNqkxKxqEJogFZs5/UGcT4JMuFUqa9tkLqu8A/hNKwFWI1UhIeaZQztirMC9m/o82pZWVjhfvYICxwQbjDh4AxmINYQNb0SzYrnpwcvLM94N9U3RQqBYPLtR6HeKV0i429Vm48FsNCvjKFi8ekQyP/917bDTEDQ1QuiKMQT6qsB4xBP8QCsoI3onHJ4tAX4jknqGKmDHrOhtgUwWa5j0nkNRZhg2df8kfJ8zjW5BBEDgyYVSj9ID0aJAcIuHdBJvDJ9K1kcWiN8Lyd9CubWVC7DZFr5d4X87nTkudyFbx9ED1QsF/x7d6DeFKlPWAM/oZYQBZsUWzsd2JuWPOKRQdmNKKpBOTul7/MwrBAwe4kABiVCwI3bdJlKMCqgMBGkAkjJI+mr7dwQvmhWHjKfPVHtiDbDFxqJnnw6QNMfSBhVrEmgPTgnA1LCRwkAAhNt2Ijv2apj5uKPr4LhaJssBtgXSKTdst9DZI8fgTuCBA0N2Xf632IJ1VaA5Q13CoDmSwKslM/m7psmanZzfFNsQB9KKHsH5P8mqntDHDHFbJ/iM8A1DCgmC+4zZQute7h0xAJyIJJSq+a2W1S5wIoU/xCvcKqMJ1Qn8skvx0BgJ8ZkidZA+lxgmDVAQ5wSrN5277eyNf/VImbOL9AQ0lk36aQw9OE+nyu6HM/PgcgULkgEOOSLv64kfcUP34MgEi80SgLSWwgrzV9liUr3D2FDIYS6vOJos9WfA5AABeEG/TQ5qvOjRAJyIKDmk17LaF+rxv0W4brfKMZWBb+UvR5EZ8EEMhcEIsQTWrsoV8p3DmGCVdVgZMnW27PE+r3EOmLH/WVQP6TGcj+rqLPS/gkAKldEAiETQcObn5PsPoBR1jQbNhDCfb9Q9P3bMmVhaSsOoOEXBdAjcoFcQriSYUHPplfgTiAq6eHautMsP+XBv0fKPgYTGh+fxJmR5Xr4zw+C0BwQWTNZUJ2W+AQlww267YE+x806L/oH8qo5vcnYfKdU/SHJC9gL8EFkSUn6ZfVFRkagRM8Mtiskzxpdhr0P1nwMbij+f28aNiMft5B8murc/gkAMEFkSUccF7Ng/II4gCu8Nxgsz6bYP8XDPrnhEV1BR6DVgMZjFjsr4tQ/ROokbkgkLQrWbgg1CIlexMKgEjMZ6wsHDTon9vhAo8Bp7/+aSADW7cUZhRKGe5vgz2KOYiTbnLwt/dFyHnC5Rc9Q5W713zS5KQPbPrcEAvIqlhg2Ld6Q/zdOoxtIVjLWFnYYqgsFP3u/1MDGfBYxU2E01pgqwIrnn9Q5XbPQIiTXLeQ/4yQ8bpQ3vhuO6fbZjeRjSDbnWIeD3vtnXj+T9F4jZ0SfWWdQbNfMUfOODz+dWKtqu5ji2Ifq8qYx/az18bEb3SpaFqD7+D2ihzMzrhDLBCLhgt2rR+VlYc2QtrJPLNO2cYsEKnTPpelDOsRw+9uhaLfjuDN6qvkua9zKrdmMTc+UrjrvhdIn0E0yBUUJQU5j9e4ofWo2oYpu3TnHyTvtOToHNgeYx8bqVHOqgHf21Leh6syf0cOJqLrFgtPUJnaL0Kj/mi4kK8LTY5LGLdQObLuFQWTDyrpRCBrlK7P3lVGDcfje4QTXp04uQY9771YsPJAnfjtfP/8HwqfG6RZLMj/RWxfQ1gZuK+XMfridXhvyvLNmwuCDzKyCrYbYrx4L3tLv7IgypTlZ779Li1FjW8eVVPtzwmF3iktbEyiNfYFbPR1Qgv/EGPSyxrInjR95TJWDN7hRQnGolF8h6bfj2l2y3qSB7JO5kC554X7slCm1gxlE6Qs9Bha0nRtkfSxHbdDWhJUysmuFGWdJxeE7F2nxJ5VL9n/LhsojGnc+Kj3KfBfEhjn0Thj1iDZ9OcMX/QmlIXC8cNgnJIu6GRiPpwuyXicCfkNvdCcghpIXiTsluOyqCd1PogwysKg5bXrjULhe2O5rzQVZdkm6poLojvgHX8KRcCUDoW14WwKv+GFT/lsSkg+kWJttksUhWUKFwF9A8pCofjXYJxGE36HaYN3WCrRmHRHOOleCHjOCcn4fqJ8FKOpBr9yym92Q7Ef/2NIZYGfMRGwqfBC3StkVE1CxVZUvnVzn8zcr7WZTZtrFF+2mLHpvl2ssXW+fvjvXgvxe9LYvPZQNinfw3JQYiHqifCsYxKFIek4rWe+dc12htpD4hD4Nq4WY6NQTxw/HJQFt5gwGKd5B5SF5ZKNy+0I3xMrdbvFweABBccW/SE20DzAm+qRgD83SSQ2JH6nP06DTb1XycztwmZonctjoUYxq7rTWNHgoEvTILm7Br8njQDU/oyVlTh72ccYz+sIeF5Lgu9ftXLxDZijlp/NSmg1hqM7ygOukTxQKsrCsc9A8/6S4uQ5S/bjKVxttqsQDhv0yWOd5I0XE+VztYSKXBSFYY2C3ToT5NZVsbgWB91G/sQ3r/iUNUDhr3tfMTzxn/CdTlmpPRnhNw0Z9JX0lUqZC2KF3LkqL0tDHddVWntoSirF/X3fnDxl8Xs4TZUro+u+54dO276L5H6ZOOZlEx9gWgExUBaic9mw3yTrQ0zCshDptGfSZqmY6XnHDX8/n7IOxejnE+ljF1Z8m2rU5GE7SR8/NJCgPJsoHy6IPsk7tsd87gFKvvLqHynuE4NRXvAvxQN7LAo3y0kGZSE6phkUkxxLE2WhTDELtXTGmC8PqZiFoR4aWqOaU1LWNiwcjnRWviRrpOTFBSG7XtxieR2yfQOsL+V94kTYF6zXmOsuxBTAK9Jf+4Gy4LaywPxj0G+SpkgTZeENlZvzpL4nrvOtHy+YPLoMfreN/CAHDGV800JfHaRPhJcU7xQKl0vZemVX+G1s7v59pNPiO1+hdPeISPEbFynZCFuTDzaNXPNQFuJx17DvroTGb8qgb6dzpacEB0Mtxpg7f5TM2mILXW4GWwHAew1+U1MCstxN6tgPl1iVvOeYpefHCg4MoD2DPaI/CbNWXGVhF2Xr64aykN4ixe1zQuP3zaDvZ9AV/g8r3+9jzJ/XVIxiUWkqC7oEPjbdA7rA8SSi9FUm8vOOjbtMWfhpSZGqxuLds/CsFrKTmCtM26CIyZ1mE1YWGF3SlJ4UJhCUhfg8M+z/quV+TWMmHkJP+D/sOlyKOYdYOTuRczmkqSzogiltKgurlH421bckvy3nWsFAlaJsw7rQRvZSW09T+vtD5AReOvOZDa1RZ714jPU9F+wjs1S4HANj8wrXmOFH0Fny8dlCwUF9UU8uYbPdlVlZGElRWdCl1e+zLEeVC2LYwXHX7TfXYz6/XpzOh8q0uNRTOgFAuriFUgk959wi8wAaGwVPwmQDPVficWE30YxkYWyKeYK5lVOZpKkspHlLQZdzxHYxJ5UL4oKD437BYNzvEAh9EknjtKYbPCgL+eIVmW0ybA6MWvikweC0Vtu2lHQ8WElaCbAK1C7kHJAV9bbEvRzKJU1lQZcwyaayoLsZZHs9ldWxYAtinYPjzu9kkqKeXfBHsJzbUxYGLfRzrIALUZnhjfyz4SbzNaR1il0dnMHMn3zGxP++UNKxuErB7gOZ+zCOlSFvNyWgLMRH5YIYyfnY+93gDQS06CJrX1roYwfB11w0eBH5FOKDnBUb22HaXCynUZyAOW3xO8m/6zB4/kgJx+A+Rc9UF9XKkKdvFcpCfFQuiFbHx38qxLxmy1wvlnU1umQ7PyyYmrYSfM1FZCfZKxgmszhtIbMUqJdKJvvHFN8XyxUEw5ZK5gDXQzmREZSF+OTNBeGHXaD/hpzfcE0oGDUQYNwUpdspuwJEIHl66XefeZzGi6E/Be+Mwb8pkxlRZlF4H/F5YfPRz0FZKIWyoHJB5CWnCV+7jnKNeIjgmvgNkzSTf8fs47Di2a8wBIWxMvCm85Wi3+t/SL/n6d9j8G/flUjOXQqlO06NA04OE8Yt0Z0DWUFZiIfKBdGWo2+GFYYoWU3hmqiB66nrKpl9J7P67jJU6SyvYAgKByfz4RgETg71Wcyvn2JD+yE+QvYnPqVKHIOqXrvJ1cn+ksh1n+JbHbXw/KMhTmF5CCiFshAPmQuCXVF5swazleQDRTvIsCXtGJb1CvcMBHY7xvNl1d++kPt+L5At86RPXdpYElk8V8jhpKU+mkMoDK7HGkFZiE4jFS+tOsc/Pabo7tG/Yx6aCwELQGc+ZutClLzaqjuv7QSA2kJhEt9QBlQpr5ct93WS9Lek8nADBcpCdHqpGC6IINjlFrXYGh9wj1PJYQHo3BGvIzy3h3DVDUTDpBbF6ZLIQmX9G02gPxP3z7LjMoOyEJ3XVBwXhOyAfN9QKQ6yZpY+luG8gcIQJhc4+1iDip5MUXmz7QEz9hp8yHMlkocqp8VAQn3qCsBx2wNloXDKQmPKimmWHDSQJ5IJSuBAjm8GE1+XxvewxNQzkpGigKqT+cLEt1gWN5YuT0lSZmGTHPsXHJYblIVo9JbwmztF+grMQe1m2RUGvl+qq/T3XZhxTvk2f/7vGbHQbwT8/SyvW0FZyA8HDKwKH0pm8Uu6MqwMXSyTy1UpoSxEQ+aC+EnFtwhzcrcvIddbJHGiSiDIZ4q/eXGt96aMfwuUhfwwYfAby3SVSZfu+myGFh6X8y1AWQiPygUxVpLvjWMy2LVnmmjuLVSFX6e89QgbFmuhfI/+sCO/A8pCPjAxfT8u2Td4KUNl4SLlt7gUlIXwqFwQHTn5Xlg+3yw8h3MzmFbYPVh2RcGfpGVZLAwtYgHhaOkRYTWYFI03Kc6pwH6trY79FigL7mNyhZev4e6AspCaG+K0pu8uKAuFUhaK4IKoymefpec9MZhHfWVWFHgBqqZ/5StsO3P+e6AsuI/uqiTHMZws4bfYRtkEOBLpK8ZehLJQGGVhF8ljhfLkgqjKpydFmZc2FcBNnxBuFOQ3QVlwmy5o71KOa+RyPcG+t1GyReagLLijLKhcEJdz9L1U5TNh8ZnsklClFZgo26K0peZ0d4sASJ5jpM/v8aTE8uEsqD8pm/S7uyi/FWOhLIRD5YLYmqPvZdL33tssPncwpfF1HhaqP5gDEZ4gDTipjy6vxwTERNMK+Swl2G+Lot83jssMykI4pVDmgniRs2/FLx+bt3XasUZVTi5ThLoNIF14gfrHYJFN+vTaKzbj7+I08l38/zWHTlTdGjklFcuhKlN8DcpCYZSForggauUza/G55wgxC/Qg4MffwV4GEoTvc+tyeDylZKuSsrKiK1vLWUhdqD9Rr7HAJJWGV2aa5jTurlfgS1NZ0EXM20wiNpWAslAUF0SQMmUrrkalLHRTCVBVs3srThZsimyiYhQQAdnDV5p0WdLSUFanyTxniAvlmHsp3UxyzYq+8hD43E3pKQsjmn5WLPalu14cNr6nSC6IIGVhxtJzZVeYN0hf/qCwVoWkGi+6a2LwngrhbyNQJljLX1bMEQ50TCP5y7GQc3eFss9CqjoBcpu3fAqUKVNzCVt8bDFE6SkLuvT4GxZlpkuSFzbgtUfxrM4CKAu2XGbjlEx67dwwTtle8+PNgat3bSdQdAZIXfPhszjNpkFXhLnqwqKwS2OVGbfUzy2F0rQvJ/PtpcGYNlrq6x2lk6J8N9lPPzytONzlcV2elOwzR2M886Bk7Vp15BCRCn+SG7kB/o05mMBdmjQn4upGnKaVqZeiWcZc8N/yZr1I6sjsOIv8AMmLx53IyZxrIPV102q7ZKGvesO+bJQ0vmY4T3eEkJNMgc/rdUBZACjfGjoU4Xk7SF6uvY1KBJ9UvpEbCgMvRqewtxYGNruyb3tNMeZ8G+JsBu92MeIcdaUkM58wZzVybQn5TD5ly8zp7Cc/nKO5N2I4nnMWFMDrhn2txZTh/hBr9SPDZ6pcEFcKpixU95jekIq5TFG4TiVkj6EZLY22It4H5JvLpL4WyQsn1xrJKt98g0aJycMCypvcQ837skJxleSFblihOyc2F1lirHEhL9fZJk56b0OO6ZyYr2FS2rPc2BJ6l/Tl1IPcrkfJLIZhq1BQBw2tF/7GbphWjTI0bcE6kSdlwR/fc1Wx1/D43JfInMe7i0oOm+RslKSO25CEJ59sFR/ggmJsOTjrgTgZuzDfN0LOzQEH5c63IN4YvPu6sBC8FJvEsub3z5Ibt0BUcDDsUkTFT7aZs1yeKvpajTBvZEGPKxRcIfEs/arN85+lvlaFclNlp+J3vMzxOjQZUjY8dz6KfzdP6gBS3h+PY6n/RVUzXxALxgalrzAcwTDkgjqxsD0hdcrmj2Kjda0gWbM4tX0ms1LsLp8oOIBuKOYmwwsnm/BP52T+dSa0/kym2FfQrYyWhPrxuye6czrPbSsLpjF1/ZSPW0Cp0OhTFJZoc6TwAWEO6xTmmWH6VZ56Xmjj38WGse5rURWNhxgOZ2kWC82o5kTHiuafOVb86sRv9P+mjpy892mxuD0TVoeVmm9zTXyzL4VywIFzp7AYloqJmrW62n5Q/qsM18JBqBzcyG6qG2LOTwglYDVg31oV3wbvdWcwVX4/lXzzmaySOFmwf5oj49m02S42Eh6QIL/QHIbEOc4pTt8bwnrASiQHD+4uyG+uPU0ewDQAAJSVVtpsQu5PuX/WYu8FbD7ALaqlktfFabV6Ij1H2QUqJo1/Xn7FFAAAlJXaqzPTGb7LjZp32YLhcYp6Kp55Uof/ltBfmAIAgDJSW1GO/ZhZZqNif+kSlAXgCEdos6VrL0QCACgbl8nNSpMvCG4I4Ab+rJMIuAUAlA7OIhYUqOZCUFpVWfiEYQIZ0k+b08TuhEgAAGWCTf0fAxSFRUfer5oUaghDBTLiQs23cRYiAQCUjSsUfPVtyoF32+97H9SIAFlwnjbfDLoJkQAAyoisBsSSA+/2hH4l8wEgC0Xan0QMcQoAgFKyhdQZFQ9l+G7tvvc4jaECKcKuub9rvoU/IRYAQFk5QuoUy68yei9OClXN4ohYBZAmnJHRX+qZU5ZfglgAAGXmEOlrMgxTevnht9PmErsfKH5teQDCcJ02Fw9qgkgAAGWnjsxqos9Q5XplUnDdea5A+M3XJ1+V3IUhAhl8E2OEYjEAALCJpxSuTOt5S5YGThXMFb+CShnPQFEAAAAA3GFfwGata/z3uRz1bbHhnxTWgfoAhYD/nCtYchwCR5ezW4PLXssCK7mELlwPAAAAgGNcDKksJNG4DkUPhgIAAABwW2FYz0hRmBQWDgAAAAA4TrPX5lJUEjg24RzEDgAAAOSPLq8tJKQgbAhLAhItAQAAAAWghSrXyOK6J34KBaHXa40QKwAAAFA8+KokV9rjXAh81ZKLTC1T5VbEuq+tem3ea8+pknmRLRQnKL2kTgAAAACwwP8AD9PoDKJgM7gAAAD0dEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPmc8L21pPjxtbz49PC9tbz48bW4+OTwvbW4+PG1vPiw8L21vPjxtbj44PC9tbj48bW8+JiN4QTA7PC9tbz48bWkgbWF0aHZhcmlhbnQ9Im5vcm1hbCI+bTwvbWk+PG1vPi88L21vPjxtc3VwPjxtaSBtYXRodmFyaWFudD0ibm9ybWFsIj5zPC9taT48bW4+MjwvbW4+PC9tc3VwPjwvbWF0aD4rHJcHAAAAAElFTkSuQmCC" style="width: 82.67px; height: 16.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="straight g equals 9 comma 8 space straight m divided by straight s squared"> , thì độ giãn tổng cộng của hai lò xo và độ cứng của lò xo tương đương là bao nhiêu?

Lò xo có độ cứng <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">k</mi><mn>1</mn></msub><mo>=</mo><mn>150</mn><mo>&#xA0;</mo><mi mathvariant="normal">N</mi><mo>/</mo><mi mathvariant="normal">m</mi></math>, Lò xo có độ cứng <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">k</mi><mn>2</mn></msub><mo>=</mo><mn>100</mn><mo>&#xA0;</mo><mi mathvariant="normal">N</mi><mo>/</mo><mi mathvariant="normal">m</mi></math>, được nối với nhau thành một lò xo tương đương L và treo thẳng đứng. Người ta treo vào đầu của lò xo một quả nặng có khối lượng 300 g , lấy <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">g</mi><mo>=</mo><mn>9</mn><mo>,</mo><mn>8</mn><mo>&#xA0;</mo><mi mathvariant="normal">m</mi><mo>/</mo><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup></math>, thì độ giãn tổng cộng của hai lò xo  và độ cứng của lò xo tương đương là bao nhiêu?

  1. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x394;&#x2113;</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>0</mn><mo>,</mo><mn>17</mn><mo>&#xA0;</mo><mi>cm</mi><mo>;</mo><mo>&#xA0;</mo><mi mathvariant="normal">k</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>250</mn><mo>&#xA0;</mo><mi mathvariant="normal">N</mi><mo>/</mo><mi mathvariant="normal">m</mi><mo>.</mo></math>

  2. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x394;&#x2113;</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>3</mn><mo>,</mo><mn>94</mn><mo>&#xA0;</mo><mi>cm</mi><mo>;</mo><mo>&#xA0;</mo><mi mathvariant="normal">k</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>250</mn><mo>&#xA0;</mo><mi mathvariant="normal">N</mi><mo>/</mo><mi mathvariant="normal">m</mi><mo>.</mo></math>

  3. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x394;&#x2113;</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>4</mn><mo>,</mo><mn>9</mn><mo>&#xA0;</mo><mi>cm</mi><mo>;</mo><mo>&#xA0;</mo><mi mathvariant="normal">k</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>250</mn><mo>&#xA0;</mo><mi mathvariant="normal">N</mi><mo>/</mo><mi mathvariant="normal">m</mi><mo>.</mo></math>

  4. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x394;&#x2113;</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>4</mn><mo>,</mo><mn>9</mn><mo>&#xA0;</mo><mi>cm</mi><mo>;</mo><mo>&#xA0;</mo><mi mathvariant="normal">k</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>60</mn><mo>&#xA0;</mo><mi mathvariant="normal">N</mi><mo>/</mo><mi mathvariant="normal">m</mi><mo>.</mo></math>

H. Hoàng

Giáo viên

Xác nhận câu trả lời

Giải thích

Cách 1:Độ giãn của lò xo 1 là : &amp;#x394;&amp;#x2113; 1 = F dh k 1 = P k 1 = mg k 1 = 0 , 3 . 9 , 8 150 = 0 , 0196 ( m ) = 1 , 96 ( cm ) " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABe8AAAJfCAYAAADmci2nAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAEs6+fPPAAAZs5JREFUeNrs3Q/kldf/APAjSZKRZGYyJpPMRDIzk5hJZhKTSWZikpnJmK9JZsZkZiaRzCSJJJOZmJnMTExmZiYmmSQjkySJ3++8v/d+vrufT/f5c/89937ufb14+31/63PPee55znk+n+f9nOeclABG53qO/5uCuOtUAgAAAAAwLaYleX/fqQQAAAAAYNosz/Fsjl05TqRWMnyxJfABAAAAAGCqrUu9z8q/meNsaiX/+4mTOU63yzif49cc93qof6nTBgAAAADAtNuT6ifOf86xbETHsSLHyzk+zHG15BiWO2UAAAAAAEy7Jan+8jn7GzyudwqOYaVTBgAAAADALPgu1Uvev9LwcR3ocgxPO10AAAAAAMyCWIe+TvJ++xiO7fKCY9jqdAEAAAAAMAuOpclN3r+64BhecroAAAAAAJgFR9LkJu9jTf7bYz4GAAAAAABo3NtpcpP34XTHMbzsdAEAAAAAMAv2p8lO3r/RcQw7nC4AAAAAAGbBpCfvn+k4hl1OFwAAAAAAs2DSk/ex7v2JdjzndAEAAAAAMAsmPXkPAAAAAAAzR/IeAAAAAAAmjOQ9AAAAAABMGMl7AAAAAACYMJL3AAAAAAAwYSYlef9yu557TgkAAAAAALNuUpL3e5PkPQAAAAAA/NekJO9PJsl7AAAAAAD4r0lJ3l9JkvcAAAAAAPBfk5C8f6ajHsl7AAAAAABm3iQk748lyXsAAAAAAPifcSfvn11Qj+Q9AAAAAAAzb5zJ+x05biXJewAAAAAAmKep5P3yHJtSK2F/OMfvBfVI3gMAAAAAMPPqJu+bCsl7AAAAAABmnuQ9AAAAAABMGMl7AAAAAACYMJL3AAAAAAAwYZrcsHZ9am1YezDHj0nyHgAAAAAAumoqed/Nxhx/Jsl7AAAAAACYZ5zJ+7A2xz9J8h4AAAAAAP5n3Mn78H6SvAcAAAAAgP+ZhOT9o0nyHqbR3jT6Ta4ftK8bd1PrLZ4rOc7nOJnjoxy7cjzjVAAAAACw2ExC8j5cSpL3MG2aSN7Xjbi2RFL/nRxPODUAAAAATLpJSd4fTZL3MG2W5FiVY1uOPTlO5LiRJiOZ/2NqPVxY6jQBAAAAMIkmJXm/J0newyyIhH4kze+myUji/5Xj7fZxAQAAAMDEmJTk/fYkeQ+zZF/qbV37uFatWFDGshyP5Hgxx47USsLHWve/pd6T+L/neM5pAQAAAGBSTEryHpgtsVxN3dn3J/soPzbCjgcEP6bekvgHnRoAAAAAJoHkPTAu52tef14fsJ6YUX851U/gn03WwgcAAABgzCTvgXE5XvP6s2tI9X2Y6ifwTzs9AAAAAIyT5D0wLu+mZpP34UCqn8A/4BQBAAAAMC6S98C4vJ6aT96HUzXrjQ20n3CaAAAAABgHyXtgXPak8STv1+S4U7PuY04TAAAAAOMgeQ+My7iS9+GzmnXfz7HSqQIAAACgaZL3wLiMM3m/OdVf+36XUwUAAABA0yTvgXEZZ/I+/FOz/i+dKgAAAACaJnkPjMu4k/fnatZ/yakCAAAAoGnvJMl7YDzGnbz/omb9t50qAAAAAJp2JEneA+Mx7uT9ezXrf+BUAQAAANC0o6le8uoVTQUM2biT93tT/U1rAQAAAKBRsRFjncTVq5oKGLJxJ+/fSGbeAwAAADCh6m7YuF9TAUO2WJbNseY9i8GyHLtzfJPqb7L8VGrtfXMmx2857ua4n+Nejr9ynE2tN1SWD3hsT7b/jji9oJ74v1fb/z0mCSwZY/s9m+NQ+++iv9rH9qDdFv/k+CnHqRxv59ikuwEAANCEP1O95NUXmuohS3M8NmAZq9N4kxUwTuNO3td98+iSU8UE/x7akVrJ9/up/gOnGHs/p/rLRt1of6ZXcWw/9FBPJPKb3GMnfv++leNKD8fY2SafpVbSHwAAAIZuTQ83qb9rrv+KmY2RjIjZd3dSa8PfXj2eWjMQv0utWX02A2ZWjTt5/23N+r90qpggy9tjImar30u9vS3ydI5fUu+J6rn4rOYxbh6wnvcaaMctOf7oUnc8BIm3F+Ktg69S64FC1fFeS609hOLtgQ3JQ3kAAACG4ECPN9ObZ7Sd1ubYl+PrNH9mY0Td5P3G1Hod/3KXdpW8Z1aNM3m/tMt4LorXnCom+PdQ3eT9mz30+bI4VHKc8WDh8yHU8X+pv5n+dR3sUt/N1FoiaGmXn4+E/Kkhfa+5WKlbAwAAUCRe877V441mzL5/fAbaZm52fSTmq16lL0rex83/yzmOp9bauWVlSN4zq8aZvN9ds+5Idq5yqhiT9am/JV0WJu+PpeEmnp/vcqzxgOGXIdZxZ0R/cxxP3ZfrqbMM3q40nAcgkvcAAADMEwnp2GAtElbxGviDPm824xX9WEIiXg2P1++XTmFb7emhPYqS99t7KEPynlk1zuT9TzXrPuk0MUYvpH+XcYnfvTH7+2aqn7yP39ELN6aP8mLJnTdS6426Ze2fjaVetqR6G9n/uuA4Ny84rus5Pkmth9irFvwtEon/D1O9CQQnhtye3d4KiL+HNozobwTJewAAAEr9nfpP1NeNKP/elLZfzMT7IPWevE8dyZAN7USJ5D3MN67k/Y4erm9PO02MUSS+l3b5b7+m6uR9fO6bNH92eey3sqJGve/VGBsvtn92a7u+uQf8/0n11nyPfXeqNrONvy8eHVJb7i2o4/M+yjqbJO8BAAAYgttptIn7zphmRbN06655H7MNi161l7xnVo0jeR+JwJs16z3uFDGhXqzou3fTvzPoIwH+fup9E9WqGfjx78+l1vI28f/fSK03/HoRDyKqlpYbxua1T3Yc5zAe0D2ZqidG7NZNAQAAoBlfpMGS9+FikryHTk0n7yNRWHdN7pil/IhTxISKRHydt+r+Sd3Xp69jfareD2Ju6Zt4IPZUn/Xsq6jn+yG0V9Hbb7cGKLNqH4HvdFMAAABoxpE0ePL+6yR5D52aTN4/keOPVH+zz2ecHiZc1Yz1SO5vHbCOOntDRD3PD1BHLONzv6L8JQOUvy6Vvz3Qrw012mW1bgoAAACjJ3kPw9dU8j5m9v6T6ifuX3BqWAS+qejL7w+hjg9rjJlhLGvzfUUdg4zJj9LoNqSuerixSzcFAACA0ZO8h+EbZfI+NoOMpH3d2fb9rtkN4/J1RX/eMYQ66mzuPAzH0+iS4GWb+34x4HEfSPbNAAAAgLGTvIfhq5u8/zi1lv+INeuXdSkn/tvG1Eo0HszxbSpfhqNb/JjjMaeERaSJ5P0zqZnk/RsVdRzus9xlFeV+MeL2+UY3BQAAgNGTvIfhq5u8H2XcS8NZXgSa1kTyfnlqJnn/akUdJ/osd+uIyu10t6T8W7opAAAAjJ7kPQzfOJP3sZlkrHf9pNPAItVE8n5JaiZ5/0pFHWf7LHdnRblnhnDsZXsP3NVNAQAAYPQk72H4xpG8v5zjUI4nND+LXBPJ+5SaSd5vr6jjfJ/l7qoo9+IQjv1EKn+zBwAAABgxyXsYvrrJ+0vt8RMbT/6TWrNZ76WHk2R32//+W2rNho1ZtbFh5N72OFupyZkis5S8/7rPcquW47kzhGP/sKT8f3RTAAAAGD3Jexi+usn7XZoKav9Okbz/18s1jv/xAY+9bLPdS7opAAAA9GdZO2EQCcR3cryVWrP0ut3Ijyt5vzTHS+1jPNA+xkhkbnL6mAKS99A/yftqjzZwfSm7jp3STQEAAKA3kdD4LrU2rCy64f4htZLmc5pO3q9LreU+7pcc49Uc+51OFjHJe+if5H09f1eUPWiCvWzm/T7dFAAAAOp5JscvC26s46Y+1sU+mlqJ+JM5rnX8+7kca1Kzyfv3U/mDhYURa3svd3pZhCTvoX+S9/Ucryg79ssYZD+MT0vKtjE2AAAA1BAbVnYmxG/keD3HkoKffyXHn+2fjWT+t2n0yftYIudsqp+092o+i53kPfRP8r6eTTW+w4EByj9XUOZ3uigAAABUe3/BDXXMvl9T43OP5Pi+4oZ/mMn7zn+P5XIikR9vBHyc44v078OEotjmVLPISN5D/yTv6/uqovwb7d/5vYqH7vcKynxOFwUAAIByby24mf4r1Uvcz4lX6X9Lo0/ez73WfzfHf3KsKCjjQMmxfO90s8hI3kP/JO/ri41rb1bUcbyPct8sKOsL3RMAAADKbUnDmZ3+bBpt8n7ulfsrqbVRbZWPS47nMaedRUTyHvoned/77/LbFfXs7aG8VTmudynj52QfGgAAACi1sstN9SAz039Oo0veR1zKsbqH73a3oJydTj2LiOQ99E/yvnex/v2Nirreqvl7+GKXz/7Yw+9yAAAAmFmHu9xUvzRAecfT6JL3l1NrBl8vzhSU9bFTzyIieQ/9k7zvTyyd901FffGw//mCz0e7Xin4e2CZbgkAAADl1uZ4sOCm+p8ByzySRr9hbS/eKSjrlNPPIiJ5D/2TvB/8+nO9ot5bqbXZbTwwP5+6v/X2e2ot0wcAAADU8EmXm+szA5Y5acn7V1Px+vmwWEjeQ/8k7wcXa9N/V/M61C1pvy/HEl0RAAAA6omb6L+73GQfGLDcSUve7ygo67wuwCIieQ/9k7wfXOdbbFdzfJhay+TFg/BYvz42uL2fWm/z3W4fx0c5Nut+AAAA0LutaTRJjElL3hclOr7WBVhEJO+hf5L3g/mgo/z432bQAwAAwIh9VHDj/+KA5Urew/BJ3kP/JO/7szTHl+1yHwyxnQAAAIAK5wpu/DcMWK7kPQyf5D30T/K+d2tSazmcuXJ360YAAADQnL8KbvxXDliu5D0Mn+Q99E/yvjeP5fijz9/fAAAAwBA8KLjxf2LAciXvYfheT/WS92bHQv3fKZL3D1uV5ifu77f/GwAAANCQpSU3/ta8h8nzbqqXvH9DU0Ht3ymS9w+7sKC873QfAAAAaNayNLokhuQ9DN/xVC95/7mmgtq/U5pO3i8bQh0vp9El73d1Ke9OGvyNPAAAAKAHS0pu/N8esGzJexi+c6le8v6MpoKHfJ9Gn7xfUmN8rh1CPa+m0SXvfygo826OL9t1P59juS4FAAAAo3Wv4Cb95IDlSt7D8F1L9ZL3f2sqeMjtinGzcwh1rKwxPrcPoZ79FXX8NYK/C4YdUc8/Ob7JcTi1HggAAAAAHX4tuKm+MWC5kvcwXBtSb4mx7ZoM/uexGmPm7SHUs61GPQeHUM+pijpiM/olfZZ9NTWTvO8Wv6TWkkAAAABAai2vUXQTvXmAciXvYXhic+lvUm9JsJh5u07TwX/V2ez52yHU836Nev4YsI4VqfV2TVU9/S4DdCCNL3k/F7G/xxLdFgAAgFn3VsnN87EBypW8h8GsbvfbQzmupP4SYPdT6wHd7hwvJGtUM5ueS9VL5szFqwPUsybH9Zr1HE39JafXpOqNd+ciZtD3u77+x2n8CXy/nwEAAJh5T6Ty1+6f7LNcyXvo3RupmfWmo47dmpsptCy1kvWxfM3rOb7qY3zEDPxYUz6Wb9lS8HtwZbuel3LsyvF5jls91vNnjg9Ta4b81vbv426/o7e3jycexN3vsY47qbXJ7Gvt7xPHu7pmWz6b41IabwL/Q10aAACAWXex5Mb5mz7LPJYGn80vec+s2ZuaS4rt0dwYQ7Xiepd6jqTRPFRrop5ex/5rHZ+9nZpN3sckAst/AQAAMNNerLh5fq/H8lal4qUDzvRQTlHyvp/N7HYkyXsA6EW8XfBX+/flZ+3/Fm83xJsCscRQbPIb69PHBrrxlkM88L+WWm8hRKL/bmo9lJiLfhL4nzsNAAAAzLqqNXTrJvBjI72ymfxx8/5YzbIuFJSxs4/v92oa7psFADDN9qXWzPf4XflTGu4GslFW7MGxObUeyMeSYSdS9wf/150KAAAAZt2jOW6m8gT+dzk2lZTxfI7fOm62y9bgjRn4x9uxuaC8otfz3+rj++0vKOtvpx4A5jna8XsyZtGvbbDuXe3fzZ2/qx9xSgAAAJh1kXy/m6pfYf89tWbIHWlH/O/fOv79VKq/Tu8vqfsDgUdKPnO6j+92OhWvp7vSqQeA/86GP5/Gvz/GM+nfWf8RW50aAAAASOmF9PCMt14ilt9ZmsqT91H+Z+2b8yIfl3z+fo6ne/hOT7c/U1Teh047ADMuEvffpsnZF+ZMx3Fsc3oAAKBZMdP1zRxnU+t13FgHO2b8Xs7xQY7VmgjGJl6PL1pvviwOd5SxMHn/oJ0EiPXqu62bG/8tkvmxxu4PNeqKa8axdnmPdykv/ltsUns01dsk76d23eucfgBm0PkuvxvH+Tvx7Y7j2Oj0AADQi0gyXWv/Mfmu5uhJLIURs1zvpPJEWqy9/YzmgrHakuOrVD5rPf4tlqRZOBN+LnkfS+zEZrdVm9TuSv3P9o94saOsFwcsa5lTD8AMOdjld+G3Yz6mN9K/D/+XOEUAAPSiM8l0zR+UtcWamVUbYnbGVW0LEyHG4Qvta9/edsR43p5aS+R0E5vQPqvpAGCirU/z15efi4NjPq4v2sdx0SkCAKBXP6bxb+S0mMQSOF93uSn4sd12c0vkxGzX11NrGZ25n3lN8wEAwEicTN0n0Yz7/uZK+zj2OUUAAPRiU5c/bi9rlkLP5bi+oL1u5Hil5DO7O372hCYEAIChi7fnipbGe2+Mx/VKxz2DpewAAOjJqYI/cLdomofEjJ2FG0XGRpRrKj63vOPnz2tGAAAYui2pePnKH8Z0THGfcKN9DLucIgAAerE2dV8TMuKC5pnngy5tFBtfLq3x2WUdn/lGUwIAwNC9nMr3n9rW8PE8muOXdt2nnB4AAHp1uOIP3PWa6L+Odmmbsz18/slk5j0AAIzScxX3NrEP1aaGjiUeFMzNuI99sZY7PQAA9GJFjtsVf+Ae10xdN72KtxKW9lDGzo7PntSkAAAwdEty/F1xf3M3x4H2z45CPBz4Os1frmeVUwMAQK/ervjDNiI2fHpshtvoTJc2+TnHyh7L+bTj8wd0PQAAGImDNe5xIv5s3w8NI7Ee90v7UmuGfWcdsVSOGfcAAPTlj5p/2H40o+1zuktbXE+ttSt79WdHGU/regAAMBIxo/5izfuciAftn4/lRGND2a05HkkPv2Ub/39M4Hkhx47USvxHcv5KlzLvpFYyHwAA+rK9hz9ob6feZ5ovdse7tMO91N8amds6yvhN1wMAgJGK5HsvCfxhxnc51jkFAAAMotc/Zt+dobb5pKANXu+zvJ87ynhL1wMAgJGLGfjxBvGD1EzS/tccr2h2AAAGtbGPP0avpdFt6jRJ3knD3bj39Y4y/sqxTPcDAIDGbMhxPo12pv3LmhkAgGH5ss8/TPdMebvsKvjesdRNPxtNPZ7jVkc5r+l6AAAwFk+l1hu2f6XBkvVza+S/l+MJzQoAwDA9lh5+dfTDHDdr/KF6eYrbJTaeup+6bzb1VB/lxQz7Sx3lfKXrAQDARHg6xxupNakpZuX/1f67/15HxL5fV9v/fiK1Nqh9KT28kS0AAAzNB2l+cjoS1mtyHEr1ZppsmcI2iRkzf6fhrnN/Ls1fLme1rgcAAAAAQDcxS2Rhkvpo+98igd9t5vnCuDBlbbIytZbF6fZdz/RZ5qmOMu7meFbXAwAAAACgyL70cIJ6fce/H0v1Zt9vmKI2+brgO15Pvc+Wj3XxF26G9YpuBwAAAABAmd9T+Sz6p1O95P3xKWmPD0q+44s9lvVojp8WlLFLlwMAAAAAoExsrlRn/fqLqTp5HxvePr7I2+Plku93pMeyoh07N/yN5Yd26nIAAAAAAFT5Ns1PUP9W8HPbU73Z9x8v4rZYm+NWwfe6klrL39SxvN0OnZ+PcrfobgAAAAAAVIl17Rcmqd8s+fk/UnXy/nZqbfa62CzJcankez1Xs5wXu7RT/P/rdDcAAAAAAOo4muYnmWOJl6UlP/9Wqjf7/t1F2BaflHyfT2p8PjbrPd/ls6fT4nyYAQAAAADAGKxJrTXYOxPNhyo+E8vB3E7VyftrqTWTfbHYVvJdqpbL2ZTjTOr+BsJe3QwAAAAAgF5Eor4z2RyJ/DU1Pnc41Zt9v2eRtEN855sl3+OFLp+JtxNez/FDwWe+Sot/414AAAAAABoWyeeFCeujNT8bm7o+SNXJ+1/G+P1ic92NNX/265Lv0NkmS9rlfpnjTsHP/9H+GQAAAAAA6Nkb6eHE8/oePn861Zt9v2UM321Fjuvp3xnwL6XiJXz2lRx7lLE1tdb5P5fjXipfWmdvWlxLBQEAAAAAMGEup/nJ5ws9fn5zqpe8vzCG77a7y3HczXE2tZb8iX/fmePVVG/9/rL4oV0OAAAAAAAMJNZwH8YM+UupXoJ7wxi+47OpfDmcQeLPHB/leEpXAgAAAABgWBYmtftdm/61VC/Z/cUYv+tjOd7Mcar9PWMG/oPUW7I+lsv5Jsd/cjyj+wzFrjSaByuTFKudZnDNcM3AeDQeAQAA6nqqyw3K3j7LivXdr9W4AYpk+eMT1AYHKo7379TaqDaW19mUrGPvxt+NP7hmuGaA8QgAADBiRxbcnNxIgyWn36t5E3R4Qr7/2hx3Ko51j27ixt+NP7hmuGaA8QgAANCUR1JrCZjOm5NDQyjzbo2boNgYduUEtMFXqXoDWtz4u/EH1wzXDDAeAQAAGrNwlvz9HGuGUO6RmjdC7475+29P1cv7bNBN3Pi78QfXDNcMMB4BAACa0m19+qNDKvupmjdCf6XxrR+/NMefFcf3qW7ixn+R3fj/nxATEK4ZrhnCeDQejUcxu9cEAACG4LUuf8ytH2L539T8A3Jc68n/p+K4Yu3/R3QTFhk3pUJiANcMYTwaj0K4JgAALHI/L/hD7sKQy99S8w/IX8bw3R9NrTX3y47rDV0EN/5CSAy4ZgjjEeNRuCYAANCk57v8IbdlBPX8WvOPyC0Nf//PK47nsi6CG38hJAZcM4TxiPEoXBMAAGja2dTM7Pc3a/4ReaHB7x7r8T+oOJ7Nughu/IWQGHDNEMYjxqNwTQAAoElPpIeT13tHVFdsCnuz5h+SGxr6/mcqjuOkLoIbfyEkBlwzhPGI8ShcEwAAaNon6eGNWZeMsL5DNf+QPNHAd3+64hju5XhcFwEAAAAAoEkrctxJ8xPWh0Zc55oc91N18j7eBlg74mM5V3EMH+oiAAAAAAA07UCan6yOpPqaBur9ItWbfX94hMewvqLuv3M8oosAAAAAANC0q2l+wvpoQ/VuTPWS9/FWwMoRHcOxiroP6B4AAAAAADRtZ3o4Yb2+wfovpnoJ/HdHUHfV0j3xUGOJLgIAAAAAQNN+SPMT1hcarv/lVC95/1cafiL9YEWde3QPAAAAAACatik9nLDeMobjuJLqJfCHnUy/VlLXH7oHAAAAAADjcCrNT1j/MqbjeDvVS94P8/heTM08KHghxypdDQAAAACAOtbmeJDmJ6z3julYVuS4neol8If1ZsCXJXVcGVIdm3PcbZe3Tpfry66a/WIxx2qnGVwzXDMwHo1HAACAOR8vuPm4kca7OevhmjdJ3w6hrvieZQ8L3hxCHfFw5GZHmbt1OTf+bvzBNcM1A+PReAQAACizLMetBTcfh8Z8TE+kh98EKIqnB6xra0nZ19PgDzFimZzfOsp8X5dz4+/GH1wzXDMwHo1HAACAKvsX3Hjcz7FmAo7rTM0bpRMD1vNRSdmDJtrjwcjFjvKO6W5u/N34g2uGawbGo/EIAABQxx8LbjyOTshxPVvzRilm6K8doJ7vC8odxkOMcx3lndPV3Pi78QfXDNcMjEfjEQAAoI7tXW481k/Q8f1c82bp8AB13Cso89SAx36so6zvcizV3dz4u/EH1wzXDIxH4xEAAKCOiwtuOi5M2PHtrnmzdCfHyj7Kf7KkzG0DHPehjnJ+6vPYAAAAAACYQRvTwwnrLRN2jLFZ7F+pXgL/3T7KfzkVPwzod6PadzrKiY1qzcICAAAAAKC242m6XlWOJH+vCfdXC8o63Web7uso4880GRv/AgAAAACwSERSOTZknba1Rl/vsR2K1l/d20ebvt7x+as5HtPNAAAAAADoReea7NMUv/TYDkUz71/qsZy9HZ+9kiTuAQAAAADo0dIcN9N0Ju97Xbf/uYIyXuihjANp/hr3j85AH9qUY4OhBAAAAAAwPJ3rsk9jfNdDW8Qa+d2WD6o78/5Ix2d+StO/Oe26HGfb3/eIoQQAAAAAMDy/p+lO3kc83UN7dNu4d3/FZx7P8X3Hz5/PsWKK+0w8lDic5j/okLwHAAAAABiSrWn6E/cRJ3tokydz3F7w+T9zrOzys8tSa5mcfzp+9oMp7i/xZsK7OW51aWPJewAAAACAIbmQZiN5/yDH2h7aZVt6ePmc2Hg2ZuC/nGNXjmM5/k7zE/xbprivxHe+WtLGkvcAAAAAAEOwPs1G4n4uPumxfZ5N9ZYUilnoB3Msn9J+Eu1wqUY7SN4DAAAAANCIWCbmtRync1zPcS/H3dSagX4qx+4cS6f0u8dmtOdy3MxxIsen7TaQvAcAAAAAgDGIRH0sE7Q3tR5gzIn9AGIJIsl7AAAAAABo2L40P2nf6WKSvAcAAAAAgIkSSwhJ3gMAAAAAwASRvAcAAAAAgAkjeQ8AAAAAABNG8h4AAAAAACaM5D0AAAAAAEwYyXsAAAAAAJgwkvcAAAAAADBhJO8BAAAAAGDCSN4DAAAAAMCEkbwHAAAAAIAJI3kPAAAAAAATRvIeAAAAAAAmjOQ9AAAAAABMGMl7AAAAAACYMJL3AAAAAAAwYSTvmXRLNQEY34AxDQAAMGsk75lEz+b4IMflHLc1BxjfgDENAAAwayTvmQSP5NiZ48scNxf0RYkAML4BYxoAAGDmSN4zLs/lOJjjYo4HBf1QIgCMb8CYBgAAmEmS9zRlXY43233uTsmNv0QAGN+AMQ0AADDzJO9pwis93PhLBIDxDRjTAAAAM0/yniY8mWN/O97OcTTH16n81XuJADC+AWMaAABgZkneM06bc9yTCADjGzCmAQAAmE/ynnH7XCIAjG/AmAYAAGA+yXvGbadEABjfgDENAADAfJL3jNtzEgFgfAPGNAAAAPNJ3jNuj0gEgPENGNMAAADMJ3nPuK2UCADjGzCmAQAAmE/yHokAwPgGjGkAAIAJI3mPRABgfAPGNAAAwISRvEciADC+AWMaAABgwkjeIxEAGN+AMQ0AADBhJO+RCACMb8CYBgAAmDCS90gEAMY3YEwDAABMmHNJ8h6JAMD4BoxpAACAiXKj4ObrhKZBIgAwvgFjGgAAoHkvltx8Xc2xRBMhEQAY34AxDQAA0JyncvxVcQNm6RwkAgDjGzCmAQAARmRVji05tuXYk+NMjvsVN19z8UeOj3LsyPFSjudyLNOkTGgiYH/Nfl039HUwvgFjGgAAYGSGfXO0S5MyoYmAuHFfn1pLQsUDp6M1+3Q8zDqb473074Oqp5waML4BYxoAAAAkAkbzCv63JWVfSq23UZY6DWB8A8Y0AAAA0Fwi4JcuZcZ+Dzs0PRjfgDENAAAANJ8I2NmlvFOptQ8EYHwDxjQAAADQcCJgY45/Osp5kFr7PwDGN2BMAwAAAGNIBGzOcbOjjPjfL2hqML4BYxoAAAAYTyLgpfZn5j7/Z44nNDMY34AxDQAAAIwnERAb2t3v+OwPyVq5YHwDxjQAAAAwtkTAmws+91WO5ZoXjG/AmAYAAADGkwg4tOAzJzQrGN+AMQ0AAACMLxFwZMHPf6pJwfgGjGkAAABgPImApTnOLPjZQ5oTjG/AmAYAAADGkwiIz3y34OcOaEowvgFjGgAAABhPImBNjp8X/Mw+zQjGN2BMAwAAAONJBDye48qCf9+jCcH4BoxpAAAAYDyJgA05ri/4tx81HxjfgDENAAAAjCcR8HyOWwX//r4mBOMbMKYBAACAZhMB93PcrfiZrZoRjG/AmAYAAACaSwREEuC3ip+5mWOtpgTjGzCmAQAAgGYSAfEK/rr2/y37uUs5lmpOML4BYxoAAABoJhEQXqv4uYjjmhOMb8CYBgAAAJpLBISjNZIBezQpGN+AMQ0AAAA0lwiIV+x/TtXr7T6jWcH4BoxpAAAAoJlEQIhN7m5VfOZqjlWaFoxvwJgGAAAAmkkEhFdS9av4X2taML4BYxoAAABoLhEQPqmRDDikecH4BoxpAAAAoLlEQLhYIxnwoiYG4xswpgEAAIDmEgGP5rhZ8flYa3etZgbjGzCmAQAAgGYSAWFrqp7J93OOZZoajG/AmAYAAACaSQSEQzWSAcc1NRjfgDENAAAANJcICN/VSAbs1dxgfAPGNAAAANBcImBNjhsVZd3LsUmTg/ENGNMAAABAM4mA8FyOBxXlXcuxWrOD8Q0Y0wAAAEAziYBwIFW/in9Bs4PxDRjTAAAAQHOJgPBVjWTAh5oejG/AmAYAAAC6e3QEiYBVqfWqfVUyYLfmB+MbMKYBAACAh71UcbN+t89yN6bWZndVyYAdE9QWsTHfBl0C49v4BmPamAYAAIBxe63GzfryPsveX6Ps2Cxvz5jbYF2Os+3jOaJLYHwb32BMG9MAAAAwbt/WuFkf5Eb9txrlR3ye+k849Gt1jsM57ncch0QAxrfxDca0MQ0AAABj81z6d+ZaVcRauI/2Wc/JmnVEXG0nHZaM+LtH+e/muNXlGCQCML6NbzCmjWkAAABoRGxG93KO93KcKbgBroq/c3yUY3uOLak1A251l7qWtf/7+hy72p/rta7r7RvynTm2to9/WHa1Ew5FdUsEYHwb32BMG9MAAADQiB193IzXjZUL6to7gjr2DqENns1xqUZdEgEY38Y3GNPGNAAAADBisbHduRw3c5zI8WlqzRKUCADjGzCmAQAAgDGIm/4rqTULsHNN3idzPJAIAOMbMKYBAACA5u1LxRvpXZQIAOMbMKYBAACAyXJaIgCMb8CYBgAAACQCAOMbMKYBAAAAiQAwvo1vMKYBAAAAiQDA+AaMaQAAAEAiADC+wZgGAAAAJAIA4xswpgEAAACJAMD4BmPamAYAAACJAMD4BoxpAAAAQCIAML4BYxoAAAAkAiQCwPgGjGkAAABAIgAwvgFjGgAAAJAIAOPb+AZjGgAAAJAIAIxvwJgGAAAAJAIA4xuMaQAAAEAiADC+AWMaAAAAkAgAjG8wpo1pAAAAkAgAjG/AmAYAAAAkAgDjGzCmAQAAQCJAIgCMb8CYBgAAACQCAOMbMKYBAAAAiQAwvo1vMKYBAAAAiQDA+AaMaQAAAEAiADC+wZgGAAAAJAIA4xswpgEAAACJAMD4BmPamAYAAACJAMD4BoxpAAAAQCIAML4BYxoAAAAkAiQCwPgGjGkAAABAIgAwvgFjGgAAAJAIAOPb+AZjGgAAAJAIAIxvwJgGAAAAJAIA4xuMaQAAAEAiADC+AWMaAAAAkAgAjG8wpo1pAAAAmFrnJALA+AaMaQAAAGCy3ChIBJzQNGB8A8Y0AAAA0LwXC5IAEVdzLNFEYHwDxjQAAADQnKdy/FWSCPAaPhjfgDENAAAAjNCqHFtybMuxJ8eZHPcrkgBz8UeOj3LsyPFSjudyLNOkYHwDxjQAAAAwmP01b/rrxi5NCsY3YEwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJPiqRz7c5zM8UOOf3Lcy/Egx90cf+U4l+PDHM9rrr5Eux3McTbH7znutNv4fruNb7Tb+NMcL+dYqskKLcnxUo6P2212rd2G99ttGm37S47TOQ7k2KjJ+rY6x84cn7Tb+reO68Nce//Tvm6cyvFmjnWaDQAAAAD6FwnQSNj/nOP/eoxIlr6XY6VmLBWJzw9yXO+jjW+nViL/cc34P0/m+Cy1ksW9tueVdp99RDNWWpZaSfiLqfUA7//6iJ9yvN6+zgAAAAAANe1Krdn03ZJuMZs2ZtHGDPGvcvyaihN0MVt8t+bsKhLFd1J/ic/OiJnN7894W67KcTR1TyR39teIryva/VZqzcbnYUvabXOj5NrwU/u6cKb9f39q99Gi9o63TF7QtAAAAABQLmYdR4KzW5Itkvn7UvflWh7N8Z/USnx2+2wsT2IW/r9t9VMaPGm/ML5NszlrfGvqnkyON0Z2pOKZ3ZtyfJ5aCedu7XkpxxO66/88k1pL4nRL2MeDky0lbb2kfZ5OlfTfjzUxAAAAAHS3NscfqXtiLWbQ1km+P5Zas5y7lXE5x5oZb+PYO6CfJXJ6WYpklh6S7C9oh/d6KCPWXy9aGioeRm11afjv2zPdZs/HA6Nel22KhyZXCtr7jKYGAAAAgPkiqXwzdU+one2xrOU5visoKx4OzGoC/8mSNh5mnJ+R9ny/4Pu/00dZ0WcvpOKlYLbN8LXhzYJ2OTZAmXEN+KWg3BMuxwAAAADQErPli2aDxzIZy/soM9Ygv5aKlyNZPmNtHO3xZ0F7xKzvSERHgnhFx2dieaKYFb4zx/HU2yase6a8Pfel4jdE+rUydV8WJuJujudn8NqwraA9LgzpulO0zNZ+l2UAAAAAZl0ki4tmwEZsHKDs50vKnbXZtd1mdcd/29TjuTqUyjf/7NyfYMmUtuWWgu8cm9WuG7DsDan7prcR8dbE2hnqs6tS9zdF4k2EYe0FsLegrWND4ccTAAAAAMywL1NxAviLIZR/pqT8XTPSxgtnicds41cHKO/5VDxjuTNencK2jOVWipYe+mpIdRwuadN4S2LJjPTbT9Po16WPtix6Q+eIyzMAAAAAs2pHKk5SxuzjJ4dQx1MldUQCevWUt3Ekm293fOfYqHMYs5bL3mqYi9NT2J6nSr7vK0M8Z/dL6jk4A9eGWEKo6A2PYT90+6Cgnqh/qcs0AAAAALMmlmCJpVWKEpRfD7Gub0vq+XLK2/mzNH//gDUjKrtbXJuytix7YBHJ9mHOiP+ipK5IKj8x5f12b8n33zDkuram0T+QAQAAAIBFI2YPlyV+h5k0e7WirmemtI1jze659dNjQ+BHh1z+ExXt+mDK2vOHku96fsh1balo22l/6HS65LsvG3Jdy0rq+tClGgAAAIBZEktidC7lsjDupuHOYo6lL8o2Wf1qStv5o/TvTO1NI6qjbLPhUSRax2VTxff8zwjq/CeNflmpSfVnw32qaJmiky7XAAAAAMySd1Pza6Wfrqhz/ZS1cTz8mNtY9a0R1nMizUby/mjF99w+hj776RRfI8rW/F81gvpup9nZtwEAAAAACpXNqo14fQR17q2o87Mpa+Pt7e/144jr+SCVzw5fMgVtGd/h74r+s3oMfTYSztO6oWrTD0ruJsl7AAAAAGZc2aafczGK5UCeStWJ0CVT1M5v5riVhr+550JlCearU9KWL1T0nXsjqndzjbGyY0qvE00vUfQgzebeAgAAAADwP5+k8sTcrRHWfaei7p1OT8/KlkA6MSXf8T8V/eavEdUbD5MeVNR9Ykr7VdkeFZeGXNdjJXW9a4gDAAAAMCt+T+XJyHMjrPtcRd2nnJ6eHU/NLm8yDmcq+s3XI6y7aompv6e0X/1R8b2HuQHzzpJ6thniAAAAAMyCshmuc/HJCOv/vKLuO05Rz4oeiFydou/4a5rcB04RT01hv6rarPebIdZ1LBUvh7TEEAcAAABgFuxK1YnIXSOsf0+N+jc7TbVFYvPuGM5j0+6l8SXvT4x5zIzL3hrfe88Q6okNf4s2Iz5qiAMAAAAwK4pmuHbGiyOsf3uN+t92mmrbkppfRqZpS2v0ma9GWP/HNer/dAr71ppUvd5/bDI96IbMbxWUfT/HE4Y4AAAAALPiYqpORK4aYf2ratR/2mmq7VTqvlzO6in6jitq9JlRPqx4vUb9Z2eofy2M66m1HFc/op8Wzbo/YHgDAAAAMEuqlh950MAxVM3mveI01bKhS9vdyPHklH3Plak6gfz7COt/rUb9l6e4jz2o8f2vpf5myZ8vKO+44Q0AAADALIlZrlVJuFsNHMftVP0AwSaV1X5a0G5/pulcZqTOzPvbI6x/R436/5niflZn2aCImzme76HcIwXlHDG0AQAAAJg121J1Au7HBo7jpxrH8YzTVerzBe0VM5hXTel3rbPmfcSoHvjU2afh/hT3tSU1x+zcg7c6e1Z8UdCGew1tAAAAAGbRrjTejT/nnK9xHK84XYUOpvkzzvfNwHe+X6PPbB5R3XWS9/835e3/aI6/arZDxDftz3Qr5/vUfdmjpw1tAAAAAGbVG2kyNos9W+M4djtdD4kZ6MfTwxulrpuB7/5njT6zZ0R1103eT/tST0+l1tI4dRP4sQTX6x2ff6XL52Om/gftvg0AAAAAM6tojenOONHAcZyscRyHnK55Nub4NRUvVXIqTXcS/8wY+27d5P0sJKBjOateEvgRP6TuD+y+y7He0AYAAACAlL5M1Ym24w0cxxc1juOY0/Vfj7fbou5644dTa4PXafNeje9/Y0R1WzZnvki495rA74w/crxsaAMAAADAv2J2dlVi7WgDx3E8TcYbAJNsfftc1FnrfWFczfHslLXH5prf/YUR1D3rG9Z280S7n/XaN+MB006XYgAAAACYL9azr0quHWngOOos33NqBs/PstRat/371P+s5s5k8rTtG1Bnw9QvRlBvneT9nRnsr2tyXOqzf8b4Xu2SDAAAAAAtdTaKnZTk/ekZOi9rU2sfgHtp8KT9wnh9itrpw1RvZvfaIdf7So16r8zoNWV5zetKt7ie40WXZQAAAABI6VySvJ9EkRy+l0aTvI8Z+NOyhM5jqd4yQsN+a+NQjTrPz/i15fAAffQjl2YAAAAAZt2ZJHm/GCxJrU1nn0mtjT33ptbM/DrLxnSL39tlToO6SeKXhlTfytSaIW6PhmKbUuvNg0EeMl1MrWV4AAAAAGAm1dmwVvJ+skWi9LPUWmO9l+TogSn5/o+kesn0m6m1qeqg6i4J8/aM9sf3Umupos62+CP1l8C/luNpQxwAAACAWfRlWjzJ+xNOV6nY7POzVD8xGrP2p2X2/YupfjL4yT7riMR/LxsHb5+x/hez5L9LDy/RNLfHwls5bqfeE/jxma2GNwAAAACz5liqTp4db+A4jtc4jmNOVy1bUmuW+awlmA/U/M63cuzpodz1OY6m+Wvr/12jnhUz1Ofi7Y+FSzjFmyALk+6xcfC3qfcE/t0c2wxtAAAAAGZJzIatSpx92cBx1HkD4KDTVdu6VC+B/+WUfe8PUv2E8K+ptbTNxvTvGwjxfx9NrX0FoqzLXT73eWot4VRW9m8z1Nd2pFZyfWGy/YWSz7yRWg9Rek3gv2BoAwAAADArdqXqpNmpBo6jztr7u52unmxOD689vjCuTuH3frPG9+4nbrXHS6h6MHJ0RvpY0cO/Om90PJbjfB/n4ElDGwAAAIBZEEm2qoTZ2QaOo84moC87XT07VKNdl03h945NTi+n4STt40FA7Mmwpl325hqf2TEDfevtgu/+QY/lxCz8XtbCv2RYAwAAADALYg3qqmTZNw0cx9c1jmO909Wz5al6lvg0bwYaM+Uvpf6S9rG57YftMdLpk4rP3cuxdMr71e6C7/5Ln+U9leOPHs7NAUMbAAAAgGkXa3xXLTFyvYHjqErcPUj/rktObz6saNtXZqANIjkcS7zEWvU/p9Zmqvfb/SqS7f/kuJDjZI79OZ4pKetaRXuenPK2jIdodwu++yBr0q9K9TezjeVzVhjaAAAAAEy7mC1btVHkqN2tOIbfnaa+baxo21c1UW1bU3Vi+aUpb4Mf0+iWs4k3Fuqug/+W7ggAAADAtKuzWewo10VfmiZj09xpVvZwZJfmqe10ql5qZ5qV7ZHx9hCvB9/XuCZc1h0BAAAAmHb7UnWibOMI69+QzLIdtW9K2nan5qkl1r6vWmLqvSlvg7K9KYa5J8Xq1Fquq+q68JhuCQAAAMA025Sqk2Q7Rlj/jhr1b3aaBnKypG23aZ5aPq3oo7Fu/sop/v7x9k3Rw4t7I6jvlRrXBQ+eAAAAAJh6sYFnWZLs3RHWfaCi7jtOz8COl7Tv45qnUszwvlfRTw9OeRu8XPLdfx5RnT9VtPlHuiYAAAAA065qLe9TY6z7tNMzsCOpuRnT0+hYRR+NJV6WT3kb7C/5/l+NqM49Fe1+UtcEAAAAYNpVJcl+G2Hdv1fU/ZrTM7Ci5PN3mqbSM6l6+ZbXZrgPjfIBWzwQKdtn4KzuCQAAAMC0eyTH/VScJIsE2ooR1LsylSdF45iWOz0DK1rz/qCmqXS5oo9+PSPtcCKN5+2YSyX1ntM9AQAAAJgFkQhretPanWl8y/XMkm8K2neDpin1n4r+eTPHozPSFl+m5pfNCWXLallSCwAAAICZsC2VJyqPjKDO4xV1bnFahuJul7b9SbOUejaVL9kS8eIMtccnJe1weYT1lj00OK6bAgAAADAr/kzFibJrI6jvRhrPOvuzZHNB++7UNIXWpNYmtGWJ+wMz1ia7S9pilBsff1FS7xu6KgAAAACz4q1UnrDcPMS6tlTUJTE3HJ92adtfNEuhZTl+SM2/hTLp1le0ydMjqvdUSZ2bdFcAAAAAZkUkLstmHB8dYl1lG2BezbFkgLJj5vTHOX5PrVnBEfFWQSRd18/Q+YxNhm+l0T6EKRLLMF1IrSV7ov0jIb5jEbTZV6k8Sf3lCOue9H57paRd3h1RnT8V1Hfd5RoAAACAWbMvFSfoIhG7egh1PJbK1xN/bYCyn8vxdypPwH4wI+fyYJfvfriBej8oaftPJ7i9zlb0m89HWPdi6LfvlxzbHyOob2XJdWJWxjAAAAAAzHMpFSfpPhxC+Z+VlP/9AOVGsu9mKk+ATsJmlxtyvJpaM9EfG1Ed69LDG9VebOC7vVaj7fdOWH9fnuN8xTG/N8L6F0u/jeMse8Aw7H0U9hfUcycN5yEiAAAAACw6T+a4nYo3p3xygLJjbeyi2bSxxMvaAcp+J9VLgI5rXf1IOF7ochyxpMxLQ6wnkqy/LqgjljxZ08B3vFaj3SNRvWRC+vqjqXhplv9rj4NXRnwMk95vO+1J5ZtaPzKkelaU9KVZ2ywYAAAAAObZnoqTdJHs7Cf5GjOcfykpd9uAx3w69ZYEvZ6aTSJ/XXE88e9rB6wj2njhA4Lf0uhm+Hfa2EPbvzgBfTw2Tb5RcozRbusaOI5J77cLnajow8NwvKD8b12aAQAAAKB8CZSTfZRXthnoa0M43nOptyRoxCsNtWUkWx/UOJ5/UmvfgX7ELPKLC8qLNn+koe+4vYd2f3WM/Xppjo8qji82Z17e0PFMcr8tar9vSo7t3IBtd6ig3MsN9mUAAAAAmHixLvvCtdPn4kxqLdFSZVUqTvZF2cNaK7totm5ZNLWBat3k/VzEGwov91B+LKXSuW56LEHU9Nrym3v4ftvH1J+35vi95Lj+TM2/FTDJ/bZIJPDLZuDHWwubeiwzlpUqegvhu/Z1BAAAAADo8ExqrZletIRHbCy5osvnYpbs26l4aZIoc+MQj3NL6j0JeqbBdjzfx/FFMjk2Cd6+oI2XpdYyQ/FvV9P8zTw/TuNJdMYDijobr94r6C+j9HRF+8dDpEPtdm3apPfbMvvbfa7oOGMJp3g4VzYTPzZwjjch/iko4+M0OXskAAAAAMDEiWRrJNHup+4JtphVHmvhn23Hz6l4pvn9dlmjSOD2Oov5XINtGOvZX0+9J2rrztSPjU9XjrmfvF3jWA81eDyRGL+QypP2MYv9sTG32yT32yqxgfWpiuONa0FsQBvLOJ1pXyPivJQl/mO2/dMuvQAAAABQTySgD6d6M6wXxt/tz64d8THGTN9Ibt5OxQ8b5uJUw+0X69J/UeO4qiI+H8nPAzmemrA+cmzM7R0zuT9I899IWBi/ptbDjklaQ32S+20d63N81h7n/fbrmH0f+w1sTAAAAABA32JWc8yijlm0sQROzKK9147433+0/+1Q+2cnQaxn3pksPDym44gZ8rFpayS6I2F7dUH7RcSs8Fi7/mK7HSOpuTu11paf9GVEdraP+2474n/vGlFd61Jrw+N4KHItFc/8/iHHwdRK7i82k9Jv63o2td7CONk+97fa/aCzb0eSP/bCiLXz97c/AwAAAADMqEh6dyZBd2qSRe3zVLyu/veptSRObLq8Qr8FAAAAAJhcsbRH59IzKzTJohZvIsQbHvH2QsxGj9n9z+i3AAAAAACLS6xzPpcEPa050G8BAAAAAMYrlh6JtfnnkqCbNAn6LQAAAADw/+3dAcRW1/8A8CNJkkiSTEYmmUlMZjIzJkmSSDIzMyaZmYzMJJMxMzMzkUwyiSSZmZHJz0zGTJJJzGSSRCZJEvvd47mvvb17nnvv87z3Ps899/l8OP4///bec+557nO/93yfc89hsj4I/yZAz+kOXLcAkLxlWdmWldezciwrZ7PyW+gtqwcAiKEAJGBzVh6HXgL0blae0iW4bgEo8WJWNuqG1liYle1Z+Sj0ftD+O/x30/oYNy9n5ZsWtTsmRd718SVld1aOZGWxrkBsQgwVQxHvgWaty8rtWQFphy7BdQud//7szwceP+WDk4f5gORBVv7KBy3xQW2z7tLPfcTNz38I7XzrKS6ntiUrn+Rtu5H396O8/+/nA++4R8qBkH6C59msHMqvscd9Eg2x/J6Vz0Jv9uDCFrV9bVYu5m2Mn8sit40kxM/pbv65XRcnEJs6RQwVQ0G8h5aJwXZ2AvRDXYLrFjo7GIuJ5F8HDEyKShy4HczKUt049f38TD5gn93utiRI4iD2i9B/plxZuZ73/bJErrNVobds3O8F5xR/HIo/DK1v6Tnsy5MNM2/Pvez2kZQX5zyLfZzf/0BsSpMYKoaCeA8tFF8JuzfrS3hEl+C6hU7akw9C+g1O4kyqONsoruF5PitXCgYyt7Lymu6cyn6Oy5LFtV77zUqbdIJkeVaODmjb7H6P5btZg91+JQ6AD7Q8uXIsP69B53A5v37aOrBakX8HZl/vz7p9JCneF67O+ix/Dr2kGIhN6RBDxVAQ76GFYiD6JDy5btt+3YLrFjpnWT7YGjSjKM7a6ff678yMpLsD/jbObjMLfzr6eUV+7y0a6E4yQfJKPnCd26b45sPOgsH381n5suC8fsnK0y27xj4Pg1/pn5n5uKvl35X45tyN8OTbJk+7hSQtJv7+F55MJD2vW5jy2JQKMVQMBfEeWurCnCD1gi7BdQudsyYr1wYMUOKMnSpJ4dWhN+Oq3zF+y8pK3dzZfo7tjmvAFs2wm3SCZP+A9hwc4hjPhMFLHN3NExuTtjP0T67MlIf5Z9X2V5jjmykP5iQdVruFdMLiOc9p8XPerluY0tiUCjFUDAXxHlrsQP7AczjYMRrXLXTR3A2dZ5ezIzyk/TjgWDFpvVI/d6qfF+X32zuh+lq3k0iQfDigLe+NOBD5IQxe7mjrBAdIX5f0fXy9f30C35W5n9fN0HsFm+4O6GN5Q7cwZbEpFWKoGAriPbRcfHV/hW7AdQudtDp/qO83SLkaRvvxK74meSMMfjV6sX7uRD+/HQav2d+mBMm+MPhNh1EtDU+u5Tm7xFlFm8d8jmsL2jNTYlJiUQLflS/mtDv+4LXOrbqT4vfo5zmf91u6hSmJTakQQ8VQEO8BACZkSejNIho0UNk4j2NvLjjuSf2cdD/vDr3lyGbWrzyVlU/D4HX8J5kgeXlAG+I6ts/M89jPhsHr4cbB8poxneNLoXx26TuJfFeOhv8uT7A50GXxLaE/53zue3QLHY9NqRBDxVAQ7wEAJuhEKJ5hNF9nCo6/Rz8n189xoH4lP+73WdkS/rvm6xuhPQmSlWHwMkXna6rj04Lz/DU0vybujnxw/k8Hvmuf92n7XrfpqRCTePfCk4nBLbqFjsamVIihYiiI9wAAE7SzYKASH6TW1lDHuoI64sZkK/RzUv0cH64/C+Wz7W6EdiRIThW0YUeNyY1HBfUcavD89oTyZNTORL4nH/Rp+xdu01Nl75zP/14+yIeuxaZUiKFiKIj3AAATEpdxKVoP9rsa67pQUM8J/dzJfj4dJp8gKVpOKCYK6pzNV7TBXZzR93QD57erQtIhlbVEd4f+My4XulVPnblvKcXX65frFjoUm1IhhoqhIN4DAEzQoZIBy44a69pdUtcG/dy5fj4eJp8g+amg/m9rruvlkvOt+8eTOMv0UUmdnybyHYnX5YPw32SNzfWm07Lw3429z+sWOhSbUiGGiqEg3gMATMjS8ORag3NLHATUOaNqYSheT/S8fu5cP38VJpsgeb6k/g8aqPPv0PzySNFzJddVLBcT+o5cD+NdJoH229vnmtinW+hAbEqFGCqGgngPADBB75cMWk43UGfZq+rr9XOn+nnSCZKjJfVvm0Dff15DHfF14rI1m+PmgqsS+Y6c7NP+P0LzGxTSfpfmXBf3Q33JO6aX5L0YKoaCeA8A0Hp/lAxc3migzrdK6vxCP3eqnyeZIImD1jsl9a+YQN/HmX7zXX/221C+Ru/eRL4f2we0f7dbNJmXQrqzYWkvyXsxVAwF8R4AoNU2Vxi4NDHbYV2FQdkC/dyZfp5kguSlkrofNlTvpgqf+c55HH9fheP/mMj3Y9BGzlfcopnl1z7XyGu6hURjUyrEUDEUxHsAgAn6rGTgcrfBuu+X1L1LP3emnyeZIPmgpO6/Gqo3/ijyuKTukyMee02FzzXW/Wwi349PBpzDm27RzPJmn2skbm63RNeQYGxKhRgqhoJ4DwAwQb9PcOB6rqTuU/q5M/08yQTJmZK6v2uw7rKlku6MeNzzoXzG4DeJfDdiEqXfxsrxBy3r9DLbotDb2NtmjHQhNqVCDBVDQbwHAJiQ1RUGL581WP+XJXXf18+d6edJJkiuhPb+cBLLuiGP+VKFY6a06fOxAe0/5hZNH6cH3MNW6BoSi02pEEPFUBDvAQAmZE+FwcueBut/vUL9m/RzJ/p5kgmShxOs+2QDn/2vFY55IZHvRpwxOGhZhC1u0QxxPz2ia0gsNqVCDBVDQbwHAJiQYxUGMK82WP+2CvW/q5870c+TSpAsrHDu5xs8708q1P/5EMd7OVSbMbgnke/GoL0g4qvSXX3dP74KHjdd+z4rv1T8mziz9L3QW77iat4/j0IvqRbXmz6blbeysniebYubZu8Pvdlus+uJ//fP/P+/e8KfzdLQP1l1L/83SCE2pUIMFUNTsCyPTcez8kPoLRn0cFac/DsrF0Pvx6AYK9eI9+I9AEAq/ldhALO8wfqXV6j/tH7uRD9PKkGypMK5N7le7xsV6j87xPG+r3C8+4kM2hflA7BpSJjFBNjOfDD+aM4AtEh8a6bKLNGZciv/m2HFtv00RD1xYL9tgv15aUC7DgjrJBKbUiGGiqFtFn+MOT8nrlYtl/Lrq+7PWrwX7wEAalX2KvTjMbThcUkbruvnTvTzpBIkSysMTH5v8Lz3Vqj/t4rHWltxoJXKRs9vFZxDFwZlcVZcnL15uuAeMGgw/1xWLo+QjJgpX1Rs46Z51nNwQn37VYfjBe24liTvxVAxtL1i7BqU1I1J7W9D70edc/l/97jk+XeHeC/eAwC00YoKD2p3x9COe6E8sb1APyffz22eeX+vwfPeWaH+vyse63AY/XX/xXlbvsj7Og5uZ7+KHWcaXsv/La4l+uoYvncXw2SWkWpSfBV/X+jNRH004rX3dhhtFuHccrgk0fBlDXXE8voE+nl3QXteEt5JIDalQgwVQ9t2PR4N/X9Aeicrqwb83fIBfze7HA/DLUUj3ov3AACN21rhIe3nMbTjUoV2bNDPyfdzm9e8/6fBQXaV/QYeVTzWtYrnsnLW37yc9+0og8O7eaLimQb6ZVVJ3QsT+56vD71ZYMP28dzB/LFQzwB7pmwekHC4XGMdMWn11Jj7e11Be74W3kkgNqVCDBVD22JdnzgbY+i+IY5xpqTf4jKXZWupi/fiPQDA2OwJk92EbMa3FdqxQz8n38+TTJBUGXRvmmDi4Z8Kx1kfqq9NGr0Shls7teytjK9CvZuDFb3u/1eC3/OX8ussrqd8IvSWXbg9xGB+Yf4dmJuQiq/gv5lfn4vy/3bBrIRS2fGvzGnnpjntuhl6Gx5uD0/uu7EoTwQcyRNQZfWcnECfPwppr1dNO0jei6FiaPu90icWxfj17JDHeTqULyNZ9kwu3ov3AABj82aFB7RxbBZ7tkI7XtPPyffzJBMkf4TJvQpcNfFQNvh4p+JxLuTX0z8NlBtZeb6mfjkTupUsWx7+O9NxeT6YLhvMLwxPbqIYk0f7Q295gDIHK3xur85KfswsnxWXefig4qA3zkIt29wuJkNWjbnPfytoz7YA7Y9NqRBDxdBJijHswZxzjEnpNSMe74cw2tJJ4r14DwDQugHruGZXfBPmt5ajfk6jnyeZIDkzwc+gauKh7BX3s2G0ZEFckun9rGyZMziMg7g4A21X6L3Wf6vi8R7kx5qvoj0Yjncs6VDWn+dmDYg/DMPPIjtX4bv1YujNUJvZzG/YBFJMTPwV2rWZXVGC7agQTwKxKRViqBg6Kc/3OdfHeUwb1dsVPqdfxHvxfhz2hGZ+KWxTWSGGAiAOzsuJCvWMYwDwdYV2HEv4etTPk0+QVJmtdGvCiYcyt4a8R8SN7DYO0c44gIwzE6u8Mh0HoJvn0SfPlRx/X+iOBaH8Ff2ZDRdH7dOy5SAezfpc42zFdSPWs6/CNTdORfeUPzzDGMsnEJtSIYaKoZMQZ4H3SyJ/PM/jPlPxGlgk3ov3Ar7kPQDi4KTj4KkK9YxjNsPx0M71FeuinyefINlU8Xv10oQSD2Wb7S0d8v7wzjzaG1+FrrLO7+0w+mvTr5Uce2fHYlLZDLY42H9lnnVU2ZD68TwTRktC8drXj8N41559o+R8V3uGMZZveWxKhRgqhk5Cv7cl4rrti2s4dpUNZ0eZ3S/ei/cCfpC8B0AcrDMOVlnT86sWDJxjOZXw9aif25Eg+avC+X89ocTD/RqOUee6w0srJh8ujHj8sh+StoRu+b7kfD+soY4jFT6vOl5zvziB5N0gu0rassszjLF8ArEpFWKoGDpOOwac2/s1Hf+jCp/PSvFevBfwJe8BEAcnHQerrP/ZlqTy6YSvR/3cjgRJlcFOnEm0puZ6d1So93rJMV6reF84U2O7Yz9Uef1/lAHTdyXHXNuxmFR2vnXMktwZ5r+sRB1Joz1j7NetJW35xDOMsXwCsSkVYqgYOi5xRve10P8Ni+U11bGi5PMZ9YcV8V68F/CD5D0A4mCdcfBckFQeB/3cjgTJ6lD8CnBTbx8crlDntzUcI5b1Nbd9X4U6r41w3Hslx1wcumUcg/kNYxrMv1lSx6dj7Ne1oZtJV88w4yV5L4aKoe0y6MeW72quZ9uAa/pqGH1JI/FevBfwJxDw/1EURVFqL+Jge+LgGUnlsdDP7UmQfFrx+1XXK+fx1fmbFeor22ugyqbHlxror0Gz3+aWV4c8ZhviRNeS94vH1K+753kt12lJSVtuGMtL3kvei6FiaHJ+HnBe7zZQ17OhN8M8xunzWXkvDL9RrXgv3jNhkmyKoihpJu+ppspGqpL3+rlLCZJlFRMBcSO5p2uor8qSSVUGpFX2TWhqBtR7Fer+ZojjrSo51sMO3mvHMZgfV0KnbAmLs2Ps17JzfizMk0hsSoUYKoY2bV1oxxrr4r14T0Ik2RRFUSTvu6zKTKS2JJVP6ufk+7ktCZJXK96r4iyeUdeNjUmLi6H6fXFbyfGqLL3U1NqjK/NBUVHdD/KBVRVbSo51r4P32nEM5quMXepQtvHjt2Pu27Jrc4lQTyKxKRViqBjapPcLzm1RAu0X78V7JkCSTVEURfK+y45V+LyOj6Edxyu045h+Tr6f25QgOVDxfhU3M3t9iOPG9XKPhifXUL1ToZ6yAUeVxMPWBvurShKl6oy47RX6vGumaTD/3Zj79mFJe14R6kkoNqVCDBVDm/LDgPO6L96L9+I9o34hFEVRFMn7lL1T4fM6MYZ2VJmZfkg/J9/PbUuQfDTEfetK6L2WvzH8Ozsu/t9V+UA6Huu3Pn/3ZSh/Xf9qhbZWSTy83GBfHalQ//6Kx9pVcpw7HbzXGsw3p2zjxm0B0opNqRBDxdC6LShI0N4W78V78Z5RvxCKoiiK5H3KqmyKd2oM7aiyJvxr+jn5fm5jguTtUP4a7ijlbvj3FfzbJf/t0QrtrLLub5Nrwe6sUP/Jmr4PkvcG83UO5ncI9SQYm1IhhoqhdVpfcF4XxHvxXrwHAKZR2UPZuDYjqjKo2q6fk+/ntiZIngv9Z/yNUh7n57kyP/amCn9TZSBX5YeXJmcNPlWh/qprn0reG8yPczC/M0CasSkVYqgYWpedLYot4r14DwDQCmsqPPx934IH3VjW6+fk+7ntCZI4IP5lxIRD3JjvSP5Zz/ZZyd/F18MXVmjb1xXa8GrD/VM2u/KKxIPBvME8CZK8F0PF0HZ4o+C8Lon34r14DwBMowUVBhM3x9COa6F8JtYC/Zx8P6eSIFkXevsUxHV2fw29TdIe5f0TEwV/h96Gat+E3hq1GwqOdaPknL+p2KaDFQZqTa/1+XeoZ5O83UHy3mDeYJ72kLwXQ8XQdjhSQ/+I9+I9AEDnXC55EHowhjY8KGnD7/q5E/08bQmSVyoMrrZUPFaVfRN2NXw+/yup/17F4+yoKYGREoP5yQ3mtwcQm8RQMTQFx0PxWxbivXgv3gMAU6nKOqCLGqx/YWjHZq76ufl+nrYEyelQvkxAVZvD5Dd1LhuQ/l3xOFtrSmCkxGB+coP5rcI8YpMYKoYm4fgEn5PFe/EeAKC19lV4ANzYYP3PVqj/Hf3ciX6epgRJXLe3bKmkg0Mcb1GF4x1p+JzOh3pe1V8fytcw7hqD+eaUvVH0ojCP2CSGiqFJKEvep5CcFe/FewCA2j1f4QGwyTUEd1aof5N+7kQ/T1OC5PNQPsNu6ZDH/L3kmCcbPqdzJfX/PEQSZRyDToP56RjMlyXklgjziE1iqBiahKMl53VAvBfvxXsAYFrdL3kYer/Bug+U1H1fP3emn6clQbI69Ga+FZ3roRGOe6LkmBcmnHgY5vMre/V5UegWg/lmLAjlm3CD2CSGiqFpeDu0K1ks3ov3jauyIUfqZYW4BoA4WIuydUWbXAu9rO7THboup72fpyVBcqzkPG9mZXED97Wmf4ApG5AeH+JYP5Yc65mOxSSD+WYsLmnLX55hjOXFJjFUDO3Mve9RVpaJ9+J9h+K9gA/AVBMHh/N6SV1XG/ysyl5j3tuh63La+3kaEiQbKnx3R+3rOGAte2V4TYPndinUt9nfyTBdm44ZzDfj6Y7eUzzDjJfkvRgqhrbDixU+//3ivXjfpfu0gA/ANBMHhx/QPArFryI2sY7g0lA+w2Zxh67Lae/naUiQ/NbwQOdiyfF3N3huZa/pbxjiWGWvxu/qWEwymG/G1pK2fO4ZxlhebBJDxdBkLAzlP7BcH1Nb4tsL8Q2HdeK9eC/gS94DIA62JQ6WrcXZxGaqu8LklpGZlGnu564nSD4oOb/bWVk1zzreKqnjREPnVrbW6J0hj7ep5Hhvd+x7bzDfjLJ72+5ErxfPMOMleS+GiqHtcanC/eOthtsQf0S4nNe1UbwX7wV8yXsAxMG2xMGyGQ1fNfA5HS+p8+UOXpvT3M9dTpC8EMpni71aQz3xzYyijY+bWvPz+ZJz+3qEREbRhoTHO/a9N5hvxpthOtd99gwjNnWNGCqGzviowv3jdsP3kGPz+O6L9+K9gB8k7wEQB5uMg38U1Hejgfpuhcms/z5p09rPXU2QrAy9DfSKzu1AjfV9WVLXpgbOsWy/hlF+ADo/Rckyg/lmHC1oxy3PMMbyUx6bxFAxNEUbKt5DzjdU/8ySRPHHpFESwuK9eA8A0Kh3xjigebmkrjf1c+f6uYsJkkVZ+SmM922KtaF4huLRBs7zdEF9v494zP1hvD9iTZLBfDOKliH7RkhnimOTGCqGpqxs74OZ8lHN9W6fdexPxXvxHgCgrYOom2Ma0JwsqOfP0HsleFRxFtcn+YDoYV7+yAeA6/Vzbf0sQVI8863J9XNPFNT5IPQ2R65LvEb+Lqjv9RGP+1Qo3rx5YYfurQbzzbhW0I69QjqJxqa2P8OIoWJo08reVJhdDtdU546sPMqPGZ/Rl4r34j0AQFvtKxnQ1PGq++pQPOtpPg9hL4bexl/jnKkzjf08irK191NL3p8tOZ8vG6x7TShe7/ZIjXUVDd5+m+exizam29yh+6rBfP0WFNzfYgJmsXBOgrEplWcYMVQMbfr+fi1UT+CfCqMn26P3a4zJ4r14DwAwFr80PKD5ouD4F+dx3Pjgfrvig/5x/Tx2p0M3kvdxkPBtybkcHEM7DhXUHzfke6qmei6GwTP7Ns7z2O8VnMP+Dt1T2zKYX1RDHdtbMpgv2gDyfID0YlNqzzBiqBjapC1huH004mz5t8Jwb5S+2OdZfL5LsIj34j0AwFjE9UDvDXhIepj/+6ieC4NnT9wNvdlQTQxi2riufqr9PKqyNUwvJPDdWBWKZ7rFz3PHmNoSB6iXC9ryfQ11vBSa3UBwZcF1erpD99SLYxjML6hwz6vje7+7JYP5N8aQHGE6tCU2pfYMI4aKoU07HobfDDv+ABaXn9yVlXXhyWT+8tCbTf7BgM/+epjfDH7xXrwHABirolclL4XR1kpfXDJQ2jrPNpfNnus3S2eBfh6Lpyt8Hg9b8HkUiZv/3ipo/9WsPDOBfi1aYuHQPI4dr6PfBxz3ZI3n8M2AOu506H56r+Ta31VDHUsrfMe21VDP/pI6/hpTn55q8X2ddLQpNqX4DCOGiqFNKnuerbPEfQnq2FNCvBfvAQDGam/BA9sor5UWbUxWx/rr50Z4WN+hn8fiRMXPo42vecdN3z4uaffRMLk1NzeXDBZHnd03KJH0bc2DpaLXoTeG9K2ucN2/W0M9WyvUc6iGek6V1PF4TIPpQUnAD4VuEo1NqT7DiKFiaNMx9GZoNnEf95p6VbwX7wEAUrUzf6jt99B0JlR7vTS+pvp9wQPzrpraOsrrtZ/r58YdGuLziAPoV1p0/ce2/F7Q3j9qGvDVkXy4W9DOOMtvWcVjLc2vuUHHaWKg9tOA+g534B76foXrvo5lOT6sUM+1edaxJJRvpjmO19jXF9znlgvbJBqbUn6GEUPF0CbFJWBuhGYS93dr/G6L9+I9AMDEbAi9dSAHvbK4P3/ImysOdOIMk0EzJuIx65wV9PIID+1n9HPt4sA0zgSL6/deGXEwFX+EiG8JPDOhzyLuGVC0od6DfFC8qEXXT9wj4deSAerhMPi18KX5NfbXgPNtcubpqwPafCXxe2fcDO9exWt+9zzqWRmqz0w8OmLyKNbxXcU6/gzN7qsxKOn6sXBNwrEp9WcYMVQMbVKMQRdDvYn7yzV+l8V78R4AYOJi0viTrDwKg1+djGu0n83Lr2HwJlqP8mMtaaCdw85cO6efaxEHCLfzgcvjmgdX8XhxLdI7Y0hUxOTJDyUJhzjTcXWLk1MHQ/EMwplZpN/m/Rm/A78VfG7nwvw2T65q0CaGqbz2vygfvMfX2ePmaudHuNYv5Ame7fm1uHZAgijWsyUre7LyZYXPu99s1yOhN2Muzjh8uk898f+3LW/PmYJ70qByP/SWJNmbn09s74qa+vpq6J9YMwuP1GNT6s8wYqgY2rT38/gyn+9u3MficBj9LQjxXrwHAGi1OLvi03wwPOyD6p38b9c03MZd+WDpXoUH0FP6uRanw3g2FLvQQNufzcpHoTd7aFC9cfZanK25LJHv6dJ8gDvq7NL7eRJpwxjb/GIYPHMsBW81cL3f7FPPVw3U83BM9bze4HVyIEA3YlNqzzBiqBg6bivz59w7YbTn4/n+eCTei/cAAMmIM0XizJU4A/x6Plh5mJf4v6/l/3Y4/2/bYO6rxZ/q56kTX5GOs4O+DoPXUI0z6OIasofyxETK1mXlzdBbazcmmOKMpQdzrqEr+TUUEzBxxtSCCbX11ICB5gqXLbl+a0lfneA1C9P2DCOGiqFtsSD/TsS3TOMPXjfnfDYxWR/fkIhve2wTJ8R7AADSedCf/RC4S5dMlS/D4JlIF/MBXny1eImumog4G67fmrEf6RpCLwnY7/v7vK7BM4wYihiKeA8AQPrWhyfXhDfAnC6vhd6bCnGGVpyxGNcQ3aBbWuXd0H8JglW6Zur12wBTUgrPMGIoYijiPQAAHfHerIfA07oDWulin0Hb17plqm3pc03EDRq9Po9nGBBDEe8BAOiA+NB3PXj1EtruqdB/I7rNumYqxc0j526GGTfzXqNr8AwDYijiPQAA3fDBrAfBc7oDWm1r+G/iISauLHU1fY7PuQ7iciE258YzDIihiPcAAHREnG30OH8QvBt6s5KAdvsw/Df5cFy3TJW9fa6B13QLnmFADEW8BwCgG9aF3iuXMw+CO3QJJOMbg7mpFTfCvD/nsz+gW/AMA2Io4j0AAN2wcc6g90NdAkmJ6zz/MGdA9zArm3RNp63Kys05n7v7N55hQAxFvAcAoCO2Z+XerAfBI7oEkrQ4Kz+G/25gZumIblqeld/mfN7v6xY8w4AYingPAED64iyjT2Y9BMZ1YvfrFkhaTD58N2eAdy0rK3VNpyzNys9zPue3dAueYUAMRbwHAKAbLsx6CLyelRd0CXTGyTkDvctZWaFbOjOQvzjrs42zjrfqFjzDgBiKeA8AQHfEDY7ipkeHQ2+mEdAtB8N/kw9mD6Ytvjo/ewZeTFqu1y14hgExFPEeAIBuWRjMIoKu2xKe3Mgxvv6/WrckKX5uV2d9lmezsky34BkGxFDEewAAANK0Kjy5xMTNrDynW5LyXP65xc8vzjZ+W5cAiKGI9wAAAHTDvqz8Hf5NPlhqIg1LQm+d2/i5xVfo1+oSADEU8R4AAIBueSorp7Lymq5IyudZ2a8bAMRQxHsAAAAAAACApCzIygu6AQAAAACAtnoxKxun7Jy/ycoNHz0AAAAAAG2zISs/hN5GGuem4HzjbPvNs8750BjqXBd6a53FHwt+Cr3NcR5m5XFWHmTlr7zvj+RtAwAAAABgSj2TldOhl8CeKW1L3n80p311l5g8X91Q2+OPBDFh/+sI7YpvAxzMylKXKQAAAADAdIi7qh8LvcT13KRxm5L3S7JyNzSbvD/fUNv3hN5s+n51Pgq92fdn8/qvFLTvVlZec8kCAAAAAHTXiqx8EnrJ40HJ4jYl7w+EZhP3sbxac5uXhV5Svl9dMZm/LysL+/zdqqx8EAb/WBHfkDALHwAAAACgQ2LSN67rfj+UJ7PbkryPS87cCM0m7v+suc1rsnItDJ7hXyX5Hpfw+WnAMX7LykqXMwAAAABA2haF3uz1O6F6QrstyfvXQ/Oz7g/W2N64Ie3tAfWcHfJYi7Py44BjxR8HJPABAAAAABL1dhi85noKyfurodnEfVw6aFVNbY2z5W8OqCeex+IRjrk8DH7z4JcRjwkAAAAAwITszsr18O9mp6ey8mkYvA57G5P3W0Pzs+5P1dTWuKnu5YJ6Ns7j2JsLjnvSpQ4AAAAA0H7PZOVK6CV2v8/KltBbN362N0Iayfv/heaS9g/z/qlr1v2Jgrq+ruH4ZwqOv8dlDwAAAADQbjFZ/1noJfGLlG0CO+nk/fNz2vM4K0+3tM93FvRjbPfaGupYV1DH3ayscOkDAAAAAKTvdGh38v5cqH/2ehPicjlFewp8V2NdFwrqOeGSBgAAAABI3/HQ3uT93Fnmcfb6+pb246GSftxRY127S+ra4LIGAAAAAEjbV6G9yfu5bTvd0j5cmpV7BX34IPx3v4H5WBh6a/UPqu+8yxoAAAAAIG1tTd6vzMqjOW1p66z790v6sIkfHcqWO1rv0gYAAAAASFdbk/dHQrvW3i/yR0kfvtFAnW+V1PmFSxsAAAAAIF1tTN7HzV/nLkOzsaX9t7mk/2JZ20C960rqjP23wOUNAAAAAJCmNibv5y5D80OL+++zkv6722Dd90vq3uXyBgAAAABIU9uS93G2+I3QfyZ5bMvHWdmRlWUt6b/fJ9h/50rqPuXyBgAAAABIU9uS92+G8mVoZsq1rHydld1ZWT6BvltdoY2fNVj/lyV133d5AwAAAACkqW3J+7KZ7EXl16wcysr6MbV1T4U27Wmw/tcr1L/JJQ4AAAAAkJ42Je+3hdET9/0S+fuysqjB9h6r0I5XJ9xf77rEAQAAAADS06bk/U+hvuT9TLmdlYOht5Z+3f5Xof4ml/NZXqH+0y5xAAAAAID0tCV5/0KoP3E/u8TleOpeQuZhSZ2Px9Bvj0vacN0lDgAAAACQnrYk70+FZpP3M8n0/TW1d0WF+u6Ood/uVTjnBS5zAAAAAIC0tCV5fzQrd7Lyd1buh/IZ5fMpX9TQ3q0V6vl5DP12qUI7NrjMAQAAAADS0qY17+danJUXs7IrK4fzttwP9STwj8+zbXsq1HF+DH30bYV27HCZAwAAAACkpc3J+0Hi2vUxmX8tzC+B/9k82vBmaMdmsWcrtOM1lzkAAAAAQFpSTN7PFje6PRlGX2bn7Yb67Z+8XU37pkI7DrvMAQAAAADSknryfsaa0FsKZ9jk/aPQ+wFgWCdC80vzVPF1hXYcc5kDAAAAAKSlK8n7Gc+G3kaxwyTw/8zK0iHrOVXhuEfHcL5VfrA46TIHAAAAAEhL15L3M97LysNQPYH/yZDHP13hmF+14POL5ZTLHAAAAAAgLV1N3kcbsvJXqJa8j4n+lUMcu8pGsW1J3p92mQMAAAAApKXLyftoVVYuh2oJ/ENDHPdckLwHAAAAAKAhXU/eR3FG/Z+hPMl9bYhjngmS9wAAAAAANGQakvdR3Mj2QShPdK+peLwqG9ZK3gMAAAAAMJJpSd5HB0J5ont3xWOdCOkk70+6zAEAAAAA0jJNyfsFobc0Th0J92OhPGl+fAzndLxCO465zAEAAAAA0jJNyfvojZLzPVvxOO+E8qT5iTGcT5U3AA65zAEAAAAA0jJtyfs4+/5uwfl+X/E4e0J50vzUGM6nytr7r7nMAQAAAADSMm3J+6hotvrtisfYFsqT5mfHcC5nK7Rju8scAAAAACAt05i8L5o1f6fiMdaE8qT592M4l+8qtGO9yxwAAAAAIC3TmLxfG+afvI/L7zwu6bubYziXsg14H+dtBQAAAAAgIdOYvI8GJd7/GuIYl0v67sEYzuNBSRt+d4kDAAAAAKRnWpP3f4f5L3VTZbPYRQ2ew8LQjk1zAQAAAACo2bQm72+F+W8yuy+UJ883NngOz1ao/x2XOAAAAABAeqY1eX9pwPkeH+IYz4fy5PnOBs9hZ4X6N7nEAQAAAADSM63J+7sDzveNIY9zv6T/3m/wHA6U1H3f5Q0AAAAAkKZpTd4/HHC+Lwx5nNNhcmvOl9V92uUNAAAAAJCmaUzerx5wrjGhv2DIY71e0n9XGzyP30vq3uvyBgAAAABI0zQm73eF+W9WO2NZVh4V9N/jrCxp4ByWlnxusU2LXd4AAAAAAGmaxuT9iVDvTPVzYfyb1u4Kk1uuBwAAAACAhk1b8n5R6L/J7K0w/JI5M7aW9OFXDZzH8ZI6X3ZpAwAAAACka9qS9+8NOM+D8zzuHwV9eKOB87gVJrPOPgAAAAAAYzBNyfu49vzNPuf4Z5j/+vDvlPTjphrP4+WSut50WQMAAAAApG2akvefDzjHbTUcOy7Hc7OgH4/WeB4nC+qJP0QscFkDAAAAAKStbO30ppP3z4feBrK/ZOWvrHwXekn2zTXX8+qA8/uixjr2FfTjg6ysqKGO1Vl5XFDPXpc0AAAAAED6TofJJe+3l9R9OSuv1FDP2qzc6XP8H0P9s9R/KTifIzUc/4uC4190OQMAAAAAdMNvoTiBfqHBui+X1D1T4sz8pSPWsSb0ZvTPPealeRyzSPyh4N6A83iY//uonguDZ93fzc8VAAAAAIDEPR3KE+cx4dzUGuqPQ7XkfSxXs7J+yOO/kJVbof8PEksb7NdtBedxacT+jBvqFv3YsdXlDAAAAADQDXFGe5XE+f6G6n8YqifvZ35IOBx6iewi8d8/Cv1/HDgWxrOh696C8/hmhOOdD9a5BwAAAADovEOhetI8LgPzSgNtOBOGS97PlNtZ+TgrL4Z/E/GLsrIlK5+G/uvbx2Vlxp3k3hl6G9X2O4d47lVm/y/Pyvdh8Ca4u1zKAAAAAADpiknu57PyXlauhNGS5jGJHBPgz9TUprhG++0R2zJMOZ6VlRPq9w1ZuT6gXTdD762GJX3+bllW3g39l/35Jz/mRpc1AAAAAEB6joZecjzOnB9mffkqJR7v79Cb5X5mHm2MPwRcDvUn7B/l57+uBZ9DTM5/krdpUF/GtfDP5uXXgs/rUX6sJS5vAAAAAIA0nQ7Nz2qf2QB2vt7Iyi9h/gn7+HbAvtCbud428U2DuKzPKG8b3Mn/do3LGgAAAACAcYvJ6ZjIP5mVb0Mv0X0/9DarnSlxxv8f+b/H/y4m618K49mIti4vh97mu3Gm/fU55xj/97X83w7n/y0AAAAAtMr/Aee9WS8zhdo6AAAC93RFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtc3ViPjxtaT4mI3gzOTQ7JiN4MjExMzs8L21pPjxtbj4xPC9tbj48L21zdWI+PG1vPj08L21vPjxtZnJhYz48bXN1Yj48bWkgbWF0aHZhcmlhbnQ9Im5vcm1hbCI+RjwvbWk+PG1pPmRoPC9taT48L21zdWI+PG1zdWI+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPms8L21pPjxtbj4xPC9tbj48L21zdWI+PC9tZnJhYz48bW8+PTwvbW8+PG1mcmFjPjxtaSBtYXRodmFyaWFudD0ibm9ybWFsIj5QPC9taT48bXN1Yj48bWkgbWF0aHZhcmlhbnQ9Im5vcm1hbCI+azwvbWk+PG1uPjE8L21uPjwvbXN1Yj48L21mcmFjPjxtbz49PC9tbz48bWZyYWM+PG1pPm1nPC9taT48bXN1Yj48bWkgbWF0aHZhcmlhbnQ9Im5vcm1hbCI+azwvbWk+PG1uPjE8L21uPjwvbXN1Yj48L21mcmFjPjxtc3BhY2UgbGluZWJyZWFrPSJuZXdsaW5lIi8+PG1vPj08L21vPjxtZnJhYz48bXJvdz48bW4+MDwvbW4+PG1vPiw8L21vPjxtbj4zPC9tbj48bW8+LjwvbW8+PG1uPjk8L21uPjxtbz4sPC9tbz48bW4+ODwvbW4+PC9tcm93Pjxtbj4xNTA8L21uPjwvbWZyYWM+PG1vPj08L21vPjxtbj4wPC9tbj48bW8+LDwvbW8+PG1uPjAxOTY8L21uPjxtbz4oPC9tbz48bWkgbWF0aHZhcmlhbnQ9Im5vcm1hbCI+bTwvbWk+PG1vPik8L21vPjxtbz49PC9tbz48bW4+MTwvbW4+PG1vPiw8L21vPjxtbj45NjwvbW4+PG1vPig8L21vPjxtaT5jbTwvbWk+PG1vPik8L21vPjwvbWF0aD4L1V0IAAAAAElFTkSuQmCC" style="width: 252.00px; height: 100.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="Δℓ subscript 1 equals straight F subscript dh over straight k subscript 1 equals straight P over straight k subscript 1 equals mg over straight k subscript 1 equals fraction numerator 0 comma 3.9 comma 8 over denominator 150 end fraction equals 0 comma 0196 left parenthesis straight m right parenthesis equals 1 comma 96 left parenthesis cm right parenthesis"&gt; Độ giãn của lò xo 2 là: &amp;#x394;&amp;#x2113; 2 = F dh k 2 = P k 2 = mg k 2 = 0 , 3 . 9 , 8 100 = 0 , 0294 ( m ) = 2 , 94 ( cm ) " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABe8AAAJfCAYAAADmci2nAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAEs6+fPPAAAZxFJREFUeNrs3Q/kldf/APAjSSYjSTIZM5PMjGRmkphJksRkkpmYZGYyMpMkYzIzk0hmkkSSSRIzk5lEMpOZSJIkI0mSxPd3zu7tt/u53efPvfe5z3M/975evH1/v/W55zz3/Tznfj7P+57nnBAARud2jP9NQDxyKgEAAAAAmBSTUrx/4lQCAAAAADBp5sd4K8aWGEdDqxg+2wr4AAAAAAAw0V4N/c/KvxvjVGgV/weJYzFOtNs4E+PPGI/76H+u0wYAAAAAwKTbFsoXzi/HmDei43ghxoYY+2PcyDmG+U4ZAAAAAACTbk4ov3zOzhqP67OMY1jglAEAAAAAMA1+CeWK9xtrPq5dPY7hdacLAAAAAIBpkNahL1O8X9/AsV3pOoa1ThcAAAAAANPgcBjf4v37XcfwntMFAAAAAMA0OBjGt3if1uR/0PAxAAAAAABA7T4N41u8T050HMMGpwsAAAAAgGmwM4x38f6jjmPY5HQBAAAAADANxr14/0bHMWxxugAAAAAAmAbjXrxP694fbcfbThcAAAAAANNg3Iv3AAAAAAAwdRTvAQAAAABgzCjeAwAAAADAmFG8BwAAAACAMaN4DwAAAAAAY2Zcivcb2v08dkoAAAAAAJh241K83x4U7wEAAAAA4F/jUrw/FhTvAQAAAADgX+NSvL8WFO8BAAAAAOBf41C8f6OjH8V7AAAAAACm3jgU7w8HxXsAAAAAAPh/TRfv3+rqR/EeAAAAAICp12TxflOMe0HxHgAAAAAAZqireD8/xsrQKtgfiPFXRj+K9wAAAAAATL2yxfu6QvEeAAAAAICpp3gPAAAAAABjRvEeAAAAAADGjOI9AAAAAACMmTo3rF0eWhvW7onxe1C8BwAAAACAnuoq3vfyZozrQfEeAAAAAABmaLJ4nyyLcT8o3gMAAAAAwP9runiffBkU7wEAAAAA4P+NQ/F+SVC8h0m0PYx+k+un7c+NR6H1FM+1GGdiHIvxVYwtMd5wKgAAAACYbcaheJ9cCor3MGnqKN6XjfTZkor6n8V42akBAAAAYNyNS/H+UFC8h0kzJ8bCGOtibItxNMadMB7F/N9D68uFuU4TAAAAAONoXIr324LiPUyDVNBPRfNHYTyK+LdifNo+LgAAAAAYG+NSvF8fFO9hmuwI/a1rnz6rXuhqY16MF2O8G2NTaBXh01r3V0P/Rfy/YrzttAAAAAAwLsaleA9Ml7RcTdnZ98cGaD9thJ2+IPg99FfE3+PUAAAAADAOFO+Bppwp+fnz4ZD9pBn1V0L5Av6pYC18AAAAABqmeA805UjJz58tFfW3P5Qv4J9wegAAAABokuI90JTPQ73F+2RXKF/A3+UUAQAAANAUxXugKR+G+ov3yfGS/aYNtF92mgAAAABoguI90JRtoZni/eIYD0v2fdhpAgAAAKAJivdAU5oq3ifflez7SYwFThUAAAAAdVO8B5rSZPF+VSi/9v0WpwoAAACAuineA01psnif3C/Z/49OFQAAAAB1U7wHmtJ08f50yf4vOVUAAAAA1O2zoHgPNKPp4v0PJft/4FQBAAAAULeDQfEeaEbTxfvdJft/6lQBAAAAULdDoVzxaqNUARVruni/PZTftBYAAAAAapU2YixTuHpfqoCKNV28/yiYeQ8AAADAmCq7YeNOqQIqNluWzbHmPbPBvBhbY5wL5TdZfi209r45GeNqjEcxnsR4HONWjFOh9YTK/CGP7ZX23xEnuvpJ/3uj/d/TJIE5DebvrRh7238X3Wof29N2Lu7HuBjjeIxPY6x0uQEAAFCH66Fc8eoHqXrO3BhLh2xjUWi2WAFNarp4X/bJo0tOFWP8e2hTaBXfn4TyXzilsXc5lF826k77Nf1Kx/ZbH/2kQn6de+yk37+fxLjWxzF25uS70Cr6AwAAQOUW93GT+pd0/SvNbEzFiDT77mFobfjbr5dCawbiL6E1q89mwEyrpov3P5fs/0enijEyvz0m0mz1x6G/p0Vej/FH6L9Q/Sy+K3mMq4bsZ3cNeVwT4+8efacvQdLTC+mpg59C6wuFouO9GVp7CKWnB1YEX8oDAABQgV193kyvmtI8LYuxI8bZMHNmY4qyxfs3Q+tx/Cs98qp4z7Rqsng/t8d4zooPnCrG+PdQ2eL9x31c83mxN+c40xcL31fQx//CYDP9y9rTo7+7obVE0NweP58K8screl/PYoHLGgAAgCzpMe97fd5optn3L01Bbp7Nrk+F+aJH6bOK9+nmf0OMI6G1dm5eG4r3TKsmi/dbS/adip0LnSoasjwMtqRLd/H+cKi28PxOj2NNXzD8UWEfD0f0N8eR0Hu5njLL4G0J1XwBongPAADADKkgnTZYSwWr9Bj40wFvNtMj+mkJifRoeHr8fu4E5mpbH/nIKt6v76MNxXumVZPF+4sl+z7mNNGg1eG/ZVzS7940+/tuKF+8T7+juzemT+2lJXc+Cq0n6ua1fzYt9bImlNvI/s+u41zVdVy3Y3wTWl9iL+z6WyQV/veHchMIjlacz15PBaS/h1aM6G8ExXsAAABy/RMGL9SXjdT+4wnNX5qJty/0X7wPHcWQFe1CieI9zNRU8X5TH59vrztNNCgVvuf2+G9/huLifXrduTBzdnnab+WFEv3uLjE23m3/7Np2f8++4P8ilFvzPe27U7SZbfr7YklFudye0cf3A7R1KijeAwAAUIEHYbSF+86YZFmzdMuueZ9mG2Y9aq94z7RqonifCoF3S/Z7xCliTL1bcO0+Cv/NoE8F8C9D/5uoFs3AT//+dmgtb5P+/zuh9YRfP9IXEUVLy1Wxee0rHcdZxRd0r4TiiRFbXaYAAABQjx/CcMX75EJQvIdOdRfvU6Gw7JrcaZbyi04RYyoV4ss8VXc/9F6fvozloXg/iGdL36QvxF4bsJ8dBf38WkG+sp5+uzdEm0X7CPziMgUAAIB6HAzDF+/PBsV76FRn8f7lGH+H8pt9vuH0MOaKZqyn4v7aIfsoszdE6uedIfpIy/g8KWh/zhDtvxrynx4Y1IoSeVnkMgUAAIDRU7yH6tVVvE8ze++H8oX71U4Ns8C5gmv5ywr62F9izFSxrM2vBX0MMya/CqPbkLroy40tLlMAAAAYPcV7qN4oi/dpM8hUtC87237QNbuhKWcLrudNFfRRZnPnKhwJoyuC523u+8OQx70r2DcDAAAAGqd4D9UrW7z/OrSW/0hr1s/r0U76b2+GVqFxT4yfQ/4yHL3i9xhLnRJmkTqK92+Eeor3HxX0cWDAducVtPvDiPNzzmUKAAAAo6d4D9UrW7wfZTwO1SwvAnWro3g/P9RTvH+/oI+jA7a7dkTtdnqU0/49lykAAACMnuI9VK/J4n3aTDKtd/2K08AsVUfxfk6op3i/saCPUwO2u7mg3ZMVHHve3gOPXKYAAAAweor3UL0mivdXYuyN8bL0M8vVUbwPoZ7i/fqCPs4M2O6WgnYvVHDsR0P+kz0AAADAiCneQ/XKFu8vtcdP2njyfmjNZn0cni+SPWr/+9XQmg2bZtWmDSO3t8fZAilngkxT8f7sgO0WLcfzsIJj35/T/n2XKQAAAIye4j1Ur2zxfotUQenfKYr3/9lQ4vhfGvLY8zbbveQyBQAAgMHMaxcMUgHxsxifhNYsvV438k0V7+fGeK99jLvax5gKmSudPiaA4j0MTvG+2JIaPl/yPseOu0wBAACgP6mg8UtobViZdcP9W2gVzZ+pu3j/amgt9/Ek5xhvxNjpdDKLKd7D4BTvy/mnoO1hC+x5M+93uEwBAACgnDdi/NF1Y51u6tO62IdCqxB/LMbNjn8/HWNxqLd4/2XI/2KhO9La3vOdXmYhxXsYnOJ9OUcK2k77ZQyzH8a3OW3bGBsAAABKSBtWdhbE78T4MMacjJ/fGON6+2dTMf/nMPrifVoi51QoX7T3aD6zneI9DE7xvpyVJd7DriHaP53R5i8uUQAAACj2ZdcNdZp9v7jE616M8WvBDX+VxfvOf0/L5aRCfnoi4OsYP4T/vkzIinVONbOM4j0MTvG+vJ8K2r/T/p3fr/Sl++OMNt92iQIAAEC+T7pupm+FcoX7Z9Kj9FfD6Iv3zx7rfxTjixgvZLSxK+dYfnW6mWUU72FwivflpY1r7xb0cWSAdj/OaOsHlycAAADkWxOqmZ3+Vhht8f7ZI/fXQmuj2iJf5xzPUqedWUTxHganeN//7/IHBf1s76O9hTFu92jjcrAPDQAAAORa0OOmepiZ6ZfD6Ir3KS7FWNTHe3uU0c5mp55ZRPEeBqd437+0/v2dgr4+Kfl7+EKP1/7ex+9yAAAAmFoHetxUvzdEe0fC6Ir3V0JrBl8/Tma09bVTzyyieA+DU7wfTFo671xBf+nL/ncyXp/yei3j74F5LksAAADItyzG066b6vtDtnkwjH7D2n58ltHWcaefWUTxHganeD/858/tgn7vhdZmt+kL8zOh91Nvf4XWMn0AAABACd/0uLk+OWSb41a8fz9kr58Ps4XiPQxO8X54aW36X0p+DvUq2u+IMcelCAAAAOWkm+h/etxk7xqy3XEr3m/KaOuMS4BZRPEeBqd4P7zOp9huxNgfWsvkpS/C0/r1aYPbJ6H1NN+D9nF8FWOVyw8AAAD6tzaMpogxbsX7rELHWZcAs4jiPQxO8X44+zraT/+3GfQAAAAwYl9l3Pi/O2S7ivdQPcV7GJzi/WDmxvix3e7TCvMEAAAAFDidceO/Ysh2Fe+heor3MDjF+/4tDq3lcJ61u9VlBAAAAPW5lXHjv2DIdhXvoXqK9zA4xfv+LI3x94C/vwEAAIAKPM248X95yHYV76F6H4ZyxXuzY6H87xTF++ctDDML90/a/w0AAACoydycG39r3sP4+TyUK95/JFVQ+neK4v3zzne194vLBwAAAOo1L4yuiKF4D9U7EsoV77+XKij9O6Xu4v28CvrYEEZXvN/So72HYfgn8gAAAIA+zMm58f90yLYV76F6p0O54v1JqYLn/BpGX7yfU2J8Lqugn/fD6Ir3v2W0+SjGj+2+34kx3yUFAAAAo/U44yb92JDtKt5D9W6GcsX7f6QKnvOgYNxsrqCPBSXG5/oK+tlZ0MetEfxdUHWkfu7HOBfjQGh9IQAAAAB0+DPjpvrOkO0q3kO1VoT+CmPrpQz+39ISY+bTCvpZV6KfPRX0c7ygj7QZ/ZwB274R6ine94o/QmtJIAAAACC0ltfIuoleNUS7ivdQnbS59LnQXxEszbx9VergX2U2e/65gn6+LNHP30P28UJoPV1T1M+gywDtCs0V759F2t9jjssWAACAafdJzs3z4SHaVbyH4SxqX7d7Y1wLgxXAnoTWF3RbY6wO1qhmOr0dipfMeRbvD9HP4hi3S/ZzKAxWnF4cijfefRZpBv2g6+t/HZov4Pv9DAAAwNR7OeQ/dv/KgO0q3kP/Pgr1rDed+tgq3UygeaFVrE/L13wY46cBxkeagZ/WlE/Lt6zJ+D24oN3PezG2xPg+xr0++7keY39ozZBf2/593Ot39Pr28aQv4p702cfD0Npk9oP2+0nHu6hkLt+KcSk0W8Df75IGAABg2l3IuXE+N2Cbh8Pws/kV75k220N9RbFt0o0xVCpu9+jnYBjNl2p19NPv2P+g47UPQr3F+zSJwPJfAAAATLV3C26ed/fZ3sKQvXTAyT7aySreD7KZ3aageA8A/UhPF9xq/778rv3f0tMN6UmBtMRQ2uQ3rU+fNtBNTzmkL/xvhtZTCKnQ/yi0vpR4FoMU8L93GgAAAJh2RWvoli3gp4308mbyp5v3pSXbOp/RxuYB3t/7odonCwBgku0IrZnv6XflxVDtBrKprbQHx6rQ+kI+LRl2NPT+4v+2UwEAAMC0WxLjbsgv4P8SY2VOG+/EuNpxs523Bm+agX+kHasy2st6PP+TAd7fzoy2/nHqAWCGQx2/J9Ms+mU19r2l/bu583f1i04JAAAA0y4V3x+F4kfY/wqtGXIH25H+76sd/348lF+n94/Q+wuBF3Nec2KA93YiZK+nu8CpB4B/Z8OfCc3vj/FG+G/Wf4q1Tg0AAACEsDo8P+Otn0jL78wN+cX71P537ZvzLF/nvP5JjNf7eE+vt1+T1d5+px2AKZcK9z+H8dkX5mTHcaxzegAAoF5ppuvHMU6F1uO4aR3sNOP3Sox9MRZJETQmPR6ftd58XhzoaKO7eP+0XQRI69X3Wjc3/bdUzE9r7P5Woq/0mXG43d5LPdpL/y1tUnsolNsk72K771edfgCm0Jkevxub/J34acdxvOn0AADQj1Rkutn+Y/Jz6ehLWgojzXJ9GPILaWnt7TekCxq1JsZPIX/Wevq3tCRN90z4Z8X7tMRO2uy2aJPaLWHw2f4p3u1o690h25rn1AMwRfb0+F34c8PH9FH478v/OU4RAAD96Cwy3fQHZWlpzcyiDTE744bcwlhI43B1+7NvezvSeF4fWkvk9JI2oX1L6gBgrC0PM9eXfxZ7Gj6uH9rHccEpAgCgX7+H5jdymk3SEjhne9wU/N7O3bMlctJs1w9DaxmdZz/zgfQBAMBIHAu9J9E0fX9zrX0cO5wiAAD6sbLHH7dXpCXT2zFud+XrToyNOa/Z2vGzR6UQAAAql56ey1oab3eDx7Wx457BUnYAAPTleMYfuGuk5jlpxk73RpFpI8rFBa+b3/HzZ6QRAAAqtyZkL1/5W0PHlO4T7rSPYYtTBABAP5aF3mtCpjgvPTPs65GjtPHl3BKvndfxmnNSCQAAldsQ8vefWlfz8SyJ8Ue77+NODwAA/TpQ8Afucin616EeuTnVx+tfCWbeAwDAKL1dcG+T9qFaWdOxpC8Kns24T/tizXd6AADoxwsxHhT8gXtEmnpuepWeSpjbRxubO157TEoBAKByc2L8U3B/8yjGrvbPjkL6cuBsmLlcz0KnBgCAfn1a8IdtirTh09IpztHJHjm5HGNBn+182/H6XS49AAAYiT0l7nFSXG/fD1VRWE/3SztCa4Z9Zx9pqRwz7gEAGMjfJf+w/WpK83OiRy5uh9balf263tHG6y49AAAYiTSj/kLJ+5wUT9s/n5YTTRvKro3xYnj+Kdv0/6cJPKtjbAqtwn8qzl/r0ebD0CrmAwDAQNb38Qftg9D/TPPZ7kiPPDwOg62Rua6jjasuPQAAGKlUfO+ngF9l/BLjVacAAIBh9PvH7OdTlJtvMnLw4YDtXe5o4xOXHgAAjFyagZ+eIH4a6ina/xljo7QDADCsNwf4Y/RmGN2mTuPks1Dtxr0fdrRxK8Y8lx8AANRmRYwzYbQz7TdIMwAAVflxwD9Mt014XrZkvO+01M0gG029FONeRzsfuPQAAKARr4XWE7a3wnDF+mdr5O+O8bK0AgBQpaXh+UdH98e4W+IP1SsTnJe08dST0HuzqdcGaC/NsL/U0c5PLj0AABgLr8f4KLQmNaVZ+bfaf/c/7oi079eN9r8fDa0Nat8Lz29kCwAAldkXZhanU8F6cYy9odxMkzUTmJM0Y+afUO0696fDzOVyFrn0AAAAAADoJc0S6S5SH2r/Wyrg95p53h3nJywnC0JrWZxe7/XkgG0e72jjUYy3XHoAAAAAAGTZEZ4vUC/v+PfDodzs+xUTlJOzGe/xduh/tnxaF797M6yNLjsAAAAAAPL8FfJn0b8eyhXvj0xIPvblvMd3+2xrSYyLXW1scckBAAAAAJAnba5UZv36C6G4eJ82vH1pludjQ877O9hnWymPnRv+puWHNrvkAAAAAAAo8nOYWaC+mvFz60O52fdfz+JcLItxL+N9XQut5W/KmN/OQ+frU7trXG4AAAAAABRJ69p3F6k/zvn5v0Nx8f5BaG32OtvMiXEp5329XbKdd3vkKf3/r7rcAAAAAAAo41CYWWROS7zMzfn5T0K52fefz8JcfJPzfr4p8fq0We+ZHq89EWbnlxkAAAAAADRgcWitwd5ZaN5b8Jq0HMyDUFy8vxlaM9lni3U576VouZyVMU6G3k8gbHeZAQAAAADQj1So7yw2p0L+4hKvOxDKzb7fNkvykN7z3Zz3sbrHa9LTCR/G+C3jNT+F2b9xLwAAAAAANUvF5+6C9aGSr02buj4NxcX7Pxp8f2lz3TdL/uzZnPfQmZM57XZ/jPEw4+f/bv8MAAAAAAD07aPwfOF5eR+vPxHKzb5f08B7eyHG7fDfDPj3QvYSPjtyjj21sTa01vk/HeNxyF9aZ3uYXUsFAQAAAAAwZq6EmcXn832+flUoV7w/38B729rjOB7FOBVaS/6kf98c4/1Qbv3+vPit3Q4AAAAAAAwlreFexQz5S6FcgXtFA+/xrZC/HM4wcT3GVzFecykBAAAAAFCV7qL2oGvTfxDKFbt/aPC9Lo3xcYzj7feZZuA/Df0V69NyOedifBHjDZdPJbaE0XyxMk6xyGkGnxk+MzAejUcAAICyXutxg7J9wLbS+u43S9wApWL5S2OUg10Fx/tPaG1Um5bXWRmsY+/G340/+MzwmQHGIwAAwIgd7Lo5uROGK07vLnkTdGBM3v+yGA8LjnWby8SNvxt/8JnhMwOMRwAAgLq8GFpLwHTenOytoM1HJW6C0sawC8YgBz+F4g1ocePvxh98ZvjMAOMRAACgNt2z5J/EWFxBuwdL3gh93vD7Xx+Kl/dZ4TJx4+/GH3xm+MwA4xEAAKAuvdanP1RR26+VvBG6FZpbP35ujOsFx/ety8SN/yy78f+fEGMQPjN8Zgjj0Xg0HsX0fiYAAFCBD3r8Mbe8wvbPlfwDsqn15L8oOK609v+LLhNmGTelQmEAnxnCeDQehfCZAAAwy13u+kPufMXtryn5B+QfDbz3JaG15n7ecX3kEsGNvxAKAz4zhPGI8Sh8JgAAUKd3evwht2YE/fxZ8o/INTW//+8LjueKSwQ3/kIoDPjMEMYjxqPwmQAAQN1OhXpmv39c8o/I8zW+97Qe/9OC41nlEsGNvxAKAz4zhPGI8Sh8JgAAUKeXw/PF6+0j6ittCnu35B+SK2p6/ycLjuOYSwQ3/kIoDPjMEMYjxqPwmQAAQN2+Cc9vzDpnhP3tLfmH5NEa3vvrBcfwOMZLLhEAAAAAAOr0QoyHYWbBeu+I+1wc40koLt6npwGWjfhYThccw36XCAAAAAAAddsVZharU1F9cQ39/hDKzb4/MMJjWF7Q9z8xXnSJAAAAAABQtxthZsH6UE39vhnKFe/TUwELRnQMhwv63uXyAAAAAACgbpvD8wXr5TX2fyGUK+B/PoK+i5buSV9qzHGJAAAAAABQt9/CzIL1+Zr73xDKFe9vheoL6XsK+tzm8gAAAAAAoG4rw/MF6zUNHMe1UK6AX3Ux/WZOX3+7PAAAAAAAaMLxMLNg/UdDx/FpKFe8r/L43g31fFGwOsZClxoAAAAAAGUsi/E0zCxYb2/oWF6I8SCUK+BX9WTAjzl9XKuoj1UxHrXbe9UlN5AtJa+L2RyLnGbwmeEzA+PReAQAAHjm666bjzuh2c1ZD5S8Sfq5gr7S+8z7suDjCvpIX47c7Whzq0vOjb8bf/CZ4TMD49F4BAAAyDMvxr2um4+9DR/Ty+H5JwGy4vUh+1qb0/btMPyXGGmZnKsdbX7pknPj78YffGb4zMB4NB4BAACK7Oy68XgSY/EYHNfJkjdKR4fs56uctocttKcvRi50tHfY5ebG340/+MzwmYHxaDwCAACU8XfXjcehMTmut0reKKUZ+suG6OfXjHar+BLjdEd7p11qbvzd+IPPDJ8ZGI/GIwAAQBnre9x4LB+j47tc8mbpwBB9PM5o8/iQx364o61fYsx1ubnxd+MPPjN8ZmA8Go8AAABlXOi66Tg/Zse3teTN0sMYCwZo/5WcNtcNcdx7O9q5OOCxAQAAAAAwhd4Mzxes14zZMabNYm+FcgX8zwdof0PI/jJg0I1qP+toJ21UaxYWAAAAAAClHQmT9ahyKvL3W3B/P6OtEwPmdEdHG9fDeGz8CwAAAADALJGKymlD1klba/TDPvOQtf7q9gFy+mHH62/EWOoyAwAAAACgH51rsk9S/NFnHrJm3r/XZzvbO157LSjcAwAAAADQp7kx7obJLN73u27/2xltrO6jjV1h5hr3S1xiAAAAAAD0q3Nd9kmMX/rIRVojv9fyQWVn3h/seM3FMBmb0y6MsTXGsRiXYzyI8bidp7SRb/qC4nj7OnrJcAIAAAAAqMZfYbKL9yle7yMfvTbu3VnwmlS0/rXj58/EeGGWXxfL2rnoZy+EpzFOxlhhWAEAAAAADG5tmPzCfYpjfeTkldCaXd75+usxFvT42XmhtUzO/Y6f3TcB10WaRf9wiHynIv4XhhcAAAAAwGDOh+ko3qdi8rI+8rIuPD/jPG08m2bgb4ixJcbhGP+EmQX+NRNwTXxfYd6PG2IAAAAAAP1ZHqajcP8svukzP2+FcksK3YuxJ8b8CbgmvhpB3n8w1AAAAAAAqFLawPaDGCdi3A6tjVofxbgRWrPK00aucyfkvW4MM4vu6b2mNe83x1jc8XPp/a5ov/e0tv/TUFzA3+ZSAgAAAACA/iwMM5cA+jnG0pKvTXsEnAvFTycskGYAAAAAACjv2/Bfof3EgG0cCPkF/N3SDAAAAAAA5aQlcZ5tzns5DLcM0PGQXbz/U6oBAAAAAKCctNluKq6nAv6KIdt6MbSWyMkq4C+WbgAAAAAAKPZ3aBXWD1TU3v6QXbzfIN0AAAAAAJDv9dAqqj+MsaiiNt8I2cX7rVIOAAAAAAD5Pgutovo3Fbf7OPQu3m+TcgAAAAAAyHcqxtMYyypu92Iw8x4AAAAAAAayJsbHI2j3bOhdvN8k5QAAAAAA0Iys4v1rUgMAAAAAAM04F54v3N+TFgAAAAAAaE4q1HcX749JCwAAAAAANGNuaG2C2128Xyc1AAAAAADQjLQJbnfh/qa0AAAAAABAc/aE54v3n0oLAAAAAAA053KYWbi/FWOetAAAAAAAQDNWhOdn3W+TFgAAAAAAaM7BMLNw/7OU0IC5UgDGN2BMAwAA0LIsxpPwX+H+foyXpYWavBVjX4wrMR5IBxjfgDENAABAy7Ewc9b9B1LCCL0YY3OMH2Pc7br2FALA+AaMaQAAAKLVXTdih6WEEXg7xp4YF2I8Dc/vr6AQAMY3YEwDAADQ9kKM6x03YekmzfqlVOHVGB/HOBHjYc6Nv0IAGN+AMQ0AAECXox03YDdiLJYSKrCxjxt/hQAwvgFjGgAAgA4fddx8pTVMbVBLVV6JsbMdn8Y4FONsyH/0XiEAjG/AmAYAAJh678R40r7xuhfjdSmhBqtiPFYIAOMbMKYBAAB4Xpphf7fjpustKaFG3ysEgPENGNMAAADMlNa0v9G+4UqzqVZLCTXbrBAAxjdgTAMAAPCfhTH+bN9spXVM10sJDXhbIQCMb8CYBgAAoGVBjEsdN1tbpISGvKgQAMY3YEwDAAAQwvwYFzputLZLCQ1aoBAAxjdgTAMAAEy7uTHOd9xk7ZISFAIA4xswpgEAAJp1uuMGa590oBAAGN+AMQ0AANCsox03VwcrbHdpu21QCACMbzCmAQAA6MPBjhurqgvtp2L8KsUoBADGNxjTAAAAlLev46bqdMVt72i3u0maUQgAjG8wpgEAAChnd8cNVdqodm6Fbb/fbveWNKMQABjfYExLEQAAQDk7O26mfo8xv4I258VYH+NkR9t7pBqFAMD4BmNaigAAAIptLbi5qiqexlgi3SgEAMY3GNNSBAAAkG9TqKdwn+KkdKMQABjfYEwb0wAAAPnWxXgS6iver5ZyFAIA4xuMaWMaAAAg2zsxHoX6CvdXpZwxKwTsrPgan+f0gPENGNMAAADDuhPqK9yn+ETKGbNCQLpxXx7j3dBaPupQyWs5Pa1yKsbu9uvei/GaUwPGN2BMAwAAgELAaB7B/zmn7UsxtsWY6zSA8Q0Y0wAAAEB9hYA/erR5K7Rm6wHGN2BMAwAAADUXAjb3aO94jIXSDsY3YEwDAAAA9RcC3oxxv6Odp6G1OR5gfAPGNAAAANBAIWBVjLsdbaT/e7VUg/ENGNMAAABAM4WA99qvefb66zFelmYwvgFjGgAAAGimEJA2tHvS8drfgrVywfgGjGkAAACgsULAx12v+ynGfOkF4xswpgEAAIBmCgF7u15zVFrB+AaMaQAAAKC5QsDBrp//VkrB+AaMaQAAAKCZQsDcGCe7fnavdILxDRjTAAAAQDOFgPSaX7p+bpdUgvENGNMAAABAM4WAxTEud/3MDmkE4xswpgEAAIBmCgEvxbjW9e/bpBCMb8CYBgAAAJopBKyIcbvr336XPjC+AWMaAAAAaKYQ8E6Mexn//qUUgvENGNMAAABAvYWAJzEeFfzMWmkE4xswpgEAAID6CgGpCHC14GfuxlgmlWB8A8Y0AAAAUE8hID2C/2r7f/N+7lKMudIJxjdgTAMAAAD1FAKSDwp+LsUR6QTjGzCmAQAAgPoKAcmhEsWAbVIKxjdgTAMAAAD1FQLSI/aXQ/F6u29IKxjfgDENAAAA1FMISNImd/cKXnMjxkKpBeMbMKYBAACAegoBycZQ/Cj+WakF4xswpgEAAID6CgHJNyWKAXulF4xvwJgGAAAA6isEJBdKFAPelWIwvgFjGgAAAKivELAkxt2C16e1dpdJMxjfgDENAAAA1FMISNaG4pl8l2PMk2owvgFjGgAAAKinEJDsLVEMOCLVYHwDxjQAAABQXyEg+aVEMWC7dIPxDRjTAAAAQH2FgMUx7hS09TjGSikH4xswpgEAAIB6CgHJ2zGeFrR3M8YiaQfjGzCmAQAAgHoKAcmuUPwo/nlpB+MbMKYBAACA+goByU8ligH7pR6Mb8CYBgAAAHpbMoJCwMLQetS+qBiwVfrB+AaMaQAAAOB57xXcrD8asN03Q2uzu6JiwCanAIxvwJgGAAAAZvqgxM36/AHb3lmi7bRZ3rYa3meaWZhmDR6LcTm0ZiemQsWTGA9jXI1xPMaOGC+5LDC+jW8wpo1pAAAAaNLPJW7Wh7lRv1qi/RTfD1FwyLMsxpH2Df//SkYqTpyMscLlgfFtfIMxbUwDAABAnd6OcarkjXFaC3fJgP0c6+MG/Ea76DCnoveYZuQ97KP/XgWBL1wqGN/GNxjTxjQAAACMQnr8fEOM3aE1O+3eADfF/8T4Ksb6GGtiLGpHt3nt/748xpb26/rt63aMgzE2x1jbPv5+fT9EAaA7jruEML6NbzCmjWkAAACo2qYKb4q7Y0FXX9tH0Mf2Pt/vVyM4hh9cRhjfxjcY08Y0AAAAMJiNXTfwaYO7tH5umhG4uOPn5obW+rhpQ7wzofW4/SjXEQaMb8CYBgAAgKmUHtXvfOQ/bey3tORrX4lxrqAQkJYuWCDNYHwDxjQAAABQ3rcdN+0nBmzjQEExYLc0g/ENGNMAAABAOenx+iftm/XLofWI/aCO5xQC/pRqML4BYxoAAAAoZ0/7Rj0VA1YM2daLofW4fVYxYLF0g/ENGNMAAABAsb/bN+kHKmpvf04hYIN0g/ENGNMAAABAvtfbN+gPYyyqqM03cgoBW6UcjG/AmAYAAADyfda+Qf+m4nYfZxQCtkk5GN+AMQ0AAADkOxXjaYxlFbd7MZjFB8Y3YEwDAAAAA1kT4+MRtHs2oxCwScrB+AaMaQAAAKAZWYWA16QGjG/AmAYAAACaca5HEeCetIDxDRjTAAAAQHPu9SgEHJMWML4BYxoAAABoxtzQ2lCvuxCwTmrA+AaMaQAAAKAZa3oUAW5KCxjfgDENAAAANGdPj0LAp9ICxjdgTAMAAADNudxVBLgVY560gPENGNMAAABAM1aE52fwbZMWML4BYxoAAABozsGuIsDPUgLGN2BMAwAAAM1ZFuNJRxHgfoyXpQWMb8CYBgAAAJpzLMycwfeBlIDxDRjTAAAAQHNWdxUBDksJGN+AMQ0AAAA054UY1zuKABdizJUWML4BYxoAAABoztGOIsCNGIulBIxvwJgGAAAAmvNRRxHgbrDZHRjfgDENAAAANOqdGE/aRYB7MV6XEjC+AWMaAAAAaE6arXe3XQR4EOMtKQHjGzCmAQAAgOak9XFvtIsAj2OslhIwvgFjGgAAAGjOwhh/tosAT2OslxIwvgFjGgAAAGjOghiXwn+b3W2REjC+AWMaAAAAaM78GBc6igDbpQSMb8CYBgAAAJozN8b5jiLALikB4xswpgEAAIBmne4oAuyTDjC+AWMaAAAAaNbRjiLAwQrbXdpuGzC+AWMaAAAA6MPBjiJA1Tftp2L8KsVgfAPGNAAAAFDevo4iwOmK297RbneTNIPxDRjTAAAAQDm7O4oAadO7uRW2/X673VvSDMY3YEwDAAAA5ezsKAL8HmN+BW3Oi7E+xsmOtvdINRjfgDENAAAAFNvacaM+yngaY4l0g/ENGNMAAABAvk01FQFSnJRuML4BYxoAAADIty7GkxoLAaulHIxvwJgGAAAAsr0T41GNRYCrUg7GN2BMAwAAAPnu1FgESPGJlIPxDRjTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDTXouxM8axGL/FuB/jcYynMR7FuBXjdIz9Md6RroGkvO2JcSrGXzEetnP8pJ3jO+0cfxtjQ4y5UpZpToz3YnzdztnNdg6ftHOacvtHjBMxdsV4U8oGtijG5hjftHN9tePz4Vm+77c/N47H+DjGq9IGAAAAAINLBdBUsL8c4399RiqW7o6xQBpzpcLnvhi3B8jxg9Aq5L8kjf/vlRjfhVaxuN98Xmtfsy9KY6F5oVWEvxBaX+D9b4C4GOPD9ucMAAAAAFDSltCaTd+r6JZm06ZZtGmG+E8x/gzZBbo0W3yrdPaUCsUPw2CFz85IM5u/nPJcLoxxKPQuJHderynOFuT9XmjNxud5c9q5uZPz2XCx/blwsv2/F9vXaFa+01Mmq6UWAAAAAPKlWcepwNmryJaK+TtC7+ValsT4IrQKn71em5YnMQv/v1xdDMMX7bvj5zCds8bXht7F5PTEyKaQPbN7ZYzvQ6vg3Cufl2K87HL9f2+E1pI4vQr26YuTNTm5ntM+T8dzrt+vpRgAAAAAelsW4+/Qu7CWZtCWKb4vDa1Zzr3auBJj8ZTnOO0dMMgSOf0sRTJNX5LszMjD7j7aSOuvZy0Nlb6MWuuj4d+nZ3rNnk9fGPW7bFP60uRaRr5PSjUAAAAAzJSKyndD74LaqT7bmh/jl4y20pcD01rAfyUnx1XGmSnJ55cZ7/+zAdpK1+z5kL0UzLop/mz4OCMvh4doM30G/JHR7lEfxwAAAADQkmbLZ80GT8tkzB+gzbQG+c2QvRzJ/CnLccrH9Yx8pFnfqRCdCsQvdLwmLU+UZoVvjnEk9LcJ67YJz+eOkP2EyKAWhN7LwqR4FOOdKfxsWJeRj/MVfe5kLbO108cyAAAAANMuFYuzZsCmeHOItt/JaXfaZtf2mtWd/tvKPs/V3pC/+Wfn/gRzJjSXazLec9qs9tUh214Rem96myI9NbFsiq7ZhaH3kyLpSYSq9gLYnpHrtKHwSwEAAAAAptiPIbsA/EMF7Z/MaX/LlOS4e5Z4mm38/hDtvROyZyx3xvsTmMu03ErW0kM/VdTHgZycpqck5kzJdfttGP269CmXWU/oHPTxDAAAAMC02hSyi5Rp9vErFfTxWk4fqQC9aMJznIrNDzrec9qos4pZy3lPNTyLExOYz+M573djhefsSU4/e6bgsyEtIZT1hEfVX7rty+gn9T/XxzQAAAAA0yYtwZKWVskqUJ6tsK+fc/r5ccLz/F2YuX/A4hG13StuTlgu876wSMX2KmfE/5DTVyoqvzzh1+32nPe/ouK+1obRfyEDAAAAALNGmj2cV/itsmj2fkFfb0xojtOa3c/WT08bAi+puP2XC/L6dMLy+VvOez1TcV9rCnI76V86nch57/Mq7mteTl/7fVQDAAAAME3SkhidS7l0x6NQ7SzmtPRF3iarP01onr8K/83UXjmiPvI2Gx5FobUpKwve5xcj6PN+GP2yUuPqes3XVNYyRcd8XAMAAAAwTT4P9a+VfqKgz+UTluP05cezjVU/GWE/R8N0FO8PFbzP9Q1cs99O8GdE3pr/C0fQ34MwPfs2AAAAAECmvFm1KT4cQZ/bC/r8bsJyvL79vn4fcT/7Qv7s8DkTkMv0Hv4puH4WNXDNpoLzpG6oWvcXJY+C4j0AAAAAUy5v089nMYrlQF4LxYXQOROU549j3AvVb+7ZLa/AfGNCcrm64Np5PKJ+V5UYK5sm9HOi7iWKnobp3FsAAAAAAP7fNyG/MHdvhH0/LOh7s9PTt7wlkI5OyHv8ouC6uTWiftOXSU8L+j46oddV3h4Vlyrua2lOX58b4gAAAABMi79CfjHy9Aj7Pl3Q93Gnp29HQr3LmzThZMF1c3aEfRctMfXPhF5Xfxe87yo3YN6c0886QxwAAACAaZA3w/VZfDPC/r8v6PuhU9S3rC9EbkzQe/wzjO8XTilem8Drqmiz3nMV9nU4ZC+HNMcQBwAAAGAabAnFhcgtI+x/W4n+VzlNpaXC5qMGzmPdHofmivdHGx4zTdle4n1vq6CftOFv1mbEhwxxAAAAAKZF1gzXznh3hP2vL9H/p05TaWtC/cvI1G1uiWvmpxH2/3WJ/r+dwGtrcShe7z9tMj3shsyfZLT9JMbLhjgAAAAA0+JCKC5ELhxh/wtL9H/CaSrteOi9XM6iCXqPL5S4Zkb5ZcWHJfo/NUXXV3fcDq3luAaRrtOsWfe7DG8AAAAApknR8iNPaziGotm815ymUlb0yN2dGK9M2PtcEIoLyH+NsP8PSvR/ZYKvsacl3v/NMNgs+TMZ7R0xvAEAAACYJmmWa1ER7l4Nx/EgFH+BYJPKYhe78nY9TOYyI2Vm3j8YYf+bSvR/f4KvszLLBqW4G+OdPto9mNHOQUMbAAAAgGmzLhQX4H6v4TguljiON5yuXN935SvNYF44oe+1zJr3KUb1hU+ZfRqeTPC1NqfkmH32xVuZPSt+yMjhdkMbAAAAgGm0JTS78eczZ0ocx0anK9OeMHPG+Y4peM9PSlwzq0bUd5ni/f8mPP9LYtwqmYcU59qv6dXOr6H3skevG9oAAAAATKuPwnhsFnuqxHFsdbqek2agHwnPb5T66hS89+slrpltI+q7bPF+0pd6ei20lsYpW8BPS3B92PH6jT1en2bq72tf2wAAAAAwtbLWmO6MozUcx7ESx7HX6ZrhzRh/huylSo6HyS7in2zw2i1bvJ+GAnRazqqfAn6K30LvL+x+ibHc0AYAAACAEH4MxYW2IzUcxw8ljuOw0/Wvl9q5KLve+IHQ2uB10uwu8f7vjKhvy+bMlAru/RbwO+PvGBsMbQAAAAD4T5qdXVRYO1TDcRwJ4/EEwDhb3j4XZdZ6744bMd6asHysKvneV4+g72nfsLaXl9vXWb/XZvqCabOPYgAAAACYKa1nX1RcO1jDcZRZvuf4FJ6feaG1bvuvYfBZzZ3F5EnbN6DMhqk/jKDfMsX7h1N4vS6OcWnA6zON70U+kgEAAACgpcxGseNSvD8xRedlWWjtA/A4DF+0744PJyhP+0O5md3LKu53Y4l+r03pZ8r8kp8rveJ2jHd9LAMAAABACKeD4v04SsXhx2E0xfs0A39SltBZGsotI1T1Uxt7S/R5Zso/Ww4McY1+5aMZAAAAgGl3MijezwZzQmvT2TdCa2PP7aE1M7/MsjG94q92m5OgbJH4vYr6WxBaM8Tt0ZBtZWg9eTDMl0wXQmsZHgAAAACYSmU2rFW8H2+pUPpdaK2x3k9xdNeEvP8XQ7li+t3Q2lR1WGWXhPl0Sq/H3aG1VFFnLv4OgxXwb8Z43RAHAAAAYBr9GGZP8f6o05Urbfb5XShfGE2z9idl9v27oXwx+JUB+0iF/342Dl4/ZddfmiX/S3h+iaZneyx8EuNB6L+An16z1vAGAAAAYNocDsXFsyM1HMeREsdx2OkqZU1ozTKftgLzrpLv+V6MbX20uzzGoTBzbf1/SvTzwhRdc+npj+4lnNKTIN1F97Rx8M+h/wL+oxjrDG0AAAAApkmaDVtUOPuxhuMo8wTAHqertFdDuQL+jxP2vveF8gXhP0NraZs3w39PIKT/XRJa+wqktq70eN33obWEU17bV6foWtsUWsX17mL76pzXfBRaX6L0W8BfbWgDAAAAMC22hOKi2fEajqPM2vtbna6+rArPrz3eHTcm8H1/XOJ9DxL32uMlKfpi5NCUXGNZX/6VeaJjaYwzA5yDVwxtAAAAAKZBKrIVFcxO1XAcZTYB3eB09W1vibzOm8D3nTY5vRKqKdqnLwLSngyL222vKvGaTVNwbX2a8d739dlOmoXfz1r4lwxrAAAAAKZBWoO6qFh2robjOFviOJY7XX2bH4pniU/yZqBppvylMFjRPm1uu789Rjp9U/C6xzHmTvh1tTXjvf8xYHuvxfi7j3Ozy9AGAAAAYNKlNb6Llhi5XcNxFBXunob/1iWnP/sLcrtxCnKQisNpiZe0Vv3l0NpM9Un7ukrF9vsxzsc4FmNnjDdy2rpZkM9jE57L9CXao4z3Psya9AtD+c1s0/I5LxjaAAAAAEy6NFu2aKPIUXtUcAx/OU0De7Mgt+9LUWlrQ3Fh+b0Jz8HvYXTL2aQnFsqug/+JyxEAAACASVdms9hRros+N4zHprmTLO/LkS3SU9qJULzUziTL2yPj0wo/D34t8ZlwxeUIAAAAwKTbEYoLZW+OsP8VwSzbUTuXk9vN0lNKWvu+aImp3ROeg7y9Karck2JRaC3XVfS5sNRlCQAAAMAkWxmKi2SbRtj/phL9r3KahnIsJ7frpKeUbwuu0bRu/oIJfv/p6ZusLy8ej6C/jSU+F3zxBAAAAMDESxt45hXJPh9h37sK+n7o9AztSE5+X5KeQmmG9+OC63TPhOdgQ857vzyiPi8W5PwrlyYAAAAAk65oLe/jDfZ9wukZ2sFQ34zpSXS44BpNS7zMn/Ac7Mx5/z+NqM9tBXk/5tIEAAAAYNIVFcmujrDvvwr6/sDpGVpW8fkXqSn0RihevuWDKb6GRvkFW/pCJG+fgVMuTwAAAAAm3YsxnoTsIlkqoL0wgn4XhPyiaDqm+U7P0LLWvN8jNYWuFFyjZ6ckD0dDM0/HXMrp97TLEwAAAIBpkAphdW9auzk0t1zPNDmXkd8VUpPri4Lr826MJVOSix9D/cvmJHnLallSCwAAAICpsC7kFyoPjqDPIwV9rnFaKvGoR24vSkuut0L+ki0p3p2ifHyTk4crI+w370uDIy5TAAAAAKbF9ZBdKLs5gv7uhGbW2Z8mqzLyu1lqMi0OrU1o8wr3u6YsJ1tzcjHKjY9/yOn3I5cqAAAAANPik5BfsFxVYV9rCvpSmKvGtz1y+4e0ZJoX47dQ/1Mo4255QU5eH1G/x3P6XOlyBQAAAGBapMJl3ozjQxX2lbcB5o0Yc4ZoO82c/jrGX6E1KzhFeqogFV2XT9H5TJsM3wuj/RImS1qG6XxoLdmT8p8K4ptmQc5+CvlF6h9H2Pe4X7fXcvLy+Yj6vJjR320f1wAAAABMmx0hu0CXCrGLKuhjachfT/yDIdp+O8Y/Ib8Au29KzuWeHu/9QA397svJ/bdjnK9TBdfN9yPsezZct1/mHNvfI+hvQc7nxLSMYQAAAACY4VLILtLtr6D973La/3WIdlOx727IL4COw2aXK2K8H1oz0ZeOqI9Xw/Mb1V6o4b19UCL328fsep8f40zBMe8eYf+z5bpNx5n3BUPV+yjszOjnYajmS0QAAAAAmHVeifEgZG9O+coQbae1sbNm06YlXpYN0fZnoVwBtKl19VPB8XyP40hLyrxXYT+pyPpnVx9pyZPFNbzHmyXyngrVc8bkWl8Sspdm+V97HGwc8TGM+3XbaVvI39T6xYr6eSHnWpq2zYIBAAAAYIb1IbtIl4qdgxRf0wznP3LaXTfkMZ8I/RVBb4d6i8hnC44n/fuyIftIOe7+guBqGN0M/05v9pH7d8fgGk+bJt/JOcaUt1drOI5xv267HS24hqtwJKP9n300AwAAAED+EijHBmgvbzPQDyo43tOhvyJoio015TIVW5+WOJ77obXvwCDSLPILXe2lnL9Y03tc30fe32/wup4b46uC40ubM8+v6XjG+brNyt+5nGM7PWTu9ma0e6XGaxkAAAAAxl5al7177fRncTK0lmgpsjBkF/tS21WtlZ01Wzcv6tpAtWzx/lmkJxQ29NF+Wkqlc930tARR3WvLr+rj/a1v6HpeG+OvnOO6Hup/KmCcr9ss/9fe/UBedf+PA39JkiSSJJORSWYSycfkI2OSJIkkmZkxyczMmJnJzIfMTGYimWQSSTIzYyaTmTGTyUzMzGRmZJIk8f2d1++et93u7j3n3Ps+/+/jwcv347ve5/W6z3vufZ7X877O68QCftYK/HjXwrYpjxm3lZp0F8JX6fcIAAAAADBkSxjsmT5pC4/4YMkVY/4urpJ9JUzemiQec2uJ49wZpi+CXqwxjp/OML5YTI4PCd4zEuNlYbDNUPxvv4ZHH+Z5IjRT6Iw/UBR58Or9CedLlZ7KiX/8Eel4Gte6tf28zXIsPecmjTNu4RR/nMtaiR8f4BzvhPh7wjFOhPY8IwEAAAAAWicWW2MR7UEYX2CLq8rjXviX0vZ9mLzS/EF6rCoKuNOuYr5cYwzjfva3wvSF2qIr9eODT1c2fJ68UmCsx2scTyyMfxGyi/ZxFfv6huPW5vM2T3yA9fmc8cbvgvgA2riN08X0OyK+L1mF/7ja/ilfvQAAAABQTCxAvxeKrbAebX+lf7uh4jHGlb6xuHknTP6xYaGdrzl+cV/6jwuMK6/Fv4/Fz9eStqll58jphuMdV3K/Ex69I2G0/RgGP3a0aQ/1Np+3RWxO2sn0cz7reR1X38fnDWwNAAAAAMDM4qrmuIo6rqKNW+DEVbT30xb/98/pfzue/ts2iPuZDxcL32toHHGFfHxoayx0x4LtryPxiy2uCo9713+dxjEWNY+Ewd7ybd9G5EA67ntpi//7UEV9PREGDzyOP4r8Fiav/L6WtLfDoLjfNW05b4v6TxjchfFJ+t7fTs+D4XM7FvnjszDi3vnH0r8BAAAAAOZULHoPF0EPCEmnfRgm76t/NQy2xIkPXV7hvAUAAAAAaK+4tcfw1jMrhKTT4p0I8Q6PePdCXI0eV/dvcd4CAAAAAHRL3Od8oQh6QThw3gIAAAAANCtuPRL35l8ogm4TEpy3AAAAAADNejP8UwC9LBw4bwEAAAAAmrUjaQ/DoAB6O2mPCQnOWwDojPVpLhx+gPtHHRn7c0l7xVvYKQeT9m7SlgsFIIfKocj3QLU2Je3PoSS1T0hw3kLvPz/HkvZJ0q4l7e+k3Q+DH8PuJe33MLiTJV6o7RCuuYvzY+lE8GzSvkgns3G8D9Lx303ar+nY/5e0PUlb2qLxx+3UdiXtRDrG38aM/3oYPCPltaRt7cn59tVI0aELhYeNSbuajjW+L8t8bXTCsvBPkeumPIHc1CtyqBwK8j20TEy2wwXQt4QE5y30djIWC8nfj5mc5LU4cXsjaSuFsbdxjuN+IWnfzjDu/0sn9B8n7cmGJ7Enw+BHkmnHfzON/aqOnnevTnhdbS48HE2LDQt3z+309dEpT49ci/0v/R4Buamb5FA5FOR7aKG9Sbsz9CF8V0hw3kIvHQqDVd7jJiZxJVVcFX4paVeS9mPG5OyPpB0Rzt7FOd659MuMhZFxLd5psK7G8a9O2qnwzzZqk+Ie22dDk91xLU6AX+vYeReLUvc7VHhYk34Ghs93hbVuiiuhbwy9l9/U/Nmn37qem7pCDpVDQb6HFoq/kp0Y+uDFRH1MWHDeQu+sSidb4yYkscgcV+2Mu6U8Xoy9Gf699+dCi7dKW4Xf/TjHvSvPlVgYGZ3A76kh9s+kE9fR/uOdD/vD5JVB25L2YVqYGDf+75L2eAfOvXg7c9YPQW0rPMQ7534Lj95t8rivkE6Lhb+vw6OFpG3Cwpznpq6QQ+VQkO+hpb4Mj97i9h8hwXkLvbMhaT9PmIzEFTtFisLx4V3XJhzjh6StFebOxjmu3Jp1G4JpWpU/sh6b0OcbUxzjiTB5i6PbaWGjzd7LiX+bCg/xzpR7I0WH9b5CemH5yHVafJ/3Cgtzmpu6Qg6VQ0G+hxaLt7LF292OB0+MxnkLfTT6QOfhdmmGi7SvJhwrFq3XinPn4rwqzLYn/6ztxQpi/9aEvl6dcSLyRZi83dHulp5/OwvEvi2Fh9H361YY3IJNfyf0sT0vLMxZbuoKOVQOBfkeWi7eur9GGHDeQi+tTy/qx01CboTZfvyKt0n+FibfGr1cnDsV589rLI4stDJX3x0Nk+90mNXK8OhensMtrira0bLzL+tcaVvh4eTImOIPXpt8VfdS/Bx9ExRImc/c1BVyqBwK8j0AQENWJO16xiRk6yKOvSPjuOfEuTNxfmPCseOdTfFhfoeT9lR4dI/+uOftxjDY//Z/IXt/2Entz3SyvFiTVsrF56A8schjPxnGP7BvYfwbWnQOni8Y96YLD6dGxnM/tK+IQ7niXUK/jrzvh4SFnuemrpBD5VCQ7wEAGnQ2YwLycQnHv5hx/EPi3Po4j5tYx4lg3I5s2gfjPh0efWhVkfZhCZOESdsUXSnpvc3a/zZu57CkBeffoSli3mTh4YMx4znsa3ouxO+aO+HRwuAuYaGnuakr5FA5FOR7AIAG7c+YfMQLqY0l9LEpo4/4YLI14tzqOI8WNOK2P1sWOdZ4i+y9gpPgGJ/FrLzLWim3r8TixoOMft5u+Px7LD0HhrdTetDCwsObY8Zy0tf0XDk88v7fSSf50Lfc1BVyqBwK8j0AQEPiNi6/Z0w+Piuxry8z+jkrzq2N865Q3S3s/w2PrrrJau/O2EfWdkJx4l3mar6PM/qKq0Efb/AcHH6ocdxOYmM6pjYVHg6G8Ssul/qqnjujdynF2+tXCws9yk1dIYfKoSDfAwA06O2cSem+Evs6mNPXFnFuZZyvhUdXGT5dcmz2hGIFkpszHv9axjE/Lfm17Mx5DU39SPVqGP9gsDYVHuJ5ObraNY7Pw/Xm06rw7wd7XxEWepSbuhhnOVQOBfkeAKBGcT/YrJVlcRJQ5oqqpTkTnSvi3Lo4bwn13Lb+UShWJHlsyuNuyznemxW8lr9D9dsjTeOpkfPh8tB/a0vhIX5Gbob2bZNAsw6POSeOCgs9yE1dIYfKoSDfAwA06PWcSdmFCvq8kNPnZnFuVZxPDv3NT6G6B8bFvfiL7DG8f8rjnso53p4GYv9BjefesqT9GB7dVmJNCwsP58b0/0toxwMKada3I+fFwnYVzLeu56aukEPlUJDvAQAa9EvOBOn5Cvp8MafPk+Lcqjj/UfEkfdjpkF8geW2K48VJ6185x1vTQOzjXRh17T/7/kjfu0f+exsKD3sn9H/QVzRhsPf46LlxVVjmXpdzU1fIoXIoyPcAAA3aUWAyWsVqh00FJmVLxLkVcR6+iP62hlg9WyBWpxc5CRjdC7YK20M7VmmO7h384Zh/03ThYdKDnH/0Fc2Q78ecI0eEZW51PTd1Mc5yqBwK8j0AQM3ez5kY3a6w77s5fR8Q51bE+Z2hf/tMDbGKPyY8zBnzmSmO92bOsX5v8HWcqziWq0cm9HFbieUtLDycmND3C76iGfLCmHMkPtxuhdDMpa7npq6QQ+VQkO8BABr0U87E6HKFfV/O6fu8OLcizl+m/+56jfH6MZRXILmYc6zPKnwdeVsl/VVxHIf3DI5FkC0T/l2ThYcNE/qPP2jZp5dhcd/pcfuOexjjfOp6buoKOVQOBfkeAKAh60P+LcnvV9j/hzl93xXnVsR5YVL4Yo0xu5Iz5hNTHCuv2NLkDyexbaqo78Mj/bxZ4D1uovAwaR/pPm4/weJdmPAdtkZo5k7Xc1NXyKFyKMj3AAANOVRgUnSowv6fK9D/dnFuNM5L0wns2VDfg+EmXbAPt+emONb9BgsP5xp67+NKvNtDfXy9iBhVWXiI45y0LcIuX9FM8X36rtDMlT7kpq6QQ+VQkO8BABpyusCk6NkK+99ToP9XxHku45xXIPlvweMsLfDar1T4Ok4U6P+DCvq9OnT8v9MJfhsLD5OeBRFvle7r7f7xVvD40LXPk/Zdwb+JK0tfDYPtK26k8XmQvm9xP+ZLYbD6ePkixxYfmn0s/fwN9xP/76/p//9gw+/NyjC+WHUn/W/QhdzUFXKoHNoFq9LcFLet+iIMfni5P5Qn/07f03NprtxQ07jke/keAGDRvi4wKVpdYf+rC/R/QZznMs5ZBZIHU0wmVhR47VXu1/t8gf4vldzn6yPHP1Lgb5ooPCxLJ2B1r+RsQiyA7U8n4w9GJqBZ4ire7wucQwvtjzDbyt84tmtT9BMn9nsajOe3E8b1mrROR3JTV8ihcmib7QyDH48eTJG/Ftq36flV9mdWvpfvAQBKlXcr9MMaxvAwZww3xXku45y1r/DVKY6zssDE5KcKX8fhAv3/UGJ/T41MFi+UcI5WVXh4MaPPPkzK4qq4Q+l7MCm+dzLex+szFCMW2smCY9y+yH7eaCi2H/U4X9BuZeWmrpBD5dA2irlrUlE3FrU/DYMfdS6n/+5hzvXvPvlevgcAaKM1BS7Ubtcwjjshv7C9RJznLs4/ZIz15SmOU2TV4J0KX8f+Av3/XVJfcRXejaHjxturi97R0UTh4WpoZhupKsVb8Y+GwUrUBzOeey+F2VYRjrbjOYWGD0voo6k9vg+G+dm2hHYpKzd1hRwqh7btfDwVxv+AFD9/6yb83eoJfzfczoTptqKR7+V7AIDK7S5wkfZNDeP4tsA4tojz3MV50kT4YcbkbJwi+/XGVtUPF0WeN/CgpL5Ojhz3mRLiXVXhYV1OTJZ27HO+OQxWgU07ER6dzJ8O5UywF9qOCQWH6yX2cTdpj9Uc700Z4/lYeqcDuakr5FA5tC02jcmzMYceneIYF3PiFre5zNtLXb6X7wEAanMoNPsQsgWfFhjHPnGeqzhvzBjjLPu4FlnVtL3BwsP/ldDPMyPHe3/Kv6+78JB1u//vHfyc/zc9z+JD6c4m7XzS/pxiMr80PbdHC1LxFvwX0vNzWfpvY5Fs55h/P679ODLO7SPjupWeK3vDoytMl6WFgHfD4M6gvH7ONRDzBxnFhXl6UCPdzU1dIYfKoU17ZkwuivnrySmP83jI30Yy75pcvpfvAQBq80Jox0NMLxUYxxFxnqs4Z+1xu2OG4/0SmrsVuGjhYTGTj9XppGzhWDfC9Kvu6i48ZK1+62IRbPWYmK9OJ9N5k/mlaRFg+OFwx8Jge4A8bxQ4t54dKn4sbJ8V3+83C553a0P+w+2aWHWctX3JngDtz01dIYfKoU2KOezeyGuMRekNMx7viwLn0yH5Xr4HAGiDj0I7Vld8Eha3l6M49y/OF8Lk25nLnuRW/R4ULTws5hb34dcXJ2lPznCMugsPWc9gONOzokPW+34v/LOiLk6I3wrTF6HyVuTF//50GKxQW3iY37Yp+4iFid9Dux5mdyFjLKekeDqQm7pCDpVDm7JtzGt9mOa0Wb1U4Hz6Tr6X7+twKJS7d1Ib2xrXDgDIg4tytkA/dUwAPi4wjtMdPh/FeTpxIvP3hPHNOlkrslrpj4YLD7M6MnKcV2c8Tp2Fh6dyYnE09MeSkH+L/sIDF2ddubs55O8HvXArfFytuGnGfo7m9HO15thm/TD6i2sYc/kO5KaukEPl0CbEVeDjisj/W+Rxnyh4Ti2T7+V7CV/xHgB5sOk8eL5AP3WsZjgT2rm/YlnEeTqTHvB7cRHH3F7wc/XfhgoPsz5sb8NIMemrRYyzzsLDkZx47O9ZTspbwRYn+88sso8iD6R+GBa3tceKkL339cNQ796zz+e83vWuYczlW56bukIOlUObMG67x7i90fISjl3kgbOz/Cgn38v3En5QvAdAHiwzD14o0M9HNbxfRbaVOd/h81Gcp3MljH8g1WOLPO7vBV7/xw0VHu7OeOyvh45xe5GTlzoLD3k/JO3qWU76POf1vlVCH+8WOM/KuM39agPFu0kO5IzlgGsYc/kO5KaukEPl0Drtm/DaXi/p+O8UOK/WyvfyvYSveA+APNh0HizyANO2FJUvdPh8FOfiHg/jbzl+uabJTux7Q8mvaV+Bfm/OcNzXR45xcJHjrLPw8FlOPDb2LCflvd4yVknuD9VtKzFN0ehQjXHdnTOWE65hzOU7kJu6Qg6VQ+sSV3T/HMbfYbG6pD7id9DtjBh+Kd/L9xK+4j0A8mAb8uDloKhcB3Eu7lSo7kGA60P2LcBV3X1wvECfn055zKdGCkllbHdUZ+HhTk48lod+qWMyv6WmyfwLOX28V2NcN4b8B/e5hjGXb3tu6go5VA6ty6RtgT4ruZ89E87pG0lbJ9/L9xJ+dxL+/2mapmmlN3mwPXnwoqJyLcS5mE3h3ysbF3sb+6j3Cn6+yrrlfGUY7M9a5rMG4gPUfhr621+TtqpDhYclLckTfSveL68prgdLPJcXa0XOWH4zl1e870hu6go5VA6twzcTXtcrFfT1ZBisMI95Om6N9WqY/kG18r18T8MU2TRN07pZvKeYIg9SVVQW57p8MWY8e0ruY1XBQsCfYbBNwmIV2TJp2gnpyZG/3VFSbOoqPKzLicX9Hn7X1jGZr6ugk7eFxaUa45r3mh9K83QkN3WFHCqHVm1TaMce6/K9fE+HKLJpmqYp3vfZ2Q4Vlc+Jc6/jPG6l6TsV9fVswe+quIpn1n1jY9Hiaij+vbhnxrH/r8S41FV42JUTizs9/K6tYzJfZO5ShryHR35ac2wf5oxnhVRPR3JTV8ihcmiVXs94bcs6MH75Xr6nAYpsmqZpivd9drrA+3WmhnGcKTCO0+Lc2zivDYNVesPjuFJxn68V/L6KWyM8N8VxN4fB3sjDe6j+VaCfIhOO+JC2P4b+5noYrETqWuFhb4GY9808TeY/qzm293PG84xUT4dyU1fIoXJoVb6Y8LruyvfyvXzPrB8ITdM0TfG+y14u8H6drWEcRVamvy3OvY3z6ETnu1DP6pl3pvje+jEMbsvfOjTZj/93XTqRjsf6YczffRgGWxFlHftGwfEObx8QJzCbapwUlVl4OJATj796+F1rMl+dvAc3zuv2JnQ3N3WFHCqHlm1JRhz/lO/le/meWT8QmqZpmuJ9lxV5KN75GsZRZE/4I+Lcyzi/OtJ/fHDc2hr7fynk34Y7S7udvu8h/Hvl5mg7VWCcz438zbEKYlFX4SHv86B4bzJf5mR+n1RPB3NTV8ihcmiZNme8ri/le/levgcA5lHeRVldDyMq8kCyveLcuzjvHOk7PgRvQwPvz1Nh/Iq/WdrDdJK+UOTZXuBv8iZyG0YmLJ9XFAeFB5P5Pk7m9wfoZm7qCjlUDi3L/hblFvlevgcAaIUNBS7+Pq9hHJ8VGMdmce5VnOPD6IZX08X/vanh9ylOiL+bseAQH8z37pgCz/s5fxcn+0tzxnVtJE7rFB46x2TeZJ5uaGNu6go5VA5drOczXte38r18L98DAPMo7i2Zd7vzrRrG8XPIX4m1RJx7E+f40Lgb4dHb47e16P2KhZr4nIK4z+73YfCQtAdpfOLk/O8weKDaJ2Fw6/2WjGP9lhPzT3LG8maNE5O6Cg8Hg+K9ybzJPO3T9tzUFXKoHDqrd0P3H8Qr38v3AAClu55zIXSvhjHcyxnDT+LcmzgvS9rXQ33GSf1/e/rZeqbA5GpXzjFuhW490+S5AnHZF/L3Ou4bk/nmJvN7A8hNcqgc2gVnQvZdFvK9fC/fAwBzqchDTJdV2P/S0I6HuYpzPXG+MjIR29Xjz9aFkL9NQJ4+Fh525xzjTg/PBZP55ibzu6V55CY5VA7thDMNXifL9/I9AEBrHS1wAbi1wv6fLND/y+Lcizh/MtLfvh5/ruK+vXlbJb0xp4WHzSF/D+O+MZmvTt4dRU9L88hNcqgc2gl5xfsuFGfle/keAKB02wpcAFa5h+D+Av1vF+fOx/nUSF+Hev65+iAn1nHP35VzWnhYVtOk02R+PibzeQW+FdI8cpMcKod28vM42l6T7+V7+R4AmFd3cy6GXq+w79dy+r4rzp2P8/sjfb3Y88/T+pD94LrY3i54rD4WHqK8W5+X9eycMJmvxpKQ/xBukJvkUDm0G14K7SoWy/fyfeUOdexLapa2Rl4DQB4sRd6+olXuhZ7X94UenZfzGOfjoXurphbrdE6sYzFh+ZwXHr7KOc4TPTsnTOarsTxnLL+7hjGXl5vkUDm0N999D5K2Sr6X73uU7yV8AOaaPDid53L6ulHhe/VTTt+He3RezlucR1f7H5+D754tBT67bT2ns1Y6flRyX+fCfD10zGS+Go/njOWyaxhzeblJDpVDO+PpAu//Mflevu9RvpfwAZhr8uB04iqWByH7VsQq9hFcGfJX2Czv0Xk5T3EefUDvyTn57vkhdPeW7zoLD3m3xh/o2XlhMl+N3Tlj+cA1jLm83CSHyqGdsTTk72t+s6axxLsX4h0Om+R7+V7CV7wHQB5sSx68XNPF5rADobltZJoyD3E+MnL8j2uK7aaG39s3c+L8Z9LWKTz8f9tzYvVSzz73JvPVyPtuO+gaxlxebuoMOVQOjb4t8P1R9fMp4o8I19O+tsr38r2Er3gPgDzYljyYt6LhowrepzM5fe7s4bnZ9zjvHzn2pZriejDtb09D7+t/Qv5qsWdbfm7WWXhYktPfmZ597k3mq/FCmM99n13DyE19I4fKoQveKfD98WfF3yELz12YZSsW+V6+l/CD4j0A8mCVefCXjP5+q6C/P0Iz+783ra9xjj9MPBi5qF9SQzzXphO5v5O2rIH3M/af91C8LjwMsc7CQ3Ql9HDvUpP5WifzpzLG8YdrGHP5Oc9NXSGHyqHDthT8DrlSUf8LWxLFH5NmKQjL9/I9AEClXs65SNteYl87c/p6QZw7FednknZv6Lhxn9C6nlfweWhuv8tYkLkW6r+bog+Fh2Oh3h+xmmQyX42sbcg+kdKZ49zUFXKoHDpO3rMPFto7Jfe7d+jY78n38j0AQFsnUVmrn06V2Ne5jH5+DYtbFRdXcZ1I2k/pZCq2X9LJ02ZxLi3OC55O2p2h434TBg/JrcPJoX6beG+v5Exsznbo81934eGxkP3w5qU9+m41ma/GzxnjOCylz72u5qa2X8PIoXJo1Z4Lxe/iOV5Sn/vCP3fo3FrEd4V8L98DAFTuaMbFUVy9Vsat7utD9t6mi7kIi5P1v0K9K3XmMc4L4oO8bg8dM66WWl1D/Jank/qFfq818B5eyjnPPuzYZ7/uwkOU9WC6HT36XjWZL9+SjO+3B6G+1dW0U1dzU1euYeRQObTq7/efQ/EC/vmwuB/mXi8xJ8v38j0AQC2+y7hQe7eE45/MOP7VRRw3Xrj/WfBC/4w4L9rmkXjHVYJrK4xXvGNhV1q4+H3k9TxX4/sWJwmf5pxfb3Twc99E4eHVjD6P9eg7tS2T+TL23d7bksn8tlD/Xsh0Q1dzU9euYeRQObRKu8J0z9GIq+VfDNPdUfr0mGvxxW7BIt/L9wAAtdgYHr3VfLjdT//7rJ4Kk1dPxFVyGyqaxLRxX/2uxjl6PGQ/CLfO9leo5+GD0bqQvdItvp/7Ovq5b6LwsDbjPL3Qo+/UqzVM5pcU+KxsKKGfgy2ZzD9fQ3GE7ulyburaNYwcKodW7cwMn7v4A1jcfvJA0jaNfAbj3TdxNfmbSbs+5m9vhsVvrSXfy/cAALXJulXy2zBbsXT5hIvlhbZ7kWO+EKZfpbNEnKcWt+P5vSXFkdj+V9N7tTOnKHQjaU90+DPfROEh+iRMLnz1xZ2cc/hACX2sLPBZ2VNCP8dy+vi9ppieb/H3Os3oem7q4jWMHCqHVinverbM9nco55kS8r18DwBQq8MZF2yz3Faa9WCyMvZfvzzDxfo+cZ5KXOV1s0XFkdg2Vvz+LE2LMFljOBW6v+dmU4WHrNuht/bge3R9gXP4lRL62V2gn7crnEQPPyixjsn0pCLgW1L3XOpDburqNYwcKodWnUNvVfxZjc+aela+l+8BALpqf3pRO+6i6WIodntpvE3184wL5gMljXWW22s/EOepiiM/tqw48kXF78szYbBf8qT+fylpwjfPhYfo2oR+j/cgrq8XOI+/LKGftwr08/Mi+1gR8h+mWcdt7JszvudWB+ZNX3JTl69h5FA5tEpxC5jfKvqs3k7PU/levgcA6LQtYfKKtrga5lh6kTdqVRisMJm0YiIes8xVQTtnuGi/KM6FxAvk71pWHKly1WF8ZkDWA/XupZPiZT36nDdZeHh2Qr8/djym8WF4dwqeywcX0c/aUHxlYlzhumTGPj4r2MevoZz9did5OzS7hRbt0afc1PVrGDlUDq1SzEFXS/6cxi15ytqqSb6X7wEAGheLxieS9iBMvnUy7tF+KW3fh8kP0XqQHmtFBeOcduXaZXHOFVf9X2thcaSKvTZj8eSLnIJDXOm4voef8SYLDyFMfohhV277X5ZO3uPt7PHhaldmOKfjirz4I93e9FzcOOHzGPvZlbRDSfswDFYOTtNPXO36bhismIsrDh8f00/8/+1Jx3Mx4ztpUrubtLNhsFXX3nS8a0qK9Y0wfvWkVXjzpY+5qevXMHKoHFq119P8spjPaHyv4o9Hs275It/L9wAArRZXV7yXtD9nuFD9K/3bDRWP8UA6ob1T4AL0vDjneraFxZGy9vOMnkzaO2GwemhSX3H12qthcJdDXzVdeHg6TF451gUvVnCO3xrTz0cV9HO/pn6eq/A8eU16njt9zU1du4aRQ+XQuq1Nr3P/CrNdHy/2xyP5Xr4HAOiMuFIkrlyJK8Dj1ix304vC++n//jn9b8fTf9vGyf574jx34i3ScXXQx2HyHqrxboZraRHmSSGrzfkJE801QkPq4phzJK7MWyI0zIE2XMPIoXJoWyxJPxPxLtP4g1csgN8bukaOxfq4fVO822OPPCHfAwDQnQv94YvAA0IyVz4Mk1ciXU0nePHW4hVC1Yi4Gm7cnrHvCA1hUAQc9/ndJjS4hpFDkUOR7wEA6L7N4dE94U0w58uRMLhTIa7QiisW4x6iW4SlVV4J4/dTXSc0c2/cAzAVpXANI4cihyLfAwDQE68OXQReEA5opatjJm0fC8tc2zXmnIgPaHT7PK5hQA5FvgcAoAfiRd/N4NZLaLvHwvgH0e0Qmrm0Mvz7YZjxYd4bhAbXMCCHIt8DANAPbw5dCF4WDmi13eHfhYdYuLLV1fw5M3IexO1CPJwb1zAghyLfAwDQE3G10cP0QvB2GKxKAtrtrfDv4sMZYZkrh8ecA0eEBdcwIIci3wMA0A+bwuCWy4ULwX1CAp3xicnc3IoPwrw78t6/Jiy4hgE5FPkeAIB+2Doy6X1LSKBT4j7PX4xM6O4nbbvQ9Nq6pN0aed99f+MaBuRQ5HsAAHpib9LuDF0Ivisk0EnLk/ZV+PcDzGwd0U+rk/bDyPv9urDgGgbkUOR7AAC6L64yOjF0ERj3iT0mLNBpsfjw2cgE7+ekrRWaXlmZtG9G3ucXhQXXMCCHIt8DANAPXw5dBN5M2n+EBHrj3MhE73rS1ghLbybyV4fe27jqeLew4BoG5FDkewAA+iM+4Cg+9Oh4GKw0AvrljfDv4oPVg90Wb50fXoEXi5abhQXXMCCHIt8DANAvS4NVRNB3u8KjD3KMt/+vF5ZOiu/bjaH38lLSVgkLrmFADkW+BwAAoJvWhUe3mLiVtKeEpVOeSt+3+P7F1cYvCQmAHIp8DwAAQD8cTdrf4Z/ig60mumFFGOxzG9+3eAv9RiEBkEOR7wEAAOiXx5J2PmlHhKJTPkjaMWEAkEOR7wEAAAAAAAAAAAAAAICyPJ20rcIAAAAAAADN25K0L8LgQRqXWzrGTWGwV9gnSbsWBg+XuZ+0h0m7l7Tf07G/m7Qdxg8AAAAAQFc9kbQLYVC0X2htKt4vCYOC9/cjYyzSfkvaG0lbafwAAAAAAHRBfKr66TBY9T1aNG5L8f5QGKxGH1fYfhAGq9cvJe1K0n4Mk4vgf4Rmnh7f9fEDAAAAAFCTNUk7EQbF40nF4qaL96vCoKg9bmyxGH40aUvH/N26pL2ZtNsT/jbeYbDS+AEAAAAAaItY9H07aXdD/nYtTRbvNyTt5wnjuhKKFa/Xh8Gq9nHH+CFpa40fAAAAAIAmLUvaa0n7KxTfa72p4n18oOufE8Z0acpjLU/aVxOOFYvra40fAAAAAIAmvBQm77netuJ9XG1+a8J4boRBMXtaq8Pgoa/jjvndjMfs6/gBAAAAAKjYwaTdDP887PR80t4Lk/dhb7p4vyJp1zPGs3URx96Rcdxzxg8AAAAAQNWeSNqPYVDY/Txpu5K2ZOTfPB/aV7w/mzGWj0s4/sWM4x8yfgAAAAAAqhSL9e+HQRE/y6StWJoo3u/PGMfDpG0soY9NGX3cTtqaOR4/AAAAAAAtcSG0o3gft5vJ2pP/sxL7+jKjn7NzOn4AAAAAAFrkTGhH8f7tnHHsK7Gvgzl9bZnD8QMAAAAA0CIfheaL9yuTdidjDPfCv/frX4ylSbuf0d+VORs/AAAAAAAt04bi/es5Y7hQQZ952wVtnqPxAwAAAADQMm0o3v+SM4bnK+jzxZw+T87R+AEAAAAAaJmmi/c7cvqPbWMF/W7K6TNug7NkDsYPAAAAAEALNV28fz+n/9sV9n03p+8DczB+AAAAAABaqOni/U8N9n85p+/zczB+AAAAAABaqMni/fqQv+XM+xX2/2FO33d7Pn4AAAAAAFqqyeL9oZBf/D5UYf/PFeh/e4/HDwAAAABASzVZvD8d8ovPz1bY/54C/b/S4/EDAAAAANBSTRbvvw75xefVFfa/ukD/F3o8fgAAAAAAWqrJ4v39nL4f1vD6H+aM4WaPxw8AAAAAQEs1VbxfE/JXjd+u4fXfCfkF+CU9HD8AAAAAAC3WVPF+d8gvfn9Tw+v/tsA4tvRw/AAAAAAAtFhTxftDIb/ofKWG1/9pgXHs6+H4AQAAAABosaaK9y+Edjxs9VKBcRzp4fgBAAAAAGixpor3ef3Gdq6G1/9JgXEc7+H4AQAAAABosaaK92dDftH5TA2v/+MC4zjdw/EDAAAAANBiTRXvz4f8ovOpGl7/mTDbCvqujx8AAAAAgBZrqnh/IeQXnT9qweuP7XwPxw8AAAAAQIs1Vbwv8qDVthS/L/Rw/AAAAAAAtFhTxfvLodvF766PHwAAAACAFmuqeH8xdLv43fXxAwAAAADQYm1+YG2bi99dHz8AAAAAAC3WVPH+bOhO8ftcD8cPAAAAAECLNVW8Px3yi85nanj9ZwqM43QPxw8AAAAAQIs1Vbx/OeQXnc/W8PqLrKB/u4fjBwAAAACgxZoq3h8K+UXn8zW8/iJ71x/p4fgBAAAAAGixpor3e0J+0flSDa//UoFx7O3h+AEAAAAAaLGmivcbQn7R+fMaXv9nBcaxuYfjBwAAAACgxZoq3i9J2sOcvm/V8Pp/zhnDw3SsfRs/AAAAAAAt1lTxPrqe0/e9Gl7/vZwx/NTj8QMAAAAA0FJNFu+LPGx1WYX9Lw2Le+hs18cPAAAAAEBLNVm8Pxryi89bK+z/yQL9v9zj8QMAAAAA0FJNFu+3hfzi8/4K+99foP/tPR4/AAAAAAAt1WTxPrqb0//rFfb9Wk7fd+dg/AAAAAAAtFDTxfsLobk92/P6vjAH4wcAAAAAoIWaLt4/l9P/jQr7/imn78NzMH4AAAAAAFqo6eL9qqQ9yOj/YdJWVNDvypzXHce0fA7GDwAAAABACzVdvA9pH3U/9PVAKG+7m66PHwAAAACAlmlD8X53zhg+qqDPMzl97pyj8QMAAAAA0DJtKN5Hv2SM4bcK+vsjlLtPfdfHDwAAAABAi7SleP9yzji2l9jXzpy+XpjD8QMAAAAA0CJtKd4vS9qtjHGcKrGvcxn9/Jq0JXM4fgAAAAAAWiRv7/TLNY7laMY47iVtTQl9rE/aw4x+Ds/x+AEAAAAAaIkLoT3F++i7jLG8W8LxT2Yc/6rxAwAAAADQBj+E7OL9lzWPZ2PS7kwYy/30v8/qqTB51frtpG0wfgAAAAAAmvZ4yC7cLxSc695DfU/GeL6dcTzLk3Y947i7jR8AAAAAgDY4G/KL97Eda2BshzPG88kMx7sS6t0nvuvjBwAAAACgAW+HYoX72OI2MM80MMb9YfCg13Fjupi0lQWOsTppn4fJD5E9YPwAAAAAADQlbtWyLWmvJu3HULxwP9xiETmu8n6ixnFvSdrNCeO5FQZ3BawY83erkvZK0v6Y8LfxmFuNHwAAAACAup1K2p9hsHJ+0oNOZ23xeH8n7a8wWEVepVjcPpG0BxljiXvJX0rb9xmv90F6rBU1vg9dHz8AAAAAACW6EMot2E9qX9b0ejYk7b0w+EFi2jH+lf7thgbfj66PHwAAAAAAMu1M2vEwWKket5C5m7T7aYv/++f0vx1P/63xAwAAAECJ/h8QbFD2mhNbAAAAAvd0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bXN1Yj48bWk+JiN4Mzk0OyYjeDIxMTM7PC9taT48bW4+MjwvbW4+PC9tc3ViPjxtbz49PC9tbz48bWZyYWM+PG1zdWI+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPkY8L21pPjxtaT5kaDwvbWk+PC9tc3ViPjxtc3ViPjxtaSBtYXRodmFyaWFudD0ibm9ybWFsIj5rPC9taT48bW4+MjwvbW4+PC9tc3ViPjwvbWZyYWM+PG1vPj08L21vPjxtZnJhYz48bWkgbWF0aHZhcmlhbnQ9Im5vcm1hbCI+UDwvbWk+PG1zdWI+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPms8L21pPjxtbj4yPC9tbj48L21zdWI+PC9tZnJhYz48bW8+PTwvbW8+PG1mcmFjPjxtaT5tZzwvbWk+PG1zdWI+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPms8L21pPjxtbj4yPC9tbj48L21zdWI+PC9tZnJhYz48bXNwYWNlIGxpbmVicmVhaz0ibmV3bGluZSIvPjxtbz49PC9tbz48bWZyYWM+PG1yb3c+PG1uPjA8L21uPjxtbz4sPC9tbz48bW4+MzwvbW4+PG1vPi48L21vPjxtbj45PC9tbj48bW8+LDwvbW8+PG1uPjg8L21uPjwvbXJvdz48bW4+MTAwPC9tbj48L21mcmFjPjxtbz49PC9tbz48bW4+MDwvbW4+PG1vPiw8L21vPjxtbj4wMjk0PC9tbj48bW8+KDwvbW8+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPm08L21pPjxtbz4pPC9tbz48bW8+PTwvbW8+PG1uPjI8L21uPjxtbz4sPC9tbz48bW4+OTQ8L21uPjxtbz4oPC9tbz48bWk+Y208L21pPjxtbz4pPC9tbz48L21hdGg+9GAiEQAAAABJRU5ErkJggg==" style="width: 252.00px; height: 100.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="Δℓ subscript 2 equals straight F subscript dh over straight k subscript 2 equals straight P over straight k subscript 2 equals mg over straight k subscript 2 equals fraction numerator 0 comma 3.9 comma 8 over denominator 100 end fraction equals 0 comma 0294 left parenthesis straight m right parenthesis equals 2 comma 94 left parenthesis cm right parenthesis"&gt; Độ giãn tổng cộng của hai lò xo là: &amp;#x394;&amp;#x2113; = &amp;#x394;&amp;#x2113; 1 + &amp;#x394;&amp;#x2113; 2 = 1 , 96 + 2 , 94 = 4 , 9 ( cm ) " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABdQAAABjCAYAAACSRoKXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAA7cS97ugAAJ/ZJREFUeNrtnQ+kF9n7xx/XlSSRJEkiyZUkkiRJJLmSxEpWViJXspJYK8laS5JkJZIk17UkK0kiayVJJNdaSSRJki9JkiT2N8/vcz6aO3fmzMxn/p4zrxfH7/vb7ufMzDnPe845zzznOSLNsDco/wXlvkAcQ6aN/gjKu6B8DsqnoPwVlDGax0mweWwe0C/6BcjOjKAcDco+miJRd6NBOROUm0H5n9HeF6O/t0G5bv591Py96ywJys6gHAnKFfN8r4OyB3NwisVB2W/68G5Q3ods97MZR+4E5VJQdgdlLk3WOf2PmnlXv9yhy72C/mU8BxBseXAehV6ga2mOKRwOypvIIBMtt2gmbB6bB0C/6Bc85UBQXhn7+ZPmmMKCoJyWntPxvxxF//6U+b0L6AeVHeaebxunQvh5vgblXlAuBmUNZuEEO02f/ZezqFNJP9iuogk7of/5MfMKHOr+QP92R89zgnKOdQAkoB/LnwflVzPng4ysj7wQrtIk/8/qoEzGvDD7XyU/Rv77YZoMm8fmAdAv+gWP+C4ozyK2g0P9G0djtPXJvJeOBeUH6UX0n5dkx+VH87dtRCOXNfpco5a/xty7OmF+D8q2oAxjDs6wIigPJb8jPa7oB5Q56N9L/fe5FnPfONT9gf7thp41kv61uU/dsUokMkRZZdaMaiNPzNoSMvCHTI8wWdLxNjkSs3DQdloX+TuN7Phs/v0xpoTNY/MA6Bf9ggdslfgPNDjUe8wLyt8x76JfgjLb8jt9V11MaFdNYdWW6LYdZsGd5ES9EZQtmIGTfB8aB8oqL6TnpEf/fug/zN6E+8Wh7gf0r/96nhmUC5H1Ac50SGJhUP4J6YAArBQWS3zEyemOtscss1CMRt9stvzmSsjgeDlh89g8APpFv+Aq+hHmrtidZ113qC+S6VH7n1J0F2WnTE+ZokWjx5Y3+Gx6X08sfX+54fuDYhySch3p0ZQHa9C/0/qPm3N9EByuPs+pu96/vut5WVD+Dd3TBcweMjDbvAPCu8Fn0izxnEp4iepLoWvb9zR/2KNIOzwy/93G/tDfk2sIm8fmAdAv+gXXWCm9qOMsjrMuO9RVXy9j2uSHAeoaTWhf3W5b966bpWKPSL9vbATc5Tupzpkett3F6N85/Sfxt6Wvcai7T9f713c9ayq296F7OYvJQw40jd/1nGvMzqELaduBCz91qC108vciZvEwO8NvT4Z+Q/5IbB6bB0C/6BdcQaOXxiWf06yrDvUZMv0jlpYHBer8NaGNNWJubk3PNSbT88aGP1aOIRPnGZH4CErdjaJR6+tl6gdWHRs0hctu6e1q+pjj/fAQ/Tul/ySOpPQzDnW36Xr/+q7nscg9nMPkYQCGZepO6Bfi90fz3BxMeZG+km5sB9etOK8jz/44x4tvwvzmMyaFzWPzAOgX/YIDaI5EPUxSU/98kd6hZJo6aVzi0yrhUO8tSOPaY2eBOvWd9byhdtbtu39Y+lmdACuQivOojU3GjBl50rNoejE9aO+TZHOqH0L/rde/jRFJz7OPQ91d6F+/9Xwicu0JTB4KMCxT07/oGhSnuuFJhgnR3g44Jt7I9IN18mxn6OfdeohJYfPYPAD6Rb/QcvQwSXWMqZNNo5iiqX/2CQ71KJskeTt3UcYsbb2noufRw9IeWa6r6V/mIhUv+FGmH1g96O4k3dHyPMNY/Eb82gHlm/5tqFPwnwx9jEPdTehfv/UcjZK/K+xGheJoWtVwLv6X0s5DtGtfTGWJMJj0uA2WxDgm3pnJYlZWhn77K1rD5rF5APSLfqHlrJVeigfbgtsWidpFh3qSA+JyCXUPS3I6K9X87JKfZanE543tl+sswL1BdyG8DfXtzRLq1A+4LzKMx/vQfyv1n8ZvoetrIAOHkvoF/euvno9Frqfj/DxMHkpiccS2HzcwPrWK25I9F94mD59ftzq/innWrTnrCW8XGkFn2Dw2D4B+0S94wE3Bod5nt6UtdpV0jQuWaxwv8Vl0l8tby7X0YNohzN8bwtHpOoaUtetAP85+SRmLb6D/1uk/jfWh62rqr1VB+Z/gUPcF+tdfPUd3Fur7eTUmDyWzI2JnN7vaEMsl3+FTtz17fp1M/hvznD/nrGdxaDLJpAKbx+bBxjrpOTOjhfy06Bf9Qhu5JjjU+9y3tMX8kq6xw3KN99KLNC5K3C6XcLlX0nUYj9tDeOwYLbnuX1PG4k/ov1X6T0MjDcPpfPqOPxzqfkD/+qvnDTL9A+dRTB4q4mLE1k50sRGihzC8y+Cg8CWSbaZZMJQRRXEj9PtVaAubx+bBwt4EOxuladAv+oUWYjussksO9RFLO3wo8Tq6Tdx2GOxYwfrT0nRo9HJXtoZ3ZTxeG3q2WxXUrzaVFqU+gv5bof8shKNqw2es4FD3A/rXTz3rezj6oZwzkqBKNJ96dKfjpq41QPhUZxX7jgzOifOePP+fMc+m+aXyboHcH/r9OXSFzWPzwAIe/aJf8Agc6j2OSn0pLR5arvWgQL2awuWepW59r65nPPZuPA5HkK+s6Bo3Usbi7ei/cf1nYTR0rY/SO2ehDw5196F//dXznZjxnN3PUDX7Y9amncmnfjRhUXQ3ZUKkEQjzHX/2UwmLiHU569kk3yIyngZlFprC5rF5YAGPftEveAQO9R62XPJXSr7WlZT32qIB6z2bUu9vjMdejseTUn2O0wMptvUd+m9c/2lEI1yj0bM41N2G/vVXzz+KvwFF0H6eRmzvQhceWiNUXkYefKP5tywRfy7nx/leyjkYQrdP9tMNaA6s5WgJm8fmgQU8+kW/4Bk41Ht8lvp2whxMeaftH6DObSl1ak7dYcZj78bjWaHnqnL3weYU+9qN/hvVfxbC52XEpQbCoe429K+fel4ovTQ10aCbJZg81MRYjF2v8f2ho6caP478+4sU4esLd4aDz60OhU8xz3M/Zz0bQ44Jjfbbio6weWweWMCjX/QLHoJDXWSB1BvZvTPlehM569Ptt69T6tzJeOzleLw9Ydwsm1kp9rUD/Tem/7xaeGeeOQoOdT/edV3vX9/0PBFT5zgmDzWiwRgfUtbq3hHNn7gv8u9HJT3i76Bjz6zbnF7FPIfmD8vzBU8dO59DjokdaAibx+aBBTz6Rb/gKTjU06O7y44YXZdyvWc56zudUt8jxmNvx2MdSzTdStUHhQ2l2Nhm9N+Y/tNYHHGG7Er4OxzqbkL/+qvntQl1bsDsoWYuxNjhHl8fdk3kQV+bSVAYjWT5lCL+p449952CL0398hLOPfnJvJABm8fmgQU8+kW/4Cs41HsOyTrTSqVF+36NeQ8msdz8va2+XYzHjMclYLOxGei/Ef1n4W/JFtmKQ91N6F9/9fxXTH0vMXlogC1S/cff1hA9GCEpD+vvkh7x58qE80TC/d/O+Hs9IXky9Ds90GMtusHmsXlgAY9+0S94Dg715Pd2lYd/pb3PVmasZyKlnleMx4zHJTAs9UVUo//s+k/jSORdMMfytzjU3YP+9VfPaxLqOuuhHc+T3plS+kFId9TpjosvpujO3X+DctXY+4oK70PTBf0svXQmaTnCdXfYATMHeyK9wKYv5v/q788EZWTA+9APMNuMrd4PtccnM95elp6Du06GJD64ba9vxqiHFoSjVL6Yzo5jeQbx33PgmTcl3HtS/rAwGvV4KtJmD0w7AjaPzQMLePSLfsF3cKinL8CvVHDNzynX3J6hjmUZ3ou/MB4zHpeALQrzEvpvRP9pjESuk5aWB4e6W9C/fut5vMJ3Q1vQg7RvSvouu2iZlPIcueoo3h1zH6OWede4WbNmuddzkn0H18ygHJP0M3HC697FNfbXtYS+8Ipo1NuFlL+/naGj2nyCqzpe3iTc9z7L79SoD8f89rSUu8UOsHlsngU8C3j0i36hzeBQ70VG/VdzO3xIueZ3GepIy53+nwweIcV4DGE2iJ8Hkrqs/zQn0T+h+s5k+A0OdXegf/3Ws0Zsxzls1eE77EEfLQ3KrZjneyi9D7QHzPh92MxRk9J+/ltg3acBThctfRc3Tzgi2R3p4aKpe2am3I+Oo68HqPttjfO8Iwn3sNGXl8ewadDww6VtidicoZMmWvzMNyXftnl1ZsR99XkuHO6AzWPzwAIe/aJf6B441Hs5xm3vlSpylr5LuWZa9NWQxUESflfELdRtW6tfSC8KSdNvrWM8BsNuSd5dNYT+a9d/Gr+F6nqSwZkjgkPdJehfv/X8oyRHZrvOmJlrhJ9L03ousfxmkZmbJOWoz3r+1GZzrTeSL42o6uu65Hd2Z9nJpXVfLFi3zvVm19B3SevwcV9eHgdk+peQLDyV9IMU6txKMDOHGOPu94MRXXjBoYK4KtO/KKmYNUJyhgA2j80DC3j0i36he+BQ7+WqTHuvlB0VluYMT1sgbs+wyArv+hl0a7UuYo/meNcxHvvJ2YS2PI3+G9G/jfWRe19V8J5wqLcL+td/Pd+X+tLV1MklmX7GS9YI8y0pbXzA8tsNGfooaZ4w29IfeUs0LZMGTj0sqe6TNfTfcMIc8ovU49CvnMkBJ4sHM3TQqRqf47Qx2k2Wv1km079s9ctB45zYI8lbRLTTdWsUeWexeWweWMCjX/QLXQaHem8hkPZeKTtvadEF+KUM96zbzDXq60YJi7WXDo5jjMflcTfBMbUE/Teif9uzPJf0g97z3BMO9XbZKv3rt54XWOoZc7RP1BEbTfHyYoB1zaTYP5QkfVzSHVaab/yiWSNmiTYflXhnuv7/GmSgDv5+oMGQWQfeSqnzQeie9NnDQWJPTb36wSwcOKVrRE0L+k9K3bpWnFNDXybtFPjB9RfHRhn8tHXtsLS8Tx+knq8OIzL1q4cOGOfMgkCNdJa533spE35bjiGN7pvPeCzYPDYPLODRL/oFwKHeI20L8JmSr5e2AN9b8H77B5J+lHKin/rlV8bjzjFL4qPSLqL/xvSfxAWZmo+4jHvCod4e6F//9bxHsqUhcYk/Y9Zpyweo50RKO9/KUdfPKXVpTvPw2V2XJFuu8rT0LWvNuu5ZqC0OZKhXnfZXUur+sYG+7Jfrrr80onlZD+X8/akME+ijNT2LfkH6t8SJv0b7aU7d7dKOHH//k3IXNk2Vm9g8Ng8s4NEv+mU8dX48xaGe3g79aKo67XeP5bfLB7CzO2bRpou5cPSTRlhtMu/MyYx1nWc87hRxh/xpNNwi9N+I/pMYlakp4paWdE91OFwZz/3uX/ScnXFLPS6+c+Oc4IPuwFkn6el8sqbFHBb7AaP9SGwNlspz8OkMmbqLJC6X+iP5Fji1OkfdQylrzr9q6M+kDwafXV63Lo08zHvJn+dwiaTnVHxZ83NprqOTZmB6bzopy0CmwrhrHC5bW9ixTBiw+a7ZfNdgAY9+0S/jKQ5199iToa+21Wi/uyy/3Z3DvjRiayTHfW0X+86ZfvmZ8bgz/CXxux/QfzP6j0MjHsNRuWMl3hMO9ebHc9f7Fz1nJ+msqK8O9sOGmOd4WLDOtF3Km3LUdSelrqcy2C7hwxnsT59j1QB1/5Cypqx6HXlAsueId4bTUs7hMNcydPyeBp9zaYqDQiNrVjjgjGDCgM13zea7Bgt49It+GU9xqLuHRhWlpUd5UOL10j66bbX89veMtnVswHubJ9kO4VrT8j5lPC7Ospj2eyb+HY7tkv7T5kS3Sx5Tcag3P5673r/oOft9J9Xx3rE+0PXNE4lPpVKEtJQqeZzUVy31vJP8u0D6LMzwrtg1YN2a0tQWVLah4n7dZbn2cRdfFrMiL4sih8NszNDxDxt81r8t9+VSzh4mDNh812y+a7CAR7/ol/EUh7qbZEkn9X0J18ny/rJFRf2Z4fe/F7xHXbSlpbOaZDz2nnMx7bcR/Teqf5udqxNoQcljKg71ZsdzH/oXPWdjc0vXNINwKOYZXpdQ7wpJdig/yVmXLSf5lYL3+dZS9+2CddsOKN1dcb9us1z7mosviiORh7hasL7HGV4IGxp4Ttu2Hc03uxgHQGccANi8ezbfNVjAo1/0y3iKQ91NNDI7bTtxkaglZWbKYqifi7LIu0/vsYyDmW0L1zbsBGI8rhYdq6I5Zk+i/8b1H+2j8D3vKnBvONTbN5770r/oudiYpeWGQ22v0ekvYp7hXEn1xznrNVVd3oNOq3So37DU/UfBum2R9Scq7ttFlmu/cfFFEU14v7ZgffszDBR1R9bpguC1lL+dFQeAmw4AbN49m+8aLODRL/plPMWh7i5jGfpM32ULB6hbIwvvZqj/cUo9n1J+f6bE9jgj9W2bZzxuFxMyPUJyGP03rv8w4d1w4xWNqTjUmxvPfelf9JwNW1T9VYfaPSmKeVeJ11gvvQPSdZw6JIMFEVTpUJ+Q6hzql8R+6GmVzEyxd6dSmY5Gbv5RCXXqJOlthhfD0hqf81TKC9D3iR1g89i8W7CAR7/oF1wCh/p0sqRU0Q9nWzLWp9u9NWrovXyLWLPVfTmlvrSo8e0ltsXiDNdb3tJ+ZDwenGgaAx1rF6H/Vui/T3jX36ugzCn43F10uLYZ+rdbelbGpToHb50kPcfClt1nlQ51m9O7qEP9vKXuiYrbbCjF3te69HKIfhHbW1K9J6T6vIxZWZ4yid8u0CWweWzeBVjAo1/0Cy6BQ306Gul0T7JFJGouTE17Es5rqweLabopjY7TiMVw2gzdgn5MBs/rOpThnmaW3B53Uq73I+OxV6j9PpWp551sQP+t0H+fEZnqyNtcwnPjUG8P9G+39NznujQXeVwmcal2PrfwPqt0qNsOTy3qUD8nzeYx/2K5/g5XjHRl5MZfSXnh9QskPRJFt5rOreE5bbmHbjHWdgpsHpsvG1+2l/6JftEvQAFwqCcvwtMcyXnLM/M+PJ7yd7ZzFmak/PZLBW2Rtm2+6AKO8bhd/C7VfABH/8X1L2b+FM7bfLbieTEO9Xqhf7ul5zC3LPVccKStV0vyLoC24aNDvY55iC3t4B5XXgrRMP+fS65/PMNLpOo8sOst11bnyTLG206BzWPzZcMCHv2iXwAc6mmckPSPdmlFf6/poGaZOh+mLNJtpDnUP1TQBitSrln0ICrG4/YQTc/2C/pvlf6V30J//0TK25GCQ70d0L/d0nMY2wGn5xxp4+/FncAiHOqDYTvsd58LRqp5m8Jh9vq/y468WyPZck1VmXT+gdRz2BJg89h8N2EBj37RLwAO9SxoOqfxARbi743+l4TqWpTym5Mp95KW8uVDRW2Qlie2yPuV8bgdaCTlOwcdOF3Sf/jjvd7P6hrmxTjU64P+7Zae84yFrryPk5y9N1t4rzjUB8PmUD/sgpFGt5Wcr+g6WXJN7a/o2tss19SJ3jzG206BzWPzVcACHv2iXwAc6nnQj4H7zGJcD1b+KL2PhLow1y2wL02b/WbeC3FO5rR8q6sy3IfNEfCxomd/mHLfCxiPndaLRltOlrjgR//l61/TVjwP/e3xmubFONTrgf7t5niedSx0xaF+VXCoK111qLfeTlXIryI3PVLRtfZkmDhONjBpP8J42ymweWy+KljAo1/0C4BDvW6elfCOem+po6qDv66lvF+LHJrHeNw81yKOjyGk2jr9Xwj97cMa58U41OuB/u3meJ51LHTFoX4z4f7vtfBecagPhs2hfrrtBho9rf52zY6QuLKp5OtuslzrBRO8zoHNY/NVwQIe/aJfABzqdbI15f10IGM9aYerVcGllGtuZTx2Vi+nQ89wV8rL2Qzl6v9zi22fHQ3FoX+7OZ6H+UvcP5Q0aX7yroX3ikN9MGwO9f1tN9BHJU5es/BThhfs7ZpE2NVT5rsONg+usTehL0fRL/oFaCE41OvjrtgP9pxRQp9pqcIhel6qc6gzHjfH4VC7PA7KHJqktfrH4eo39G83x/MwNyx1XnSkXR5L8mGubQsywqE+GB9cXfuuj9zs0xquqXlfv2R4ya4o6Xojlmv8y3u7c2Dz4CIs4NEv+gWXwKFeD+tS3kt50kOl5W1dV8H9H5fqUr4wHjfD96E20dQF82mSVusfh6vf0L/dHM/DXJXqHLx1YQs0GmnZveJQH4xPlut/59KC52BN102LSCnzi9lZyzV28u7u/CIfmwcXYAGPftEvuKxVHOrV8EDs6aGGc9S1PeUdV8X756BUdygp43H9jIba43VQFtEkrdc/Dle/oX+7OZ6HsTlhrzrSNjctz7C7ZfeKQ30wbMFrrZ1fLZbeNolwDqIZNV17JMNL9ksJE2ndApJ0yNI/BevWl9r3LelLX/JE3sTmsXlgAY9+0S/jaevH0zRwqFdP2qHJO3LWNyvyjo2WHyt4BltKrTZu5WY8TmajfIswexuUZUjUCf377HBlPMeh3tXxPMwPlnpvONI+tgPM2xZlj0N9sPVvHbvAS+dU5EZ/rfn6dzO8aH8peI0dlrp3Fax73NQzLoN/McQBUK8DAJv3x+a7Bgt49It+GU9xqEOfudLLp5rUxhMD1vuo5kWrbffPa8ZjZ1gtvY/c2g76UXgNEnVG/zjUcajjUPdzPO8zaqn7gSNtZHMk69jTpo/vONTzMzPlXdHG4Ir/j+p7J1OjQBbXfA+jGV60/5NiEYjjCfUWzbt7okGnDhMGbB6b7x5dX8CjX/TLeIpDHbK17yuzQC/6rih7l0wcly3Xu8Z47ARLpBeRrm2gEeobkaez+q9zTL3DeO7MeN7W/kXP2Zhvqf+D4+vgunJs53Ho4lAfbB5h00ArOSjt+EL4PMMgcqhA/Ulb54vk3d0XqucSDgBnJgzYvF823zW6voBHv+iX8RSHOvTYb2lbjUYsEh1sS2+lHzJnlvwsf0r5B7AxHteHOmpehuyjyjbQA2w5R6Ra/dc5puJQx6EO9en5rWVcd4E1KRqpMtJ+nWm/VRn/Hod6fraJe8EV8iRyo2sbuo/DGQaRZyULr0je3XBn38YB4NSEAZv3y+a7RtcX8OgX/TKe4lAHkfVi38JfRpTWQ6nvYNIn4l7OTBzqPTRq8p/Q8++p8FobpN0fWXzSf11jKg51HOqM5/Xp+aq4dfh3HO+kujzztnFOD4TVlDxZAwpwqOfnO8u1j7fRGLdEbvJ+g/cyOygfMwwkgwgk6YvfmQIvvY+hNpuFA8CZCQM275/Nd40uL+DRL/plPMWhDr1DHt9a2vVASdc5UOFiMIye5ZB0COq/jMetRh0L4XNFDlV4LR13nxtbmY/+K9d/XWMqDnUc6ozn9el5zHItV8auSyk60XNXyk53dVPy7xTGoZ6fQ5Zrb2mjMd6O3OTuhu/ndIaB5N4A9SYZ88oB6hoJDRgaTTOPccApsHls3nW6vIBHv+gX3AOHerksNovFOhbf6uhOOiBNo+nKSvuyVapJncV4XC1DkXH5RMXX6zs0bqB/55zpIjhcfYf+dUPPyy3X2+tIu22Qej8+nTR1Tpa0nsOhnr/NvkgLDySN5kZ81YKbXCbZvs7mzSF1Q8qJeAm/9HTLhyvbYgCbx+b9oasLePSLfsFNmnao60ekU9JLwaQTcj0sUVOZHJNexKtLrLAsvvW5tldwzSOW/jtY0jWSPk7m2VrNeFw/E1J8B1UW1AbCaQp2of/a9F8mOFz9po7+Rc/l8G/CdV06X+lxhvXXhRKu87MMnmYUh3p+biZct5Uf0s+Ju9udrpbw0jiVs46F8u2wHX35LWLcdA5sHpv3ga4u4NEv+gU3udbgxHyJ9D6+JV1f/22NI+24WZLzhlb5HHpuw4uE6+p/L/phc8jSR2OMx63lrFST/qfPsHFe/Bway/4zTrsh9O/kc+BQ95uq+xc9l8cJKW9XbVNsz7EGG/Rjy5lQPecH+D0O9fy8T7juvrYZ4ByxH3zQ9vLVvFSLvODzHKakjolnIcfEUsZM58DmsXlf6OICHv2iX3CXGw1OzP/OoE9d1C5reRses9y/Oiuqzie9w3L9nwrW/X1CvXcZj1vL8QbH07Pov3b9lwUOdb+pun/Rc3kk7bBtZVoNCzczjhvPc66jVsvUQ9l1TTWIU35cmnGoXytY9/mG5u3zLHbZuh0oR8X9QzlO53jeRzG/X5zxtxrV14/MeZXTKQLYPDYPLODRL/qFLvPeoovbFV53QQ59tjUqSz+G3ZXkHOZHa7yXy5K8NX3FgHXOkG8f/8LlrbiRoqqL4/H+hsfSVei/Ef2XAQ51v6myf9Fz+STdywaHbE4DiN7lsI2n0ovO3yZT08nNMM99yNhPtG9WDXh/f0p1DvXLlrofFqzbFllfZeqVXQnXnGib4elXp5ceOCc+SvYvFVdjfp/lt+HcVs+FLfOugs1j8z7RtQU8+kW/4C6rUnTxSaqLhhrNqdE2LSJnmkVf0s4cjdRb3sA9PZDk6K9BourOxNT1QdzZtt+18XhXw+PoI/TfmP7LAIe631TZv+i5fPYk3M9xx+xO0+d8rXDc2V3g3l5IdVHkNmf954Jz69uWul9U2JdnxZGPPLs9cEz0S9YveXHRFBtTfqPbW9+HJnDzBVwFm8fmFT3UUr+qbnH8Obq2gEe/3dGvLiiOmUniGzMh1EmyOl1fmsnnYSHq3iVuZdDFwYquvSGnPk+1oL30w9lPxv7j7vGJ0XpT6Htl0rLIyuMUiDvs9L24FR3XpfFYnRZfGh5Df0T/jeq/KDjU/abK/kXP5ZMUsHTPQduraq34Q8E1ja3uNwWf+W1K/YPOQ+ZkGOurCtj6J+Zaj9tocPc8ck68kmxfX3QbR/QU5dMWIwrnDdKF/SzGSKfB5rtt8/rSvyDfvl7vdfx5uuZQR7/+61cj62/naEfV8oQQgd9mdCF5KWN/6geTXRXcgx5q+CGHXV1rsL308MXfpbeTJSmf+M4W9W3ShxL9CPaL2D/oLTL6jf5WU7+MMB63knU5tVRF0QX+PPTvNDjU/abK/kXP1XAo4R4XOmh/2y1tnre8LziOD2dc1wwaUPJdhrqfSP7gKt1N8UdD+lqScK3WjX1rPHJM/JfTORYXWaEnxy+Qb3mTfpNvEX66KDjM2Og82Hx3bX62Wdh/GrD9WMCjX/RbPRpxOOhWzQ9mUgnNoja5SXo5KTWaZ3zARY1GpmhU2W5T16YSFnX7clz/Zo1tph+9NDJNt7c+l+T0Frpjo60HrI1Jcn78L8aJctbYxF7zvroVo/evpt9d/JDfhfF4ucVRVmf5E/3jcIVO9y96Lh91/MZFqR9xeLyaLDjWqL0uznndxWbOqk59Te/zLMf1bpl5ks57dTfyzEjduubTQ1K3mvnx5RzrpvfGLneZdeXKmHvfYuq9lHOs1zm77rzeae6tqG3/JMXSvNXGFQ+dE3m2Aaihv844aVvKuOgF2Hz3bH7IOBbfFHRosoBHv+i3Wn4rqU33MdS1chFdRvlfCfe3yWgkLbqtjoi2OQkLra9mcXLZLGwWONL3c83i8ZUM9kFMF3oup3Dqwnh8sCVj5yj6x+EKne9f9Fw+cWkmnzpui+qgfpJzjLkvPad20+vV/RnnGWXMqWeUWPcfBfvsqbh9QG6nmGEmh7fMy1ij+jSSStMKaDTrMpoIsHln2S3pX4VxqAP6bZ48kUZZyhZMBXIyJFNTSl2q6brvjZ4vGR2o7Q570J7rpRdhpIuqydD7SovuFHtlHCEnpRfNNOTBMzMeo3/0D4CeXdfzY0/HMd3pfMLMPV6buUh/TtI/m0mjrJcjoUbZGmN/EzQLAEB96BfMh2YRrxFvti/FONQBmmVEpqZieic9J5suRGaE/m6OsWvNH592+I5OlGfTtJCTcJ733TQHMB6jfwBAzx1jdcw49oBmgZp4ELE9XfPNo1kAAOpBnW0aHbA+8t+T0kngUAdolr9karqauRl+o87yM2J3qv9E00JO7si3LdoLaQ5gPEb/AICeO0jcHHsnzQIVE3fA6g6aBQCgPpJy042Knw51TfGxP6YsxhTAATZIsXx7ByTZof6c5oWcY0f/YKfrNAcwHqN/AEDPHUUPw4zmsX4h0w/JBCgLDZaKnhV2lmYBAGgHi8RPhzqAy1w3OnxWYJJ+TpKd6uRBhKycDdnNapoDAP0DAHruMCtkakpGLSdpFqiI8xFbuyt+nK8DAOAF8wSHOkCb0NQu/QiiTQXr+Zigb/JmQhY2Sf2HlwEA+gcA9Nxm4lKZbaBZoGR2yPTdEPNpFgCA9oBDHaBd/GA0eKOEui4n6HsfzQwpLJFvh9y+lGw5/AEA/QMAeu4CJyNz61eCsxPKQ9PlvZOph5AuoVkAANoFDnWAdvGHlLcd97sEfR+jmSFl8f3S2IruclhDkwCgfwBAzzCFCZmejmOYZoGCqH/mmUx1pq+iWQAA2vnCxqEO0B5emgl5GawXItQhv830I9k0R+gWmgQA/QMAeoZYrkXm2KTUgSLo2Vn3ZaozfQXNAgDQTnCoA7QLzW++rqS6ZifoeyfNDDGMBeVLaAK/niYBQP8AgJ7ByhXhkFIoju5uuBWyo+dCmhcAgFaDQx3AX2Yl6JvJGUQ5HrKPO0FZQJMAoH8AQM+Qid8ic+3jNAnkQCPTw8503a08j2YBAGg3ONQB/GVRjLZf0CwQw3Lp5WvcTVMAoH8AQM+Qm++D8jk05/6FJoEM6I7iv0J2cy4oQzQLAED7waEO4C+jMdo+RbNAAkzeAdA/AKBnGBw9PPJpaN59niYBC7qD5JGxlXfChzAAAKfAoQ7gL/titD1CswAAAAAAVIKm7zgbmntfl15+bIAwK4Py2tiIRqgvpkkAANwChzqAv4xHdH2LJgEAAAAAqJx1QZkMykWaAmJYKr2o9DGaAgDATXCoA/jLm4iu19AkAAAAAAC1MZMmgATYuQAA4DA41AH8ZHNE0xM0CQAAAAAAAAAAQDFwqAP4ydWQnnU74QKaBAAAAAAAAAAAoBg41AH8Y3lEz5wYDwAAAAAAAAAAUAI41AH843pIyxyEBAAAAAAAAAAAUBI41AH8YltIxw+Fg5AAAAAAAAAAAABKA4c6gD/MDcoro+HXQt50AAAAAAAAAACAUsGhDuAP1+TbIaQraQ4AAAAAAAAAAIBywaEO4AdHjHY/BWUjzQEAAAAAAAAAAFA+ONQB3GfU6PZrULbSHAAAAAAAAAAAANWAQx3AbdYE5YPR7S6aAwAAAAAAAAAAoDpwqAO4y0hQ3hrN7qc5AAAAAAAAAAAAqgWHOoCbLAnKG6PXIzQHAAAAAAAAAABA9eBQB3CPhUF5abT6C80BAAAAAAAAAABQDzjUAdxiflCeGp2eozkAAAAAAAAAAADqA4c6gDvMCcojo9HxEuqbbd4BAAAAAAAAAAAAkAEc6gBuMCsod40+b5RU59mgXKJpAQAAAAAAAAAAsoFDHaD9DAflttHmX0GZUUKd20x9G2heAAAAAAAAAACAbOBQB2g/140u70svTUtR1gTlXVCe0LQAAAAAAAAAAADZWSk41AHazITR5D9BmVugnqGgrArKL0H5aOo8QvMCAAAAAAAAAABkZ7vEO9QP0TQAjXM+QZ9llC9BmU8TAwAAAAAAAAAAZOeMxDvbJmgagEb5Vapzpmv5gyYGAAAAAAAAAADIztqgfJbk6NV1NBFAI/wk1TrTtWyimQEAAAAAAAAAAOLR/MkzgrIsKDukl0pCneY2h5s6238Pys6gjJjfD9OUAJUyJtU705/TzAAAAAAAAAAAAMmoU7wMR9wVmhKgMmZJ9c50LT/T1AAAAAAAADAo/wdXaSDFX3nQtQAAAWJ0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWk+JiN4Mzk0OyYjeDIxMTM7PC9taT48bW8+PTwvbW8+PG1zdWI+PG1pPiYjeDM5NDsmI3gyMTEzOzwvbWk+PG1uPjE8L21uPjwvbXN1Yj48bW8+KzwvbW8+PG1zdWI+PG1pPiYjeDM5NDsmI3gyMTEzOzwvbWk+PG1uPjI8L21uPjwvbXN1Yj48bW8+PTwvbW8+PG1uPjE8L21uPjxtbz4sPC9tbz48bW4+OTY8L21uPjxtbz4rPC9tbz48bW4+MjwvbW4+PG1vPiw8L21vPjxtbj45NDwvbW4+PG1vPj08L21vPjxtbj40PC9tbj48bW8+LDwvbW8+PG1uPjk8L21uPjxtbz4oPC9tbz48bWk+Y208L21pPjxtbz4pPC9tbz48L21hdGg+xRVIrQAAAABJRU5ErkJggg==" style="width: 273.33px; height: 17.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="Δℓ equals Δℓ subscript 1 plus Δℓ subscript 2 equals 1 comma 96 plus 2 comma 94 equals 4 comma 9 left parenthesis cm right parenthesis"&gt; Độ cứng của lò xo tương đương là k: k = P &amp;#x394;&amp;#x2113; = 3 . 9 , 8 0 , 042 = 60 ( N / m ) " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABM4AAADxCAYAAAAz6vs+AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACMJCpdlQAAQ0ZJREFUeNrt3Q2EFt37wPHLykoSSZIkkpUkkSRJIklW1rJWkiSSJEkkjySJJEkSSZJkSVaSRJIkiWQlj0SSJCuSZK3E85/rN7P/7r13Zs6ZueflzMz3w/F7aXfmzDUz577PtedFBAAAdGKaV3q9ctYrw1756JVfXhn3ym+vjHnlq1fueuWSV/q80k3YEukO4nYhiOPXIK6/gzj/9Mprrwx55bBXVhOyzCzwyoBXLgfP9/u251v/84dXXhF/AAAAABN2euW/AsqfoFMyFnRMvnjlQdA5uRLUYwudcKAUy7xyNXhHk77bmnC44ZUVhDGWJmBuBvFKGuNPXjnplbmEMbF5XjnmlZEOPr80gXzcK7MIJwAAANA8RSXOkiTY3og/GmOzV7q4RUBudATOUIbv73WvzCGskywR/48EUTHTPyQ89sojr3wP2sCon9U/PGgCbTphNdKEmY6KjEtU/go+bzT2z8Uf7fef4V4dIbQAAABAs3QFHYyt4ifRdOTIR3EnkfYz6PwwmgXIVl+QCMj6nf3slVWE9390ql9Y4kZHP+3yysyQ35mYyhmXbPvglTWEN9KeiGdb78X1IL5RyUe9JwOG+L/wynzCDAAAADRbb9ABdmk02hNhvRkgC8ck/4T32gbHV5MydyJiczDBcTSG7yV6dO4eHuUpcb8dES/9/5Mmu1Z65W3E8XRtuuWEHAAAAGg2nWKUZD0enWa0Q6auU6YLjuvaMOvF/0v/PvFHtr2U+GlJUUWnls3j9gCpnJRiEt3aHixqYHx1xNKziJhsS3G82V55GhPn4zzSxrgf7PC4jyKOO+qVxYQeAAAAaLbbCTrKadZ+0SRbv/g7nCVJommHZSu3B0hkv0SPXrof/PtamZz81v++1CuD4ie8fyV4T182LL4aq6gk18kOjqvJmzcxcT7Moy0Pc4h7a/yjRp69l/AptwAAAAAaIsnmAVs6PJdOo7kgyUa1/MMtAqysk/CE2TnxNwmwNcMrJ8R+B87BBsX4hkTvyjitw2PrCOCxmDgPNPjZ/iciJiMZnmOZRP9x5zzNCwAAANBcG8Q+ibUpo3PqotdfEpz3BLcJiKUjYj7J1NFgSzs4pq7/9NXi/XzVkBjviYnBgYzOEbc2na4rt6SBz7ZOlYxK4vZnfK4rEj1ikymbAAAAQEPNkOITZ0pHnyXZnGCAWwVEutj2vlwVf0fdTukoHJupm3VP6GjSJGo0mK4TmdVUPp0KGpesfNnAZ/tyRCzGMnrGW62Jif0FmhkAAACgmbqknMSZWiH208F0IXI2DACmWtb2rpzK+PhHLN7PHTWP8f2Ya7+T8bmOG2LdpPXOpsV8RjzK6ZzfJHqXTQAAAAANVVbiTJ1IcH7+4g9MNdzyjlzK4fg6CuqH4d28WuP4rjdc+56Mz6ejceM2UtF7Machz3ZfTBxuFvA+NW1kJQAAAIAIZSbOdIqT7S5+OiVqFrcL+H89kv8IHHXD8G7eqnGMn0rx01SfGM55qiHP9xkpPll7Leac22hyAAAAgGYqM3Fm6qjkPboDqLLzwXuhm23kOQrJtPvuUE3ju9Rw3b9yOu8hi/PObMDzPSTFjzg7K+wgCwAAAKBN2YmzvgR1GOJ2Af+j6xNOrMe0Jedz9UozR5ydMVz3cE7nXW7RFh5swDN+v4TYn44553aaHQAAAKCZyk6cJdnZ8wu3C/ifiWTW7QLOtcnwXp6taYzfS3lru40Zzv26Ac94XOIsr9F+V4TdnQEAAAC0KTtxpn4mqEcXtwz431S9fvEXk8+bKXHWX8P4LrZoi3bmeP4HFufvqfkzfs9w/atzOGfc9NAtNDsAAABAM7mQOHucoB7zuGVAoeKmauqmHbNreM3bLdqivhzPf8Xi/Idr/twNSfE7LY/EnG86TQEAAADQTC4kzu4mqMd6bhlQqLjNAW7X9JovWbRFW0qK+US5X/Pn7qTh+nU6a5Z/SNFdm/9EnGuEZgAAAABoLhcSZ8NC4gxw1eWY93FFTa/Zpk3Ks03stTj/uNR76vo2ixjcyPB8u2POc5xmAAAAAGiuqo04Y6omUKx3Uvzi+GV7U3KbuNSyPVxR43vQLf5UYFMMstrt8pVEJyj53AEAAAAazIXE2SNhcwDARasi3kPdcXJmja/7V8ltYrdlezhY8+fvpkUM9F6t6fA8caPbGG0GAAAANFyVdtX8yu0CCnUr5D0cFX/XyTobl3LXOFN/LOpwsub3YaXlZ8N3Sb/Lpm5u8TniuE9oAgAAAACUnThbkKAOQ9wuoDBho800abaSdvF/ZVvOdbAZ9XajAfdiyPJ+6B9gNiY8to5gfhhxvBfibxgAAAAAoOHKTpztTVCHPdwuoBA6DbN9bTOdnrmkIddf5NpaUb5b1OFuA+6Fri82muBz4qDlcadJ9CYQ96XeU5EBAAAAJFB24uy55fm1IzuH2wUU4n7b+3erYYmEMYs26VTOdfhiUYdHDbkfGxN8Vk0kFOM+L/Tfnkb87j+8/gAAAABalZk4W5Pg/Fe4VUDupsvkXW41eTPQwDh8kvKnjttsmjLaoHuyR5Ilz/TZ7Q05ztqI+/uvpF8nDQAAAECNlZU407VlXov9aLNF3CogVwu98rLt3dNF049K86at3bNol97kXAebxNm3ht2X45IseTaR4JwfPMPnQ/5dN4I4If5OpgAAAAAwRVmJs3MJzn2C2wTkar/E726r620dbVBy4bpFu6S7Xk7LsQ4PLOrwo4HPaprkmW60EDb1VROki3n9AQAAAMQpI3F2KMF5n4k/Og1A9nQq25sE7+NHr2xuQFx2WMajL8c63BdGnEU5LMmTZ61FRzuv5/UHAAAAYKPIxJkmwM4n7KTP5RYBmdJRUrpe1EgHiYerUu/RZ0sTxCEvNomz0QY/xzs7eH4viL+eHwAAAAAYFZU4W5Wwo/5e/HVpAGRjVZAw+C6djdaZKLojbp0T2x8sYqCxzGtErE3i7GnDn+ktEj/F2PQZs4ZmAQAAAIBJnokz7VBu9crDhB2aZ8JIMyAre4IkwX85FE2Gz65p3E5bxmB3Tue3aTfv8Xj/LyH8pYNnmDU0AQAAAMSy7VwcE/+v87ozWdgULf3/lom/ZpKuP3Nb/AWZk3ZiLgprmgFZuiX+qBx9H8cl++TZ3ZrGbZHl9b/L6fxfLc59i8f7f+Z55UUHz/CT4BgAAAAAMMV/jhSdFrWJ2wEUQhPdPeKPCNW1om6Iv6Zg2vd3Z03jdMvy+vdnfF7bNdYu8Cj/j/7BZrTDzyBNVK4llAAAAADalZ0w+yz+CLVubgVQOp32pht4JF03SpMOdVxsfbHYjdLT0XxLMjzvbWl2wtKWfm5cCInL75SfR/p7O2gGAAAAALQqI1mmncwhr/QL0zIBF80Sf42vPwne68M1jcU/ltf/VrJZ7+1ogphvbvAzqlNpX4XE5JBXFnjlUQefUf/QBAAAAACYkGQHvQfiT+f64ZUxmTwS40/wv8eCf/8S/Pyw+NPAdI00TZT1EHKgMpaL3e6SWv6tcRweW8ZA19lKu7HJnKCtTJLgaepIXU0Ytu8Oq6PFett+TjfGSLvr5hlefwAAAAAi+e6qCaD6NKEzYtlOLK9xDN6J/fTzbQmOrdNBz4n/R4eJY9is1/W+oc/jfgmfYrkl4uc7GX3GjpsAAAAASJwBMNIdB212eTxc4xjMF39UnW2b+Vr8JM8K+TslvSuIpY6MOi7+SN6w3xuwOP6NBj6H5yJi0W/xu2lHn+3k9QcAAACajcQZABubLNqJ2zWPga5h9kDyW/9Rpwfq9MsTFj+7vWHP3+WIOJxMcIyFXnma8J7oEgTLef0BAACA5iJxBsDWPTEvkN8E+2TqGludlPteWdZy/FcWvzOnQc9d1EizFymPdyLh/Rnh1QcAAACai8QZAFvrxDw6pyl09JkmYD5LumSZTn29IJMTZmqh2G3W0hS7I2LwJyR2SWyVZFM39/D6AwAAAM1E4gxAEh8NbUVXA2OyVvw1y3QXYd1EQBf61wXr/wT/XUenPfTKTfHXPVsVc6yj0uy15FotlsmbJrSWoQyOr/fBZiOGJm/GAAAAADQeiTMASVwztBXdhKgjbwzx1WTcvIbEYjgmDusyOoeOWrNNnm3m8QQAAACah8QZgCR2CImzvKwVu/XQmmBpTAy+ZXwuTcL9EXYyBQAAABCCxBmAJLYIUzXzcsuiLd7QkFiciYnBUA7ns5ki+41HFAAAAGgeEmcAklggbA6Qh0ViHvXUpN0d/42Jw5Gczjli8Vm4kEcVAAAAaBYSZwCSmBnTTrwlPKldtmiH+xsSi+mGOPTldN5ei3vQy6MKAAAANAuJMwBJzJBip9A1QY+YR5u9bFA8TNOBt+R47s+Gc+/gcQUAAACahcQZgCTipmoeJjyp3LNog1c3KB4DJX4emUb+7eFxBQAAAJqFxBmAJLbGtBNrCE9iNtMDLzcsJttL/DwaNJz7BI8sAAAA0CwkzgAksTOijfhMaBKbKeapgZ+8MqthcTElzvKcqrnBcO7dPLYAAABAs5A4A5DEzYg24jShSeyWod3Vdc/WNTAufVLO5gBqluHcgzy2AAAAQLOQOAOQxFcJT/AsIjSJ7LZodw82NDZrDHE5lOO5ZxjOvZFHFwAAAGgWEmcAbG2KaB+uEppEdKH/MUObe63B8enyyu+Y2NzK8dxzJX4E4DQeXwAAAKBZSJwBsPUkpG346ZX5hMbaQgkftdda7hEmeRQTn9Eczxu3+cVTbgsAAADQLF1inzjbTLiARtsS0TYcKLAOC7xySfwF88e98s0rV7yyuCIx1NFMHwxt7X3Jf1TTPvETU5r0/B3856PgXk53JFZ7DHHKa+23gzHnPEAzAAAAADSLaS2X1tJLuADnrPfKGfGTR7rb5YKczjNb/GRVWJKnKJoo+R7RPmnix/VRsfO88s7QzurGC1051kETdy8Ndfgi/s6SZdPkYdzIvKGczvsk4nw/xN8FFQAAAEDDOt22ibOdhAtwhiYV7kj4GkzDXlmW8fnuh5zro1fmFHS9OhX0u6GN0uSZqyPPFgfxiqv/yQLq8ciyvddRaC6MMt5nqOfKjM+3LOZcR2l2AAAAgObpF/vE2TXCBTjjuOF91QTaWa90Z3CuGxI+KqnIJNUly3bqhoP3Sndh/BZTZ90kYKCAeqxO0N5r0UTlAgfi9ySmjm8k26mlUYnFEcl3JCAAAAAAR51P0Il6T7gAZ/xr+d7qz6WddjdL/EXqw9qCRQVf7xfL6x1z7D4dET+JGVVfnbq5rKC67JZkiTNXdkvV6aVxo/XuZHSefyQ6gbiYJgcAAABopvcJO1FbCRnghO8J311NgK1KcPxBr3yW8CTF7BKu93eCa+124P7oSK0nYk5KzSiwTvskeeJM4+7CZgGauPpieL47WX/siERP/11LcwMAAAA007kUnajRhJ1vAPkYTvH+ankt/lpNun5Va4JJ/7vumnlKwnd91KTF9hKv1zZRqKO7ypxS1xXE91dMHTW+ZWxkMJjymXFlY5j5wfMbF9ekf9zRDRtuRxxPE8craGoAAACA+tNFxHXEgCa8+oKOcdKRZu3lmVeOeWVb0LGYHpwHQDG2dPgOJ0mW6xS2GSVf73XL+j4qsY47JDzpOFE0mXZCyhsRN0fiE3pRZZdDz71+1lwQc3J4v1eWRhxDk5uaONZ188YkevrnHJoZAAAAoP52FtS5dmk9HKApjuf4Lus0Q02YuJIQXyLRSY7W0WYrC66XJnI0SRP3x4hx8deTnO9AHLdL/JprYeWIg8++3uenFnXX2OvIsQfiJ1W/Ga5fk26baVoAAACA5iBxBtTbFomfvmZbdC0nHWWzR/zpa65ea9SIKU2q9RdUDx2xpFMtr0l8Mu+t+Emn2Y7FUTcjuCL+xgTjFs/Gboef/9XB587PDp59faZ0N9YNNCcAAAAAANSTTkvbFyQAdHTNtyAhMN5S9H9/FX8h9SHxp21rsmlJha5TF4nXpM9ocE36n1cLuAZNNu0J4hY33fF1ENeVFX2OuoJrbL2mgYrUWxNfh71yS/zRaLou3ljb8/8teD/0PTnglfVS7pp4AAAAAAAAlaXT9qJGZemUPx1Vpuuv6cL782tyze0jlXt4DAAAAAAAANBujfxdK0tHMU2MVGrflbROzsjknSUBAAAAAACAKXRzhNkNu+bn8jdxdpZHAAAAoBmWS3XXGwEAACiCfldqnYq6iJAAlaYjY+cTBgBAGF3oVadRXPDKR2G3PwAAAJMn8jdxdoFwAJXp96wSf61FnWqtG3yMyN/1GYcIUS5meWUbYWisHoneKOgU4XHSbN5Z30Kv7PXKsIQv5EviDAAAINzhlu9Mo9K8KapAVcwTf7db3WFYp1b/lvDNS9545aZX+gqok+48fFD8XW1feeVH0B/Tuo0FbYr20XT69yap/m62uiP11+D6FvNINtI/Ep04Y6abm+4G90d3l1/QpAvXdUd6xf+L6NuYB5fEGQAAQLTetu9MmwgJ4BTdqOSMoc+jiRxNpmmibEYBddIRV0e98s6iH9ZevnnltFRvGukcr9xpuY7HUu4fGe6niH17uVRCvf/LsQwXdA2vI87/nubKWUda7pMm97fX/UPjn6CR+p3wJSJxBgAAMNkW8UeETHxfOkZIACfoGoMnvfIppn/zO+jjrCu4bkeDjmdUvfTfHok/+mw85ue07Tku1RiBpn9QGG2pu46um1Zyne60td9py86C6z0u+SXOipiazDTNan/n+dlyv657ZXrdLnJrhy8RiTMAAIC/dok/pYt1zQB3LA06/39i+jWawNHBBHMKrpsmDEYkesSbjuiYF/J7K7xyTqITJjp6x+Upj6el/FFacXQTiIn1vdMkpfR3VpVQZ034Dgb1fpOi3l+8ci04hj5jRSVg46ZprqIJc95KmZwE12dvYZ0uUP/qsr+laIN12yu/hMQZAACALe1cXBT+Sg64RJNgOtUyLmH2M+i0zyihfu0jNVqLrhlkM2VRk2MvI47x3SvrHbwnj9vqed7x50hjbLOMUXv57JW5Jde9P3gOTHXVkZb7pLyRilHTND/QjFWGJspaR/NqIm1d3S9aX/B/hcQZAACASU/bl37tCG8nLECpdlokDHTAQFlrgumInqiE3o2Ex9JpUQ8leurmRkfuiSagPrbV71xFnidNYr6S5Mmzp1L+tFndaOKHoZ59JdZvSUy9ztCUVYq2p63JMx15WftdN/uExBkAAIDJoZbvRrqw9AJCApSmfbH5qJFYA472s56mPOZMiZ6ap8n8sqe76braoxXvS+rgko+SPHl20YG6H4mp342S6xY3TXM1TVrlaPLsS9t9rPUfE3Vhxj9C4gwAACCOjibQkSsbCQVQKl2T6ZOh/6LTGstMbq+V6MXnf3VYN13LLWqzN+3IljVtUNvG9impwxV9xpaL/bJGZW4W0G52TN9+acl1i5qm+ZEmrbL0mfrWdj8H63zBpiGdJM4AAAAAlE1HcZkSGrprY3eJddTE1deY+h3N4BynYo7/sIRr3hByXzR5WeVd93ZL8sSZJkvLHvX3LKReb0uu0+KYmJ0TVJmub9aerO2t68U+ExJnAAAAANy1V8yJCxcWoL8fUz9NqGWRTNIpm3GDH/YWeL06PbN9pJlO15xX8eetW5InzrToaMgyNwu4Ju5N04ybQrqGpq3y9ol7CeRcPBQSZwAAAADcdEzMCYuzDtRzu6GOJzI81xmJX99tTgHXu0imrmmmo0/W1+CZS5s40/LYoSSGliMlxzJqw4VPNG21MSRT/0gwv24XeV9InAEAAABwzz9iTlRccaCeOpLsc0wdNaGU5bpri0qOia6n9T7kvCdr8tx1kjgrc/TjQEhdylx3arG4PUIU2bUH7ZsF6HTtaXW6SBJnAAAAAFxzUMwJivuO1NU0Ki6PUUhPJT5R15Pj9d4LOefrGj17nSbOytplsDekHmWuOcU0zeYIe/Yu1OkCSZwBAAAAcMmAmBMTOuJplgN11VEVo4a67svhvAdK6scdlfBE3bIaPX9ZJM50racVBdd7S0g9tpQYx6hpml9o4mrpbsi93lyXiyNxBgAAAMAVK8VPOsT1Uca9styR+trswLggh/MuMZzzt2S/SL8mgv5IzUeWSHji7Kqk2yxgToH13hRSh00lxTBumuYFQR0tCWkfNEk6qw4XR+IMAAAAgAt0rZxPYk5IHHGozs8Mdf2Q47lNsTqe4bm6vPI25By/pNjkUBHCEmdbxd/gweXNAlxKnMVN01wvqKsr4uY6lB0jcQYAAADABXfFnIgYcai+Cy3qeyPH898S83TWrEQljU7X8DmMSpypYUmePDtXUL1dSpwxTbOZeiLu++qqXxiJMwAAAABl2yl2SQiXOmAHLOq7K8fz7y0oXpogHJdipoO6IC5xNtMrbyR58qyI3S1dSZzF7frKNM36eyg13DyExBkAAACAMulUv+9iTj4MO1bvexZ1Xpfj+TdanP9UBue5EXHsWzV9HuMSZ0oTiaOSLHGmU1rz3izAlcQZ0zSbbUfEvd9R5YsicQYAAACgTJctkw/LHaqzrvk1bqjvn+Dn8mKz++OrDs+xLObYW2r6PJoSZ2q9hG+UEFc+ir+OX15cSZxFTdP8SlPXCPr+/Jbw9R67qnpRJM4AAAAAlKXHMgHx0LF6r7WocxHrOf0Qc/JuZgfHH5LoEVRdNX0mbRJnap8kn7L5KMd6u5A4i1v37xLNXWNErVe5t6oXROIMAAAAQFlMC9y7Orppv0Wd7znQn9OyLeWxF8ccc6jGz6Rt4kzZjpZsLWdyqrcLibPDMde90fH7vlT8TTB0Uw3bnXsXeGWPV26KP9JOE8o6ElVHXP0UP1F6Uvw/EHRKRyvqWnnXvfI8OP7voGgC/WFwriUOxHKP5L9hSaGyTJztTNFomAoAAACAeuqx7BO4uBOfTcLvRgH1uCn5rXN2TsrZ9KBsSRJnOuruaYp+7kAO9XYhcfYy4npHHb3XOhVZk01vE+ZBer3yJOE91/ZgToo66gYfdyR8+mNUuZ7yXFmJS7r3VbFRyDJx1h0EaGPwIGm29qfljdUXSf9qcSAI5KbgWAAAAADq6aJlX+G8g3V/YVHvEwXU44zks6nCNK98izlmnftqSRJnaq5XPknyzQKyXrOv7MRZFaZpdgX5Cm1TPqTIg2ii7bmkHxj0WexHn+m5HnRwLl1Tb1GJsf4aUa+nVWwU8p6qedhwfP1LzQa+MwAAAACNMi1IHth0AKN24lse9Df0D/BvguNNTF36FSQzNGmkCbp+r8zIsP7jFvUuYhc5m1k/n1Mctz/meN9q/mwmTZxNPIu2z3PrYulZbhZQduLM1Wmac4J3cSjBPQrLg+y1fO9tRtDOM9T5uCQbYRb37s8tKe63Y+rVU7VGIe/E2YmI4+qwxmV8XwAAAAAayXaZl7G235vulUMydWqVTdGOqK471ukf7mdYnm9bAXHst6hHmt09h2OOd6fmz2aaxJntvchz04uyE2dRI7HKmqapyfkRSZdwas+DXJFsl6SKGnU1T9JN/Y0rd0uK/z8xdTpdtUYhz8SZZs+/hHzwHeB7AgAAANBow5advtYkjS7I/zWjzqR28tNOldsg7mxosNWyLksTJhziRrucqfmzmTZxpk6keBazSiKUmThbKO5tODhxH1+Lv76Yrvtlm3C/2nKMezI1Aa/JKN1VVXfXnR78rCanV4i/NqDNTsE72+q7rC1/8l38Ka6akJ0nf5PfXcHPHkhwPZtKiH+fxE8jrZS8Emd6Mx/K1KGoK/iOAAAAADSaKTHTWnR3O11P66VkvxGZdm4PZ9whtJlimqU8knjbDMcarPnz2UniTA2neBazWDC9zMRZ3DTNTSXdR81JrAz5/y+JXeKsuy2nockeTd7PtDi3vvumaaGtO0xqAu57S7ukGxbYTi0/bXE9T0qI/wJDnVZXqVHII3E2PeS4jyXb+dudNiB1LcMCgLaEtgQA+Exw+zNhS4Lz6xSpnzlf482E9d9hedyZBTyLsyT7XRxNmzasr/n73WniTO/7m4TPoD7jS3Nol4pKWkVN0/wuyacJF3F/TUmta/J3YX6dNXckxXXsEruRYGtb2jhdP3Bdimu6anGuJSXEOm7k3ckmJ8604W7flvUyX2zo7AJ0kmhLAIDPBD4TAqcl/QgxHQFyIEjetI7I0E7tfPFH7uhUqY8Jj30rQf33WB6zu4BncbplXXYlOOaIA9dV5cSZ0qmLowmfQR2BNDvjdqmIxNkCcW+apskdy3uiU8M72f30XzGvdTYx0kz/M+0MvdlBgs80erdocTuXvmpq4kzn3b5u+/1DfLGhswvQSaItAQA+E/hMaHEvRT0uB8mIJPoNHbf2csLyuOctj1fESJtuy7qcSnC8uFEi4w14v7NInKmNYrfWVWu5X8HEmYvTNE0uWNyLH9L5hoaHxf6PAp3uPHo9x2crrbuGa57etMSZrjvQ+lcdXbPAlbnvfLEBQFtCWwIAfCa485kwluD8OuKjk10wdVTa7QTns5kmddXyWEWxTTxm8Wx/JnGWyL4U79zJDNulIhJXz2MST12O3uPdFvchi11xeyzv+bEMzjUgyXYoLsINQ516m5Q4WyWTh6Hq/NyNDl0jX2wA0JbQlgAAnwlufCbMTHBu7WNktS6PbbLrX4vOfhUTZ7YDIkzTUO+ROEvscor3bltG7VLeibP5Er9OmKt2Fvj+jhvO8yaj8yyyuKYFBcf5jGQzyrfyiTP968+Plp/XxezW8MWGzi5AJ4m2BAD4TOAzIUSSjQG2ZXzuJ5bnPdDgxJlphMhtEmeJaSL2acL3Tgej9FQgcXZQstnJtc6Js+dS3BRK09TgrQXH2bRBwp0mJM504c3W7KkOo17q4DXyxQYAbQltCQDwmeDGZ8KA5Xmf53DfFop59IeWjw1OnJnWn7tO4iyVuV75lPDd080CZjmeOHsm0Ym/LofvcZGJM9NGBFkmzn4YzrW94Dib2vvKTP1Omzjb2/Zz2ggs4jtUo/xHoThSQFtCoVAofCZUx27Le7krp/Ofsjx/XMLhSo0TZ6bkzuUGPKN5JM6U7pj4K2GblmRqbNGJs/kVTrAWmTgzjeLMMnH20nCugwXHuVfMmyJ0VaFRSJM4OxGSCZ/PdwA6uxQKnSTQllAoFD4TYHDW8l7Ozen8c8Vup8O49ZkuVTBxdsnyWKYReedJnHWkP0W7ZrtZQNGJs7hpmq4v+l5k4qzI3S4fZNQOZMVmav6SKjQKSRNn7R8Sb3L8UAOdXQqFThJtCYVCofCZUC820xx/5lyHuxZ1+Bbz+3srmDizWYS7y+I4e0icdexEirbN5vxFJ86i1m37Je6PIioycWZq87JMnGWx+WOWNlrEeUsVGgXbwE6Tqds4j3hlDp/9dHYpFDpJoC2hUCh8JiDDxNnjnOuw3fJ5WtJBp/u/IAFTRpIn7dTXGRkdh8SZ2XDCtu2HmEfmFJk4i5umeaMC95jEWTHmW8S5vy6Js5nBh1f7v30RRpvR2aVQ6CSBtoRCofCZgGwTZ3lvUjPX8nkaiPh92+l2MwqI54wOr6XVbIvj7CRxlgntY79J2L69D37PhcRZ3DTNbRW4xyTOijHTIs476pA402HMr2L+/Qmf/XR2KRQ6SaAtoVAofCagQokzZbPDYdTaUlssn8eeAq7DNgloMx1qPYmzwhJnSnd5HU3Yxt11JHFW5WmaJM7cSpztrkPizKY0YYFIAAAAAJ27IG4kzu5Y1CNqypnNyCwtmwu4jo2WdVlscaxNQuJMFZU4m7h/fyRZ//t4gvuXR+IsbvrdrYrcYxJnxbAZEVuJdRNNgdUPLZu/xgzyHQAAAACAwW7pbFRNVs5b1ONOzO/bJDuK2Fmw16IeWlebUUA2STgSZ9nbJ8kHr4TVp6jEWdw0zb6K3GMSZ+W9S+3lVBUeGJvArvbKb8PP6ZDMZXwPAAAAABBj0KIjdb+AeuzqsB5vxY3BBQMW9fhkeaxlQuIsqrO/NedzXpZkibPvMnWzgKISZ1HTNMfF31SwCkicFWO6NGTE2URgbbZc1sUKZ/NdAAAAAECErRb9ipEC6mGzwH9ch3bI4vf3F3Ade6SzkXOtbNYjYlfNfOiIwKeSLHn2r0zeLKCIxNk8qf40TUXirBiNWeOsNbC3LC76Ht8FAAAAAESwWcz+RwH1sEngxXVoT1j8fhGdVJvNFk5aHmua1GR0SIfKSJxNvBs2yyRFrQdYROIsblppX4XuMYmzYjRmV83WwOrCbjZDko/zfQAAAABAhHExr8mVt83S2aAAm7XFhgq4jmHJdq0109ptlxrwfJaVOFMrxF8GKUny7J/gd4tInD2R6k/TVCTOimGzkUp/FR6YpIHVedQ/JZvtjgEAAAA0zyOL/sSsnOtgs4Pk7ZjftxlJ8bqAWL4ScxJyRoLjjRqOd6UBz2eZiTMRu2nEYf3vvBNncdM0hyp2j0mcFWO91CR3lCawNgtQ6mKFix25xk0pGp6qlmEBQFtCWwIAfCa4/Zlgs6PlJgfuoamT+cbw++MFPIum0XtJk3em/uF1EmeFOCnJNwvYm/N7FDdNs79i95jEWTFsRvYuqWviTF2wCIB+kEzniw2dXYBOEm0JAPCZwGdCiz6L8253oEN3yHAMmwRgnoMJFluc/0zCY96Q9KPwSJxl627Cd3Us58RZ1DTN30HMSJyROGtnmtKuI2K76pw404t7YfGwubCzBl9sANCW0JYAAJ8J7nwmTAs622VOCbTZHGCb4RgbpNz1e2xmAq1NeMyDhuM9IHFWGJ0O/KbD9zerxFncNM0qJlNJnBXD1EaNVuWB6SSw88Q8B17LAb7Y0NkF6CTRlgAAnwl8JiTohzwtuUOnZa7hGDqY4JvhGOdyvAbTLKAvKY65NYdjkjhLb6HFM1ZE4ixumuYAiTMSZxF21aXP0WlgN1o8cDr8bj1fbOjsAnSSaEsAgM8EPhMsO1Q6Ii3PXfr2G87/zvI4F6W8BKBpBlCapN0MKX/dtrJNdyhxNtHn/iPlJs7qNE2TxFlxTGv1nW9K4kwdt3jodGTaPL7Y0NkF6CTRlgAAnwl8JgQJGtPC9nkmK64Zzn3B8jgrxTyIII/EwkyLZMqylMf+13Dc7pq/32E7pm4ruU77SkyczY151qq65h2Js2KY1kyszGjFrAJ73+LB07+ITCvhGvliA4C2hLYEAPhMcO8z4XKJnbwnhnOvSXCs14Zj9eVQ/0HDOZ91cOwrhmNvrPn7Pauge5jUNSkncRaXtNtB4ozEWQzTBhfzm5Y4m+2VTxYP32W+ZwEAAADwLDX0Hb5LPjuu6THjNid4m/B4pmmnN3K4hmHJb1OCfsOxB2v+XK6W4nd5taGDUJ5J8YmzuGma0yt6j0mcFeNjTF0+VOmByTKw2sCMWzyAO/mOAAAAAMBzz9B3yGNEi2md5l0Jj6eJuM8xxxuTbKc3zpH4xN+7Do8/3XD8MzV/JreIexveTdBpkzYDVrJKnMVN07xb4XtM4ix/XRI/nbxSg6qyDuxeiwdQk2ur+I4AAAAANN4KQ9/hdQ7njNuNMm3SybQG1b4M63/EcK4sRkfF9RPrvqTDoJQ/Usf0zoxJMYmzOk7TVCTO8rfEUJfNVXpg8gjsLYuHULPkcwUAAABA05k6llmuL6Ujv37k0JnT0RUjkt8osAnTJH7E0cuMzhM3/fRbzZ/HE+J+snBAikmc1XGapioycWZam+5lhud6KO4kzuKmfP+UfKbh5+ZxDoHVF+itxYP4vOIvGwAAAIDO6R/URyV+LZys+g0HY85zrcNj6w6bcVOTdmdQ/7jRZprMWJZRnGZI/HTNBTV+Hu+EXO8vB+t5SvJNnNV1mqbaI8Ulzkw7S37P8FyfDee6VmCMT4s7a6117LshsNdTHleH5f20eBgfSDk7bQIAAABwxzZDv+FSBufQDc2+Rhz/jfjJok4dirkGTQ7O6eDY8w19rEMZ35O4kTJ13SBA+6ZR63avdbC+pl0LO0mcxS3DVPV1y02jXLNMnN02nEeTk1mNvjKtOX+rwBjHzW5cW7VG4Y8hsLc7OH6f2A0ffeSVmXxXAAAAABrtpKHfsLfD40ctKaPJtCxHUF2PuYZ7KY+pHesnUuxIklWS/QAL1+2PueY7DtZX+9Fxs706SZw9kuiRjVXvvz+wyFPMy+hczy3OtTqD88y3OM+zguKr7VVUEm+kag9Lv0Vgv0ln2c/bYpc8e++V5XxXAAAAABrtiqHfkHZ3w2MSnTTryeE64vpBV1Icb0jKSei8iIlb3SwP+r9xz99+B+u9KKbeaRNnOjIyapDN/YrfZ9OutFlusjHN8lxZ7FR7wOI8WpdZBcR4neQ7Zb0wuujlZ7FLanUy5Ldf7LfK1ZuoCzEy+gwAAABorjOGfoMmkeZbHkvXRrsUcZy3QdIhLxclPtk12+IYOuolbsHvSznfi7gptCtr8rxp/1MTq78s+606cnGJY9ewUcITXWkTZ3HTNHdV/H7fsLzPI9L52oqHLM+lz96KDs6jz+NXy3NdKiDGUaOHNQfl9KYA+lcU3XlDh9R+Evtk1kQ5l7JxuJjiXLrLzYXg5e8SAAAAAE2jfZe49ZjHgw7gpog+gybWdCOAjxK9OPWMAq5ju0Tv4qmjhDRhszDk9xaLP6gg6nd1rbMdBd2LNxF1OF3RZ0ufF11jSZNDOjLQZkRQWHnqlcPij65xod8aNs00beIsbprmrArec33XdSmpZwnv8Ujwns1O+HytCt6PPwnONSb+Hw1WWT5PmtTrFX8Ea9JnWKeqbpP8NmuMajMOuvqAbBLzAnH/JbyZuqjll6B0t51vY8u//crgfH+CD8xTfHcAAAAAGkV39bts0fn8E/RRHgQd45+GjvD6gq9Dk3imUS5a5ydBMW2ypiPuitzVMmrt6s8VfKaGM+wbtz+DFxy4vvb19dIkzmbHvHMPKnSvB4J24ZdklwvRZPfNmHP9kGTJMlMe5GtEjudnxs+u1jurRPiKiPPoHzGcHRi1NaeGYaJ0F3S+SwIAAACgiXQ6pY7E+JKyL6GjMXT3wY0lX8dS8ROBaTq92mnXkSVlrQv9MqJevRV7lu7n2De+6sD16ZparaOq0iTO9kg91qfamdN9vl/guf4rMMeTVc7lQsTx+/koAwAAAID86TSmfeKP4NLpZDoqQ5NK40HR0SW6dpmOLDor/nSkaY5dg4660DWnTwf1fB/Uu/UaPgT/dib42bJHaqyM6Aw/4ZF0jo7U/Bg8S2mSxfdansXWou/ZbMKLGLMkfITfY0IDAAAAAKi7qxKePFtDaACIvy5j2MYHiwkNAAAAAKDu5oi/jlPYIvkAmk1HOoaNNttPaAAAAAAATbFNwkedbSM0QKOFjUi9T1gAAAAAAHSQ/TW1ZhIaoJHWhbQJn8QfpQoAAAAAQKPM8MobyW9XPgDVoQnzjzJ1F+AVhAYAAAAA0FS62Pc3mZo820RogEa5FdIO9BIWAAAAAEDTbfDK77YOs24eMI/QAI2wX6YmzfYQFgAAAAAAfIMhHecXXplGaIBa2+iVP23v/hHCAgAAAADAZPtkavJsiLAAtbXMK9/b3vnDhAUAAAAAgHB7ZWry7DRhAWpnkVe+CtMzAQAAAABIZLswdQuos4Ve+SKTd8/cRlgAAAAAALCj6x61T+E6RFiAytOk2eeW91pHna0iLAAAAAAAJNPjlXcyOXl2lLAAlaVrmrVOz3zqlbmEBQAAAACAdGZ65YZMTp6dIyxA5WyQyaNITxISAAAAAACyMdjW6dbdNrsJC1AJO73yO3h3P4mfRAMAAAAAABmaJ37CTDvfP72yhJAAzuvyyr/Be3tZ/FGkAAAAAAAgJ7pxQC9hACpjk1fWEQYAyN4sr+z1yh2v/BB/eK9uVTzilbPi78gCAAAAAACACjgh/hBU3V63i3CkNkf8xNiYTF4Itr388soWwgUA//M4pJ0EAAAAACdM88poS2dlJyFJ5YD4o8v+syy6vsUiwgYH6XbbB71yyyuvgud6XP6OnNT2Ylj8JLEOXyfZTtw7cTCijSzLqpb78ET8Bb3Hgvug90P/8PEhuBe6O16fsMg3AAAAUGt72zorI4QkEZ12+TSk06f/33bxR6FJ0LHS//2l5WfOEz44QqcXH/XKO7FP/k6Ub1457ZX5hJG4J7RUokfoFmmB+FvLf05xH7RoUk0Taey0BQAAANTQ25BOAF/+7WyTyduLT2xTHDcNc03Lz74nhHCAJm7iRkvqvz0SfxTUeMzPaQLkuDACjbjb0fqOxFxXETRxqaPGfku6hFlYee6VlTzeAAAAQD1siPji/5DQGB0Pidt9r8y2+N2JERZ/CCNK1CPRiYuvXjnilXkhv7ciSDZEJXNee2Ux4SXuBqclPgFVxOdf2hFmpqJt+wkedQAAAKD67sd88V9GeELpKInrIfG6muAYP1t+j7VxUIYtbc9ha7kndglgTdK8jDiGjsRcT5iJe4S1Yk4+5Wm3+Mmt/3Iuek+n89gDAAAA1dRj+MJ/lRBNMUP80Xjtsbqc8DitHbZphBUFG4xJGtxIeKzpEe/ExBTCjYSbuLeZ6ZWPUl7ibL/knzBrH8FNOw8AAABU0CUxL3bMYt9/6Vo4zzPo8M5v+d1xwoqC9cW8809THlMTIW8kevfYVYSduLe4JnYJpzxsk2KTZmk/JwAAAACUTJNA4xZf9k8Tqv/R6VMvJHwaTlKDLb//itCiQDo9LmoHw1/i7yyYlu6OGLXAuu4kO5e4E3eJTyDmnThbItHTZN8Hn3daP11frnWjBZ1Or0sX9HvlotiNlgsru2mCAAAAgOo4YvlFX3d1m9HwWGmSMSxp9jplbG5J+imeQFqaQPka864fzeAcpyR+uhpxb3bcNRbfpLzEWdi6cLqr9KYUx9oQ8bkQV3T9uTk0RQAAAID79C/pnxJ82T/c4FhpYuxpSExGJXzXOxMdudY6OmQTjyMKErcRiCZ2sljAXKcO/og5z17i3ui4t8fClETL0r6Q41+UySPL0h53LMHn6TmaIgAAAMB92yXZX8k/ZdC5qCJdzDls8W1d3HttymOeaDnOZx5FOPLOn8jwXGeEETfEfar2xJWuc3Zfikmc6R9A2pN0pzI8/togxjafp5pkm0mTBAAAALjtpSRfm2VHA+M0HBGL/SmPp5sCtK6vc5hHEQXQEU2fY95tTQQvyPB8iwxtyRXi3ri469piraOyPoifPCoqcXas7bhDOVzjRoneMbW97KFZAgAAANy1RtItavy6YXG6HBGH2x0c807LcXRx6W4eRxTgmOHdfpzDOZ9KfMKoh7g3Ju46WvmlhI/YLSJxpuf/3Nb25jXi64Tl5+kdmiUAAADAXbckXeJMy/qGxOiQRO+6lrbD1T5NqY9HEQXQ6cajhvd6Xw7nPWA451Xi3pi4tyeTWqdIFpE429Z2zM05Xqv+McRm/dCfNE0AAACAmxbK1Kkkmgy6LXaJsybsitcbce26oP+KlMfcIJM3BLjJo4iC7LZ4rxfkcN4lhnPq+zCPuNc+7qvbzv9KJq+XWUTirHXK/d0Crvmw5ecpI44BAAAAB50N+fKuIxTWiv2os6U1js9Kid4d7XAHx2xdNLqTUWtAUs8M7/OHHM9tGnlznLjXOu4zgvZu4ry/ZOpU0bwTZzryb+KPFn8K+vyaK3ZrnW2keQIAAADcop2YnzJ1p7Xpwb+/ErvE2eWaxkc7O1ELeaddi2i1TE6a6X9fzKOIgiy0eJ9v5Hh+07Tw98S91nG/IuapqXknzvoKink7mw14ttJEAQAAAG7ZH/LFvXWtmR1ilzir4xQrnToUNUJEk11pplTpOjqtiUodybaexxAFOmDxPu/K8fx7Lc6/mrjXMu5b2873IOLn8k6cnZdyRktfExJnAAAAQOW8k6k7rLUmhNp3HosrJ2sWm8sx1zqY4ngH246hSbNNPIIo2D2Ld3ldjuffaHH+U8S9dnHX0butGyPof4/6Y0veibOJXUaLXp/TJnm5hSYKAAAAcMfWkC/tYQvUHxO7xNk3+TvFs+q2x1zn7YTHmi1TN1r4IYw0Q/E0ET5ueI//yOSF2rPWbdGWvCLutYv7XbHfQTjvxNl18deT21zwczBgcQ+W00wBAAAA7nga8qV9VcjPzbbo9LVuKlB1yyR6MwAdJTEnwbF09ED7iL2vkn4nTqATNht+fCmgHj/EnESaSdxrE/f23USvGX6+iF01y9An5SZPAQAAACSwIuRL+7OYn78sdomzqi/srSPm3sVcX5/lcXS661DI7+vi0PN5/FCS/Rbv8L0C6nHfoh7biHst4q4bn7Su6/hRzMm5pibO/qWJAgAAANxxJWGHaanYJc609Fc4LldjruuWxe/PEn+tt7ARa5p87ObRQ4luSbk7O064Kc1a56zJcX/edvy1Fr9T18RZvwPPAAAAAAALukjzb0k+Uuyh2CXOXlQ0LoMx12SaoqmLXGvCLGwqlK791sdjBwe8sHh/TxRQjzMW9Rgm7pWPe/v6mLZJubomznYarmuQJgoAAABwwwlJtzaZza5sSUYVuGShV75L8lF0usC/jib5HfF7Ol1zLo8cHGGzVuEOBxIIWj4T90rHfaX4a3ZNHPe12K/fVdfE2amYa9LPkOk0UQAAAED5pok/eqp9h0fbL+z/il3i7F7J16lTIjcm+PknMddyt+1n14g/cuNjzO+89comHjc4ZIblu1vE2mL9FvWoy0LpTYy7tr+ta0Xq1PWeBL9f18TZkHS2FAAAAACAAuwN+cJ+JsHv2yxyPVF6SrzOiVF1msBbbfjZIzHXoItaa6Jsu/jrz4warvmTV/YIO6PBPRss39stBdRlq2VdlhL3Ssb9gnS223JdE2dxf3jaQBMFAAAAuGFEpo4uWJjg93UkwTfLztflkq5R1xv7JVPXcNP66IiLVfJ3hJ12EMfFPhkYVTSuu4SEGdzVZ/ksry+gLi4lk4h7tnHf1HashymOUcfE2cyY63lN8wQAAAC4Yb1kMz3kpGXnS9dsKWt9L11k+Z10nhCLKzr9SHfhXMujhQrYYflczyygLrMs6zJA3CsV99le+SqTN0aZl+I4dUycxU2TZfMYAAAAwBFhnZFVKY6zQCYv+lz2TnFxdGqSrivzQ7JJlulUzevir0c0jUcKFbLH8hnvLqAu0y3rsou4VyrutyWbhFAdE2fXI67lJU0TAAAA4IaekC/szzo43i2xTzR1OxIDTfj1ij8a7bnYLZKtU2huemW3V5bzGKHCzlu+s0VMN+62rMsp4l6ZuLePrLveQT3rljjTP7L8jLiW1TRNAAAAgBsuhnxh7+/geKvEfpTWfsdisULMI+bY4Qx1c9XyfS2Ky+skEvdkdJ3M1lG9uuNwJ1NP65Y42xVxHddolgAAAAA3aAemfbH8jxkc95llJ+ydY/F4ZaivdgDn8digZqqYwLlK3CsR9ydtv9/puo91S5y9kPDR2HNolgAAAAA3HAn50n4og+MOiP2os22OxGKfRV0P8MighkicEfc84t7++ZLF9No6Jc7WRVxDL00SAAAA4AZdN+dT2xd2HX02M6djR5VnDsRCd3z7ZqjnCI8MaorEGXHPOu667uPvtvYzi7Xa6pQ4C1tP8wrNEQAAAOCO7SFf2s9lePwjYj/qrOxFkC9Z1HEdjwxq6oqQOCPu2cVdNxp40/I74+JvQpOFuiTO+kLq/lrc2TAHAAAAgExdW0UXxV+U4fHD1k+LKrdLjMMyi/rd5HFBjV2S6iVwLhF3Z+N+TvKb4l6HxNkM8dcSba33t4w/fwEAAAB0KGznyzySVxcsO2NZJ+2SuGeomyb/5vPIoMb2SvUSOCeIu5Nx39D28w8zrmMdEmfnQj7/NtIMAQAAAG65JcVMl1wi9tM1z5cQh/UW9TrG44Ka22n5jhYxjazbsi67iLtzcde1IlvXtvwu2e9CXPXEWdiGAHtoggAAAAC3LBT/L9ytX9yf53g+U0dnoox5ZVbBsXhtqNNHYc0Z1F+/5Ts6o4C6zLCsywBxdy7u7X+Q6S/h88Rl7YlFLSdpfgAAAAD3nA3pbAzmeD6bUV0T5R/HOq0DPC5ogC2W72dPAXWZa1mXLcTdqbgPtP3cjZzqWeXE2V2p3wYXAAAAQO3o6KkfbV/ePxVw3hHLTtlXr3QVFIu3hro853FBQ8y2fD83F1CXjZZ1WUzcnYm7rgH5XSaP1M1r9HBVE2fHxZ0NcQAAAADE2B/S0ThSwHn3iP2os70F1GfQoh6reFzQIH8s3oneAurRK3abiXQRd2fi/rjt59blWM8qJs7aY3uP5gYAAABw1zuZumPkzALOO80ro2KXOHtXQH3eGOrAaAA0zVuLd3OwgHoMWNTjE3F3Ju4H237mTM71rFriTP8A81Mm7zI6jeYGAAAAcNPWkE7GuQLPf0LsR51tzbEem8Q8qmIJjwsaZsjivdxfQD1sRqfeIe7OxN128xfXytYCYrpI/OUHJs75zCvTaWoAAAAAdz2RqQmiRQWeXxef/m3ZqXmaYz0eG859kUcFDWST2C5iMfOrFvU4SdydiTuJs+jPuw8t53shxYzuBgAAAJDSMnFjOqJN5yzPNcaWGs6pib35PC5oIJs1roYKqMewuLHmF3G3izuJs6l004fWDXH0v8+hiQEAAADcdjmk47C2hHqsSNCxuZXD+c8ZznmGRwUNNdPinXxdQD1eiXkq9Qzi7kzcSZxNvZ/PZfKanXNpXgAAAAC3hU2RfFVifZ5admyynkqqu8HFbVAwJtmNCtBzzePRQ8WYNs0YL6AO41J+Eom428edxNlf3V55JJM3U2AEMwAAAFABYWvo7CyxPlsTdG7OFXjeLM91Q/xFoVfz+KFCzlu8k4tzPP9ii/OfIe5OxZ3EmU//WHKv5fhfvLKQJgUAAABwn2573z7K6nPwJb9M7y07N7+8Miujc16X+LXNshoh9k9b52kajyEqYoPFO9mf4/kHLM6/lrg3Ou6mRF1ZWndH1c/cHpoTAAAAoBp2h3QsjjpQr4NiPzIgq/r+iDnHlYzOMSiTp34y4gxVogn1b1LcyMx2Fwzn/kLcGx93FxNnrZvefBd/LU8AAAAAFfFapq7jNcuBeuki0z/FLnGWxQi5NYZzLM3gmjbK5LXktvD4oYIuGt6Vpzme+4WUlzwi7tWIu2uJs9YNZ34GnzVF0LXTdkr5o8cBAACASlsf0qk471D9zor9qLNdHZ7rcMyxH2VwLTrCoHVE224eP1TUSjFv2tGdw3lnBseOO/cy4t74uLuUOGtdP3Qs+Mwtyu3gvKtosgAAAIBsOxiLHarfIosO20QZ6fBcd2KOPdDhsReIvxHAxPGO8eih4l4b3se+HM45aDjnM+JO3MWdxNkhmbxG5uYCzz2xJt0bmioAAAAgvSUhHYq7DtbzttiPOtvQwXk+RBxT1xXqZKrLXJm80cF5Hj3UwC7Du3gjh3MOS3mL4xP36sTdhcRZ+9qh2wq8fv3j1/fgvAdpqgAAAID0zod0KNY7WM91Yp84e5zyHJoYixrZdqmDuutaca9y7tQCZdB35nPMu6jT0rKcNjhHJq8P2F7eEXfiHig7cdbfdr7tBV67/qFm4o9Aet9m01QBAAAA6eiaNb/avty/dri+r8Q+ebY8xfFnxRxvU8o66+YGT1uOM8xjh5rZZ3gX92V4riOGc23P6Hp0PcOfQdLhZ/C/D3hlOnHPLe5ZKzNxtlUm/xFmb4HXretoto6cHqKJAgAAAPLrDFW5pBnVtT7iWNp5TjNNc3rQ4Z44jnbkpvHYoWb03RiR/Ecj6bvzKeY8Lzs8/tzgGHHtyhfpbCo4cS9OWYkz3TV5rOU8hwt4DnTJBV2DTpdZaB81vYkmCgAAAEj/ZfuT1Ddxpp2HhSk6PFlN/dSk2cOWYzwQkmaor5USv4FHFrvHxiX6Nbnd6Y6OjyzblqIXeK973PNSRuJsrfgjFF35HPxI0wQAAACkZ9ohrQ7lbMKYRE3VTDp6TafAPm75/XtC0gz1dyjmXRwVf52stOYbEhKHOqz76oRtiy66voC4dxz3PBWdOFshfxfjd6Ucp1kCAAAA0nsm9U+caYdvZoKY6Ci88ZDjXEtwDO2kPm/53TvS2W6cQJVcj3kf76U8pr4/T2KOey2Deu9O0b5cJe5OKzJxplMlRx38DFxEkwQAAACks0rqnzSbKEcSxuZeyDFsF1fWKUsfW37vCo8aGuh2zPuY5p0YijnenYzqvC9F26LTFKcTd2cVlTjTkYdfHPzse0RTBAAAAKR3S5qTONN13JKM+OoNOcZXi2Pskck7lB7lMUODXTQkXWZbHGOeTF4nsL1cyrC+aaeu9xJ3ZxWRONMNJT44+tk3SDMEAAAApKML5v+R5iTOtOxMGKOwRcJPRfysro3UOjVT17jZymMGyHav/Ih4J7955ZiEb+Cx2CsnYn5Xp2DvyLiuOsX6V4q2ZRdxd1beiTN9Zt44+pmnn0MsEQAAAACkdFqalTTT8jphjGYHv9N+HF3v54D4ibhzIZ0mneY5n0cM+H/6PtwQ81qET4Ji2pFQpw/mtSi/JpyS/lHhCHF3Vp6JM01KvXT4M+8CTQ8AAACQTre4t+tXUWVDwljppgJXxD4xxygzINpSr1wWc4ImrIwF7+LyAuq5LDjXOwnfKKS97Cbuzsozcdbt+OfdcpocAAAAAEXpEX+Unk7H/BV0pvU/dVdSHXW2ihAB1nSkzubgnRr2yvuW92ri3foQ/NuZ4Ge7HKp7+4L5A8QdAAAAAAAA8KdptybOeggJAAAAAAAA4I/GmkiafSYcAAAAAAAAgK91B92zhAMAAAAAAAAQWSl/k2a6++YiQgIAAAAAAACIPJG/ibMLhAMAAAAAAAAQOSx/k2ajXplNSAAAAAAAANB0vTJ5J81NhAQAAAAAAABNt8UrY/I3aXaMkAAAAAAAAKDpdom/CQDrmgEAAAAAAACeLq9clMnTM08RFgAAAAAAADRZj1dey9+E2U+vbCcsAAAAAAAAaLpD8jdpdt8rCwgJAAAAAAAA4E/TvO2VjYQCAAAA6Nz/Ad7gJtiefrjpAAABpHRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtaSBtYXRodmFyaWFudD0ibm9ybWFsIj5rPC9taT48bW8+PTwvbW8+PG1mcmFjPjxtaSBtYXRodmFyaWFudD0ibm9ybWFsIj5QPC9taT48bWk+JiN4Mzk0OyYjeDIxMTM7PC9taT48L21mcmFjPjxtbz49PC9tbz48bWZyYWM+PG1yb3c+PG1uPjM8L21uPjxtbz4uPC9tbz48bW4+OTwvbW4+PG1vPiw8L21vPjxtbj44PC9tbj48L21yb3c+PG1yb3c+PG1uPjA8L21uPjxtbz4sPC9tbz48bW4+MDQyPC9tbj48L21yb3c+PC9tZnJhYz48bW8+PTwvbW8+PG1uPjYwPC9tbj48bW8+KDwvbW8+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPk48L21pPjxtbz4vPC9tbz48bWkgbWF0aHZhcmlhbnQ9Im5vcm1hbCI+bTwvbWk+PG1vPik8L21vPjwvbWF0aD7ap8AnAAAAAElFTkSuQmCC" style="width: 189.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="straight k equals straight P over Δℓ equals fraction numerator 3.9 comma 8 over denominator 0 comma 042 end fraction equals 60 left parenthesis straight N divided by straight m right parenthesis"&gt;

Cách 1:Độ giãn của lò xo 1 là :

<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>&#x394;&#x2113;</mi><mn>1</mn></msub><mo>=</mo><mfrac><msub><mi mathvariant="normal">F</mi><mi>dh</mi></msub><msub><mi mathvariant="normal">k</mi><mn>1</mn></msub></mfrac><mo>=</mo><mfrac><mi mathvariant="normal">P</mi><msub><mi mathvariant="normal">k</mi><mn>1</mn></msub></mfrac><mo>=</mo><mfrac><mi>mg</mi><msub><mi mathvariant="normal">k</mi><mn>1</mn></msub></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><mn>0</mn><mo>,</mo><mn>3</mn><mo>.</mo><mn>9</mn><mo>,</mo><mn>8</mn></mrow><mn>150</mn></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mn>0196</mn><mo>(</mo><mi mathvariant="normal">m</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>,</mo><mn>96</mn><mo>(</mo><mi>cm</mi><mo>)</mo></math>

Độ giãn của lò xo 2 là:

<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>&#x394;&#x2113;</mi><mn>2</mn></msub><mo>=</mo><mfrac><msub><mi mathvariant="normal">F</mi><mi>dh</mi></msub><msub><mi mathvariant="normal">k</mi><mn>2</mn></msub></mfrac><mo>=</mo><mfrac><mi mathvariant="normal">P</mi><msub><mi mathvariant="normal">k</mi><mn>2</mn></msub></mfrac><mo>=</mo><mfrac><mi>mg</mi><msub><mi mathvariant="normal">k</mi><mn>2</mn></msub></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><mrow><mn>0</mn><mo>,</mo><mn>3</mn><mo>.</mo><mn>9</mn><mo>,</mo><mn>8</mn></mrow><mn>100</mn></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mn>0294</mn><mo>(</mo><mi mathvariant="normal">m</mi><mo>)</mo><mo>=</mo><mn>2</mn><mo>,</mo><mn>94</mn><mo>(</mo><mi>cm</mi><mo>)</mo></math>

Độ giãn tổng cộng của hai lò xo là:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x394;&#x2113;</mi><mo>=</mo><msub><mi>&#x394;&#x2113;</mi><mn>1</mn></msub><mo>+</mo><msub><mi>&#x394;&#x2113;</mi><mn>2</mn></msub><mo>=</mo><mn>1</mn><mo>,</mo><mn>96</mn><mo>+</mo><mn>2</mn><mo>,</mo><mn>94</mn><mo>=</mo><mn>4</mn><mo>,</mo><mn>9</mn><mo>(</mo><mi>cm</mi><mo>)</mo></math>

Độ cứng của lò xo tương đương là k:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">k</mi><mo>=</mo><mfrac><mi mathvariant="normal">P</mi><mi>&#x394;&#x2113;</mi></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><mo>.</mo><mn>9</mn><mo>,</mo><mn>8</mn></mrow><mrow><mn>0</mn><mo>,</mo><mn>042</mn></mrow></mfrac><mo>=</mo><mn>60</mn><mo>(</mo><mi mathvariant="normal">N</mi><mo>/</mo><mi mathvariant="normal">m</mi><mo>)</mo></math>

1

Câu hỏi tương tự

Một chất điểm ở trạng thái cân bằng khi

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG