Square root
VBT
Calculator
magnet

Câu hỏi

là kết quả của phép tính: A. 11 5 + 2 7 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAWwAAADlCAYAAAB3V80dAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAADIRJREFUeNrt3XGklOkeB/BHkpUsSbKylitJkiVZSRLJSpJIcmUl1lpZWbFyJUlc15GVLMeRtdY6ZK2stWKtlZXEyspKIknWOiI5kiTOfR8zR9M0z5yZM/O+88z0+fDj/nFv731/zzzf884z7/s+IYyupUWdLmrceQDk6e2iThb1pKiZoqadB4ysDUV9VtR3Rf1W1KOinhb1vKhn9flzt6gfihorak9Ri7Rt8JYUdaKox/WAmxnSoBuV84CyrCzqVFEPmuZIp/W8HuBbtbJ6i4v6T/0va6vBmXYeMDLfnsfqgTvTp7pa1PtaW763ijpW1MM5BmTaecDQ29rDFfVc9SLUlh8pQVx/+ryofzocjGnnAUPtUD1UZ0quH+sXUPTBwqKOdhFwuQbdqJwHVOHTCoK6sS7X5yjztKCoIz18HZp2HjCUdlcc1rP1jdbPL+A+Kep+eLnO9HtRE6H2w8PVIQm6UTkPqNKq+me+1Vy4U9SZULtFb0V9js2KS41ri9pb1Lmi7s0ztA8Zgu7cqjfuj1C7z3J5i//OhSEIulE5D6jS9RZz4K+its/j34o/WF7rMrDj3VrLDEPnTtb/UrazYgiCblTOA6rySYvP/7mmK+n5/rtPuwjtMUNR3hXssAfdqJwH9CI+j9B8i+vpPv77m0L6WYfmiuG+xJD016URCbpROQ/oxfGmz/1kCcfYFjq/TfCwIemvH0Yk6EblPGC+4pJH411U90q8wj3ZYWB/b1gEncCG1zXfxrejxGPFu0nuB78dCTqBDT3PgUsVHO/zDq+yvd1P0AlsaBCfLpx9qVNcX15TwTGXh87WsrcZHkEnsOGlPWEwTxpe7yCwdxoeQSew4aWzDZ/1NRUet5OH1gS2oBPY0OBKePnypSp93EFgf2h4BJ3Ahpe+DrWtvHZUfNx9HQT2OsMj6AQ2DN6eMPfmBgu0SdAJbMg/sG9pkaAT2JCHvcG7sQWdwIahcHCOebdfiwSdwIY8nG4z5+KDPPZ4FHQCGzIx2WbOfac9gk5gQz7avYd+q/YIOoENeVjSZr7d0B5BJ7AhH+3uENmjPYJOYEM+vk7MtetaI+gENuRjYX1OtZprG7VH0AlsyMdHiXl2QWsEncCGvFxrMcemilqmNYJOYEM+Nifm2C6tEXQCG/JytcX8GtcWQSewIS+t3s4X77m20a6gE9iQkcVF3WuaVw+Lek9rBJ3AhryMhdc3J7AjuqAT2JCZVj80HtYWQSewIS9Li7rfNJ9OaYugcx6Qn0tNc2lCSwSd84D8nGiaRxe1RNA5D8jPrqY59KOWCDrnAfnZEF59udPlUHvhE4LOeUBG4n3V/zTMnd+DvRkFnfOA7Cwv6m7DvIkveVqiLYLOeUBe4u17fzbMmfifvX1P0DkPyEy8im58qdPt+tU2gs55QEbii5t+aZgr8SGZd7RF0DkPyMuCULtdb3ae/F3Uu9oi6JwH5GcyvLpjzGotEXTOA/Iz0TA/HhW1XksEnfOA/Iw1zY0PKjpuXBs/GGpLMQhsgQ1zONkwL54WtaXCY1+sH3eDYRDYAhvaO9owJ54XtaPCY++rH/emYRB0AhvaO9Q0J3ZXeOx/hdo6eTzuZ4ZC0AlsSNvbNB8OVHjsxsfd41X9UsMh6AQ2tLYz1PZfnJ0LH1d47PXh1XeTTBqO3vw4IkE3KucB/RQ3yX3aMA8+L/l48e6PVUXtD7Wdal40zcPthqQ3t0ck6EblPKBfNoVX32k96LpnSHqzuMVfwOZ6EfK/Z3JUzgP6uRTxKKOwjnXCsPTmcIeN3uY8YGjEJYmpzMI61nuGZv7i6xTvdtjoX5wHDIWVofYCp9zC2tzrwYqirnTZ8PMZLimMynlAPyzv4uKl6tpveLoT733cVQ+sJ2H+PxrEx1rj01GLnAdkI+4MczPTsH7kImlum0NtI83YrGclDcSz+r8fj7PPecBAxDC8nmlYx/rSEM1te8WDctB5wEAsyjisY60zRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA87Ew1DZGblX2yQTISLt9Bc9rD4DABkBgAwhsAAQ2AAIbQGADILABENgAAhsAgQ2AwAYQ2AAIbACBLbABBDYAAhtAYAtsAIENgMAGENgACGzokxmlmkpgywOV6TzSWCWwkQcCW/mgCWyBbR4ZIDXsgb39DernhMA2jwyQEtgCWx4IbOWDJrAFtrK0CAIbQGALbACBLbABgS2wAYjchw0gsAEQ2AACW2ADCGwABDaAwAZAYAMgsAEENgACGwCBDSCwARDYAAhsAIENgMAGQGADCGwABDaAwBbYAAIbAIENILC1B0BgAzCPwH6WqC+1BwAAAAAAAAAAAAAAAAAAAAAAAAAAGq0rapU2AORtZVEPihrXCoA8LS/qcFFTobaTyftaAtCbGyG9XVS/6qo2Q9L6CuZgtzVtWPKzraLB/0irIemrDAP7gWHJz5UKBj4uiSzQamhpSajtpZlbYNuMOTPvVzTwp7Qako5mGNYz9W/fZGSygkF/UdS7Wg1JtzIM6ynDkpdVFQ3891oNSVsyvbqeMDR5OV/RwG/Vahjot9z51HZDk494f/TzkpdB/i7qmFZD0or6XGl1C2xc145ryG+VePzVifn7KLhJICunmwbolpZA5U42zcN/Kr6y/Y/lkPwtLupxcI80DFK8gn3QMAfjN9Kqf5y/mQjsDw1PPo41Dc59X3+gcrvDq08Urq34+GsSYf1YHuT7Vz3WEW2Byv3aMAcPDOD4JxOBfcHQ5ONweH3NbJG2QKUab6n9dkD/HyyHDIHmG/SPawlUbqzhgmnZAI6fWg55EiyHZGNXi8F5W1ugcj/X5+D+AR0/tRzyjaHJx9WmwTmjJTAwmzL6pj1buw1LHja3GJwY2DtDuTfmA3lZmwjrp8FySDZ+Cu2fTLwTaj9+xB8l12kXjKzUcsh3WpOHNaH7R8vjo6mT9QB/RwthZNxOzPk9WpOHC6H3d4PELcTiAzcrtROGVmobsrh5wkLtGbz4qOuL0N+XOl0O3sAHw+hUYl5Pak0e/hfKeyPftWAXdBgmqeWQvVozeEtD7V7rst+bO+brFAztckh8zbKnnTPwRajuZefXgx8nIWenE3P3otbkIf7qG2/ni09VxYdm4p0fT0sM7fh6yNXaDkO1HHJAa/IWv/7Ee63jutWZeqD3a/eZKaEN2dlgOWS0xCec4k4X50LthTS9Xmmv0FLIxplgg+yRDu+4nHKlh9D+I3jkHXJxNzFP/601o2VjePVF693Ut9oHA9duOcRF1YiKb/G6N4/Q9hccBuu/ibl5SWtGW9y896vQ/TtJlmodDExqOeSg1rw5V9vTXYT2aS2DgdgY0sshS7TnzRGfmprqMLBjuLt1CKo3lpiTP2nNm2d1F6Ht6xdU735iPh7SmjdT3Mmmk7cBehsYVCu1HBLnq9+V3mCdvLPkiTZBpVLLIT9rDX91ENqrtAkqk1oOOaw17OogsG1BBNX4IKSXQ5ZpD9HtOQL7Iy2CSpxNzMFftYZZc61ln9UiqMSDxBz8RGuYNdfu7BNaBKXbHNLLIcu1h0YPBTYM1JfBcggd+kFgw0D9nZh/n2oNzSbaBPZ57YFStVsOsakIrznSJrCPag+UKrUcckVraOVgm8C22SeUK7W93xGtodvA3qk9UJqtbebeSu2hlUNtPjTW0KA85xLz7netISW1HdG01kCpUsshfjsiaTLxoflea6A07ZZD3tUeUu4Ej8RC1VJ7rV7TGlLeCe4BhUFILYcc0xpSjiY+NJe1BkrTbjnkPe0h5VbiQ7NVa6A0qeWQG1pDyp7Eh+Y3rYHSLAjpF659oT2kPjStrq7j2vVa7YHSbAu25BsZi4vaEsp/B+6pxAfmuCGAUo0HyyFDL26y2bzjxLNQe/Vpvx8P35L4wPxkGKD0b7YPXSwNt/1h7s1w/yxqYx+OFX+Bnkr8dV9iKKBU29vM8dXaMxwudxDYs3Wyh+PEl8ncb/Fv3gy2IYIqjLe5IGNIPO4isGe3Der2oZZNiSvr+M7dpYYAStduOeSE9gyPG10GdqxHobPtg+Iyx5lQu/uj1fZfC7UfKrGjzXx2Z9YQOT6PwJ6tO/X//fr6X/DoraJ2hdqrG6db/G/iX/l92g6VupCYw39pzXBZWF+amCm54lX2WUsgMJDlkNTS5yntGT7xqni8pKCOV9ljwTsKwHIIfRWXNr4u6nmPIf0k1N5zfSBYp4Zcl0PuaM3oLJPEdej4g+HFUPthMn6letZQT0Ptx8frofaAzXg9oNdrHzAo/wep9XUuab/1FgAAAJB0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1uPjExPC9tbj48bW4+NTwvbW4+PC9tZnJhYz48bW8+KzwvbW8+PG1mcmFjPjxtbj4yPC9tbj48bW4+NzwvbW4+PC9tZnJhYz48L21hdGg+4kpa/gAAAABJRU5ErkJggg==" style="width: 57.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="11 over 5 plus 2 over 7"> B. 11 7 + 2 5 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAWwAAADlCAYAAAB3V80dAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAADJFJREFUeNrt3X+kV/cfB/C3JJOMJJnM+EqSZGQmSSKZJIkkX5nEzGQyMfnKlcTX15VJxnVlZuaSmcxMzEwmiclkkkiSmSuSK1cS9/t++3yuPn32OZ/7+Xk+55z7ePDi+8f32/me1/vzft7zeX/OOe8QqmtlrLOxJpwHQDG9GWss1rNYc7FmnAdU1pZYn8b6NtavsZ7Emo31Itbz+vy5H+v7WOOx9sdapm2jtyLW6VhP6wE3V9Kgq8p5wLCsjXUm1qOmOdJpvagH+A6tzN/yWP+p/2VtNTgzzgMq8+15vB64cwOq67He1drheyPWyViPFxiQGecBpbejjyvqheplqC0/MgRp/emzWH93OBgzzgNK7Wg9VOeGXD/UL6AYgKWxTnQRcEUNuqqcB+ThkxyCurGu1ucoPVoS63gfX4dmnAeU0r6cw3q+vtb63gLu41gPw6t1pt9iTYbaDw/XSxJ0VTkPyNO6+me+1Vy4F+tcqN2it6Y+x+alpcaNsQ7EuhDrQY+hfdQQdOdOvXG/h9p9lqtb/HculSDoqnIekKebLebAn7F29fBvpR8sb3QZ2OlurVWGoXNj9b+U7awpQdBV5TwgLx+3+PxfaLqS7vXfne0itMcNxfCuYMsedFU5D+hHeh6h+RbXswP897eG7GcdmiuF+wpDMlhXKhJ0VTkP6Mepps/91BCOsTN0fpvgMUMyWN9XJOiqch7Qq7Tk0XgX1YMhXuGOdRjY3xkWQSew4Z+ab+PbPcRjpbtJHga/HQk6gQ19z4ErORzvsw6vsr3dT9AJbGiQni6cf6lTWl/ekMMxV4fO1rJ3Gh5BJ7Dhlf1hNE8a3uwgsPcYHkEnsOGV8w2f9Q05HreTh9YEtqAT2NDgWnj18qU8fdRBYH9geASdwIZXvgq1rbx253zcgx0E9ibDI+gENoze/rDw5gZLtEnQCWwofmDf0SJBJ7ChGA4E78YWdAIbSuHIAvPukBYJOoENxXC2zZxLD/LY41HQCWwoiKk2c+5b7RF0AhuKo9176Hdoj6AT2FAMK9rMt1vaI+gENhRHuztE9muPoBPYUBxfZcy1m1oj6AQ2FMfS+pxqNdfe0x5BJ7ChOD7MmGeXtEbQCWwolhst5th0rFVaI+gENhTHtow5tldrBJ3AhmK53mJ+TWiLoBPYUCyt3s6X7rm20a6gE9hQIMtjPWiaV49jvaM1gk5gQ7GMh39uTmBHdEEnsKFgWv3QeExbBJ3AhmJZGeth03w6oy2CznlA8VxpmkuTWiLonAcUz+mmeXRZSwSd84Di2ds0h37QEkHnPKB4toTXX+50NdRe+ISgcx5QIOm+6r8b5s5vwd6Mgs55QOGsjnW/Yd6klzyt0BZB5zygWNLte380zJn0n719T9A5DyiYdBXd+FKnu/WrbQSd84ACSS9u+rlhrqSHZN7SFkHnPKBYloTa7Xrz8+SvWG9ri6BzHlA8U+H1HWPWa4mgcx5QPJMN8+NJrM1aIuicBxTPeNPceD+n46a18SOhthSDwBbYsICxhnkxG2t7jse+XD/uFsMgsAU2tHeiYU68iLU7x2MfrB/3tmEQdAIb2jvaNCf25Xjsf4XaOnk67qeGQtAJbMh2oGk+HM7x2I2Pu6er+pWGQ9AJbGhtT6jtvzg/Fz7K8dibw+vvJpkyHP35oSJBV5XzgEFKm+TONsyDz4Z8vHT3x7pYh0Jtp5qXTfNwlyHpz92KBF1VzgMGZWt4/Z3Wo64HhqQ/y1v8BWyul6H490xW5TxgkEsRTwoU1qlOG5b+HOuw0TudB5RGWpKYLlhYp3rH0PQuvU7xfoeN/tl5QCmsDbUXOBUtrM29PqyJda3Lhl8s4JJCVc4DBmF1Fxcvedchw9OddO/j3npgPQu9/2iQHmtNT0ctcx5QGGlnmNsFDesnLpIWti3UNtJMzXo+pIF4Xv/303EOOg8YiRSGNwsa1qm+MEQL25XzoBxxHjASywoc1qk2GSIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgF4sDbWNkVuVfTIBCqTdvoIXtQdAYAMgsAEENgACGwCBDSCwARDYAAhsAIENgMAGQGADCGwABDaAwBbYAAIbAIENILAFNoDABkBgAwhsAAQ2DMicUk0lsOWBKug80lglsJEHAlv5oAlsgW0eGSBV9sDetYj6OSmwzSMDpAS2wJYHAlv5oAlsga0sLYLABhDYAhtAYAtsQGALbAAS92EDCGwABDaAwBbYAAIbAIENILABENgACGwAgQ2AwAZAYAMIbAAENgACG0BgAyCwARDYAAIbAIENILAFNoDABkBgAwhs7QEQ2AD0ENjPM+oL7QEAAAAAAAAAAAAAAAAAAAAAAAAAAKB8NsVapw0AxbY21qNYE1oBUEyrYx2LNR1quw69qyX52xyyt4EaVc0YFujZrRzm6HVtHo0vCxjYjwwL9GRnTnP0Q63O34pQ25+vaIFtg1fozbUc5mdaElmi1fk7UcCwnqtfJQDdeTen+XlGq0fjTgHDetqwQE+mcpifL2O9rdX5217Qq+tJQwNdW5fT/PxOq6v717iX2mVooGsXc5qfO7Q6f2vqX21a3aqT1rXTGvIbQzz++owPw5PgxwzoVro/+sWQl0H+inVSq0djrGlA/s75yvY/lkNgYM42zaM7WlId6Qr2UcPgpr+cef+IcDsjsD8wPNCV5bGeBvdIV9a+8PoThRtzPv6GjLB+GiyHQLdONs2jh+ZRtfzSMLiHR3D8sYzAvmRooK9vy6mOa0t1NN76882I/j9YDoHBOBb++VvUMm2pjvGGgV01guNnLYc88zUOutb84NspLamWn+oDe2hEx89aDvna0EBX9ra46HlTW6pna4GuCOZrn2GBrlxvmkPntIRB2pgR1rPBcgh0Y1uLeZQCe08Y7gNvLCJZyyHfag105cfQ/snEe6F2U0H6UXKTdtGLuxkfrv1aAx3bELp/tDy98mGqHuBvaSELydqGLG2esFR7oGOXQv/vBklbiKUHbtZqJ62cyfjgTGkNdCy9QuJlGOxLna4Gb+CjSdZyyAGtgY79LwzvjXw3gl3QCdnLIel1kJ7Kgs6sDLV7rYf9vuv0cJ1lykXsbMYH47LWQMc+D/ltInIz+HHSckhTHdYa6Fi6myrdzpeeVk4PzaQ7P2aHGNrptcvrtX1x2WI5BIYqzaN0r3X6PehcPdAHtfvMtNBeXM4FG3lC3tKTw2kHqQuh9qK3fq+012jp4nA/40Pwb62B3MI7Ladc6yO0fw8eea+8dsshBh/y9154fQOTbuob7au2/2YM/BWtgZFKb8d80ENo+2ZcYVnLIUe0BkYubd77Zej+nSQrta6aX72ylkNWaA8U6mp7povQPqtl1TOeMdg/ag0UTnoaebrDwE7h7pbcinmYMdhHtQYKaX0XoW1Zs0KylkPSm8Gsf0FxbQudvQ3QWzYrJGs55CetgcLr5J0lz7SpOrKWQ45pDZTCnx2E9jptKr/3Q/ZyyCrtgVLY20Fg29qvAs5nDO4vWgOlcneBwP5Qi8rvUcbgfqw1UCoLrWWf16Jy2xayl0NWaw+UykK7s09qUbl9ESyHQJU8FtjV9VfGwH6iNVBK3wvsamq3HOLl51BOk20C+6L2lFfWcsg1rYHSOt4msE9oT3llbUN0XGugtI60CWybaJfUjjaDulZ7oJKBvUd7yulCxoD+pjVQakfbBLbfpkoqaznEGheUW9Y2fzNaU07tlkPe1h4otamMuf2d1pRT1p5wN7QGSu9e8KqJSslaDjmpNVBqbwXPVlRKu+WQd7QHSu1Exty+qjXllLUccktroPTuZMzvHVpTPktC9othPtceKLX9GXP7V60pp53B1kFQ1YuxVlfXae16o/aU00SwHAJ5Wh5rexj+u+XPZMztU4agvH+BHxtUyEXavLp5J6fnofbq00E/Hr49Y17/aBjKa1fIXg5Zrz0wMIfCwpvh/hHrvQEcK93ZNZ3xrXmFoSiviTYfHGBwrnYQ2PM11sdx0kvaHrb4N28H2/uVWrvlkNPaAwP1tIvAnt+Or9uHWrZmXFmnd9mvNATltrvNh8UvyDBYt7oM7FRPQmfb8qVljnOhdvdHq+2/lmp/+V3K+JD8qTUwcKd6COz5ulf/32+ufzNO3oi1N9ReiTzT4n+Tvj0f1PbqLIdkfUU7oz0wcEvrSxNzQ650lX3eEojlEKA/6ap4YkhBna6yx4N3/yyq5ZB7WgNDl5Y2vor1os+QfhZq77k+HKxTAwxVCtm0Dp1+MLwcaj9MpqXK5w01G2o/Pt4MtQdsJuoBvbmKDfk/qDd1LsD/y6UAAACQdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtbj4xMTwvbW4+PG1uPjc8L21uPjwvbWZyYWM+PG1vPis8L21vPjxtZnJhYz48bW4+MjwvbW4+PG1uPjU8L21uPjwvbWZyYWM+PC9tYXRoPpVdAb0AAAAASUVORK5CYII=" style="width: 57.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="11 over 7 plus 2 over 5"> C. 3 7 + 9 5 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAADkCAYAAAAIAei3AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACMJCpdlQAADtlJREFUeNrt3X9kVX0cwPGPzEzmYZIkiWRmkkiSJDFJkkSSTLJ/HpkkkTySSSRJMjGTJBlJ8phEknkkkUmSGckkmUhmJhk959M5q3vv7vec7733fM+v+37xpcdTO/P53vO5399fkfxp8cper1z2ygOvfPDKrFe+e+WHV+a88tkrD70y6JX9XmkVAKVag3fjWvCufA7enR/BuzTjlXGvjHjllFc2E7JkdHtlOKiEnzUWrbzbXtlAGNHkNGHdCd6JWt+jKa8MeGU5YYzfquBb5WdM5ZZXlhFWNJl1XnkU8l5888pTrzzxylevzIf83bkg4bUR1njsDyrgZ8zlo1c2EV40iVOGFtxrrxz1SntI1zYsOb73yhbC25izDhJcadExiK2EGQWmLa77hs//iRp+jr4nk4afoy2/PkJdnwHHSW6haBN9DeFGAWkr7T/D535fHT+vwytjIe/SOUJem+Mh3xyjwf/fKuUzqfrnLq8cEn/SYbaGZPeSkKNgWkOS0kCDyfNNyLt0itDb2WZIcFfEn5SwtdQr58V+hvYQoUeB3DZ8znUpVkuDP1snNeZC3qWDhD/622KqSmurq4GfuVH89UFRie4V4UdB9IV8zvtjekbY+PlMkAxhcL0iYLpmbkkMP7fbsitL5SDv1oa0tn5I9dnVervGYQ0IhoNCklFpoC7E/PNPWyS6I1QDcm405PN9P+ZnnYt4nxivq+JBSYAGHfx8/QaKWo83TDUgx7ZHfL7jXgKyUsIXFev7xsL8Ep0lwXni8Dm3Iz4Id6kK5NiYJD808yzimReolj+uBkH55PgboDeiUkaoCuRUV8Rne9bRc09aPLed6vEnG74EQdnt+Fl7adGhoC5FfLYfOHrueoke+z5B9fxJPvcSeFZPRIVcpjqQU5OS3vjzXMSzx6kev1l7QPyBzbQT3QGqAzm01qJV1evw+Y8snt9JNSXfejStMeogRMihwxaJZr/D5w9ZPJ+lJgkKm4y4R3iQU4MWiWZ3Su/VQhmlmpJzI6QiOHkYefXAItH0pNRTWii653wJVZWMCWGhMIrnTcqJrkvsDs6gMZGATYbg62wV63yQZzb7uF0mulbhhKDMuFsl8NPiz1gBeWZzFJnrNarzFr/DAFWVfGtOk9xGQoMCsGlN7XP8O9i0Km9TVe5ot3SiSneVI5lQFDbXFh52/Dt8tfgdHlJV7lQeW3NXGJNDsUTtTEhic/0ni9/hCVUVv7bgG2QhyFoRHPGMIpqySDKuD6x4YvE7TFNV8Vot/gmnlfe4nqE1hwL61yLJvMlAovtCVcVHbwibkfDrDTXhtRIqFMQtiySjs6ItDn8Hm/2u36iqxu0Vu4WTpbch7SJsKIAjlp95l/tdR2nRuaPfUHo89Gup/wLrYVp3yLmuGj7raSY6xuhqpOvirondlLZNee6V5YQVOfbe4nOu74ur/aY2iW6MarKjrbdJiSe5VRZtFXJME/LqouXn/Jij5z+2ePa/VJMdXQOnEw26Cvu7xJ/sWNCIvFpj+RmfcPR8m0viuaqgATq+pqeX7hH/XCzdZvKhgWTXS0iR44aAzWf8eMzPtR0jvEYVxU/H8a5K+FKTakW/mdoIH3JorWVPR3tEcW6BvEcjIn1/BeMX82Kf7Dj2GXn1j+Vn/K3EMyZ9pob3iuVcCdBr2d5bVsg7woUce2r5OX8h9a820PuXb0ttvSWWcSVEK8d2zd16woUcf84nLD/nujWyliOctHt8RcoPEpi2eM4k1ZKsFWI3Q0T3FXm2MuiZ2La29O5VnaTQ484X1totCd4X3XV0Tvz1ptX+3UHhLLpM6rGoGG4FQ97pGJzNHtR6y6WgO3pe0j8PDwZRJz68JUQoiL8lvl1EC1cXdpf8/FcW/2YZ1ZCObRJ9PRtQpNadtrw+1pncdLjnWkWCU6vFboslUhS1sJh7KFFEW8Ufc9P7YHXSQicW9Dj2+eDP2vrTLV13xB+32xTys2yWlzDenbKbwnQ40Iioo9E0ea4gTOmKOseLRAeEtwxtxvOQst10XYG62eyt3UGY0rdKmIwA6rFGordVviZM2dAuLC8B6nHDojV3gDBlw1JJ73o4IK86LVpzLwlTPrquTIkD1dlcr7iZMGXHnpCK2kJ4gEX2WiS5G4QpW3rFfKIDgHLtEr2zYkr8MyCRIXcMlXWR0ACLRC0n0XG7bYQpez4bKmsNoQHKHLPosp4gTNljOqppmNAAZXRiYS4iyd0kTNn0rEpl6UU6KwkN8NtqiT6olvtaM8q09auf0AC/6X0SUfes6F7WFkJlb7v4J5YOiT8busrRc/Rcrilh8zEQRk8cibp3Qifz2A9uSb8N7kv1SQE9L6s75ueNVnmWnkvHCaiAb61En9U4QJhqc06ip6wvSzxHJlW7nu1TULEARHZ65UvI+6iTEgcJU+1sbyrSv1fvkS+6gLHathW9go2lJIDvtITvYZ1w0MNqGrVe2qEJa1MNP/+QVF/Nrd3lDsIP/BoPfxbx3umyq6WEqn4PpL7LOvQ+ST2vfldFt1b/rLOqF6T6jJF2Vbl6DfAnEvQdmg15z/Qd6iFUjYs65TeuoreJ/8O3EvDLEQlfOqLJ77xwnUCsoiYkGinaJD8qrPUB2sS/1WtSwk/WviosnHfashuPIbHp7gYdf+sTbh8ClgRdT92iFbaNS0/U1skIxq0T0iX+zeK6FOSR+FPds8E3zULR/9ZtKToxoScB63icHtu8jvABv2ZG+4J3I2z8bTx4dzYSMgB5sStoCJjWo2qr7Zb4KxHomgLIpS3yZ5xtLOgV9cvilQkAkFs64cYYGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmaLHAw0aCpcdAygEPdTRdFz3IOEBQKIDABIdAJDoAIBEBwAkOgAg0QEg0ZHoAJDoAIBEBwAkOgAg0QEAiQ4ASHQAQKIDQKIj0QEg0QEAiQ4ASHQAQKIDABIdAJDo0PR+UmIrJDreI0pG3yMCS6Ij0fEekegoJDoSHe8RiY6SZKLraaJ4DpPoeI+oIBIdiY5Ex3tEBZHoSHQkOt4j5BGJDgCJjkQHgERHogNAoiPRAWgOrKMDQKIDABIdAJDoAIBEBwAkOgAg0QEAiQ4AiY5EB4BEBwAkOgAg0QEAiQ4ASHQAQKIDABIdABIdiQ4AiQ4ASHQAQKIDABIdAJDoAIBEBwAkOgAkOhIdgAImuu+Gco3wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJXWe2UdYQBQVKu88tErQ4QCQNEs90qfV6bFP2V6IyEpt0HMR3KnVWaoFhTUeALvz3PCvNiNDCa6j1QLCmhnQu/PUUJdrl38Owaylui43AVFNJbAu6Nd1yWEutzJDCa5n8E3H1AkGxN6dwYI9WLvMpjkpqkWFNBIAu/OvFdWE+py2zPamhumalAw6xJ6d+4T6nS+YeopPVQNCmYwoXdnB6EutyJo5labltZxOx0ja3P4/E5DRX0VBlJRLLq+7Yfj7uonr5wm1IudrwjW54RbUv/QbUWTuFDxGX9HSJKhLaaPJYHXb4OkBzDfGBLdbqoHBbLUK9+ENW6p2CflOxC6E35+lyHJfaPbioI5XfEZn+IznpynJYE/nIFu80K5SdWgwD0nLf2EJRml09x3Uvod6LaiGfTJ4nHwVsKSjCslQV+WwvNN3dZZmvQomMrF+GcJSXIeBUE/lNLzTd3W21QNCmRvlS/yvwhLsrZm6FtuoeyjWlAgzys+3xcJSfPoNiS5ObqtKJBtVT7jmuj2iNtF+MgIU7f1LqFBgYxK+E6GSfEnAnWyYj3hKp4JQ8XvJzQoiC6pfQuXbnscCRLfSkKYb6bj2vXQzxbCg4K4KY3vXdWj1nWh8SrCmT8DhkodITQoCN1GOS/xbtZ/LJxIUohu6wFCg4K4LO5OKHkh3OqV226rHl3DSnEUQYf4a+VcnzenC/4Z6smoC4ZKu0doUBBnJLmDaV8Kkxa56rYeJjQoCF05oMtKdOeRLhbWmdQ5h8lOj1brJOzZsYluK5qYfsZ1rZyORV8MEmFcpw1Pk+yy46JwiQdQSncB6Wne18U/XKPRlt0KQpq+94YKOkJogF9JT7u9jVxs/UrYWpbZbisVA5TbLOWH4tZS7hC+9FwyVMpDQgMY6Uk+H+pIdvSSMtZt7SU0QCi9VOeG1L5ntoPQJd8MN3Vb2wkPYN26m6kh2V0gZMm6YqiIUUID1ER3Fk1bJjpNiizbStCUoSKOERqgZp01JDuGhlLuts4zhgDUbZvYnY7CiUApd1sfERqgITZ7amcJU7rd1j5CAzTsrUWyW0eY3NoS0m1dRniAhu21SHRcT+DYVUPgnxIaIDYTEYnuKCFy66Mh8H8TGiA2UWN1VwmRO9tCuq3LCQ8Qm6jbxoYJkTvX6LYCiflCokvHJ0PQjxMaIHYPSHTZ6rZyMCAQv+GQRDdIeJLtto4RGsCJ/pBEd5LwuGE6Erqf0ABO9IYkOi6ecmBHSMBXER4g8US3h/DE77oh2P8RGsCZYyGJjnHxBLutjBMA7piuKpghNMl2W1cTHsCZEeEq0cSYzrV/QWgApyaF7Zapd1tPExrAmZXCutVMdFvXEB7AmZOG9+4xoUmu2zpOaACn3hnevR2EJl5LxLyp+AzhAZzZb3jvnhGa+O0UjnEG0mhgVGvN6dhcN+GJ3xDdVuC3pV7ZLu7PXRwwvHdnqYJku60EHM1EL3yqPFX7u/hHKMW9DWu7cCl8onpCuq2dhAdN4pBEX1LzWvx7jhulqximDT2odqoi2W7ra0KDJvLYItEtlPMNPEcPxqh2hegb4YqCVLqt5wgPmsi3GhLdwpUCtS7m3Wpoyek5jx1UgTu7QiqSWR80k/EaE52Wr2J3tYB2Ry+KP5ta7Zj0FsLv1k1DBb4lNGgyZ+tIdAtlMvj3G4JekmoT/3JqPfZspsq/0Z7UQcKeTLfV1FwfIDxoMi1BF/Kn46Ktuqt0Vem2AmnRVtiQowSnrborwr7xzHRbJwkNmpx2QW955UeDyW1W/HPmDgvjcAAy3J3VcTadSLgn/oSFDvd8Lylz4k9KvBR/YfFQkNg2FDEg/wNpnQWv9s8d9gAAAI90RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1uPjM8L21uPjxtbj43PC9tbj48L21mcmFjPjxtbz4rPC9tbz48bWZyYWM+PG1uPjk8L21uPjxtbj41PC9tbj48L21mcmFjPjwvbWF0aD7zAe5TAAAAAElFTkSuQmCC" style="width: 49.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="3 over 7 plus 9 over 5"> D. 1 + 33 35 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAATYAAADkCAYAAAASPQg5AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACMJCpdlQAADYlJREFUeNrt3X+kV/cfB/C3JJOMzCSZmEwyicxMvmZMknwlkknmq39m5msykplMYjKZycg1k0lkrkxmzMx8zddIZiaJSTJJJMlcE33fL+dzfa/PPj/vPedzzzmfx4MXN22f0+uez3k6P97n/U4JGGRlrj25TuWazXUz16Ncc7n+yvVnrju5LuU6k2tvrlX6AOpoS66ZzoH/ZMyKoDiXa6s+gDrYkOvCIkKgX32R6xl9AMslLr8elBgG83U713Z9AJN2rIIgWFgPc72iD2BSPqw4DObrfq6N+gCq9nafg/dxrsudv48zlIVPCOPnzbkOpOLm+qMxQuFnfQBV2tEnCD5Oxc33Ua3OdTyN/uTxgD6AKqzJdavHWcjmJXzmtlSMBRsWCFf0AVTh066DNMZ6rSjhc7eMeEm3SR9AmbZ0HZwnSv7890YIhIP6AMo0u+DAPFPB58dN+WHjyGb0AZTlhQUH5XcVbufckEA4rw+gLKc7B+QfqdpXhA4NCYQL+gDKEDfV73UOyF0Vb2tPhWc6bekDKPEgvTiBbb0+JBBO6QMoQ4z52pdrfQ0CYZ8+gKaeHfab52ytPoCmGXTT/aI+gCb6bEAgbNUH0ETXUzsGtLalD2CJtvcJgxupuPGvD6BxzvcIg7u5ntcH0JaztQiDbfoAmiguz673uGzbpA+gqS6nv79utEYfQBM9lYoV1OeDIF5M368PoKmeS8VU3N3rbx5t2FlOW/oAlihWfnqYBi9TF8GwSh9A3cX7k7+m0Zequ5lrpz6AulmZ63CuX9LiFxqeqcFZT1v6AJYgxnN90rkcK2MV9Z9yPasPYDnEWc2NkkKgu+Jsaa0+gEmLsVtxQz3W1pyrIBQu6QOog7ivFKtD7U7FPGWxgtPNJYTCIX0AdRX3r06nwUMmetWdVAyK1QdQW0/nOpnr8RihcEQfQBO8mOv3EQPhmj6ApohFjEcdK/aiPoCmWJeK+09Nv4xrSx9ASV4fIRAu6gNomq+HBMJv+gCaZseQQJjTB9BEwwbArtAH0DSfDwmEVfoAmuZgSwKhLX0AJdjVkku4tvQBlGBDasdN97b0AZRgTWrHMIm29AGUYPWAQLigD6Btl6JH9AE00e4BgfCyPoAmOtQnDG7rA2iqL/sEwkl9AE3Va9qfmKF2oz6AJuo35c+MPoCm+qFHGMSCKev1ATRRv1eQ3tEHUKZ/5Poo19lUPOXbUNF2YpX0Wz3C4LI+gLKszPVV6n3zezbXlpK3d7nHtmI+s2f0AZTlgzR4ZooIhlOpnKl3zvX4/D9yPa8PoEzX0uhrZL66yG3EYsO91ga4kcobEtGWPoAS3E+jr2z+pHNgbx/j8w+kYgR+9+fEZeNafQBVmB0zEObraq6juXZ2Xd7Fz/G08ETqvWJ6XLK9oQ+gSrsWGQjj1t1c76diih99AJX7oMIgiAGsb6biqaU+gImfuV0tIQBi1H3cdzqca50+gDrYnOutVAxp+CbXvVyPUjF3/3zFn+PF77gBHzPExn2ofbk26QMAAAAAoBwxajluWp71qwCaLt47O56KJzPzj5cBGilWjY6BhA/S38fNADRKvIIRr2L0e1lXsAGN8VSu91IxQHDYSGeAWovZAWJ5+ztp9Fc4AGopXpJ9d4xAE2xAba1Ixeo0t9PiX7oFqE2gxcu28yvWxNzq/0nFgqkf5/pJsAFNMz/X+pVc/871bI//5nPBBjRJDLIdtrTXOsEGtPnMTrABrXFJsAFtM2wVnWkMthgac6ZP7feVAcHWRKsG/D7O+MqAYBNsgGATbIBgE2yAYBNsINgEm2ADwSbYAMEm2ADBJtgAwSbYQLAJNsEGgk2wAYJNsAGCTbABgk2wgWATbIINBJtgAwSbYAMEm2ADBJtgAwSbYAPBJtgEGwg2wTYVnijVVYJNsAk2JdgEm2ATbEqwtSjYXp+iL8aMYFOCTbAJNsGmBJtgE2yCTQk2wSbYoDEEm2ADwSbYBBsINsEm2ECwLTvj2ECwCTZAsAk2QLAJNkCwCTYQbIJNsIFgE2yAYBNsgGATbIBgE2yAYBNsINgEm2ADwSbYgGXytWATbNA21wWbYIM2WZ3r8ZBgi79fIdgEGzTF4TTapIevCTbBBk2wJtfvIwbbd4JNsEHdrcv1YxpvquozU3RJKtigIdbm2tM5MB+lxc3DfzPX8Vw7Owe/YAMmakeuO7nu55pL1Sw4Mtf5/NjOfsEGVG3SKzodEmwAgg1AsAEINoAFwTbXpz7x6wEAAAAAAAAAAAAAAAAAAAAAAGB6vJhrk18D0BYbct3OddavAupvZSqWmDyVazYVy0XGUpMxQehfuf5MxYpql1IxE/Le1O5lJLs9m+twrrupmA16m68M1NeWXDNpcctMRuCdy7W1Rv1cTdWvKveTrw3U95LqQokH+xe5nlnmnl5Lk1ku801fH6ifuIx8UMEBH/eeti9jXz9OINTiUnSFrxDUy7GKD/yHuV5Zhr62Tehs7UNfIaiXDyd08N/PtXHCvV2YQF+Pcz3nawT18faAg/Vy5+/jTGvhk874eXOuA6l4SPBojBD4eYK9bZpQYH/lawT1saNPoH2ciocIo1qd63ga/QnqgQn1d2ZCwfaqrxLUw5pct3qcTW1ewmfG/aw7IwTBlQn0F+PL/qr48vOPXO/5KkF9fNp1oMaYtTKe6m0Z8dK06lePTnRt75pdDu22peugP1Hy5783QrAdrLC/uDTuHrZijBm03OyCA/5MBZ+/Kg0fDzdTYX/dwXorGWMGrfbCggP+uwq3c25IsJ2vaLsRYLe7tvWO3Q7tdrpzsMeN7ypfdTo0JNguVLTdw13buZOm66V8mDpxNnOvc8Dvqnhbe5bpjO1a13aO2e3QbvNhc3EC23p9SLCdmkCYxtPZp+12aLcYu7Yv1/oaBNu+Crb5U9c2TtrlwKQuRWPg7NqSt9frLYoItt25nrI7gDIMenhQxaXw5SFniDdyfZmKhwsv2j3AYnw2IGTKnll3c1rcTCMXOkG33u4CRnE9TW5g7udp6e9+xtThMbB3g10H9LJ9wOXgmpK3FfOgPU7lvtz+bTJjB9DlfOo9dfbzFWzrVKpuBo//JqtOAX3O1u5WFBDxZHWcSS4XWzE/3Uq7FqZTXGZe73H5WdUURUfTZCaSnJ+rzkMGmELdQy7Op/LvqS20t7PNb1IxODeedP5ZYbjF+7Uv2M0wHWIA7KWuANi/jP+eeOk9xqrF2w0nO8FX1my6d4UbtN9zncu07nVEj1Z8tjaumAAgXvOKmYNHmb582JnbOrse2ilWsHqYBg+CPZrqN23Qis5l7FIWUr6SvKoFrRLvgf46RgjczLWzpr28lOv7RYbbl74K0Gwx3CFeP/plCWc5M6m+kz7+sxPA4/Z00FcDmifGpX3Suaws4+Z7PL18tqa9xiIwn6Xx3zld62sCzRBnZzdSNcMmfql5GMTZ28Mx+jnh6wLNcL5zcMfI/rlUfrhdqnn/MQPJ3RF7eZisqwCNFQdvjOGKyRtjvrVYiWox96Xm61DN+31hjHA75OsB7RL34U6Pefk2v4JU3YdMxMy8o8wecsHXANopFk45mcabRuhIA/oa5Z3UR3Y/tFu8zvT7iMF2rSE9/TZCL5vsemi3WIx51DFvTViDYM8Ifey126H94n3KUd7LPNKQfq4P6eNNuxymw7D1RSe1gHMZht1rO213w/T4ekgg/NaQPoathjVjV8P02DEkEOYa1Ms9wQbMGzaQd0VD+pgVbMC8YWt/NuWVpJkBPZyxm2G6HGxJsL0zoId37WaYLrtacil6aEAPb9jNMF02pHY8PBgUbLvtZpgua1Lzh3uEfw3owwIvMGVWp3bMjPFR6j8nG+BStHGvVKVOCPfq4Su7GKbP7gHB9nKD+ug3XfpbdjFMn3433W83qIf1fXqI+efcX4Mp9GWfUDjZoB7e7dPDt3YvTKc7fc50Njaoh2t9gu1VuxemT7+pi5r0buXePj38YPfCdPoh9R4esb4h//4Vfc7W4oxzi90L06ffq1TvlPDZMTbuH6n6leU/7NPDMbsX6iPCIAaank3F08oNFW0nVnu/1SMQLi/xc2OV+tvp769lxZRCuyv4XT2poAegJCtTMZC01yXVbAWXVZd7bCvmZXtmCZ95IA2fajwWkXmphH9/PNjotWDy1VS8IgbUwAdDAiEC7lQqZwqhcz0+/49czy/xc79No69ZenwJ29nQ52zz1wlc+gJjuJZGX+tzsUMYYtHkXmsc3EjlDO14kMZbbf77NP7g2Vf6nKn92Lm8Bmrk/pihEAG1fczLxNup93uUZQXC1TF7eNLp++0RPjsuL/utZD/TuZQHamZ2EaEwf08plp7b2XWZGj/HU88TqffK73HpWfbki8cW2cP8WWP8/1vT/ye2fCoViyF/moohKN3/Tyzest9XB+pr1xJCYZyKy7j3UzEco2wrO5eEVfcQZ22nXXpCM3xQYRjEQNw3J3DJFmdZZyvqIc7aPk7NetUL6Jy5XS0pBOL+WYwrW47ZLeKS8otcfy2xj0epmGftjeQ+GjRerGwe84jF0IxvUnE/KQ7yuQUVf44X2L/uHPxxP21frk016iPCKO6TxY3/i53QftDVx5+peIjwcyruNZ7tBNnWNu7Y/wFMuVSaHX94pwAAAHh0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bW4+MTwvbW4+PG1vPis8L21vPjxtZnJhYz48bW4+MzM8L21uPjxtbj4zNTwvbW4+PC9tZnJhYz48L21hdGg+oCFdVAAAAABJRU5ErkJggg==" style="width: 48.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="1 plus 33 over 35">

Trắc nghiệm Cộng, trừ số hữu tỉ là kết quả của phép tính:

A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>11</mn><mn>5</mn></mfrac><mo>+</mo><mfrac><mn>2</mn><mn>7</mn></mfrac></math>

B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>11</mn><mn>7</mn></mfrac><mo>+</mo><mfrac><mn>2</mn><mn>5</mn></mfrac></math>

C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>7</mn></mfrac><mo>+</mo><mfrac><mn>9</mn><mn>5</mn></mfrac></math>

D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mfrac><mn>33</mn><mn>35</mn></mfrac></math>

  1. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>11</mn><mn>5</mn></mfrac><mo>+</mo><mfrac><mn>2</mn><mn>7</mn></mfrac></math>

  2. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>11</mn><mn>7</mn></mfrac><mo>+</mo><mfrac><mn>2</mn><mn>5</mn></mfrac></math>

  3. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>7</mn></mfrac><mo>+</mo><mfrac><mn>9</mn><mn>5</mn></mfrac></math>

  4. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mfrac><mn>33</mn><mn>35</mn></mfrac></math>

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Thực hiện phép tính:

2

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG