Kết quả của ∫ 0 1 d x 4 - x 2 4 - x 2 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAA80AAAFUCAYAAAAeQN5XAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAC3lSG0sQAAMPRJREFUeNrt3QHoFGX6OPAXEYmQKCwqLJKIkENCqKioyEBCQkKk6KIkoyMkIiKEOq7I/nIUnXTHFR0hISEhVJTUUYGEhIRE0UkXJUVIREQIFhomJr/7z3vf9Vy/7rwzO7s7O7P7+cDDHbnfmd1nZud535153zcEaI9Ls5gvDQAAAHDCgiyez+JYFmukAwAAAEKYm8UjWfycxX86odMMAADA1Fudxb6uzrJOMwAAAFPv8iw+7NFZ1mkGAABgai3MYkuis6zTDAAAwNQ5LYsnsjhcosOs0wwAAMDUuCeL77PYlsWNWczJ4pIsvtJpBgAAYJq9mMUbWfyux7/drtMMAADANFuQ+LezdJoBAAAgn04zAAAA6DQDAACATjMAAADoNAMAAIBOMwAAAOg0AwAAgE4zAAAA6DQDAAAwmRZlsTKL9Vk8l8W2LHZksbMTb2axufPvy7OYr9MMAADApDoti1WdzvGXiQ5lXvzW6Ugv02kGAABgUiwNM3eMf6rQUc6L2Hm+QKcZAACAtrokzNxV/m2IneXu2B9mHu/WaQYAAKBVNmTx64g6y90R714v0WkGAACgDRZnsauGznJ3xP3N1WkGAACgya4LM49M99PhjROCHZ8he20Wj2XxXYWO8zKdZgAAAJrq0dDf2OXdYWY8cq87xKsqdJr/otMMAABAEz0X+ls2al3B9h6q0GneqdMMAABA0zzVR8f2UCie7TouI9XvI946zQAAADTOH0L5R7J/K9Fhjo9q7w7VJgPbodMMAABAU9wa+hvDvL7ENqs8ln08tuo0AwAA0ARxXeRDob+7wEVLQs0PM2suV+00r29ornSaAQAApkjs3H4d+pv4a2mJ7a4Mg63VfIFOMwAAAOP2Wp+d2edKbvcvA3SYdzY4XzrNAAAAU+L3fXZm413msneA3x2g03yrTjMAAADjtCj0vxTU5j62vyNM1gRgOs0AAABTZFuFDu3iPrb/XIXt/yuLs3WaAQAAGKfrQn/LS1VZN3lZn/vY2YIOs04zAADAFPg49H8X+LoK+/lrie3Gpa4eDTOzeLeBTjMAAMAEu7VChzkuSTW34v6WZ7Gls41DXR3leOf6sdDcpaV0mgEAAKbM3NDfmszH4zGp02kGAACYdHdV6DDHcclnS51OMwAAwKTbWaHT/K606TQDAABMumWh2rrJd0mdTjMAAMCkq3KXeX+oPgGYTjMADM85UgAAo7MkVLvLvE3qdJoBqNWcLJZmcVsWm7J4I4tfOrXmJukBgNEos16yR7PLNWR0mgEY1OlZ3JjFqizuzWJzp3P8VRbHErVmgdQBwPCdFk6sj9xvmDX7ZOcmcnW39ABQ4L6CTnEqPpM+ABiNKstMxfhY6k5xeyJfm6QHgAIrs/g0iwNZHOmzLj8vfQAwGrsqdpqfkrpTfJDI117pAaBP87o60kV1eZV0AcDwXZDFbxU7zYul7yTPlMjZC2Fm3DMA9OOygvoSH+meL00AMHyPVewwfz3lebsmzMxQGn/VfzqLfX3kLr42Pqq9urON6zV0AChwWkFt+UiKAGA0/lWx07x5inO2oGLOjEMDoKrTC+rIM1IEAMO3eIBOnqWmAKA+NxbU5ZVSBADDV/XR7F+zOE/6AKA294f0eOa5UgQAw/dxxU7zDqkDgFq9mqjLu6QHAIZvkFmzH5M+AKjVwURd3ig9ADB8fwjVxzMvkz4AqM2VBXX5JikCgOF7rWKH+VCYWfYCAKjHnxJ1+WgWc6QIAIavn3WFu+NNqQOAWu0M5hkBgFotCdUfzV4vfQBQm/lhZnbsvLr8uBQBwPA9MECn+TrpA4DarC6oy1dJEQAMX9XxzD8F60ACQJ1eStTlX6QHAIYvdnp/qNhp3il9AFCr7xN1eZv0AMDwXRGqP5r9qPQBQG0WF9Tle6QIAIZv3QCd5iukDwBq83BBXV4oRQAwfG9X7DD/GoxnBoA6vZeoy3ulBwBGY3/FTvO7UgcAtYk/VB9N1OW/SxEADN8g45kfkz4AqM2qgrp8ixQBwPANsj7zMukDgL6dk8XtWWzJ4v0sfs7iSJi5i3wwzKxM8XgWZ836u+cTNTn+7TCGTM3J4oYsnsji9Sy+y+JwZ/s7srhowO3HbccZvg90tvljFs9mscBpAUBTvVmxw3woi9OkDwBKd0bv6XSIj5WstbFDeVnXNr5KvPb9Ad5b7Gyv7nRmfyl4T/uymF9hH+dm8U5iu59rVwDQVIcqdprfljoAKBQ7guuz+KFHLf0ki4eyWNrpVEdxSam/zeqkzsvikoK6/EiF93Z9Fi+FmTvJ/bQB/tTnfi7v/ABQtN2HnC4ANE3RWo+peEr6ACDp7iy+71FDP8ri2oK/7R6/fG8oXh7y8j7e121ZfNNjG0dKtgG+7WNf14SZx8/LbPcVpwwATbN+gE7z1dIHAD3Fcb8f9Kidhzud37I2df4uji3enqjJByp05o92thnnNrkqnLjTHR+93liiHXBVif0s7ry3sm0LnWYAGue1ih3m30K18UwAMOnWhN7jguMd58v63Nb5nb89GNJLTW3rc7tx0q2iScNeLWgLPFHw93Gys2/7bF/c7/QBoEniGKtfK3aad0ofAJwkdkI3h/zHmc+vuN2vStTlO0fweZYW7HNH4m/ndNoK3a+9qPPf4x3ql3ps79NgIjAAGmaQ9ZkflT4A+J9453ZXyJ8B++IBtv3PEnX5/BF9rlSH/Ug48Uj3bJtC8SPXxyc8i4+e/zF4gg2ABhpkPPNy6QOA/4od1i9y6mUcw3z5gNsv6jR/PsLP9nzBvpf2+JsVXf/+ltMDgDZ7u2KHOT7Sfab0AcB/O8z7EjXz9iHs472Cuvy3EX6+1QX7vmPW6+M45h+7OvPuHgPQWnHM0P6KneZd0gcA/+0gflVDZ7Zo9umVI/yMZxTse8us1x+/Kx4nQrvUKQJAm10XrM8MAFXFO6ifJGrlZ6F4duqyUmsnHx3ifvLsTez/067X3R1OXlcaAFrtgQE6zSukD4Ap91ZBR/Z3Q9rP6aH6DNbDsjWx/2OdTnt8TP34HfF3nB4ATIKdFTvMh8Lof9EGgCZ7vKBWPj7Efd1csK/1NXzeNaF4ctDjj2XH9aQXOkUAaLvY6bU+MwD074aCOrk3DPfH5XtD/7NXD9uSUHy3+/j/f8ApAsAkGGR95g3SB8CUOiuL7wrq5M1D3mfq0ej9NX72wyXaCJ86RQCYFIOMZ14mfQBMqc2h/qexUpNwvVLjZ99eoo2w1CkCwKR4LVRfn/k06QNgCl1bok5ePuR9nhv6WyN5lIrGcW92igAwKQZZn9l4ZgCm1Z5Q/yzWReOZF9T4+YsmJLvFKQLApFgejGcGgH7cWaJG3jCC/aaWtap7/PC8MLO8VN77uc9pAsCk2BCMZwaAfuwtqI97RrDPuD7z0cQ+nxlDHlJ32192mgAwKXYE45kBoKxVJWrk/SPYb9Gj2cvHkIvURGifOVUAmBQ/BeOZAaCsDwrqY7wbfMYI9vthYp9x+ac5Y8jF7QW5OMPpAkDbLQnGMwNAWZeUqI/bR7DfpQX7fGNM+VgXTAYGwISzPjMAlPdEifp45wj2uzXU/zh4kQuzOFjwvp51ygDQdm8H45kBoKxPC+pjnE36rCHv86KQnqU6xuIx5OLDEu2FD50yALTZ3GB9ZgAo69wS9XEUyz69VLDPb8aQi8dn/VCQ+hFhrlMHgLa6IhjPDABl3VaiPr405H0uDsV3mTfXnIcru95TfDx7TcH7W+HUAaCtHg3GMwNAWX8L9Y9n/meJfa6qMQdxreivuvZ9R5iZtTu1fvQTTh0A2urdYDwzAJT1RokaOcy1kleX2F+84zuvxhx0PyrefYf7vcR7fM+pA0AbxfFFh4LxzABQ1t4SNXLBkPYVJxP7ocT+Pqjx86/q2u/n4eQf0B9PvMcjYTxrSAPAQJYF45kBoB+/lKiRw+ocvt7Z3uGC/dX16HOcBO345KExD5fO+vcbC97ntU4fANrmsWA8MwD042iJGjkM93e29UkWnxXs7/qaPvuOrn2u6fHvcwvy87DTB4C2sT4zAPSnaBbrYXSab+h0PmMsLdhXvAtddGc7Pjb9ahhs3PNDXft8JfG6DxLv9fWS+7okzNw919YAYKzir8FlxkkZzwwAJxQ9Kh3j/AG2/7ssDnS288csbi7Y11sF27un87pdA7ynJWFmTHLcTpw1e37itX8u6OAXiR37PaH+GcEB4BTWZwaA/u0pUSdXD9A5/XFWJ/fhgn2tT2zvps5rYif8worvKd7t/SKcmMzrsoLXF3Xyi/7+hVB8NxsAamF9ZgDo3ysl6uT2CtuN45KPT7IVO87H71ZvK9jXjTnbuyacmLTslgE+78td+1pX4vXxSbbUI+wPJv72js5rvsviDKcaAONmPDMA9O++kvXy8j62+XBXR/NYOHlirw8L9jO3x/biOOjjj3g/3ePf41JWK7JYXPC+/tS1n1f7+Dy7Eu/3w5y/ifk6XPBDAADUyvrMANC/c0O5ycC+z+Ligm3FR5V3z/q7O2e95mDob3mra7s6zNt67DPOyt09w/UXnR8CenXkj79mX+jvzu+mgvd81azXx4m/js+z8menGABNsCwYzwwAVW0pWTNjhzfOAr14Vgfx3jDzI/Ts1z/UY19FS1w93ek4x07tI+HEhF3vh1OfDLs2sZ29YWZ89C3h5EfC42dY0md+lhe852/DzIRnURz/fXwctx/mAWgM6zMDQHULQ/Ed4H7jvpx9HauwrfeyOH2Azn533FwhP7ETf6DP/cS72QucWgA0xbvBeGYAGMRtQ+osx8m/bkrs5+c+txcn7spbj/mVPrd15wD5ebaP/cQ7zRc7pQBoitM6nV/jmQFgMHG25yMDdJjjGstFazqXvTscZ8oumt364ZLbOtr5bINYGE7M3p2KOJb5MqcSAE2yLBjPDADDEsfm7gz9/wh9Q8ntxzHQRY86b83iohLbij+c7w7F442vH+KPCql97SrxowEA1G5DMJ4ZAIYtLvO0MYt/hplHqo90It5t3RNmHo1eV7JzO9ulYeax64Odbcb/fSfMTPzV7/biElXxjnNc+ulw1/Z2hJk1lOcNOS9xpuzts97762GwtaMBYKSKfmE2nhkAAICpZDwzAAAA5FgWjGcGAACAnjYE45kBAACgp35n9zSeGQAAgKlgPDMAAADkWBaMZwYAAICeNgTjmQEAAKAn45kBAACgB+OZAQAAIMeyYDwzAAAA9LQhGM8MAAAAPRnPDAAAAD0YzwwAAAA5lgXjmQEAAKCnDcF4ZgAAAOjp3WA8MwAAAPS0LxjPDAAAAKdYFIxnBgAAgJ7WBuOZAQAAoKctwXhmAAAA6Ml4ZgAAAOhhUTCeGQAAAHpaG4xnBgAAgJ6MZwYAAIAcxjMDAABAD4uC8cwAAADQ09pgPDMAAAD0ZDwzAAAA5DCeGQAAAHpYFIxnBgAAgJ7WBuOZAQAAoCfjmQEAACCH8cwAAADQw6JQ/dHsp6QPAACASbZ2gE7zrdIHAADAJKs6nvm3LM6UPgAAACZZ1fHMu6UOAACASbYoGM9MNf8RQgghhBBCTGzQsTYYz4xOsxBCCCGEEEKnuSfjmdFpFkIIIYQQQug057A+MzrNQgghhBBCCJ3mHhYNkEDjmXEhEUIIIYQQQqd5oq0dIIHGM+NCIoQQQgghhE7zRDOeGQAAAHIYzwwAAAA9LArVb9MbzwwAAMBEWxuMZwYAAICejGcGAACAHMYzAwAAQA+LgvHMAAAA0NPaYDwzAAAA9GQ8MwAAAOQwnhkAAAB6WBSqP5r9mPQBAAAwydYO0GleJX0AAABMMuOZAQAAIIfxzAAAANDDomA8MwAAAPS0doBO80rpAwAAYJIZzwwAAAA5jGcGAACAHhYF45kBAACgp7XBeGYAAADoqep45l+D8cwAAABMOOOZAQAAoIdLgvHMAAAA0NMfgvHMAAAA0NPmYH1mAAAA6OnfwXhmAAAAOMV5YeaOsfHMAADN81yYWeWkKFZJFcBorA3VxzO7OAMAjM4gk7UKIUTZoEDV9ZmNZwYAGK31GvNCCJ3m8fsuGM8MANBEOzXmhRA6zeO1JFifGQCgieZn8avGvBBCp3m8HhggscYzAwCMzkoNeSGETvP4/aNiUo1nBgAYrarzzgghhE7zEH1ZMam7pQ4AYKT25bTDNksNQD0WBeOZAQCa6OpEO+z30gNQjz8M0Gm+VfoAAEbm0Zw2WJwYbL70ANRja6g+nvls6QMAGJndOe2wHVIDUJ/9wXhmAICmiTcn8paaekh6AOqxNFR/NHuD9AEAjMzaRDtssfQAjP9iXBQrpA8AYGS25bTBvpYagPpUXffPeGYAgNGZm8WhnHbYP6QHoD77KnaaP5Y6AICRuS7RDlspPQD1uCQYzwwA0EQbgqWmAMZukPWZjWcGABidL4OlpgDG7rUBOs3GMzNJns85z49mcbf0ACNyd+c60+v687z0TLXzEm2wB6QHoB5xcomfgvHMTLf4eNuOnPP8QBbXShEwYtd3rje9rkPvBY/hTqsHEu2wC6QHoB7WZ2baLcji05xz/Idg/UugPr/L4sec69EnWZwjRVPn7Zzz4UupAajP2mA8M9MrNkC/yDm/v8/iIikCanZJ5/rT67r0mY7zVDktzEz21etc+Iv0ANRnazCemel0VhZ7cs7teKfnUikCxuTSkH/HeU/n+sXkW5Zogy2XHoD6fBeMZ2b6zMvig5xz+5csrpQiYMyuyeJwznVqZ5iZk4TJ9o+c438ozNyFBqAGS0L1u8wbpY8W25Y4t1dKD9AQqxLXqq3SM/G+zjn2b0oNQH0eGKDT7LEg2mp94rx+UnqAhnkycc16SHom1iWJ475OegDqsy0Yz8x0uT5xTr8vPUBD5S2JdyyLG6RnIj0ULDUF0AhVxzPvkjpaKE6c823In/jrXCkCGuqckD8x2HfBxGCT6N2c4/0vqQGozyWh+l3mR6WPFno5cU6vlh6g4VYnrmGvSM9EiU/z5S01ZU4ZgBr9oWKH+bcszpM+WmZl4pzeJj1AS7yauJbdLD1T0Ua7TnoA6vNa8Gg20+H0kD8U4efgsWygPc7P4mDO9SwOP7EM0WR4M+cY7w+WGgOo1f6KnWYzddI2f06czw9LD9AyVgCYbPGHj5+CJ6MAxu6Kih3mOL7GjI20yYVZHMk5n7/KYo4UAS0zp3P96nVdO9q57tFeyxLtsLXSA1CfRyt2mt+VOlpmS+J8vk16gJa6PXFte0l6Wu2pYKkpgEb4V8VO811SR4tcmjiXP5MeoOU+C/lrNy+Wntbal3Ncd0oNQH2WVOwwm3yCttkaLDEFTK7UElRbpaeVFiWO6WPSA1Cfqo9mPyd1tMhFYeZuS69zea/0ACXEu7WPZPF6mBlDfDjMjBmO8yTEGaw/DDNDQO7IYv6Y3uPekH+3+SKHsHXWJdphV0gPqDHUZ1eotjazcTS0yabE+Xy/9AAJN3UaK/3UydjQeSGLhTW/1/sT72mTQ9k6O4On/UCNaU6NmVrndTrA/Xaad0gdLTIv5K9jGv+7dUyBXs7K4tVQ7Wms4/FLmLlb2ITr3S+ud60Sj9WvOcfyr9IDaswYaszUWlfxAK2QOlrkvsS5/HfpAXo4P+Q/6lwlXqzxvf8t8T7uc2hbY1niOK6UHlBjxlRjptKOCgclzrTtkSDa5KPE+bxEeoBZzsnimyE2Zo7H8zW9/8sS72G3w9sa/wj5Q+TOlB5QY8ZUY6bO2aHao9m3Sh0tckmwzBTQn/dH0Jg5HnfX9Bn2JN7DpQ5xK+QtNfWu1IAaM+YaM1UeqnAg4qRh7jLTJk8mzuf10gOUqI2fdP77VWFmzPBxcczp9Vk83HlNmTr6cxYLavgc6xPv4UmHufEWJY7fWukBNWbMNaaR4p2yB7J4LczMohh/YdyYxfIBO7D7grHMTL7UeBHLrwDdzg0nT6L1Yxa39PH3N4ZyY9Q21vBZLkrs3zJ7zZdaDnSR9IAaM+Ya0yiLOh3l1CPUH4eZNb36taJCh3lncJeZdlmSOJ8/kh5glme7rhHfh2o/rMW1M98pqKdxuaA5NXwe8zm0V95SU19LDagxDakxjbAqi0MlO7M/hf5/ddwS+l+XWYGlbR5PnNN/kh5gVkPkSOf6EP936QDbio/UFT1Kd4NrIInzx1JToMY0vcaM3V2h/wm6tvSx/bMTF+NhbB+awl0WoKwHu64Pjwxhe/EpsGNhvHMqmEW7nX6fOG5XSA+oMQ2pMWN1dag2o/VPfexjQ4VtX+Bcp2XOSFxMfpQeYJYPOteHL8LwHmtLPdX1ck2f68ec/R/rXCdpni2J9phhcqDGNKnGjEW81f51qD7FeBnxLvOhPrf7gPOcFrotcU5vlR6gyxld14dVQ9zu8sR16PWaPtu2xHtY7dA3Ut5ErdukBtSYhtWYsXhggA7zoZL72NDnduNEY37VpI02J87rO6UH6LK6c23YM+TtxrsJx8bcoFmTuBa+6NA3zuLE8bpLekCNaViNGYsqS0B1d26LnBlmHu0pu8047nmp85yW+jxxbl8sPUCXv3WuDXePYNtf5FyHXqnps12cuBZ+7tA3zoZEm+w86QE1pmE1pnaLB+gwl51NcWuf23zIOU5LnR7S0/BTzfuh2rAQaLp4Nzb+Kj+KJTreyrkWPVPj59ufuCbOd/gbJW+pqZ1qDKgxDa0xtfrDAB3m+OvjooLtL+9zm28Gj2XTXrckzu1XpaeSB0P1uRRgmr2R8925rcb38HrimrjSIWqMM0P+6iYb1BigoTWmVn8ZoNNcdEc4zny9v4/txV8zT3MO0mJPJM7vR6Snb/FJmMMaNFDJP3O+OwtrfA9/TFwTn3CIGmNt4jgtVmOAhtaYWm2p2GF+qkSHuZ+x0v8KMzNsQ5u9kTjHb5aevsRHifaEwWbth2nWa734PTW/h5VhSmdYnZC24A9qDNDgGlOrzRU6zLtC+hHqpX12mD/WYWZC/BiM3xuWP4fBl7qDaXakx/fm4Zrfg3ke2mEal5pSY6D9NaZWD4XhPZYdO74bQv64mLwOs84Ek2Be4jw/KD19uSYMZ314mFYLenxnjmZxzhjey8+J7/E8h2rsrk4cn1UT+pnVGJicGlObS7L4rc9O80+djnOc5GtF5/9vDf0tKxXjHzrMTJAViXN9u/SUFq8JZZ5UAfKt7vGd+fuY3ss/E9/jmxyqsduQc2xi23ASnwJUY2Cyakyt3gyDLTvVbxzK4i7nGxNmTeKc3yw9pb1U8joC5Js99CreAVjYkPfSHWscqrHLW2rqbTUGaEGNqVWctOu7mjrMO7JY4lxjAv09cd7fKz2lrOrjWgL0Fic4mj2/wpNjfD/3JL7HLzhcY2//5T1t+KgaA7SgxtQuTt71wwg7y7FTHu8uW4OZSZWaOdt6pMXiOJh+lqgDepu9Xnx8FHWcyzmaQbu51iaOzVI1BmhBjRmL87J4d8id5a+zWKezzBT4NEznOpfDMnvcY1HjBujtg1nflRvG/H4uTXyP9zhcY7Ul0XZTY4A21JixihMa7Rygoxx/cYjPul+ns8wUOZL4TsyRnqR1s/L1UkhPHqRBA73NnhV4UwPe05zE9/iIQzY28c5Q3gSuz6kxQEtqTCPEsS4PhJmZsf8dTv1V7lCng7yrc4GNFyV31JhGlpuqLs7gf7grX9+EmdlNNWigf91PvOwOzfnh+mCw7FTTLEsck2VqDNCiGgO0xGWJwrtbenLFO1AfdeXqWJj5FTNo0EDf7uv6fsRJWs5t0Hv7MEzP2Nm22JBzPH4NkzM+UY2B6agxTIj4K0ycsTE+DhTvysdf3OMjaUc7/z/OKP5MFtdKVWuZ6KaaJ2blamPXv2nQQHkXhhN3c+NdtSsb9v5MlNg8X+Ycj21qjBoDLasxtNwZWfw5i59D+fHgezQgWumOxDHdIj09XTkrT5+Ek8d+a9BAOfF7s7vru3FLA9/jy4nv8u0OYe0WJY7HWjVGjYGW1RhaLJ5Qs5fw+j6L9WHm0aA4niaO/74zzNx97vVL7xnS2BrrEoX3b9JzitOz+KorR7+EmRl2gwYN9O3Zru/F3Q19j9axb5a1ieOxSI1RY6BlNYaW+lPo/Yju/MTfrAmnzr78eRbnS2crvJAovPdIzylenJWjdT1eo0EDxe7s+k483OD3eU/iu/yCw1i7vOVFJ2UODjUGpqvG0EIbe1x4t5f825t6/G38pfQcaW28LYnCe4f0nOTmWfl5J+d1GjSQFufBOD4r8JMNf6+GsDRHnOTr15xjsUGNUWOghTWGlrm/x0X329DfY9aP99hGfHzbOr/N9mqi8Br7cUL8AejHUG72RQ0ayBeH9xxfBvL5FrzfWxLf5VcdzlotC5O71JQaA9NZY2iRa8Nw7jLGzvFXPbbzjBQ32luJwrtCev5n+6zcrEq8VoMGelsYZubIiN+DrS15zzcnvsvbHdJa/SPnOHwX2r/mqhoD01ljaIk44cQ3PS64eytu795gLcu2eS9ReG+Qnv+aPabxpYLXa9DAqeJds32d78BbLXrfNya+y+84rLXaFybzMXk1Bqa3xtAST+RccB+suL34S+/+Htv7RKob64tE4b1IesLF4cT6fv/pXJDna9BAXxZk8Vnn/H8/tOuu4IWJ7/Jeh7Y2i8JkLjWlxsB01xhaII6fOdLjYnusc/JVlbc8xyopb6T9icI7X3rCh7Nyck2Jv9GggRPi3Bgfdc79D1t4XZmf+C7vd3hr82jOMYgTg52pxqgxqDEtrTG0wMaci+3OAbeb9yjbp1LeSAcThXfelOfmj7PysbHk32nQ0I84H0QcChGf/IlL/MXxmXHWz6NZ7AiDP/ERt70tiwOdbcYJhuLalQtq+GxxtuMPOuf9nizOauHxmZf4Lh90+tZm54jaLGoMaowaA8kv0I85F9s/DmHbR3O2faXUN84vicI7zY+3xHH4x8LJP/qUnQleg4Yi8bu1utPQ+KXgfCnzuGYvcXzXO4ntft5pcIzyM77X9RmGvQRhzN2NNR2rvBz+4lSuxSQuNaXGoMaoMbTAysRJvnwI28+bXGqz1DfOEYX3FPHO0t6uPMRfZC/t4+81aMhzfZiZ5OdwwTkyO/7U534uD/k/jHbHQyP8rMdnA44zmS4c8raPTzp5aU3HLS9/R5zStfh94hgsVmPUGNSYltcYGuylnJM7/uo5jLuLz+RsPz66Yd1mneam+9usPDzQ599r0DDbbaH3SgVHSjZovu1jX3FM5M8lt/vKiD7vK+HEWrPDbnQs6TQId9V4/HSax2tLyL9DpsaoMagxba8xNNh3OSf3F0Pa/u3BMkZtcVThPcnyWTl4r8I2NGiY7e7Od217p4F8VTjxA2J8LG5jicbHVSX2E++6HQjl7y6MokHzYmfbsVF1+ZC3/bssfuhs/16d5qkxSUtNqTGoMWoMLbEwcXJvG9I+rkns40mHoFEU3hPO6rpYHp8Z91wNGoYgTohS9BTPqwXnzRMFfx/Hc30b+nsk7/4hf85N4cTjptcPaZvxUdb4Y+sz4cRdk7j902o8fnn5O+bUHrmrE/lfocaoMagxE1BjaKjbEif380M8AfP28Z5DoNPcULMLStVl0jRoqGJpwXmzI/G38Y7Czlmvvajz3+Pdg15Dcj4dcqPgiT4bU4PEi66TU2NDyF9qqm2NWjUGNUaNoUWeTpwka4a4n7xJCA47BDrNDXRnGN5jfxo0VPVVSD8KnDcnxKZQ/DhcfKwujqWMS47EVRKGuZblgzU2ZsquZVvHdfKoU3bkdufk/l01Ro1BjZmQGkNDvZE4SVYNcT+fJfZzvsPQGMcU3nBhOHlSi6rLL2jQMKjnC86dpT3+ZkXXv781hvd8d82Nmc/H8BkndUzzBQ1/f4sSuV+rxqgxqDETUmNoqE8TJ8pNQ9zPW4n93OwwNIbZs09+5GgYvzBq0FDV6oJz545Zr49jzH7sKvTzG/Z+RxEP6zQPRZwsKI6pPbvB73FtIveL1Bg1BjVmQmoMDZVau+2yIe7n1T6+lOg0j8v6WZ954xC2qUFDVWcUnDtbcs61X0L960nGHz+P1tyYOdZpxOk0VxcbvVu7PsNfG/xet+Xk/Us1Ro1BjZmgGkMDzSk4WU4f4r5eDtVn6KM+BxPHad6Ef/Ylsy7Ie8Jw1hHXoGEQexPnzqddr+t+ZG0cS2PsCPXfAdg+hs+ZmtjyYMvOrXhX+eNZn+FQqP/uURlxAqFfc/K+QY1RY1BjJqTG0FCnF5wsw+wkbU7sZ7ND0RipBeonebr9eK53j7uPd4yG9SuqBg2D2BrSv4LHZUXivBDH18p8R8rGVjcPtOhzxLGKP+R8jgca+H6XJfK+TI1RY1BjYJTOr/FC+0JiP1sdisbYnzhO8yf4c28aYaNRg4ZBrCk4f5Z3nWPxTudCKRup1OOMP7bkM9wVZu4o532O7xp4vX8q573+FNrxg64agxoDLXZDjRfa1Ax92xyKxng/TN+U+7O/B8NeO1yDhkEsCcVraTb5DuGkSa1t+mEL3v9fsvgtFD+W2LRzaV8oN+ZSjVFjUGNg6JbXeKF9Wqe5FVLF96YJ/LxnZfFtOPnxynOnoEGzOdQ/NqjOmLTx94dLfOZPXb5qcVPiGLzV4Pd9ZhZv9/Edinebm3IHd1Fo71JTaowao8bABLixxgvt/TrNrfB64jitnMDP+8qsz7i65h8iNGg0aMrYXuIzL3X5qsXKxDF4vaHvOd5J+neF79G6hrz/dTnvL94xb/ra0mqMGqPGwAS4qMYL7bM6za2QmhDitgn7rLfN+nwvj2g/GjQaNIN6vODzmkxxfNeNps/PsSKk56pIRZworAl3m3fmvL+daowao8aoMVCH+aEZY5pNBNYcLyaO090T9Dm7Z4KMEcfLnaFBo0HTUDcXfN5bXLpqc3fiOLzYsPcaxx/+NuB3adxjGNu61JQao8aoMTBB5hZ8SebW1BnzC1ZzPJg4Tk9P0OecPeHZtSPclwaNBs2g4uc5lvi897l01eaJxHF4qCHv8bSS3/H/C+XuNs8d42dZkXhvV6sxaowao8ZAXY6GetblfSmxnycchsa4I3GctkzIZ3yw5h8DNGg0aIZhT+LzvuzSVZstieNwR0Pe4xUh/+7s8fhXSA+b6o67GpjvfWqMGqPGqDFQp+8SX5ILh7ifrS1oaNDOSW6G3cBoatysQTPVDZrUMfvMpas2bZksMXZ08x7NjvU4Ds+KM2r/VOL79GUY393mNi41pcaoMWoMTKC3El+SG4e4nzdqulAzmMsSx2m3TvPENGhon9sLzo8zpKgWO0N7Zpd9rMd7fHRWB3hDyevP78fw/q9u2PtRY1BjYIq9HOr51fydxH7OdRgaY17iOB3UadagYWzWBRO1NMHB0K67T2923lu8o3xrj38ve7f561D/3ea8Dn189Py0Bp8jagxqDEyge0M9j00fyNnHYYegcY4kzok5Os0aNNTuwoLOWoxnpWnk5iTyf6Sh7zl2LuPj2FdU6JyOe2xzW5eaUmNQY2ACXZ/4gmwcYkMjb1a+dxyCxvkocU4s0WnWoKF2H5Y4Pz6UppFbnMj/py3+XP3cba7LBSF/TPajaowagxoDdYsd2rwZtIc1W97FiS/hkw5B42xLHK9VOs0aNNTq8a5zILUkSPy3udI1UqsS+d/W8s+2oeR16Naa3s/axHtYpMaoMagxMA55j0AN61elVEPjRulvnKdD89chnaROOuS5sqsREx+dW1NwLq2QspF6IEzuOvZNm0m7jUtNqTGoMTDh1ofRjtHK2/4vYTLGyE6a1AyK1urToKEep2fxVTh5jonUk0HWvB+91MSZt0/A59sQmjGT9mmJDvwWp6EagxoD43JJ4gty2RC2/7oOWKtclTgfdkmPBg21eKnrHNnc9d/fS5xL70nbSKWWm7pyAj5fahxxnTNpLwvudKkxqDHQUHmTP903hG3/nLPtm6S9kVITtx2RHg0aRq57SMvn4eTldR4P6RmcPb0zOnkrCxyboLxvCeOfSXtDaOdSU2oMagxMgfvDaCY3uTxnu99JeaN9lrhoXio9GjSMTFy3fn84MYRl9vftxoLz6VopHInUhJZ7JuhzxifPyt5tHpUvQzuXmlJjUGNgCsSxDb3WaIu/Kg3yGNbGnC/dI1LeaFsTF8zbpEeDhpHZ0XVurOnx7/F6nBpz9rAUjsRtiZxvnbDPWvZu8yjGNi9K7G+d01CNQY2BJsjr4K4ZYJvf9thefFz7DOlutPsSF8y/S48GDSPxUNd58UridR8kzqfXS+4r3lGMk7p43LWcTVPUmSt7t3kUM2mvDe1dakqNQY1RY5gSZ2VxoMcXZHfF7eUtNeUuc/NdHkwGpkFDnZaEE2Nm44ym8xOv/XPifDpcYl/zwswjxZOy9nodUo3Iyyfw85a927xyyPt9N1hqSo1BjYEWuCfnS7K8wrZ6jYuNEw6YRKD55oT8SW/iYzsWuNegYXjiL/FfhBNDYopWLbi54Jwq+vsXQvGdBk5IPa54eEI/c9m7zR8P+Xvwa85+nnIaqjGoMdA0r/T4gnwR+nvE4sHQe13mJdLbGtsTF0wzn2vQMDzd6/+WedQ3duKOJc6pBxN/e0c4MRmjYTLlLE/k+o0J/txl7zYPaxmoZYl9LHMaqjGoMdA0sXPcaz3KsjNpXxNmfn2fvSSHjla7rE9cMDdKjwYNSWd1OhOLC173p65z4dU+tr8rcU59mPM3l3ddm290iEp7MkznpDhl7zb/a0j7+0ew1JQagxoDLew497oQxy9cahzELeHUWbgPhuH9Ek19LktcMD+RHg0acsUl/Lof541P6vRa8/7hcPKYzX5+ld9UcF5d1aMD9EPn3/7sEPXlo0Sefzfhn73Osc37crb9rlNQjUGNgab7Yzh1LNcPnf9+Q6cDHdevXJ3Fez2+VJ8G6/q22Q85F8v45MBZ0qNBwymuTRzrvWHmCY744+K2cPIPi/0OXVlecF5929Whi9fnH4O1bqs4K5Hj76fg89c1tnlxYttrnYZqDGoMtKVobg3p8Q2z45ss7pW61tucOMZ3S48GDacoe2euO26usJ84Wd+BPvcT7zQscIj6siaRzxed00Mbd7whWGpKjUGNgQmxoNMRjhOFxZmx48ReRzpxoHPhfiaL66VqYqxMXBy3S48GDad4pc9Gxp0D7OvZPvYT7wJc7PD07dVgQsSyd5sHucO0M+SvBY0agxoD0Gjxl8afQ/7SU6dLkQYNJ3m4ZAMjfn/uGHBfC8PMj5dF+4rDLC5zaPo2L+QvNXUgTNfyiWXvbl1RYdtnhvylpjY4DdUY1BiANngpeERbg4ay4iSKu0PxWLBhPZFzR8G+4gyo5zsslaQezd48Zbkoe7f57QrbXhssNaXGoMYAtNz1iYvl+9IDp4hrXMa7AXFZjrj8RhzCEidi2RFm1recN+T9xVlMt3f2cXxfr4eZyWCo7r3EtW8ahyGN6m5z3nYtNQVqDECrfBPyZ9G+UHqACbMw5E9++c2U5uTqkp3mbX02/r8bwnYAAMbukUQD6UnpASbME4lr3iNTnJedJTrN8THuS0pub1mw1BQAMCHOCfkT4sS7BHOkCJgQc0L+3c+jnevhtFoWyt1t3lJyexuCpaYAgAnyQqJxs0Z6gAlxZ+Ja94L0lL7bXKbTmzeh0W5pBgDaaHGigbRHeoAJ8WniWrdYekrfbX6uYDuLEn+7QZoBgLbanmjkLJceoOWWJ65xr0vP/5S521w0k/baYKkpAGACLUk0cj6SHqDlUuuf/k56/mdZyU7za4ltbAv582TMlWIAoM22JRpI1uwD2mpl4tr2ivScYpCZtOP6y7+GwSYRAwBorItD/kzae4OZtIH2idetL0L+jNkXSdEpruh0iqvMpJ16DH6d1AIAk+DpYA1TYHI8HKxFX8WOUG0m7b8mXn+etAIAk+D0kL+O6cEszpcioCXO7Vy3el3P9oWZR4npbUWoNpP2lzmv+1hKAYBJcnMwyyzQfq8mrmUrpKfQrhKd5jh++YLO688M+Y91b5ROAGDSvJxoJK2WHqDhbgv9jcXlVCtDubvNf+28/veJ11wnnQDApJmfxTc5jZ8DWSyUIqChzu1cp/Iey54vRaWVudt8KMzcZc5bgeGnYKkpAGBCXR7yZ9PeJT1AQ+UtmRSvZ1dKT1+WhXJ3m/9fp3Pszj4AMHXWJRpJm6QHaJhNiWvWfdJTyceh3N3mvH+7VQoBgEn3QqIxtEZ6gIZYk7hWvSA9lf0+lLvbnDdR2NlSCABMg3dC/uOON0oPMGY3hPzhJO9Jz8C+rNhp3il1AMC0iBPn5E0IEyfcMU4QGJelIX/irw+Dib+G4a6KneZHpQ4AmCZnZbE7p2H0YxaXSRFQs8s6159e16XdnesWw/HvCp3mJdIGAEybM8LMnZtejaP9wR1noD6Xd647eXeYz5Ciobq1zw7z18FSUwDAlDoti7dyGkkHs1guRcCILe9cb3pdh97qXKcYrrmdjnDZTvNfpQwAmHbPZnEkJ+6RHmBE7k1ce56VnpH6Qx+d5hXSBQAAwLQpM7b5/7I4U6oAAACYNmVm0v5apxkAAIBpFMc27yvoNK+TJgAAAKZV0djmRVIEAADAtIqzk/+Q02H+t/QAAAAw7R7K6TQ/JjUAAABMu3i3eX+PTvN1UgMAAACn3m3+rtOZBgAAgKk3e2zzc1ICAAAAJ2zo6jTfKh0AAABwwtlZ/NTpNJ8tHQAAAHCyDVnskAYAAAA4VbzDvFYaAAAAoLe5UgAwOv8fYluWP0NeL2kAAAFNdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1zdWJzdXA+PG1vPiYjeDIyMkI7PC9tbz48bW4+MDwvbW4+PG1uPjE8L21uPjwvbXN1YnN1cD48bWZyYWM+PG1yb3c+PG1pPmQ8L21pPjxtaT54PC9taT48L21yb3c+PG1yb3c+PG1mZW5jZWQ+PG1yb3c+PG1uPjQ8L21uPjxtbz4tPC9tbz48bXN1cD48bWk+eDwvbWk+PG1uPjI8L21uPjwvbXN1cD48L21yb3c+PC9tZmVuY2VkPjxtc3FydD48bW4+NDwvbW4+PG1vPi08L21vPjxtc3VwPjxtaT54PC9taT48bW4+MjwvbW4+PC9tc3VwPjwvbXNxcnQ+PC9tcm93PjwvbWZyYWM+PC9tYXRoPnb0kZYAAAAASUVORK5CYII=" style="width: 180px; height: 63px; margin-left: 0px; margin-top: 0px; transform: rotate(0rad) translateZ(0px);" title="integral subscript 0 superscript 1 fraction numerator d x over denominator open parentheses 4 minus x squared close parentheses square root of 4 minus x squared end root end fraction"> là