Square root
VBT
Calculator
magnet

Câu hỏi

Hình chóp có đáy là hình vuông cạnh hình chiếu vuông góc của trên mặt phẳng trùng với trung điểm của cạnh Gọi điểm là trung điểm của cạnh bên hợp với đáy một góc Thể tích của khối chóp bằng

Hình chóp  có đáy  là hình vuông cạnh  hình chiếu vuông góc của  trên mặt phẳng  trùng với trung điểm của cạnh Gọi điểm  là trung điểm của  cạnh bên  hợp với đáy một góc  Thể tích của khối chóp  bằng

G. Giáo_Viên

Giáo viên

Xác nhận câu trả lời

Giải thích

Gọi là trung điểm Xét vuông tại Nên Xét vuông tại có S B H ^ = 45 ° " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAbcAAABmCAYAAABIgt/VAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABkivs33wAAFcdJREFUeNrtnQ+IV9l1x0+nMjXDIIg1YrdiMFYmdrFSkY2IEWEwInYRiytiRIx0EStilwHZLOKKWKzIZhEjEWvE2sUyNYMxYk03Ys1i7RCZGjFWplgrZrtMJpnIIMMwmWR7T+dM9zdv3vx+573f/ffe7/uBQ8Lu7O/+v+fdc889hwj45neMTEv8s2nyzwEAAIDC0Wxko5FRIz838lz+d1T+eTO6CAAAQKxMN/InRrYaOWKky8hjI7828mkV+bX8XZf8d1vld6ajSwEAAPiixcifGvmakb828j0j/2nkNzWUWFb5jfzu96Scr0m5LRgCAAAAeWk1stzIDiN/Y+Sakf8y8lvLSiyr/FbqcU3qtUPq2YohAwAAMM4MI1828nUjJ4z8k5FnESixPErvmdT/hLTny9I+AAAAJWWmkZVG/sLIN438s5GfFUyB5ZWfSXu/Ke1fKf0BAACgIPy+ka8Y2W3kpJGbRj6JQMGkeUuGrtMn0j8npb++Iv0HAAAgEHOMrDHyl0a+ZeRfRGmEVhjDRn5i5JKRg0b+3Egbpb9z+5L8+4Py9z+R/z50G34u/fkt6d810t8AAAAs8QdG2o3sM3LGyEdGfhmBAhgy0mPk7418g8berP2Rkd+ts7383y+S3/uG/H6PlBe6zb+U/v+2jEe7jA8AAIApmGfkq0b+ysjfGvlXI7+KYEN/aeTHRi4YOWDkz4wsMNLkuX+4vC9K+QekPj+W+oXuo1/JeJ2V8fuqjCcAADQEHG7qC0bWG+kwct5It5HBCDZorsO/GfmO1I3rOJ/iD5GV7NPvSDti6dPuRJ9+gRB2DABQUJKnjL8zci+iU8adxCnjDxvgNHxW2h3Lafhe4jT8xQCnYQAASCV5P/SBkX+nOO6HfmHkRzTxfmguhuz/qLzH/Lb00y8ojntMnj+V95iLqP57TAAASCXp2fcPRh5QHJ59fUZu0UTPvs9jyHLxeZrogXpL+jcGD1Seb5UeqF+iyR6oAACQCt+FvGrkDSPvGvlHIz81MhLBBvc/Rn5IE99kzcKQeWEWTXw7+EMZj9BzYkTmZ6fM1zdk/uJODwAw6YQWWpHxI+cfEKJpFIFk1JcfyPiFVng40QEAJvFT8hMH8b+NXCfEQSwjyXid12W8fcTrfIjuBwCk0Ul207Y8MfJ9QgR7MDnTwvdlfthMF9SJbgYApPEu5Yub2GvkCk3MPfY5dCdQ8DmamCPvisynPPE330V3AgDSeIOqZ43+DyPfpc+yRi8x8nvoNuCAZHbz78r8q5bd/A10GwAgDfY240t5vruo9EL7YyPN6B4QAc000au3U+briMxTAACYBLtRw9sMFJFphGcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqAOO1rMQ3QAAAOXmJk2OOVpWXqGxHIpnMOwAAFBe9lF6QO2yMdvILiN90r6ljhXoFlGgl41cE+HsHReMvGlkEaYeAAC4oc3IUGTKrYfcJ+i946jurxu5naEed0UJlhrW9NuMnDdyw8iAkWEay8/F//uSxvJ1dRk5LR3yivK3Zxp5Kp15NkfdPvUgle3sN/KhkUtGTtJnaYJ8Muip3SztkdVtEHt+Q9Bk5H6VeRCCNZ7W3A7L9eZT2Ed11Odu2U5ynIZktzQsb6d8JAM1VabuVlGW43+/NUc9PzBylcYyQI+Sv00/KS9F4W2ShemSc9Lmp47a/FLMFNyexTnr9sxBvZ6I2QSUn6M15kIIbnvYR/os7x8bZT1XljEsh5ANNDHt2bi5sitlX+GPyvVlmFhsc/3E4oCNyGnnmJHtIido7OK08u9snIB4M95fcRoMIdx3B2ksOaePL1y2z79l5HEddX5EY/cbCyzWrcXIZjGz5K3XFfmNFuz3DcMKxbzwzVJPe8dhy/t48vc5V+Ic5WnvVsp/v7mok2qO4uukX8yHfEJZmPjKaBblsln+pj/DoA5bbgufCh9mnFg8mKtpchJXbuMM+XLZK6cazYmJlfdaz6ftrOaHEVFqrjmU4wv2NezzDUer8sPUN5fIz/XHPEv1XZ/y+29ZOEGPinm2UCylzzx1prrr6KBs2bubZOMcUAzsTQdt2p1hYvVmPGnxh8BJ5W+/43EcN2VcTD6Vb5bT9Ers8w3JOeX88MlCT6e2y5bq+0rKnttRx+8dTvnwnFWUCbW4hgJ6RvU9KpwnZq9qA3vKQbs2ZphYe3OW0U46J4ojnsayPUObD3meZ12eFzkoFlnWq09OeVJuqy3Vt9PBekqu3UK8w5tJ1S//+y0dlfmkU+0ez4UtN8sp5pU6ylmnLMOHW622Ln3k506wkqvKuq3CPt9wzKZs1xg+6zVCbk2RH9d5sqqkLcXiNstSPwwk6j0/9kl1sUbnb7VY1oYq5bgIN7NDOcHuezKn9MvHhEu2Ktt8LMBce6Go18fY5xuSaylrJQbldoQmO17FzHvkzkHlUCBrVC5eo9oedLZJc3gYctQ+rf3+uIWytHZ516bA08p6+HbW0PbPWQKNRvJu/FyKsguh3FpSPsh2RN6XvYn62vR+npf47Qcxd8T1GhPogKeTxVVH7btFbh4qT8U90j0TcInGW3IgwFzbpRyLjdjrG4qFNDEKCb9lbI1EuXXQZN+Dpoj7sjlR36celGdzjB0xl/xdcFYyjSbbsI87KKeJdLbyIYsT9qxyA1/haEy5bzVPFC4FmG+XSXf/MJ1Ao8Drrjsx/uNrI7Ry47ol3+Hujbw/V9PkN222STqrROnVrPmSdqWVk1G+NzkoY5VS0XRZLHO7ssz9jvp1vbL8bQE2sZeKet3Gft9QVLvDCa3cdqVYXJoj78/k+j/voIzziTKijFryAYXzSEreC811UMZh5Ua/22KZWu9MVyGk3lOWP9fzXFutrNdB7PcNw/LE2N9LWFBCK7fk06W3C9CnSeV2rlGVW3dA5VZ5whkI2D6WeRbL1L7TueKozQ/Ij2doVo5SnE4uIAzsqFF5d8On+mRg3pDKLenVzfWbUYB+XUvurx+SZsn2GDtCYyZydXn6Orl9sDuD9FFJbKJVbtcctHkO+fMMzYomTcgL7PkNwxmF9SSkckvGQj1akH6dnqh3j4cP6ChjvmqcLRY4KrsyioYL1/gtyo3+fcvlat+YuVBu2rLXep5nc5X1ukSgEUiazq5P8XehlNvKlLKOSr2L4OxU6QQzavnEOZv8en47VW6uImpUnjI2OPj9C8oNdZ3lcg9SuPBSmsCuNj1DtWifAGwjUHZ4c6yMX9tHU0eoD6XcapXL1p6LMq9fLcCpeI/F395PBXmTOkTh7oZaK8pwEbFDk65nxMFG36ncyN9z0GZN9I+uAPPsMrkPfwaKwRXSv2kModzaKHv4rAH5sNxF/h210liRooxt7HPsKZoM07gi1on2iHTvjlxkYG0hd6GWtHmXXDwc18bGs/1QeTn59wzV0KT8iHqIfb/07KRsnnwhlJs2olE14XuujsAfa8k7QxteyMkwZHdinmzaL+oPHZXPNmwXj8Q7lO3aY7lcbQr6IbL/XuYdZdm+U8Vr++R9AmWG7+4rM2c8FetNTMptHtnNas+/dcPRHleLJYm21JuDbX1K2xbHPOH2ZRiovQVaSDeVbWqzXK424v0JB23WhBl7EmAsTij7pBTp64H6JKExZ/lWbsfJXeT/u2JR8snbNDk7QJ5sG2tTrC/7Y59w8zMMzghFbF+tQBt+yvZGv1LZj3wvNjtQm08HGI8Hyrk1Dft/aUlustpI8j6VG9/7vyR3yq3yw9bnXD+Xsta0iqlJxm40gn0kF9czDEwf2X3w7ALtOzObA8TmlV4K5xGobbPvgMTaJwDXCJSVpYnNsYf0zg0+ldsBD4ptXLrJr+NJWqLVxzR2/z57inW7W/4mhjeydU2+LAPDDY45vbg2Y66tjZ6/wm5Q2MfTmhQ3vMH4jounfQKwn0AZaU5skGzaynLn61O5bZTy+GOfTagDpHOEyisfk9/77600MdFo0pp0W2SQps5DubmIk/BMxoG5Q7Uvg0OhOUHZMoOxKeNDCh8VRNPmWwHGQuuwtJhAGXmf6ru3jyHlDStofsvGMWOPivKzlZW7z7OC41Mam0WzmF8HZe+aWdRJyIrqacaBuUHx3ZNok2Fet1DWamWf8dffjgjafMDzWGjTDfVBB5SS9pT9IisxKLep5ja37yTp3tPWOsHN8Vx/fobFwTk40MVdUXajIoNyeDknf1OKu/ClOY7hVyJrw5sezGDLaPJD1GpKdEEkbV4WeHPznR3BVv3KIL4f7s9MbPr9OTfwWJVbUtFtFJNe3vHhbAjIYeiYLTkGJqZ4gF2OzGD8ZKCDdFm2WW6Sv7ctGtNff4Cx0Kbe2RJorkC5uSMZpSfv/XYRlFsly0n/DCkpF6F+3PNOjoE5F0G9tWYwNgO0psirsuFxnEtOx3NCFMdAhq+vgx5Oask2DxV40x2lcLZ8KDc3bCN7yTKLptzG4YwnT3OME2KreuBkARXcGvK7KbM7L3tmsgdRKO/RVVTsTfduwPkC5WYffiZUGd9UE4WkjMqN4Xut0xnHaYAK7LhRJC7mWERnAtb3qMfNgi9c91L4JxGHqdib7pGAfQflZp9klJx6gz4UWblVnuIGC7ImGooPciykE4Hq2hNg0xgRs0tboDZ3U7E33dUB5zaUm106HGzSZVBuDMd57CO9630zAS9czbGYDnquozYDdadMHJbpYjJhxcSx0/iujZ0b3qIxDz6+GB7OaJb1eZLTZhr3/UBaGwosRF45KDc3vEoT77vvWxrbsig3ZlEGBbcdascP02ly0FON7PJYR20G6p0Zf3f8PYs2Akkf+ctyrfVs9Z1MURsKrAtLqxTwh2Jl/NBhsvcwuUzKjVmp/PBDRnqP8Mv2JzkUXLun+l1S1qeeuJibSW873+ehzecpzicAWmek3VhWpSCZ9cFm9pCyKTdGE8PyJaaVX+ZnOFZXev/4cI3XuOv3WihnBeld79903GZNZIQQX4CPlf2zEEuq8Kym+qOQNJpyYx5ifcTHMsrm+TNuf3d5QarNQG0rC8D2DG1f5ajNbRTnuxltFoAnWEqFh13WnyU+ZG2HkSqrctugWCMbMcX8w6bGrIFDTzqsj/bRuc3Joo1C8NSRYt+vLN93mnut4j+NZVR4kp7UmxyUUVblprFw7MAUC0OeMF2uEp1qMlDzJa7N2G3LM7S7I8Cit2WGzYr27hNfpcVmM/mJD1pm5Vbr7u09TLNwaE8PleZJ27SQzvvotoOy7yvb/dxyudOUJ+cQp6N+5YcG3vEUFzY9DySsEzOg3DJT62rhLKZaWLKGl7F9B7RJWe4hB20/RGEeK6+L9HSkTXp7C8um0CRN8isdllVm5VbrYxDKLTBNlC3Vg+1YgmcpnGPHugztPmyxXE20/VE51fqkg+J84A/ssS8xlsccl1d25dYF5RY3c0hnjhoXm6GqNG/vXEXCaKYwESIekC72pW+0D91fw5IpLNeomBFa1kfan9U+zk9husXB5gwTzVY4KK07/GWH7dZ6jdq6b9SGGfMdfFV7DziApQLlBuX2/+yleMLmgSpo3eM7PUwMX5EwtG/+bG3q2jBjazyPvdZEi7BCUG5Qbp9R7enMVky36mYzNsk98lSe1j3+oaXytAGdXUbs963cNK72HNvPd0BibdZtJGOEcoNy0ym39ZhuUzOeyPKBxzLvkZ+4aVoz2HPH7dWG4rJVjxeKsq4GmGvaZxFzI1ofyAoA5RaanVXqPIdATRPWhx7L1AQFHfZoBrvgsK1NGRaXDYWjPRn7ttVr7wEfRLY+oNyg3EJzjKbO6QYUpqJnHsvUKJ0Rj2awLQ7b2pZhcdlQstowY0s8zzNttJr3odxKn4nbtxm06Ex1zXCZQFXG31C88Fhmiyez5APlop4ZwaZuy6lFE2YsRIobbbb2dVBuUG5QbhPoJf9OcKVgvONGya+DgSaYcD1oI8/3OG7nuQybS72nKW126xDeiJrUOyMUNus2lBuUW2xMtY/xOsd9WxWaEpuhT1OV64W2U7mgjzvuX+3D9acWytNmt/btjbhYWa9rEa4RKDcot5BMFZv3BoGqLEp02E6PStV1KCpt5HmXZrCtGTYWG+GmtDE8fae42UdxOrlAuUG5xc4jch+HtpRsDGSuWqBYaO11Kk/N27IRMeW5Qnvnx/eLsyyU16soK0SKmyvKfliMJQmg3GpaYhBUXMFbNNn9frqHcmtF6R+g+u5eVio3U5fPH/Zk+GJ+x0J5C5Vl+U5x00S6t4afYDkCKLcJ6ybt1DaKj0AdF1I6b4+Hck/VmIwn6vx9bZqZQ47at1hOY9pILDacKN5Uluc7xY3WrHcByxEUQLmxpzcHvpjtuE2Hp2jL2xhuHWlu48/IrcdaE1X3nOMvk/l1ltFN4R5tsnfTc2X5fEJdZKlcTZgx7ttWz3PsOIV/awig3OplV8q6ZktXl4N9ZBUVx+EqWobJfy6tHeQ2bbr2CYCL9218l/iU9PdstvLH8dekxvR3P8Ac61X2xzwsRxCpctuiXFvLLZTFH/Z9lP5kqRVDrWMGVQ995eJZQEuNU81zqj8VvTYZ5qcWT00Me0a+IP2JbYXFsndTnN5wqzKMBQCxKrcbGeZxPVcd7MX8jNJD0s3GMOtZT7WD+NoOYHuBqpvM6nVvZZPnkwwT0Yb9eqmR6xnKvC8nPJs8UpZ9xfMc6yYoN1B85faCsj2p4LReWR9Yr5jixHab3EZQKiXbSec2bstcdKRGWTbe2HVknIRDlM9ePl3671aGsoblq872fea+DHXw+QzgaMaxaMOSBJEqtx7K/maQrTMa57xWWStpkYU4A/c0DG92zigHiSNsbKqjnNYaJzZbHppcxxHK93iVzQ7bZINtSpwE2ZTKHn9sdz8hX2VZyuG/PUVu7pTytHmX43nVKosy6xhcJz/PUACUW1bepvwP43vlv19SsbfwPN9g5CSlv8flPXczhjU/XRkHiSfQsgy/3ySnm2oOFoN1DiKXsTZHW3wIm0fZMcdFbrLXjFyso27jytymHX+5fIH211EvNoUflo8JfLGCWJTbNDEPut4z+PTGDnUwQ9bJ85wD0CPmNTbnzUooGvb04XdUnLbk4xq/8xGNPTzOa368V8dJzYWMyKnuUMaPgCxtZqU0ZLneg3Jqyhr6ihVQp5E7NLXXbb0Lne8groqVAYBQym38tHXG0d4xKFah+RjK+qmM7cgbyO6Kr/gm2Zz3yWY9SvZPNNsdT2bbMizCF8uPZMPlUGXHxFy5jNxHs3fd5qyelHs89j+SMoLQym0cNi+et/Bh/VL2kK2wUtg3a43ncKvluTddTmPnSf+GK+1UwxPwdXQ9AKAEsELie7OjYsHokf10uELYysKOJd3y8XhGlNkSdJ87Vkhn53Eu4LcYfE92Sn7jiXyFjA8o///H8u+Oi0JrRpcDAABwxf8CBub7gVBXqbgAAACndEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1vdmVyPjxtcm93PjxtaT5TPC9taT48bWk+QjwvbWk+PG1pPkg8L21pPjwvbXJvdz48bW8+XjwvbW8+PC9tb3Zlcj48bW8+PTwvbW8+PG1uPjQ1PC9tbj48bW8+JiN4QjA7PC9tbz48L21hdGg+8bS/ygAAAABJRU5ErkJggg==" style="width: 69.00px; height: 16.00px; margin-left: 0.00px; margin-top: 2.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack S B H with hat on top equals 45 degree"> nên vuông cân tại

Gọi  là trung điểm

Xét  vuông tại  

Nên

Xét  vuông tại  có <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>S</mi><mi>B</mi><mi>H</mi></mrow><mo>^</mo></mover><mo>=</mo><mn>45</mn><mo>&#xB0;</mo></math> nên  vuông cân tại

1

Câu hỏi tương tự

Cho hình chóp tứ giác đều có cạnh đáy bằng góc giữa cạnh bên và mặt phẳng đáy bằng . Tính thể tích khối chóp .

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG