Cách 1:
TXĐ: D=R
f′(x)=2(x−1)+2(x−2)+...+2(x−2019)=2.[2019x−(1+2+...+2019)]=2[2019x−22019.2020]=2019(2x−2020)f′(x)=0⇔2019(2x−2020)=0⇔x=1010
Ta có BBT :

Ta có :
f(x)=2019x2−2(1+2+3+...+2019)x+(12+22+...+20192)=2019x2−2.22019(1+2019)x+(12+22+...+20192)=2019(x2−2020x+10102)+(12+22+...+20192−2019.10102)≥12+22+...+20192−2019.10102,∀x
Do đó f(x) đạt giá trị nhỏ nhất khi x = 1010.