Square root
VBT
Calculator
magnet

Câu hỏi

Giá trị nào của x thỏa mãn 3 7 - x   = 1 4 - - 3 5 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAA2IAAAETCAYAAABUTrXfAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACjj/tgzAAAIJtJREFUeNrt3Q/kVef/APBHkuQjkkmSmEkyiZmZzIzMJEkkSZKYJJNEZpJJzMxkEkkmk8gkMxOTZDIxySSJJJkkkiQfif3O87233263e85z7+dz/5x7zuvFw/e7Pn3u5757P8/n/b7nnOcJAQCAcbU/G/+2jBNCQk0dbZsLXwkJAACDsK+t8PwrGzOFhZqKuX+1bU58KSwAAPTTrraC83E2FgsLNbcoG4/a5sYeYQEAoB+2tBWacawTFvifdR3mxzZhAQBgOtZ2KDKPCAu85kiHebJWWAAAmIoPs/G8rbi8kY1ZQgOvic+LXW+bK3HurBIaAAB68XY2HrYVlpPZWC400NHS5hxpf5byHaEBAKAb87JxO7x5q9VeoYFCuzvMmzvZmC80AAAUmZGNix2KyT+EBrrSaf5cDo56AACgQKdNB56Fxq2KQFrc0v5Jh3l0TGgAAOik0zb1zkWC3u3MmUvbhQYAgFZxE47nHQrHP4UGpuRSh/kUN/NYITQAAEQTofPmHC+DXRJhquJuiS86zKt7obEhDgAANXc6dL6N6pDQwLQczJlb54QGAKDe8p4Lu5uN2cID0xIPP7+TM8c+Fx4AgHqKOyE+zSkS1wkP9MWanDkWn8lcKjwAAPXzR06BeEFooK9+yZlrV4UGAKBe9uYUhnGDjmXCA30Vrz6/yJlzB4QHAKA+ReFkTlF4RHhgIL4N+R9+2J0UAKAGLuUUhE+yMV94YCDmZuNRztxzXh8AQMXtyCkE4/hKeGCg9hbMv13CAwBQTfEQ2bxP5B8E29XDoM0MjQOdO83Bx8EVaQB4o3iNB9seFwrG3LGQ/2n8buGBodhWMA9PCM+bneva0HjALp6CHQ84fBYaD7nG3U/iGQDxU6Tz2TiajfWhcXgbAOMt3s9/sLnmx1+QT4WEMfZuQfEXP6GfIUSonYfmVsF8fE8KNXYvORHydxUqGjHJTmVjhTACjJ2J0NhO+Enb2q4RY5xdKqhbdgoPaueh2loQiyt1TqJF2TgzhQTKGz8G93sCjIM5obFZweOc9VwjxrhaG1wNQ+1cNkVXxTbWMZHipdEnfUykV+N+cJkRoKziBgX7Qv4mBhoxxt2N4Nkw1M5ls73g/d+u2wckXw4gidp/gX9ovgKURnwmIW4l/KCHdRzGTdHGAA+C59pRO49KbLTuFbz/z+uSSF8POJFat6VcYt4CjFR8kHxPDw2YRoxxLvTuFuT0ASFC7TxS+0LxVcHKXxXblfPmX2bj1+afx2689ROj+L+XZWNTaDxY+KyHhLpq7gKMrCjd3fzlNtVPZ2GcFB3eHDdU8Aw7aufRmtP83VLLW4dX5STRd6Hx4GEvQTwYut8lZpM5DDDUBizuCnevZZ3/IzR294rr/RWNGBXN+zsF+XxMiFA7l8K3oYab6UyEN+/LvNrs1qdqZejuVpe/zGOAobnZsvZ+kY23OnzNSY0YFbMlkc/LhAi1cyksSbz37VV80z+EN0+y7kfHGc9Q6OZy6zvmM8BQHGyuzUUWaMSomOsFuXxReFA7l8r5gvd9q2pvdnnbGzzU5++/r4tk2mI+A5TKTY0YFfFxIpc3CBFq51L5JPHe11TpzZ5reWNHB/D94wOJqTMVTpjTAKVyXiNGRfxWkMf/BAc4o3Yuo6JnOi9V5U0ubXlTvw/wdU4lkum0OQ1Q2kJDI0YV6pxO45AQoXYupdS5bJV4rvP78N8nQoPctnVrIphnzGsAjRgMqM7JG28LEWrnUloYGjtQ5r3/o+P+BuOl+EfNN/PZgF9rbXBFDEAjBsMzs6XO6TQuCxFq51Iruq04bmgye5zf3Kt/4LNDeK3ViWT61twG0IhBH21L5PAOIULtXGqbEjH4fJzfXDz/IO4UtLAEyWTHIgCNGPTTxYL8fdGsg0DtXF7xqvbzghhckZK9fYKQtxjOEyIAjRj0yeJE/p4TItTOYyG1aYmziLtQ9MDhWeEB0IhBHx1I5O9GIULtPPYNaRxfS5W0YwUBXCE8ABox6KMbofhqwiwhQu08FmY0f9/kxeK2VEm7FRzkDKARg8Fbnshdd+Kgdh4vPybm9Erpku+9gg7Wg7IAGjHop68TubtFiFA7j5X1iTn9jZTJd7pDwB4GhygCaMSg/4puS4wHxNogDLXzeIm7J74omNe3pEz3HX1MJJcQATRi0G9LE3nrEGfUzuPpl8TcXiZ1XjcR3ry/NV5Stc0kgEYMBmFvIm/3CxFq57G0OzG39wnR635tC9Dp4JkwAI0YDM6FRN6+J0SoncdS6mr3JSFqmJ2N8y2B+Sc4rwNAIwaDFZ8jeVmQs4+ECLXzWLsTip//nFP3AMWT7K+2BeZ+aNwKoKMH0IjBoKR2VjsjRKidx1pqG/v1dQ7OrlB84NrjZlI5RBFAIwb99kMiZ7cLEWrnsbYpMceP1TEoa7PxdyIwreNuNj6VSwAaMeij64mcteEBaufxtiARpxt1CUS8D3tHF4te0TihwwfQiEEfTCTy1fNhqJ2r4U4iRpU+JzDuNnQkNC6V/tuHcSUbb5mbABoxmIYNwfNhqJ3r4KdEfDZU8U3HDv52nxKofVwPTrkH0IjB1H2XyNcvhAi1cyVsTcTm+yq+6dPNX7rPsjE5gIQ6b74CaMRgii4m8vVjIULtXAkrE3G5XJdAxHtU4+Fqa5rd6anQeJhwqgm11ZwF0IhBj2YkCt2Xza8BtXP15/uLus/3eC/s96F4O85O40FoHGgHgEYMupX6hPyaEKF2rpTUFfD3pVQIc7NxOBSfct8+9gobgEYMerAlkaunhAi1c6WcSMRki1T6z7shvdXkq3FTuAA0YtCDY4lc3SlEqJ0rJfXhy0kp9Lr5oftzE94VLgCNGHTpt0SurhEi1M6VsioRj4vS503xNOwHwSVWAI0Y9M+zRK5OCBFq50qZlYjHc6nT2eoukumsMAFoxKALE/IUtXMta+d/EjFxRnGOXxKBuyFEABox6MKaRJ5eECLUzrX8HeWW5Byp+zonhQhAIwZd2BrsmIjauY61c2rnROcTF0gdXufgRQCNGKQcSeTpHiFC7VxJ2xLxOCZl8p1MBG+WEAFoxCDhTCJP1wsRaudKWp+Ixxkpk2+LZALQiME0/ZnI04+ECLVzJS1PxOOalMn3WXB5FUAjBtOT2rreB7uonatpZiIez6RMvkXBA4cAGjGYuhnBBgaoneuc6881p1NTdO6H7esBNGKQ8k4iR+8KEWrnSrueWAOWS5vO5gQP1wFoxGDqUrdq/SJEqJ0r7XxiDfhM2nRWdHl1r/AAaMQgYWMiR08LEWrnSvspsQZslDadrSkI2gfCA6ARg4TtiRw9LkSonSvtWGIN2C5tOtuaE7D7QgOgEYMufJvI0f1ChNq50nYk1oAj0qazvEuJh4UGQCMGXUgdcLtFiFA7V1rqbLWT0qazBx2C9TIbS4QGQCMGXTidyNENQoTaudI2BM+J9mx1TrBOCA2ARgy6lNoxbY0QoXautDWJNeCc1HnTpZxf6AuFBkAjBl36NZGjq4UItXMtG9RX41ep87q8Mz92Cw2ARgx68EciR98XItTOlfZ2Yg24Ng5v4qNsfBMa27zGHVkWDeh15mXjnm4VYCz8ohGj5B4lcnRCiFA7V9pEYg14VOYffmY2fg6dH/yLn4Qu7/PrdbqF4G425ssjgNK5pRGj5J4kcnS2EKF2rrRZiTXgSZl/+AOJHz4m1bfNNzldpzp8/39C45IiAOUyp/k7IPU7YoZQMULPEjk6S4hQO1e+MR7bDwxvJn74VyN+3cdTfI25ofPtLbeDreoByip1SOar8YlQMUKTifwEtXP1Ff07TJb5B3/cZTK9GjEp3uvh+28KjdO+279PvKQ7T94AlFK85/5Ol78XfhcuNGLUiNpZI9Y353pMptYdSPZn49Pw+qXX+L/jzi6Hcn6Jx8upm+ULQGktyMblHn8nHA1uUUQjRj2onTViffPZFJOp1/EwG1+FxjMHAJRL/JR1bbOhSj1zkzfiw+MHOxQZMKoCTCOG2tk68LLsP/yBASZRPHxuW2g8SAdAOazKxoPQuMUmdUVhqmOy+f3j62wUcjRiVIja2TrQ9+7+Wh+SJ+5MEu9hjQ95L5AXAKW0OgznE91XY6uQowCjYtTO1oG+W5aNnaGxXeZvoXEIWrxNZbJlxP8fP+GMDx+eCY17Wjdk4x15AAAowKgRtbN1AABAAaYAA+uAdQAAQAEGWAcAABRggHUAAAAFGGAdAABQgAHWAQAAFGCAdQAAQAEGWAcAABRgCjCwDlgHAAAUYIB1AABAAQZYBwAAUIAB1gEAAAUYYB0AAEABBlgHAAAUYIB1AABAAaYAA+uAdQAAQAEGWAcAABRggHUAAAAFGGAdAABQgAHWAQAAFGCAdQAAQAEGWAcAABRgCjCwDlgHAAAUYIB1AABAAQZYBwAAUIAB1gEAAAUYYB0AAEABBlgHAAAUYIB1AJimGdn4OBsHs/FzNu5n43k2XmTj92wsmeb3j9/7TDYeN7/nw2x8n435Qg+gAAOsA1AnM7OxodkgPUtM3LvZmJjCayzIxm8F3/dGNmb7pwBQgAHWAai6j7JxMjSueP3bw/iqx9d5LzSufKW+7x7/JAAKMMA6AFW1MRt3OkzKyS4bsXs9vNaH2XjS5fc97Z8GQAEGWAegqraFxvNZ57OxOxsfhMazYVG87fBQFxP4gy5eZ1loPAvW7ZU2jRiAAgywDkBlxY0xZia+5mxiAh9M/P23QuPKWS+3PO4a03iu7vF9jvM4Z/qAAgywDgCDszIxgX8v+Lvx6tqltq9d0vzv8UrayQ7f71oY3806NGKAAgywDgB9c7tgAk+G/25nbPddSN9uGG9bPBIaW+R/Gaa2E6NGTCMGKMAA6wBUztHEJF7Z4e981vLnv9QkThoxQAEGWAeAvtmQmMSb274+Phf2apv6eC7YRE3ipBEDFGCAdQDom7mJSfxj29f/2vzv8VDopTWKk0YMUIAB1gGgr24VTOJrLV+3reW/76hZjDRigAIMqN068K/RtwGd/FSQMy9DYxv8heG/88J+EzKs79Z3NGJYW62tGjHDL2qmZ2sib+LVoFe3JD7NxiIhw/pufUcjhrXV2qoRM/yiZnreDenzxF79793ChWLB+o5GDGurtVUjZpQ3mU5UPJazKrZoP+/iPV/zuw3FgvXd+q4Rky+lzxdrokZMI+YXtYV3jJzv4j2v1DegWLC+W981YvJFI2Zt1YgZflFbePvnQOL9ntAzoFiwvlvfNWLyRSNmbbUOUH4W3vGyJvF+10lpwPquAJMvla8HqM6HmfhFbeEdE/H9vCx4v59LacD6rgCTLxoxrAP4RW3h7b/rBe/3lJQGrO8KMPmiEcM6gF/UFt7h/pv9LaUB67sCTL5oxLAOAP23KTGh5woRgAIMsA4A/bUz2LADQAEGWAeAoVmcjaeJCf29MAEowADrANA/V7qY0FdqHJ/VoT5nppwzHUABBlgHgMFrPcy5aAv7+GczNWIaMUABBlgHgOl5v6X5ircmbk1M6s80YhoxQAEGWAeAqZuTjdstE3ZzNmZk40XBpD6oEdOIAQowwDoATN3Jlsl6ouW/XyiY1Bc0YhoxQAEGWAeAqVnfMlFvZGN2y58dKJjUk6Fx1UwjphEDFGCAdQDowYJsPGpO0mfZWNr2558kJvYqjZhGDFCAAdYBoDe/t0zSrR3+PO6MWPSc2F4hBFCAAdYBoHt7Wibo6YKvu1wwsX/u8rXeCY3NPWYLO4ACDLAOQF29GxrPeMXJGXdLnCj42sMFE/t5F681KxvXm1+/XugBFGCAdQDqKF6Vuhn+23BjReLr1yQmd+rvHwvpq24AKMAA6wBU2qmWibmzi6+Pz4m9LJjcXxT83c3Nr7mfjblCD6AAA6wDUCXzsvFZNpYlvu6rlkl5tofv/0fB5L6S83feC41bF+PXfOKfCEABBlgHoEp2hdd3Noy3HX7e4ev2tnzN3dDbFarvEhP8g7avj5tzPGj+2WH/RAAKMMA6AFWyqmDS3crGvmysy8aZlv/+NDQ26+hF6uyse9lY3vzaDdl42Pzvl/wTASjAAOsAVM2PofdDetdM4XVmZONxj68Tr7rN908EoAADrANQNad7bI62TOO1vu/hdeIVsbf98wAowADrAFTR3i4bo/gM2eZpvtaibDzr4rXis2Er/NMAKMAA6wBUVTwT7M+Qfn7roz693ubEa8XdFRf6ZwFQgAHWAai6eM5XvDIWt5GP28XHQ5rjhhy/h8YZX7P6/Hpxh8Tzzdd49Vo/h8amIAAowADrAACAAgywDgAAoAADrAMAAAowwDoAAIACDLAOAAAowADrAAAACjDAOgAAoAADrAMAAAowwDoAAIACDLAOAAAowADrAAAACjDAOgAAoAADrAMAACjAAOsAAIACDLAOAAAowADrAAAACjDAOgAAoAADrAMAACjAoHfvZuMd64B1AID6ueiXHwowGIlF2bifjePWAesAAPXyhV9+KMBg6N7Kxo5sPGzm+0rrwPiuAyu6eCPDHk/NMYBSW5aN54pgFGCQ69oQauYr1oHxXgeOlbARu2/uApTWjGxcVwSjAINcnwypZt5mHRjfdWAiG5MlbMSOmr8ApXVYEYwCDApdHkK9HG9NnGEdGN91YE8Jm7B/m58iAFA+HyqCUYBBoZVDqpe/tg7kjpfj8AZulrAJe2j+ApRSvIviriKYEpiUg5TYmSHUy7HRWKwRyx2TZf/hPwrlvBp2wvwFKKWTXa7joBGjrt4ZUr38s1CPdyN2JpSzEVstrwBKZ30P6zhoxKiro0Oqlz8W6vFtxBaExiXNTltgxufG4jNaswf4+ktzgvY41PuhQ4AyimfWPNKIUSJPEzmolmBUa+WLMNjbEf/Jxj6hDrPCGB+FdbDth30Qhnsl6qvgtkSAcfFr21qdaspg0B4ncnCWEDECh9ry8KaQDMzsxBrwpKw/ePyU6H7LDxo762E/7Pd3TtA+k1cApbKzbZ0+2aEx04gxbA8TOThHiBiyOc3i3xlfwzE3sQY8KusPvi68ftlu+ZBff1lB5+pWAoDyiA+dP29Zp++Exs6JGjFG7UIiBxcJEUO2ry0H76lrB2pFYg24VtYf/GLLD7l5BK9/MCdgJ+UUQGnEAuJqeP3ZhA+bf6YRY9RSOWgjA4a9Xt5vy8HdwjJQnybWgF/L+EO3bqn504h+BrclApRf+4dmh3oogmHQziVyUE3BMO0Ib+694DnFwVqbWAPOlfGH/q4lQeaP4PXzbkt8Fly+BSiL99vW6L/a1miNGKN2OpGD64SIIbrZln9fCsnAbUisAafL+EP/1vzhNo3o9fNuSzwlnwBKIT5wfju8/kHZ0rav0YgxaqnDxTcJEUPSfmUmrplzhWXgtiTWgNI+8vRhiT4x8MkVQLkcb1ufd3b4Go0Yo3YgkYN2q2NYrrTl3mEhGYp9iTXgiBC9bnlOoOKOXG5LBBi9NW3r8285X6cRY9S2JnLwByFiCFZ1yL3DzbV0tvAM1InEGrBdiF6Xd1viaaEBGLm3wutnM8X/vUAjRkmtT+Tgj0LEEKTWwnibd9wcL27m8a5w9dWZROw3CtHrbuUEar3QAIzc+R7WZo0Yo5bauvpnIWLAliVysNN43GwgYmO2UAin5Zdg59Su5R26NpmNmcIDMFLbQ28POWvEGLUFiRy8IkQMWGrDmG5GPHQ4PuvkAPLe3U3EdrkQ/efrnCCdERqAkXo7G09b1uX4y21CI0bJzUjk4FMhYoAWh8Yh9//2acTvdSE4iLwXk4mY2n+iRd5tiRuEBmCk2nf86mZnXY0YZfA0UdgqxBiUb/vYhLWPP7OxUogLzQo+iOla3m2JL4JTxwFG6cu2dflQl39PI0YZXEzk4dtCxADMC42zwv4d8PgueHwnz6qQvuWTpkM5QTorNAAjEz9xfdn2i6vbKwgaMcogtWvaGiFiAPYPoQl7Na4Gm3p0siERN48+tci7LXGz0ACMxKy2tTme57i0h7+vEaMMDiXycKsQMQDrm2tgPGcx3tr9uLmGDqoZ+6fH9bkO9iRidlSIGt4LbksEKJsjbWvy7h7/vkaMMtgUHOpMecS6Np4VFq/WHG42ai/61Iw91Iy95lTwIUxXDgfnewCUyeq29fjCFL6HRowy+CiRh+eEiBGb0Vxz44cCD8L0r4wtENL/uRDcltyVOzkB2iI0AEM3r60YeDTFX+waMcogtXPaTSGiZE1ZvK3x8jSasb+yMVsok5ulzBOi4tsSJRHA8J1tW4/XT/H7aMQoi8fBFvaMn/dDetfPvPFTzWM3LxGfZ9Kr4ZucAJ0XGoCh29K2Fv84je+lEaMsziVy0XlMlNm6bNydQjNW5zvL1iRic1FaNeTdlugBOoDhWpyNJy3rcPzFP6ERowJSB+tuEiJKbk42jvXYiMUrwXW9/e6LRGxOSKnGJde82xInhAdgqC61rcUfTvP7acQoi43BzolUQ7w69rSHZuxQTeN0OrhamPRdTnB+FRqAodo3gF/eGjHK4u1ELv4mRIyRFaGxVX03jVhs2up4FNTfibi8L41CuJcTnO1CAzA08Uyb1nNsrof+bF6gEaNMig7TfS48jJmlPTRjdXvcZ2ZobMKTF48XwQY9ubclxsDZThJgOOInpa2fHE6G/h0IqhGjTM4n8tFBuIybVYmG49U4U7O4rE7E4w+pk39botsDAEa3Fu/u4/fWiFEmBxL5uFGIGEP7u2jE6rZV+55EPL6XNvm3Je4QGoCh+Lht/b3Q5++vEaNMUttZHxcixtSNLpqxd2oUj58TsdhQ94T5IOTfljjffAIYuHgLeOsHYnGb4wUaMSos9dzI30LEmFrbRSO2vkbxeJKIRe0fgfo+OFwNYJTat/YdxCeEGjHK5o+CfIxN2mwhYkzdSqy322oSh2WJONyQKiHczwnOTqEBGLj2M5VODeh1NGKUzeHgqgHVlHpWrC7PRX2eiMOxuifKqpD/SdRb5hHAQC0MjdsQX629d7MxVyNGTaR2U3OwM+MqdSXoRE3icDb4sKXQkeC2RIBRudi29q4a4GtpxCibeHbQi+A5MarpkUbsfwdYu/24wD85wdll/gAM1Bdt6+43A349jRhldC6RlwuFiArmdh0asQ8Sc/tS3ROk6LbEBeYPwEgbo7KONf7p6KPUMyRbhIgxdaIgr4/W4P0fTMzt/XVPkLzbEi+bOwAaMY0YQ7AwkW9nhIgxtbsgr/fU4P3/mZjby+qeIA9yArPb3AHQiGnEKEHB9jw0niWDcbO1IK83V/y9L0j8HrlV9+T4uCA4i8wdAI2YRowh2ZfIuU+FiIo1YlVfR3ck5vThuifHDzmB+cO8AdCIacQYoiWJnDsuRIyh7QU5XfW9GFK/31bWPTnybkvcY94AaMQ0YgzZlYKceyg8jKFvcvL5acXf90RobPyXN59v1z0xim5LXGzeANSy8YNR2pPIz4+FiDFzJieXf674+96amMtf1z0xjuUE5k9zBkAjBiPwVij+FP0HIWLM3M7J5Z01/13zTt0TI++2xH3mDIBGDEbkl4L8fBzsnsj4yDuWoepn9aY+ULlS98Qoui1xiXkDoBGDEVkfPJ9INeTdanuh4u97d2IOf173xMi7LfGaOQOgEYMRile8/inI0Z+FiDFxM9TzWcerBfP3WTZm132Be5QTnP3mDIBGDEbs64IcfZGNeUJEyeVd2b1U8fe9PPE7pvbPeX4SPDgHoBHTiFFecffmomdMvhAiSixe9Oh0Nexls1Gpsu8Sv2OW1z05jge3JQJoxDRilNuZgjz9W3iYgjnZ+Cg0NpMYpLwrul9WPL4zQ/5dd3Fc1KHnB+hL8xNAIwYl8UEiV1cJEV3akY37bfkzmY1zof+bv3yUk6+/1iDO24KNdgqtLgjOUvMUQCMGJfJnQa7+JDx0YVNizYvjejbe78NrxZ3HH4bOd51N1CDWVwpifEsq5t+WeF1oADRiwkPJrC3I1aqfxUR/XOiiEXs1Dk7jdRZl417ofBvtWzWI88pEbLfXPRGLbks8YJ4CaMSEhxK6MaDCmXp40kMj9uo5pl4b/A9D5ythl0N9dvg8WRDTe8FB7OHTYAcTAI2YRozxUnRrWSx+ZwkRBa712IjF8Tgbu7r43vF2w8Oh8w6fJ0Jj84o6WBiKdzndLQ3zO9UbQgOgEdOIUWI3C3J2l/BQ4MspNGKvxu3m318R/ruiEw8jjrfMxvOwnnb4O/Hus401i/GhghjeD66G/S8AeZdmvzZHATRiGjFKbEOiWIY88arU5Wk0Y92OeEXo+1C/w8bjkQCPC+LyuRR0WyIAGjHG218FebtFeCgQr2IdH1ADFq+KxUOMl9Q0tvuDD0mSTgoQABoxxtjHwQHPTE+8xfDHbLyYZvP1LDQOHN8c6vMcWCfx+cyHBXHaIOUAAKrhl4Kib6Pw0KXYPMXnvOJGG2dDY0OP+AjPZMt4Hhq33F0NjYOfjzcbrxXC9//2FszHK8IDAFAdS0P+7myuisHwxKthDwoasfeECACgWr4tKP42CQ8MRdGzYSeFBwCgeuLZTf+E/GffZwgRDHwO5u2UGG/xnC9EAADVtDk4PBZGpejcMOf6AQBU3G85hWB8bmVCeGAgFobGrpGd5t6fwgMAUH2LCwrCr4UHBuJEzpyLRwI4mxgAoCZ25xSFk81GDeifd0P+LYkHhAcAoF5+zykMzwoN9NUfOXPtL6EBAKifeOUrbwe3T4QH+iJvg5x4e/BS4QEAqKeNOUXizWA7e5iuoiMjPhceAIB6OxU8uwKD8F1w+y8AADnmZONG6Lxxx9vCA1OyPKcJu5ONucIDAEAUn1XptKX9JaGBKbkeOn+4sUJoAABotSl4lgX6YV/OXNouNAAAdNLpmZYn2VgkNNCVeHV5ssM8OiY0AAAU6XS+2O/CAl35s8P8uZyNmUIDAECRedm41aGY3CU0UGh/h3lzOxvzhQYAgG4sycbDtoLyeXAALeR5N7x5S+KjYOdRAAB69H42nrYVln8Ht1hBu9mhcQh6+wcXq4QGAICp+DS8eavVEWGB1/zQYZ6sExYAAKZjsyITcq3rMD+2CQsAAP2ws63QfJyNxcJCzS1uzoXWubFXWAAA6Kc9bQXn1eB5Meor5v5fbXPiK2EBAGAQ9rUVnieEhJo6Pm5N2P8BKkJGC4R/gP8AAAEJdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtbj4zPC9tbj48bW4+NzwvbW4+PC9tZnJhYz48bW8+LTwvbW8+PG1pPng8L21pPjxtbz4mI3hBMDs8L21vPjxtbz49PC9tbz48bWZyYWM+PG1uPjE8L21uPjxtbj40PC9tbj48L21mcmFjPjxtbz4tPC9tbz48bWZlbmNlZD48bXJvdz48bW8+LTwvbW8+PG1mcmFjPjxtbj4zPC9tbj48bW4+NTwvbW4+PC9tZnJhYz48L21yb3c+PC9tZmVuY2VkPjwvbWF0aD7rulsSAAAAAElFTkSuQmCC" style="width: 137.33px; height: 42.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="3 over 7 minus x space equals 1 fourth minus open parentheses negative 3 over 5 close parentheses"> A. x = - 59 140 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAYQAAADmCAYAAADV9vI2AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAFDNJREFUeNrt3Q+EFesbwPFHsrJWrGQluSRJkriSlSRyJUmWZCVJXEmSxJUrK4n8JLkSSZJkSZKVLEmSXJGVJFmSJEkkSVbi/t7HzOrs6Zx5nzln3jkzc74fHveqc+adP2/vc2bed95XBADKaYWLJZwGAOhuC128dXGBUwEA3Wm+i70uPrj4z8WqwOX1uNjm4qyLWy7eu/jm4ruLKRdfXEy4GHVx2MVqLhEAzDQRN9gh41HA/deG/Wrc8KfdrzcujsfJCwC62oYckoHG7gD7rn0SdxLK/Ozinou7Lj65+JHw2W9xYphDlQDQrR7kkAz0kdGsjPf7cJM7gqdx8ulr8J3pR0pJSeSVizVUCwDdZlVOdwfHM9xn/QV/o0k5B1NsZ9DFZJPt6J3EXqoHgG4ymkMy0MZ1UUb7q7/6HzYpZ2sL2+v33CEdo4oA6AZLcro7uJHR/vYkNN7t3IFoknmWsP+HqSoAqu5cTglhfUb7e6XJ9l+7mJ1BcvyWcAzbqS4AqkqHWLYyRDPNY6J3Lo5ktL97E8o6kFEZRxPK+CK8ZQ2gok7UNXgvCryvixN+vWtS68uoHH0k9T4hKTym2gComl6JxueHfkcgK7clfP/EtGOeOx/6EwBUyhH59U3dWQXd13WeBjrroaELJPnlNU2k86hCAKpAG/63EuYZfAi+l+ZCPNe/7ynzBNUIQBXUd87qM/Oegu7rMk/D/DVQuYcM5fZRlQCU3Yu6xu1ogff1lKdhvhmo3BXiH0V1kKoEoMy2NPilO7fA+zvpaZQvBiz7m6fsCaoTgDJ7VNeonSzwvi42/ErfFbD8O4byl1KlAJTR2gYNmiaEzVLM6Z6HDQ3ytoDlXzCUzxBUAKV029O46eMZXWBGO51XFGB/LdNqbApY/i5D+bepVgDKxjdap1HoYjKjcYJY0IF9vmnYx40By99iKF+X5JxF9QJQJpek/bmJtBNVX2hbmNM+P+twQrAm0ZVULwBloesQ/JBsJ60bl+xmMG3ma4cTQo/xfOygigEoi/9JuBlN/5VoxbUQpqSzfQhiTKTHqWIAyqDf+Eu73Tgt7a9HUM9S7tbA589y7q5QzQCUwV+SzwI401NDZ9n5bFmrYTjw+ftk2IdbVDMAZaDj9HVopL5k9Shu4Hxv4LYTuiBOVi9rWfYz9CRz7wz7cJdqBqDMtMNU3zUYkujltDuS3eppHzJKCm8MZY0GPk93jccLAJWi4+l11M4/krxqmPVOYaDN/RkzlPOsAAnhI1UHQNWTgz5u8q1FkBRPpL0pMS6LbQjs7IDnwTKf0WeqC4BusdrFvRaTwtU2yt1pLCPkfEa3hTsEAPiFDvF83UJS2NliedY3hUNOgW1JCPQhAOhKvS7OS/o5kfpbLO+Vcfuh5hOyJIQHVAsA3X638CVFUmh1eOhJ4/b3BDrOcUPZY1QHAN1OJ3X7YGywNXm0sm7zb8btvwx0jJbRVteoCgAQvW9gTQqtrm52zbj9/Rkfm7UP4yzVAAAiuhKbZRK4Vl8i06U0LRPd6bxDSzI8ruuBEx0AVJJlzqSvbWz/b2Pj/Fxa78BOezzT8QeXHwBmem5oPNv5BW99F0Kn5J7fYhnzJJq9NM0oqh4uPdC+i5LfTJydiG5rKCxLTrbzEpk21i+N5/6tpJsaWx9L6RTetRPqWfpGJvlnDJAQSAiN+Rrs3W1uX6fXfiHplv3UzmYdETX9roL+dyBOYMckmgW20fe2C2shACQEEkLLfM/ez2RQhvYR3Al43U7F125EOr8eA0BCICGUlm+oZpbTTOwT2wI21tC3kpfXbP+J4Tvz+GcMkBBICM19lPzmHeqPf8m/bfEa6YtnZ+sSgVpk+O4j/gkDJAQSQrKb0pmJ6AYl6hPQ8rUvQzuIddGfH/H/692ETkWhM7Bqv8LvbTz60jjMP2GAhEBCaP26nivJMTwT/zoMA/wTBoBkBxIa0kMl2P9BsfU3AAA8dkm5R+VY5k5az2UGgPYSwuaC77vOruqbl+kplxgAbPYkNKZFf+5uWfxniEsMADanpPmaCEW21HB38JjLCwB2o00a0xsF3+8xw93Bai4vANhNNmlM9xV4ny0T853n0gKA3QIp37j9PvG/6fzGxVwuLwDYHWrSoI4XeJ99w0w1ma3l0gJAOs2mpi7quP094n9UdJDLCgDpbGvSoN4v6P5qB/E3TzK4xGUFgHRmNbk70Mctywu4vzqb6XtPMhjjsgKokl4X66T1NYatjjdpVI8W8JzouXgl/rmKZlN9AFTBXvl15MyURFNDZz19xDopzwRwOtLJt8znVfm53CYAlNoO8XeU6nw8WbxkpXP/NFqMXtck7ivYeVns4rXnvByn+gCoknGxr9kw0kY5CyUan1+/TV1LYH7BzskGSV7JTTuXt1N1AFTNZ0m3kM89Sf/S2GCTO4MHEi1rWSRHJHmOIn2EtJxqA6CKJiT96m66vOR+w7b1MdDJJg2srpRWpI5YvYO57zlu3edeqgyAqjoqrS/7ORl/f6X87FidI9FcP/9INGNp/Xf0UUyRHrfofuuayF8TjlNHGW2kqgCoOv2V/kDCrxmtdwlnpFiPiHZK8pBSTRLab9JDNQHQLfRX/YVAiUDvEk5LNMKoKMe6X5rPsjo95FaT1wKqBoBupY9+Lrv43mYS0F/Wus7BsBSjn0AfC+kjH51aImn6iecSdSr3UxUAIKKNuPYDaIfwdYk6nj/Hv5ynQxtW7VzWVcFuxncYw3FSKQIdCbQ3TkxJ/QN6bCdcrOKyA0C1/BEnrGb9GM/juyB9IY9HQgBQYWvkZz+AdpZfcXEgThR0DgNAF9HHXfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQVbNcrHcx4uKGi7cuvrn47uKui9/a3L5ue9TFp3ibH1yccTGPUw8AnTfbxVDcUH918V9CvHbR10IZAy7uJGz3uYs5XAoA6Ix1Li7FdwD/pYi/U5bze3wn4NvuIS4JAORru4tXDRrkKWNCeJOirEEXn43bvcalAYB87Zbo+f0tFwdcrJGo70Dp46AThsZ7jaGcZRL1FVjvPEgIAJAz7cCd7fnMdU/jPeL5/vz4TiLNo6j9AY51Y8p9KHPcpGoDCGGVp/G5m/Bdvdu4X/fZ3+I/1zuLSw22NyFhOpVJCACQgcmExmdKfj5mqnfa8BhIHyedlWho61FpbeQSCYGEACAn5zwN0KoG39lU8/djBTgGEgIAZGDI0wAN131e+w2mh5c+D/irn4RAQgCQs7meBuhy3edvx3+uL7ctLcgxkBAAICMvExqgiZrP7a75870F2n8SAgBk5GpCA/RDouGrC+Tn+wZ3OGVd4T+CIDoSHbXLs3Mbax4VfXGxkLaShEAQRDUTwgrxv48w/f8HaCdJCARBVDchKMvkdxO0kSQEgiCqnxBuGXZyFW0kCYEgiOonhGOeHbxI+0hCIAiiOxLCZs8ObqV9BIDu0CPRENNmCeFPThEAdI+nCQnhCqcHALrHxYSE8IzTAwDdY4ck9yPM5RQBQHfYJ3QsA0DXWyTRtBRJCeEMpwkAqu+R+MfGPirovjPbKQBkpPaltKShp9Mzn5IQSAgAKmh1TRLQR0a+mU83kRBICACqp9fFpMxcLnOWi+8JDdIICYGEAKB6LknjuYrGExqkcRICCQFAtWyraWSeu5hT83dJE91NxXcRJAQSAoAKGHDxMW5gvrpYWvf3GzyN0loSAgkBQDXUroC2q8Hf60iipH6Ew5xCACi/QzUN+7WEzz1ISAg3jGUtkagTeg6nHQCKRddOnoobdR1d1Jfw2ZMJCeGboSydTnt69tRtnHoAKA79lf5CfnYMr/R83rdgju/75w13IQCADrhS05jvM3xe+xGS3lo+mPDd4fgzb4UZUgEgF/0SvTm8zPO5v2sa8usptv9Q0s9r9LtEj5T0Mxu4RAAQ3n6ZORJIHwc1WubycM1nXqf8xX5akh8bran7vHYiv4//7iSXCADCW5vQSL90cUSitQtGa/5c5ylakbIc3/j+Ny6Wx58dcvEh/vP7XCIAyMdlSf9C0+YWytE3kj+lLEfvQuZxiQAgH9dSNtI72yjrTIpy9A5hMZcHAPJz2NhAax/DcJtlLZRoegtfWdp3sJJLAwD50ncK/hX/8/11GZU37ClLRyMt4LIAQGfMju8UdPinDvPUl82041jnKdJ3BHoyLk9HFN2Ky5guS6ew2MqlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBW9Ls44eJCBY/tnvy6NjoAoM5cFyMuvsYN5ZeKHd/BBsmgCAlhebxv11w8cfFZovXbv0u0bvwHFzdd/M/FRhezqKoAQulzcSxuiGobyiolhGVx41qUhKDJ9y8XL5vsU1J8dHHSxQKqLoCs9Lr428WnJg1PVRKC/qJ+mtDA5u2vBsm3NvTv7sZ3C1MJn/sWJ3LuGAC0bI6LI/EvzaRfolVJCCc9x5mXpQmJ6X18TQYafG+li9MJyWHCxWKqNYA0elwcjhsfy6OJKiSEQcNx5mFTfD4blT8mUUe+jzb6j5tsQ+/y1lHFAfjMdnEoRSKoSkLQvpHXBUgIO1z8aFL2lRbu7sal+SOkDVR3AI3os+UDLt5K+o7LKiSES8bjDGlbQrkP2kh0zxKu2e9UfQC1iWCfizdxI6G/Th+6uCjRs+hHXZAQtqVIfKEMSvORTTq0d2Eb29ZRU9+bbPudi/n8MwCgXsQNg45SOdikcbD8ei5rQtDj/SidTQi6D0mP6P7KoIwTCdsf558BAKUvly33fGagwgnhtvw6bj/vhHA7oTxNFHMyKEMfHSUNX/2TfwoA0t5JVCkh7Ks7hkuexjlEQhj2lDeSYVmnEsrRkUfzqOYALG5VLCEskZnP7F/Fv6LzTAj6yz+pE1/7cxZmWN5vnmO7QDUHYHGzQglBO9If1zW8g/Hf5ZkQjnrKuhfg2B94EtBSqjqAbkoII3X7fqLm7/JKCPq+xwdPWfsCHPsBT5kXqeoAuiUhrK7b7ycyc36fvBLCHvF31C8McPxLPGXq8NQBqjuAqicEnaBvUmaO769/RJJXQnjoKedVwPPwxlP2Mao7gKonhAvifySTR0JYZLg7uBLwPFzzlD1JdQdQ5YSwuW5/7zT5XB4JwfccX2N3wHPxp6H81VR5AFVMCPomcG0Hrv7/QAcTwpihQV4b8HxsMJR/gioPoIoJof4dim0Jnw2dELQDe8pTxg8Ju5BNjyEhPKHKA6haQqgfzXPJ8/nQCcGy5sK7HM7LZ0NS6qPaA6hKQlgsMxeaeW1o5EInhP2GhDCWw7m5bdiPrVR7AFVJCPVTdw9m0FC2yzfCJ/QIo2lXhX4EAF2SEI622LiFTgj/GhrikRzOzynDftyk2gMoe0JYJTOXodSF5a2dtKETgq9DWWNnDudol2E/3lLtAZQ5IegImpcyc+3gNBO2hUwIvWJbhCePZ/dDhv0IPdoJAAkhqLN1+3Ug5fdDJoT1xoSwKYfztNm4L8uo+gDKmBA2SvtLQ4ZMCNa1m9flcK6KlJwAkBAy1S8z1yXWpTBbmbUzZELYaWyE8xj/P9e4L9up+gDKlhCui/1t5E4lhL3GRrgnh/M1x7gvu6n6AMqUEOp/eV9uY1shE8IZYyOcR0duj3FfeBcBQGkSgk4lXTsNg+Vt5E4lhIvGRjgvln05T9UHUJaEcF/Sv41MQrAnBJbUBFCKhHAkwOMNEgIJAUDJEsIKidb/nS7/qWTz7J2EQEIAUKKEoB2iz2rK1ukglma07ZAJ4QIJAQAJIVunpb23kTuVEM6VMCGco+oDKGpCqH/Ddjzj7YdMCJa1jIuWEEao+gCKmBD0beQ3NWV+ktbeRu5UQrDMMJrXi2nW9xB4MQ1AIRNC/eIyQwHKCJkQLDOMavTmcC6tM68ydQWAwiWE7ZLPqmIhE8ImYyO8NIfrOV+Y3A5ACRPCAokeD9W+jTy3hAmh39gI/5HD9dxg3JfFVH0ARUoI9+rKWhuwrNArpv0wNMJbcrieW4QFcgCULCEcrCvnVODjDJ0Qnhsa4h05XM/thv14Q7UHUKSE4GugixqbmxzPqOG7+3O4npapuG9Q7QGQEMIlhBEpxtvBlmk0jlPtAZAQwiUEy7P70QJcz7z6MgCQELo2IfQZvjuRw/V8Iv4O5V6qPQASQriEoJ55vjuVw/WcKkBSAkBC6PqEYFlKM+T4/8WG8k9R5QEULSHkLfSwU7Xe0CAPBTxGy5DTQao8ABJC+ISgL3t99JRzOuAxnvWU/Y7qDoCEkE9CUP94ynkQ8Bj/7WAyAkBCICHUWSX+UT4hpsHuE//0Gcup7gBICPklBDXhKWtbgOPb4SnzIVUdAAkh/4Sw21PWlQ5cxyGqOgASQv4JQTuX3yaU9U2yfWw0z8X3hPJeUs0BkBA6kxDUPk95+zIs64inrGGqOQCLMRJCkISgdwlPc/jVPltmrkddH4+p4gCsXpIQgiQEpSOOkkb+7Al8d6CPkRhZBMCkV/xDFauyulYnEoI6lFDmB4me/7dqQZywm23/EFUcgJVlMRWNDSSEtlxOKHesxW1qkr6fsN1LVG8AVvoi0ytjQrhLQmjb9YSyL7SwvaQV2lgRDYDZgERTKKSZ5fOclPvRUacTgvrH04j3G6/duOc6AUAibWy2xA3GV2lt6ufXEi0V+YeEmX6h6glB6RDQz032QSfGO+piUYPvLY7PfbPval/CTqo5gEbWunjv4pP4F01pNabi7Ws520kIZtoZfEX8o7vux/FF/EtzLqTKA2hmo+S7cMwuEkJqy1ycNzT4zd521r6HFVR1AKgO7ZvRx3AnJXpzfFKix3pTcej/v4r/7lT82VmcNpH/A8zkQTHbAVOwAAAAkHRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtaT54PC9taT48bW8+PTwvbW8+PG1mcmFjPjxtcm93Pjxtbz4tPC9tbz48bW4+NTk8L21uPjwvbXJvdz48bW4+MTQwPC9tbj48L21mcmFjPjwvbWF0aD7zrgXWAAAAAElFTkSuQmCC" style="width: 61.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="x equals fraction numerator negative 59 over denominator 140 end fraction"> B. x = 59 140 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAVwAAADmCAYAAACZMD2LAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAE7xJREFUeNrt3Q+EVc0fx/GvrJW1YiUrK5EkSSLJSh6RR5LHWpKVJPFYSZJIHllJ5CdJEkmykiVJVrIkSfKIrKwkS5KVJJJkrUS/+f7u2V93b/fOzPkz55579v1iPI/23jvnz9zPnp0zZ0YEQCtaa8pKDgMAhNVjypQpVzgUABDGElMOmPLRlJ+mrA9cX7spfaZcMOWuKR9MmTbluykzpnw1ZdyUEVOOmrKRUwQgb+NRIIYsTwNuvwbnjShY427XO1NORb8cACCorTmErZZ9AbZd+4TvW+r8YspDUx6Y8tmUH5bXTkfBu5AmASCUxzmErXYpLMh4u482uKJ9EYV7p6XLwRbSb0zZRLMAkLX1OV3dnspwm/UK9HaDeg7H+JxeUyYbfI5eCR+geQDI0kgOYavhtSyj7dWr1icN6vkrwed1Oa7wT9JEAGRhZU5Xt7cz2t52SzimuYLWEJ+wbP9RmgqAtC7lFLh/ZLS9ww0+/60pbRn88pm27MMumguApHQIVJIhVHG6Ed6bciyj7T1gqetQRnWcsNTxVXhKDkBCp2sC5VWBt3WF5erzu9QfjZC0y+KDJXSf0WwAxNUhlfGpocfIZuWehO8fnnXSceVOfy6AWI7J709aLSjotm5xBGDWQ7eWiv3hCP1FtZgmBMCHBuuUhOkDDcH1UEaIftVHjjpP04wA+Ki9+aR9lu0F3dbVjuD7FqjeIx71dtKUALi8qgmPEwXe1rOO4LsTqN614h6FcZimBMBmZ50rtUUF3t5JR+hdDVj3tKPucZoTAJunNaFxpsDbusLjKnNvwPrve9S/iiYFoJ7NdQJDA3eHFHM6wgGPwOsLWP8Vj/oZIgagrnuO8NA/33UCb72ptrYA2+vz2PH2gPXv9aj/Hs0KQC3X3f56RSfrHokCeGkTtvmOxzZuC1j/To/6dcmeBTQvANWuSfq5EfQmkT4w0ZPTNk80OXB9f0mto3kBmKXz0P6QbCelGZPsZgBr5FuTA7fd83jspokBmPUfCTcj2L8SbhXeGWluH654/qI6RRMDoLo8rxTTlnOSfj7aWj71/hX4+Pkcu2GaGQB1XPKZYHx26sIsb675zNU7EPj4ffbYhrs0MwBKx6nq0CUdxP80ChDXE1Rpik44ntXDAD7bGXoSmfce2/CAZgbARm8I6Vjbfqk8/HBfslv94WNGofvOo66RwMfpgef+AkAsOp5U7/pfFPuqB75Xut0pt2fUo56JAgTuJ5oOgLThq90RrrlobeW5pHtk+Lr4DVFrC3gcfOZT+EJzAZCVjaY8TBi6N1LUu8ezjpDzKdwTrnABNIEOwXqbIHT3JKzP90mvkFM0+gQufbgAgtDFJy9L/DkZuhLW98bz80PNZ+ATuI9pFgBCX+1+jRG6SYdvnfH8/P2B9nPMo+5RmgOA0NZFf077BKKGc5J105Z7fv7rQPvoM1rjJk0BQB5WxQjdpKsz3PT8/IMZ75tvH/IFmgGAvOhKEj6TvCR9SEGX2vGZyEbnPchyyfRbgX+RAEAiPnM2pFnS/B/P8HspyW/Qxd2f2fInpx9A3l56hFOaK1DfscA6ZeSShHUslsrsX3FGYbRz6gHkzWdJmjQPKWgYvvYMwSmJN3WjdlvoFJPVE+b49E1PctoBNIsrEPel/Hyd/vGVxFsWSG+m6YiK2bG6+t/u6BfESfl96fjZ9+0S5sIFUGCuvs/zGdShfbQ+cxwkLWejboIhaf58vADQkGsoVZaP4Q6K3wThvkWfKltT9fnPPd6zmFMOoJk+SX7zHnRFV6JTCUNWH2y4UBO0apnHe59yqgE02x1pzkQzvVLpk9X6tS9Zb4DppOo/ov/Xq2F9VFdnMNN+3Q0puka0HOVUA2i2q5aQutQi+zAh7nl4uznVAJrtkCWojrTA9veKX38vADTdXmntu/o+czf8wWkGUPTA3VHwbV8u7nkhXnCKARTFfktYFb3f02dy9X5OMYCiOCuN58QtslUeV7fPOL0AimSkQVjdLvh2+yzLvpHTC6BIJhuE1WCBt9ln4p3LnFoARbJUWm/caqe4n1R7Z8oiTi+AIjnSILDGCrzNrmFg+stiM6cWQNE0mjqxqONW93t0JRzmtAIomr4GgfWooNurN8CmHWF7jdMKoGgWNLi61T/H1xRwe3U2MNcS6KOcVgBxdJiyRZKv8eXrVIPQOlHAY6LH4o2450poo/kA8HFAfr/zrkuN69SFWT9eu0VaZ4IXHSnhWgbohvxajgcArHaL+0aQzgeQxSB+nXug3mKLuiZYZ8GOiy4U+dZxXE7RfADEMSb+Kx4MpainRyrjU2s/cyKHLoy4top9JQq9ebaLpgMgri8Sb5mZhxL/oYTeBle2j6Wy7E2RHBP7HAnaxbCGZgMgiXGJv7aXLj9z0OOztZvgTIMA05UeinSjSa/AH4l7UcsOmgyApE5I8pVrJ6P3r5NfN44WSmWugYtSmfGr9j2fCvbnuG63rkn2zbKfOkphG00FQFpt0Z/2PwMXvco9X7AuhD1iH/KlIaz91u00EwBZ0avSK4GCVq9yz0llhEJR9vWgNJ6lbHZInP5yWErTABCKdg1cl8py4WlCVq8MdZ7bASlGP+2CqEtAH721PZ77Uio3zbpoCgDy7GbQfli94XVLKjfWvkRXfrNFg0tvnumqBneiK+SBKLSLQEcSHIiC39Y/q/t22pT1nHYAiOfP6BdCo37kl9FV/G66DAAgnU3yqx9WbwYOm3IoCmJufgFAhrQ7hD5YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQuhaY8ocpQ6bcNmXKlGlTvpvywJTlKT9fP3vElM/RZ3405bwpizn0AOaDNlP6oyD8ZspPS3lrSmeCOrpNuW/53JemLORUACirLaZci65gf8Yo/8SsZ0N0Jev63COcEgBls8uUN3UCb8YzcN/FqKvXlC+en3uTUwOgbPZJpf/0rimHTNkklb5biboLTnuE4yaPelZLpa/W98qZwAVQOnqDqs3xmluOcBxyvH9JdCUcp6viYIB93RZzG1q53KFpA61pvePL/cDyXr1aflTz2uXRv+uV8bU6nzcuYW6aEbgAWsKk5cs9U9UNUeucRzeBdjdckMrQsxOSbOQDgUvgAqVxyfEFX1/nPdurfj5agH0gcAG0hH7HF3yg5vXabzs7/OtlwKtWApfABUpnkeMLfr3m9feif9eHJ1YVZB8IXAAt47XlCz5e9bp9Vf9+oEDbT+ACaBk3LF/wH1IZXrZUfo23vc8hmxd+UiglLU2117Fx26q6Er6a0kMWEbgUCoGbzFpxj8ed/f9D5BCBS6EQuOn4TG4zTgYRuBQKgZveXY+NXE8GEbgUCoGb3knHBl4lfwhcCoXAzcYOxwb+Rf4AQDbapTIErFHg/s0hAoDsvLAE7jCHBwCyc9USuBMcHgDIzm6x9+Mu4hABQDYGhRtnABDcMqk8tmsL3PMcJgBI76m4x649Lei2M1sYgJZR/dCDbWjY7MxhBC6BCyCBjVUhq10KrpnDthO4BC6A+Dpk7iKSupyOLhr5XZIvnU7gErgA6qheyrx6roQxyxd+jMAlcAHE01f1JdbFIBdW/cw2kY1t6XQCl8AFUKPblE/SeDHIrY4v/WYCl8AF4Kd6BYe9dX6uIxFs/bhHOYQA4HakKjhvWl732BK4tz3rWimVm2wLOewA5htdu2wmCk0dndBpee0ZS+BOe9Sl0z3Ozj7Wx6EHMJ/oVeYr+XXja53j9a4JyV3vv+xxFQ0ApTRcFZaDHq/XflzbU2eHLe8diF4zJcwwBqAkuqTy5Ndqx+v+qQrKWzE+/4nEn1dhg/xaAXgrpwhAGRyUuSMJtLug3jI4R6te8zbmFec5R7fCpprX602yD9HPznCKAJTBZksIvjblmFTmrh2p+nedJ2FtzHpc41vfmbImem2/KR+jf3/EKQJQFtcl/oD5HQnq0SfKPsesR6+iF3OKAJTFzZghuCdFXedj1KNXuCs4PQDK5KhnAGof70DKunqk8vivqy7tu13HqQFQNjqm9l9x969uyai+AUddOpphKacFQFm1RVe6OjxLh2Hpwwx6Y0znSdAxsu0Z16cjEu5GdczWpY/4srAkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAVZcpp025UsJ9eyi/ryUIALlbZMqQ/Fpd+mvJ9u+w1F+8tdnWRNt205TnpnyRynqHulq4rrP40ZQ7pvzHlG2mLKCpAq2r05ST0Re9OojKFLiro/AqSuDqL7fjprwW+0re9conU84IK3wDLaXDlH9M+dzgi12WwNUrwheWAMvb8Tq/3KqL/uxBdLU7Y3nddPSLkiteoMAWmnIsulKyXUmVJXDPOPYzL6sswf8hOifddd63zpRzlvAdN2UFzRoolnZTjkZfbp8/XcsQuL0e+5mH7dHxrFf/qFRuVLpoqD5r8Bn6V8oWmjjQfG2mHIkRtGUJXO2bfluAwN1tyo8GdQ8n+OtkzNLFsJXmDjSH9u0dMmVK4t+YKUPgXvPcz5D6LPU+TvGLZMJyzjbQ9IF8g3bQlHfRl1Cvrp6YclUqfYFP50Hg9sX4xRKyO6PRyAgdeteT4rN11MX3Bp/93pQlfA2AfLyKvnh6l/twgy+fz9Vfqwau7u8naW7gLnF04RzPoI7Tls8f42sA5EMfXljjeE13iQP3nvw+bjXvwL1nqU+DeGEGdWjXgm142d98FYDiXQmXKXAHa/bhmiP8QgTugKO+oQzrOmupR0cuLKaZA8Vwt2SBu1Lm9pm+ia4C8wxcvXK13aTU/vSeDOtb7ti3KzRzoBjulChw9Ubhs5pg6/X48z7rwD3hqOthgH1/7Aj4VTR1gMDN0lDNtp+u+llegavjnT866hoMsO+HHHVepakDBG5WNtZs93OZO79AXoG7X9w3InsC7P9KR506fKyb5g4QuGnpBDyTMnd8a+2f0HkF7hNHPW8CHod3jrpP0twBAjetKx5/sucRuMs8rm6HAx6Hm466J2nuAIGbxo6a7b3f4HV5BK6rH1XLvoDH4m+P+jfS5AECNwl9kqv6BpX+f3cTA3fUI/A2BzweWz3qP02TBwjcJGrHEPdZXhs6cPUG3Yyjjh8SdqLwdo/AfU6TBwjcuGpHA1xzvD504PrMufs+h+PyxSP0O2n2AIHra4XMncj7rUeIhA7cgx6BO5rDsbnnsR1/0ewBAtdX7dSSvRkEUVquEQKhRyjMuiH04wIEbkZOJAyP0IH7r0fQDeVwfM56bMcdmj1A4Lqsl7nL1OjCib43oUIHruuGmZY9ORyjvR7bMUWzBwhcG70D/1rmrt0VZ0KWkIHbIX6TnOfRd9rvsR2hR0sAaPHAvVCzXYdivj9k4P7hGbjbczhOOzy3ZTVNHyBw69km6ZeOCRm4vmun5bGEeZHCH0CLBW6XzF0XTJfKSTLrVcjA3eMZcnmMf13kuS27aPoAgVvrlvg/TdaswD3gGXLtORyvhZ7bso+mDxC4tivH6yk+K2TgnvcMuTxuVLV7bgtjcQEC9/90qsPqx1R9niZrVuBeleYtxV6Pz7ZcpukDBO6sRxL/aTIC1z9wWXIHIHD/51iAP38JXAIXIHBrrJXK+luz9b+QbPo+CVwCFyBwq+gNn4mquvVx2ayW9w4ZuFcIXACtFrjnJN3TZM0K3EstGLiXaPrA/A3c2iekxjL+/JCB67OWWNECd4imD8zPwNWnyaqX+P4syZ4ma1bg+szQldeDD77jcHnwAZingVs7eXd/gDpCBq7PDF1aOnI4lr4zl/FoLzAPA3eX5LMqQsjA3e4ZcqtyOJ9LhMlrAAK3jqVR90H102SLWjBwuzxD7s8czudWz21ZQdMH5lfgPqypa3PAukKv+PDDI+R25nA+dwoTkAMEbo3DNfWcDbyfoQP3pUfQ7c7hfO7y2I53NHtgfgWuz3LeRSw7GuzPiMd7D+ZwPn2mirxNswcI3FYO3CEpxtNdPo8Zn6LZAwRuKweuT9/pSAHOZ159yQAI3GCB2+nx3vEczudzcd8w66DZAwRuKweumnC8dyaH8zlTgNAHQOAGD1yfpXZCjn9d4VH/WZo8MP8CN2+hh4UpnyXK+wPuo8+QsF6aPEDgliFw9WGCT456zgXcxwuOut/T3AECtyyBqy466nkccB//bWLYAyBwcw/c9eIeJRBimsZOcT9evIbmDhC4ZQpcNe6oqy/A/u121PmEpg4QuGUM3H2OuoabcB77aeoAgVvGwNWbZ1OWuqYz7lZYLHNXOq4tr2nmAIFb1sBVg476BjOs65ijrgGaOVAMowRukMDVq9wXOVx1tsnc9eBqyzOaOFAcrwncYCvq6ogF28iB/YGvbrWbgZEJQEF0iHsoUVlWB2hG4Kojljo/SqX/Naml0S/ERp9/hCYOFIfPZNVathK4qVy31DuaosvikeVzr9G8geLQgfJvPAP3AYGb2i1L3VcSfJ5thQlWdAAKpFsqj5jGmSXrUot3LTQ7cNVFR0h2eZ67Mcd5AtBk+mXeGX0hv0myqQl1GXNdSkaX+25vsf0vQuAqHaL1pcE26MQ3J0xZVud9K6Jj3+i92pe7h2YONIcuOf7BlM/inpQ6aZmJPl/r2UXgetObXcPiHh3yKCpfxb10Tw9NHmiebZLvxNx7CdzYVpty2SNQGz2tpn2/a2nqAOBvQdRNc0YqT/5NSqXbZyYq+v9vop+djV7bkv3p/wUHSs4O5tjV1QAAAHl0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWk+eDwvbWk+PG1vPj08L21vPjxtZnJhYz48bW4+NTk8L21uPjxtbj4xNDA8L21uPjwvbWZyYWM+PC9tYXRoPvJcD5UAAAAASUVORK5CYII=" style="width: 54.67px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="x equals 59 over 140"> C. x = - 9 140 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAVwAAADkCAYAAADU+JyAAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACMJCpdlQAAEOpJREFUeNrt3QGEFV0fx/Eja62sWMlKEitJkkiS5BF5JMlaVlaSxGMlyYokWUnkleSRSJKVRJKsJJKsJJGVlcdaVlaSRJKsleg9//fOvt29z73n/OfOnLl35n4//D2PunvP3Jm5v2bPnDnHGADIRrutXluXbT2w9dHWrK0ftuZsfbM1buuOrSFbm9llABCPBOetKFh/xawZW2dtLWM3AkBtq209coTpV1tPbT2x9cXWT8drZ6Pg7WC3AsBCQzWuaN/YOmir09Hl4ArpaVtb2L0AULoCvVcjLI/FeJ+ttqZqvI9cCR9mVwNoZXLV+rxGSO6t4/26bI05rnbPsMsBtKJ2RzieTRjiE47QHWLXA2g1IzUC8Z2ttoTvLTffZh2h28/uB9AqDjvC8GhKbZxytPEtCmUAKLQex9XnD1N9NEK9XRYfHaH7ikMBoOgeOkLwXsptnTHuhyTozwVQWNs9AZj20K3lxv1whDxIsZTDAqCIxjyBG6Jf9ZmnzXMcFgBFs9YTfN8DtXtc0W4nhwdAkVzwBN/9QO2uN/4Jb45xeAAUyZQn9K4HbHvW0/Y4hwdAUfQorjIPBGz/kaL9NRwmAEUwoAi83oDtX1O0zxAxAIVwRRF4uwK2f0DR/kMOE4AiuK8IvJ0B29+jaF+W7FnEoQKQdxMNDty1Rrc8zwYOFYC8+97gwG1XBu4+DhWAvJszje3DFT8V23CWQwUg7zRXl3sDb4PmKnuEQwUg7zTLnQ8E3oYvim14wKECkHe+J72ymETmg2IbnnCoAOTdjCLs7gTehieKbfjEoQKQd6OKsJtogsD9zKECkHc3FWEnowjaAm6DZj6FrxwqAHm33+hGKoScT+EhV7gAWoH2Sa+QUzRqApc+XACFMK0IPBm6FWo+A03gjnGYABTBeeVV7qFA7T9WtD3KYQJQBKuUgTsZqP2PirZvc5gAFMVtZegeSbldbR/yZQ4RgKKQpXY0E9nIvAdpLpl+Vxm4BzhEAIrktDL83trqSqG9k8r2pP7k8AAomqfKAHxpa1mdbSw1pdm/fsWodg4NkJ3rMb+geatmCRQJw0nlNr838aZulG6Li2bhhDmfFO1McfoDBG4RA1cst/VPjG0fN6WbabIMzvxYXflvtymtWXbG1osaP9dvmAsXIHBbOHCF9NE+Cvh5L0Sfedg0fj5eAARuUxg0ugnCtSVPla0re//Xip9ZyukPELitELjzV7tyJfq+zs8mDzZcrghasVLxsy849QECt5UCt9xWU+qTvW9KN9fkBpgs0/Mz+n+5GpZHdW+ZUr/uJsd7aYaFDXHqAwRuqwZumiaMfx7ebk59AEh+pazp7wUAJKSZu+EPdhMAJLMq6i5whe0bdhMAJHdVcXXbx24CgGTWKK5uX7GbACA5zbLsm9lNAJDMHkXYXmU3AUAyncb/pNqMrSXsKgBIxjcMTPp1t7GbACCZQ4quhGPsJgBIRm6AzXrC9ga7CQCSkdnAfEugj7KbACAZWe9s2vjnSmhjVwFA/WSGL9+6aDJ94yJ2FQDUTxaKfOcJ27PsJgBIZoetz46glZtn/ewmAEjmhHHPkSBdDOvYTQBQvxW2nnm6EGS1jsXsKgCoj9zwkjXJvjuCVkYp7GRXAUD99hv3kC8JYVnlt51dBQDxdZjSKrxTjqCds3XJ1nJ2FwDE7zaQLgF59Nb1eO5bU7pp1sUuAwA9GUlw2NYd4+6fHbd1ztZGdhkAxPNn1CVQa+pEuYq9aWsfXQYAkMwW87sfdszWiK2jURBz8wsAUiSTyNAHCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsrPI1h+2hm3ds/Xe1qytH7ae2FqV8P3lve/Y+hK95ydbl2wtZdcDaAVttvqiIPxu65ej3tnqrKONbluPHO/71lYHhwJAUW23dSO6gv0Vo07HbGdTdCXre9/jHBIARdNva7pK4M0pA3cmRltbbX1Vvu9tDg2AojloSv2nD2wdtbXFlPpuTdRdcE4RjlsU7aw1pb5a7ZUzgQugcOQGVZvnNXc94Tjs+fll0ZVwnK6KIwE+686Y25Dnus+pDeTTRs+X+4njZ+Vq+VnFa1dFfy5XxjeqvN+4CXPTjMAFkAtTji/3XFk3RKWLim4C6W64bEpDz06Z+kY+ELgELlAYVzxf8I1VfmZX2d+PNsFnIHAB5EKf5ws+UPF66bedH/71NuBVK4FL4AKFs8TzBb9Z8fqH0Z/LwxNrmuQzELgAcmPS8QUfL3vdwbI/P9xE20/gAsiNW44v+E9TGl623Pweb/uIXdYSflFUQauhDng2bmdZV8I3WyvIIgKXogjc+qw3/vG48/9/lBwicCmKwE1GM7nNOBlE4FIUgZvcA8VGbiSDCFyKInCTO+PZwOvkD4FLUQRuOnZ7NnAv+QMA6Wg3pSFgtQL3L3YRAKTnjSNwR9g9AJCe647AnWD3AEB69hl3P+4SdhEApGPQcOMMAIJbaUqP7boC9xK7CQCSe2H8Y9deNOm2M1sYgNwof+jBNTRsfuYwApfABVCHzWUhK10KvpnDdhG4BC6A+BabhYtIynI6smjkD1P/0ukELoELoIrypczL50p47PjCPyZwCVwA8fSWfYllMciOsr9zTWTjWjqdwCVwAVTotvXZ1F4McofnS7+NwCVwAeiUr+BwoMrfy0gEVz/uELsQAPyOlwXnbcfrxhyBe0/Z1mpTusnWwW4H0Gpk7bK5KDRldEKn47XnHYE7q2hLpnucn32sl10PoJXIVeY/5veNrw2e1/smJPf9/FXFVTQAFNJIWVgOKl4v/biup86OOX52IHrNe8MMYwAKosuUnvxa63nd6bKgvBvj/Z+b+PMqbDK/VwDewSECUARHzMKRBNJdUG0ZnKGy17yLecV50dOtsKXi9XKT7GP0d+c5RACKYJsjBCdtnTCluWvvlP25zJOwPmY7vvGtM7bWRa/ts/Up+vNnHCIARXHTxB8wv7uOduSJsi8x25Gr6KUcIgBFcTtmCO5P0NalGO3IFW4PhwdAkQwpA1D6eAcStrXClB7/9bUlfbcbODQAikbG1L40/v7V7Sm1N+BpS0YzLOewACiqtuhKV4ZnyTAseZhBbozJPAkyRrY95fZkRMKDqI35tuQRXxaWBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcOqydc7WtQJ+tqfm32sJAkDmltgaNr9Xl/5WsM93zFRfvLXR1kXbdtvWa1tfTWm9Q1ktXNZZ/GTrvq3/2NppaxGnKpBfnbbORF/08iAqUuCujcKrWQJX/nE7aWvSuFfyrlafbZ03rPAN5MpiW6dtfanxxS5K4MoV4RtHgGXtZJV/3MpL/u5JdLU753jdbPQPJVe8QBPrsHUiulJyXUkVJXDPez5nVtY4gv9jdEy6q/zcBlsXHeE7bquH0xpoLu22hqIvt+ZX1yIE7lbF58zCrmh/Vmt/1JRuVPpIqL6q8R7yW8p2TnGg8dpsHY8RtEUJXOmbftcEgbvP1s8abY/U8dvJY0cXww5Od6AxpG/vqK33Jv6NmSIE7g3l5wyp19HuWIJ/SCYcx2wTpz6QbdAO2pqJvoRydfXc1nVT6gt80QKB2xvjH5aQ3Rm1RkbI0LsVCd5bRl38qPHeH2wt42sAZOOf6Isnd7mP1fjyaa7+8hq48nk/m8YG7jJPF87JFNo453j/x3wNgGzIwwvrPK/pLnDgPjT/HreadeA+dLQnQdyRQhvSteAaXvYXXwWg+a6EixS4gxWf4YYn/EIE7oCnveEU27rgaEdGLizlNAeaw4OCBe5qs7DPdDq6CswycOXK1XWTUvrTV6TY3irPZ7vGaQ40h/sFCly5UfiqIti2Kn69TztwT3naehrgs495An4NpzpA4KZpuGLbz5X9XVaBK+OdP3naGgzw2Y962rzOqQ4QuGnZXLHdr83C+QWyCtxDxn8jckWAz7/a06YMH+vmdAcI3KRkAp4ps3B8a+Wv0FkF7nNPO9MB98OMp+0znO4AgZvUNcWv7FkE7krF1e1IwP1w29P2FKc7QOAmsbtiex/VeF0WgevrR5U6GHBf/KVofzOnPEDg1kOe5Cq/QSX/393AwB1VBN62gPtjh6L9c5zyAIFbj8oxxL2O14YOXLlBN+dp46cJO1F4uyJwX3PKAwRuXJWjAW54Xh86cDVz7n7IYL98VYR+J6c9QOBq9ZiFE3m/U4RI6MA9ogjc0Qz2zUPFduzltAcIXK3KqSW3phBESflGCIQeoTDvlqEfFyBwU3KqzvAIHbgvFUE3nMH+uaDYjvuc9gCB67PRLFymRhZO1N6ECh24vhtmUvsz2EcHFNvxntMeIHBd5A78pFm4dlecCVlCBu5io5vkPIu+0z7FdoQeLQEg54F7uWK7jsb8+ZCB+4cycHdlsJ92K7dlLac+QOBWs9MkXzomZOBq107LYgnzZgp/ADkL3C6zcF0wWSqnnlmvQgbufmXIZTH+dYlyW/o59QECt9Jdo3+arFGBe1gZcu0Z7K8O5bYc5NQHCFzXlePNBO8VMnAvKUMuixtV7cptYSwuQOD+n0x1WP6YquZpskYF7nXTuKXYq9Fsy1VOfYDAnffMxH+ajMDVBy5L7gAE7v+cCPDrL4FL4AIEboX1prT+1nz7b0w6fZ8ELoELELhl5IbPRFnb8rhsWst7hwzcawQugLwF7kWT7GmyRgXulRwG7hVOfaB1A7fyCanHKb9/yMDVrCXWbIE7zKkPtGbgytNk5Ut8fzH1PU3WqMDVzNCV1YMP2nG4PPgAtGjgVk7e3RegjZCBq5mhS2pxBvtSO3MZj/YCLRi4/SabVRFCBu4uZcityeB4LjNMXgMQuFUsj7oPyp8mW5LDwO1ShtyfGRzPHcpt6eHUB1orcJ9WtLUtYFuhV3z4qQi5PRkczz2GCcgBArfCsYp2LgT+nKED960i6PZlcDz7Fdsxw2kPtFbgapbzbsbaXePz3FH87JEMjqdmqsh7nPYAgZvnwB02zfF0l+Yx47Oc9gCBm+fA1fSd3mmC45lVXzIAAjdY4HYqfnY8g+P52vhvmC3mtAcI3DwHrpjw/OxcBsdzrglCHwCBGzxwNUvthBz/2qNo/wKnPNB6gZu10MPChGaJ8r6An1EzJGwrpzxA4BYhcOVhgs+edi4G/IyXPW1/4HQHCNyiBK7429POWMDP+LKBYQ+AwM08cDca/yiBENM0dhr/48XrON0BArdIgSvGPW31Bvh8+zxtPudUBwjcIgbuQU9bIw04jn2c6gCBW8TAlZtn7x1tzabcrbDULFzpuLImOc0BAreogSsGPe0NptjWCU9bA5zmQHMYJXCDBK5c5b7J4KqzzSxcD66yXnGKA81jksANtqKujFhwjRw4FPjqVroZGJkANInFxj+UqCirAzQicMVxR5ufTKn/tV7Lo38Qa73/cU5xoHloJquW2kHgJnLT0e5ogi6LZ473vcHpDTQPGSg/rQzcJwRuYncdbV+r4/1cK0ywogPQRLpN6RHTOLNkXcl510KjA1f87QnJLuWxe+w5TgAaTL7Me6Iv5HdT39SEsoy5LCUjy3235+zzN0PgChmi9bXGNsjEN6dsrazycz3Rvq/1s9KXu5/THGgMWXL8o60vxj8pdb01F72/tNNP4KrJza4R4x8d8iyqb8a/dM8KTnmgcXaabCfmPkDgxrbW1lVFoNZ6Wk36ftdzqgOA3qKom+a8KT35N2VK3T5zUcn/T0d/dyF6bS770/8LrTXVHhhe6IIAAACPdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1pPng8L21pPjxtbz49PC9tbz48bWZyYWM+PG1yb3c+PG1vPi08L21vPjxtbj45PC9tbj48L21yb3c+PG1uPjE0MDwvbW4+PC9tZnJhYz48L21hdGg+IL/hzgAAAABJRU5ErkJggg==" style="width: 54.67px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="x equals fraction numerator negative 9 over denominator 140 end fraction"> D. x = - 49 140 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAYQAAADlCAYAAABTYoCYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAAExNJREFUeNrt3Q+EFesfx/FHspIVSVaSy8pKkriSlSRyJclaVpIkca1kJXHlykoiP0muRLKyrkSSrCSSJLkiK8m1lpXkSiJJ1kr0e75m1j0795zn+c4588yZmfN+8SXt2fPMmXn2+Zz594wxAFAsj2z9SBQAoMOM1AmDdgZCl60BW5ds3bX13tasrW+25mx9sTVp66atE7Y2swkBoHXr4sG2CIEgA/uf8cD/I2W9tXXG1ko2KQCkt8jWS8cgm5e1tu47luOziQ5pPbT1ydZ3x2tn42BYwuYFAL1znm/deTjRYI9AguqQre46vzN/SMkVIjO2trCJAcCv3/gPw4Qk3+BvN2h3JOXnmG7wPrIncYRNDQCNybfuN20MBGn/aYM29zbxfsttPXF8jtNscgCob8zoTtSG0OUYvM+0GDKvHJ/lBJsdABYaMPord0IYb9CW7LEsbvG95eT0rOPzDLH5ASAil2R+bGMgHHG0dSyjNk452vgShwYAdLx7iQHSFw5Z6nV8e5erjLozakcOSb13fKbndAMAnW44MTCO1QmIkIHgaut2xm2d9nwuzicA6FjJY+sz8TfyvAJhm6edrC8NXWXcN6/JjW4r6BYAOo3cjfzcLLw2v1/xrT3LQHjiaSfEcf3HnjbP0jUAdJpRx0CYRyCs87TxNdDnPq5ot5vuAaBTbE4Mgi/iPYY8A+G8p407gT77BuO/imqELgKgEyw1C6d0kG/EfYnX5BEI0542rgVcB7OetifpJgA6wdXE4Ddc5zWhA6FX8S39YMB1cF/Rfh9dBUCV7U4MevcbvC50IOxXDMgDOYYil6AC6ChyN/KHmgFP/t3TpkC4rBiQdwVcFwcV7d+jywCoqrspvoGHDoQ7igF5Z8B1sUfRvjyScxHdBkDVHDb/vRvZtDEQXrU5ENYZ3ZxNG+k6AKpETuB+MQtnD/VdZx86EL62ORC6lIGwj+4DoEqeJQa5fsXvhA6EOdPecwjiu2IZztB9AFRFcspn7bQMoQNB8+18b+B1o9lLGacLAaiCTYlvwXKzlfYkaehA+KYYjPcHXj+fFMtwl24EoOzkGPlUzcAmd+amudEqdCD47hTOY5K5fxTL8JCuBKDsLpnWnjoWOhDeKgbjm4HX0UPFMnygKwEos52JQe1BE+8ROhAmFIPxqwIEwke6E4CyWm4WPiZSBrSeAgbCdcVgLOc/FgdcV5r5jD7TpQCU1S2TzXxAoQPhgNFdaRRyPqN7hj0EABWVHGSvBxwsW6W9UzjkFNiaQOAcAoDSWWOiwxtp7kZuZyCIGcWALJeGhppPSBMIT+haAMom+Zzg/hbfL49AOKfcSzgcaJ09ULQ9QdcCUCYnTfbX7+cRCD8pA2Eq0Hp7r2j7Bt0LQFnI84Fr7/p9abI5xJJHIJh4wNWEwtGM15v2HMYluhiAMpC7kWunkZYJ47J67GNegdBrdBPdybxDazNs95YyEA7SzQCUwQXT2t3IRQgE8btycH5tovssWvWbsj2pX+hmAIpuu2n9buSiBIJ4pByg/zLRo0CbscJEs5f+SFFddDWgdddS/uGVrdo5UMi35Nq5gOTSzJ6M28g7EGSwnlKu+3cm3dTYvfHeVO2Eeh8U7UzzZwwQCEUPhOSJ2MEAbeQdCGKVrb9TbAOZzltONstjLudPpC+Kw1GemXza/PfhQPO/N2R4FgJAIJQ8EIZyGrTaEQjzez/3A2638/G2GzXtfx4DQCAQCC19g659qIvcjbysYoEwb9joHmCjLfk862ve/4Xid1bwZwwQCEUNhOSJ160B22p3IMzvLcg3+XdNbiO58exSIgjEGsXvPuNPGCAQihoII3UOfYRUhECoJVNxyDmBOyY6+SwniOWGvO/xv2VvQq60+tNE5xV+dryX5rLTE/wJAwRCUQPhXknX0+4C9s1Xxv8chh7+hAEUFYGQ3Z6G5nwDABAIFQ8EzdxJ2+luAAiEageCzK763bO8L+lqAAiE6gfCFcXyDtLVABAI1Q6EPsXewXO6GQCkD6CymVCE12Y2OwBUOxD2KMLgCpscAKodCN3Gf6ezzBy7jE0OANUOBN9lpnJeYSubGwCqHQiHjf9Q0QibGgCqHQhygnjW8xnG2MwAUO1AkNlM33uWf4JNDADVDgR53vKM8c9VtJhNDADVDQSZodT3XGaZHnsRmxcAqhsIvSZ6gpxrmc+wWQGg2oGww9ZHx7LKyeUhNikAVDsQThr3HEVyCGk9mxMAqhsIq2099iyjPLVvKZsSAKoZCHJCWJ6J/NWxbHKV0U42IQBUNxAOGPclpRISoyb/510DAIGQgyW2jtqadizLnK2Ltlax2QCgWoEgh4XkkI9MLeGafuK1iU4qL2dzAUB1yJVAR2zdNO7zA5O2ztraxCoDgGr5xUSHfBpNTS17Addt7TMcEgKAStti/j0P8MTWuK1jcVBwchgAOohMMsc5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqmqRre22Rm3dtvXO1qytb7Ye2vqpxfeX975p61P8nh9sXbS1glUPAO232NZgPFB/tfXDUW9sdTfRRo+t+473fW1rCZsCANpjm62xeA/gR4r6PWU7P8d7Ar73Pc4mAYB8DdmaqTMgzykD4W2KtvptfVa+7w02DQDk65CJjt/ftXXM1hYTnTsQcjjorGLw3qJoZ52JzhVo9zwIBADImZzAXex5zS3P4D3q+f2V8Z5EmkNRRwN81p0pl6HMdYeuDSCETZ7B56Hjd2Vv43HitT/F/y97FmN13m/ShDmpTCAAQAamHYPPnPn3MFPSBcVhIDmcdMlEl7aeMs1duUQgEAgAcnLZMwBtqvM7u2p+PlGAz0AgAEAGBj0D0P7E6+W8wfzlpa8DfusnEAgEADlb5hmAridefy/+f7m5ra8gn4FAAICMTDkGoMma1x2q+f8jBVp+AgEAMvKnYwD6bqLLV1eZf+83uM8q6wg/KIpqS7XVQc/C7aw5VPTF1mrGSgKBoqhqBsIG478fYf7fxxgnCQSKoqobCEIz+d0kYySBQFFU9QPhrmIhNzFGEggURVU/EE57FvAa4yOBQFFUZwTCbs8C7mV8BIDO0GWiS0wbBcKvrCIA6BwvHYEwzuoBgM5xzREIr1g9ANA59hn3eYRlrCIA6AzDhhPLANDx1phoWgpXIFxkNQFA9T0z/mtjnxV02ZntFAAyUntTmuvS0/mZTwkEAgFABW2uCQE5ZOSb+XQXgUAgAKiepbamzcLHZS6y9c0xII0SCAQCgOoZM/XnKnrgGJAeEAgEAoBqGagZZF7bWlLzM9dEd3PxXgSBQCAAqIAeWx/jAearrb7Ez3d4BqWtBAKBAKAaap+AdrDOz+VKItd5hBOsQgAov+M1A/sNx+ueOALhtrKttSY6Cb2E1Q4AxSLPTp6LB3W5uqjb8dpzjkCYVbQl02nPz546wKoHgOKQb+l/m39PDG/0vN73wBzf719R7IUAANpgvGYwH1a8Xs4juO5aHnH87v74Ne8MM6QCQC6Wm+jO4XWe1/1eM5DfSvH+T036eY1+NtEhJXnNDjYRAIR31Cy8EkgOB9V7zOWJmte8SfmN/YJxHzbakni9nER+H//sHJsIAMLb6hikp2ydNNGzC27W/L/MU7QhZTu+6/vf2lofv3bQ1of4/x+ziQAgH9dN+huadjfRjtyR/CllO7IXsoJNBAD5uJFykD7QQlsXU7Qjewi9bB4AyM8J5QAt5xj2t9jWahNNb+FrS84dbGTTAEC+5J6Cv4z/+P62jNrb72lLrkZaxWYBgPZYHO8pyOWfcpmn3GwmJ45lniK5R6Ar4/bkiqK7cRvzbckUFnvZFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQjOW2ztq6WsHP9sj899noAICEZbZGbX2NB8ovFft8I3XCoAiBsD5ethu2Xtj6bKLnt38z0XPjP9i6Y+t/tnbaWkRXBRBKt63T8UBUO1BWKRDWxYNrUQJBwvc3W1MNlslVH22ds7WKrgsgK0tt/W7rU4OBpyqBIN+oXzoG2Lz9Vid8a0t+9jDeW5hzvG42DnL2GAA0bYmtk/E3Tdc30aoEwjnP58xLnyOY3sfbpKfO7220dcERDpO2eunWANLosnUiHnw0hyaqEAj9is+Zh13x+qzX/oSJTuT7yKD/vMF7yF7eNro4AJ/Fto6nCIKqBIKcG3lTgEDYZ+t7g7bHm9i7e2AaH0LaQXcHUI8cWz5m651Jf+KyCoEwpvycIQ042n3SQtC9cmyzn+n6AGqDYNjW23iQkG+nT21dM9Gx6GcdEAgDKYIvlH7T+MomubR3dQvvLVdNfWvw3v/YWsmfAQDxdzwwyFUqIw0GB82357IGgnzej6a9gSDL4DpE91sGbZx1vP8D/gwACLm5bL3nNT0VDoR75r/X7ecdCPcc7UlQLMmgDTl05Lp89Vf+FACk3ZOoUiAMJz7DmGdwDhEI+z3tjWbY1nlHO3Ll0Qq6OQCNuxULhLVm4TH7mfhbdJ6BIN/8XSfx5XzO6gzb+8nz2a7SzQFo3KlQIMiJ9OeJgbc//lmegXDK09ajAJ/9iSeA+ujqADopEEYTy3625md5BYLc7/HB09ZwgM9+zNPmNbo6gE4JhM2J5X5hFs7vk1cgHDb+E/WrA3z+tZ425fLUHro7gKoHgkzQN20WXt+fPESSVyA89bQzE3A9vPW0fZruDqDqgXDV+A/J5BEIaxR7B+MB18MNT9vTdHcAVQ6E3Ynlvd/gdXkEgu84vtShgOviV0X7m+nyAKoYCHIncO0JXPl3TxsDYUIxIG8NuD52KNo/S5cHUMVASN5DMeB4behAkBPYc542vpuwD7LpUgTCC7o8gKoFQvJqnjHP60MHguaZC//ksF4+K0Kpm24PoCqB0GsWPmjmjWKQCx0IRxWBMJHDurmnWI69dHsAVQmE5NTd/RkMlK3yXeET+gqjeX8aziMA6JBAONXk4BY6EP5SDMSjOayf84rluEO3B1D2QNhkFj6GUh4srz1JGzoQfCeUpQ7ksI4OKpbjHd0eQJkDQa6gmTILnx2cZsK2kIGw1OgewpPHsftBxXKEvtoJAIEQ1KXEch1L+fshA2G7MhB25bCediuXZR1dH0AZA2Gnaf3RkCEDQfvs5m05rKsihRMAAiFTy83C5xLLozCbmbUzZCAcUA7CeVz/v0y5LEN0fQBlC4RbRn83crsC4YhyEO7KYX0tUS7LIbo+gDIFQvKb9/UW3itkIFxUDsJ5nMjtUi4L9yIAKE0gyFTStdMwaO5GblcgXFMOwnnRLMsVuj6AsgTCY5P+bmQCQR8IPFITQCkC4WSAwxsEAoEAoGSBsMFEz/+db/+lyebYO4FAIAAoUSDICdFXNW3LdBB9Gb13yEC4SiAAIBCydcG0djdyuwLhcgkD4TJdH0BRAyF5h+2DjN8/ZCBonmVctEAYpesDKGIgyN3Ib2va/GSauxu5XYGgmWE0rxvTtPchcGMagEIGQvLhMoMB2ggZCJoZRqWW5rAutTOvMnUFgMIFwpDJ56liIQNhl3IQ7sthe640TG4HoISBsMpEh4dq70ZeVsJAWK4chH/JYXvuUC5LL10fQJEC4VGira0B2wr9xLTvikF4Tw7bc4/hATkAShYII4l2zgf+nKED4bViIN6Xw/YcUizHW7o9gCIFgm+ALmrtbvB5bip+92gO21MzFfdtuj0AAiFcIIyaYtwdrJlG4wzdHgCBEC4QNMfubxZge+Z1LgMAgdCxgdCt+N3JHLbnC+M/obyUbg+AQAgXCOKV53fnctiecwUIJQAEQscHguZRmiGv/+9VtH+eLg+gaIGQt9CXnYrtigF5MOBn1Fxy2k+XB0AghA8Eudnro6edCwE/4yVP2//Q3QEQCPkEgvjD086TgJ/xrzaGEQACgUBI2GT8V/mEmAa72/inz1hPdwdAIOQXCGLS09ZAgM+3z9PmU7o6AAIh/0A45GlrvA3bcZCuDoBAyD8Q5OTyO0dbsybbw0YrbH1ztDdFNwdAILQnEMSwp73hDNs66WlrP90cgMYEgRAkEGQv4WUO39oXm4XPo07Wc7o4AK0pAiFIIAi54sh15c/hwHsHchiJK4sAqCw1/ksVq/J0rXYEgjjuaPODiY7/N2tVHNiN3v84XRyAluZhKlI7CISWXHe0O9Hke0pIP3a87xjdG4CW3Mg0owyEhwRCy2452r7axPu5ntDGE9EAqPWYaAqFNLN8XjblPnTU7kAQf3gG8eXKbffAs50AwEkGmz3xgPHVNDf18xsTPSryFxNm+oWqB4KQS0A/N1gGmRjvlK01dX6vN173jX5XziUcoJsDqGerrfe2Phn/Q1Oarbn4/aWdIQJBTU4Gjxv/1V2P4/pi/I/mXE2XB9DITpPvg2MOEgiprbN1RTHgN7rbWc49bKCrA0B1yLkZOQx3zkR3jk+b6LDeXFzy75n4Z+fj1y5itRnzfwfdP+JWrIolAAAAkHRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtaT54PC9taT48bW8+PTwvbW8+PG1mcmFjPjxtcm93Pjxtbz4tPC9tbz48bW4+NDk8L21uPjwvbXJvdz48bW4+MTQwPC9tbj48L21mcmFjPjwvbWF0aD4buZV3AAAAAElFTkSuQmCC" style="width: 61.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="x equals fraction numerator negative 49 over denominator 140 end fraction">

Giá trị nào của x thỏa mãn <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>7</mn></mfrac><mo>-</mo><mi>x</mi><mo>&#xA0;</mo><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo>-</mo><mfenced><mrow><mo>-</mo><mfrac><mn>3</mn><mn>5</mn></mfrac></mrow></mfenced></math>

A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>59</mn></mrow><mn>140</mn></mfrac></math>

B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>59</mn><mn>140</mn></mfrac></math>

C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>9</mn></mrow><mn>140</mn></mfrac></math>

D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>49</mn></mrow><mn>140</mn></mfrac></math>

  1. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>59</mn></mrow><mn>140</mn></mfrac></math>

  2. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>59</mn><mn>140</mn></mfrac></math>

  3. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>9</mn></mrow><mn>140</mn></mfrac></math>

  4. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>49</mn></mrow><mn>140</mn></mfrac></math>

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Kết quả của phép tính là:

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG