Square root
VBT
Calculator
magnet

Câu hỏi

Giá trị của biểu thức: 1 1 . 3 + 1 3 . 5 + 1 5 . 7 + 1 7 . 9 + . . . + 1 2021 . 2023 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABgAAAAC9CAYAAAB1arb6AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAB0l0wnuwAAHyVJREFUeNrt3QHkXWUfB/DHZOY1kZmZSWQyk4lJZpKRTCYzMjMzr5FMMokkM3nFJDPJmCRJYmYmk5HMTPKSJJOMJJlkTGb+Zsbe83TP/+3uv3POPffec849557Ph8f7snXuvc9+3+c+57nnPCcEqrBCF4D8AvILyC8AYI4BzI+1STuZtDtJ26Y7QH4B+QXkFwAwxwC6bWXSjiRtIWl30/asbgH5BeQXkF8AwBwD6K6Xk/bH0KBicAH5BeQXkF8AwBwD6LAdSfspY1AxuID8AvILyC8AYI4BdNCmpF0oGFQMLiC/gPwC8gsAmGMAHfJI0j4tMagYXEB+AfkF5BcAMMcAOuDBpL2TtNtJu5S040n7OGm3DC4gv4D8AvILAJhjAN30WtKuJ+2zpG1Y8md7DS4gv4D8AvILAJhjAN10JmkbC/58weAC8gvILyC/AIA5BjB/zhtcQH4B+QXkFwAwxwDmzzmDC8gvIL+A/AIA5hiAwQWQX0B+QX7lFwAwxwAMLoD8AvIL8gsAYI4BGFwA+QX5lV+QXwDAHMMcAzC4gPzKL8gvIL8AgDkGgMEF5BeQX0B+AQBzDMDgYnAB+QXkF5BfAMAcAzC4APILyC/ILwCAOQZgcAHkF+RXfkF+AQDMMQCDCyC/IL+A/AIA5hgABheQX/kF+QXkFwAwxwAMLgYXkF9AfgH5BQDMMQCDCyC/gPyC/MovAGCOARhcAPkF5BfkFwDAHAMwuADyC/Kre0B+AQBzDHMMwOAC8iu/IL+A/AIA5hgABheQX0B+AfkFAMwxAIOLwQXkF5BfQH4BAHMMwOACyC8gvyC/AADmGIDBBZBfkF/5BfkFADDHAAwugPyC/ALyCwCYYwAYXEB+5RfkF5BfAMAcAzC4GFxAfgH5BeQXADDHAAwugPwC8gvyK78AgDkGYHAB5BeQX5BfAABzDMDgAsgvyC8gvwCAOYY5BmBwAfmVX5BfQH4BAHMMAIMLyC8gv4D8AgDmGIDBxeAC8gvILyC/AIA5BmBwAeQXkF+QXwAAcwzA4ALIL8iv/IL8AgCYYwAGF0B+QX4B+QUAzDEADC4gv7oH5BeQXwDAHAMwuBhcQH4B+QXkFwAwxwAMLoD8AvIL8iu/AIA5BmBwAeQXkF+QXwAAcwzA4ALIL8gvIL8AgDmGOQYwvS8NLiC/gPwC8gsAmGMA8+evgsHlOd0D8gvILyC/AIA5BtA96wsGltj26SKQX0B+AfkFAMwxgO45OWJw+UYXgfwC8gvILwBgjgF0y1sjBpbFdixpy3QXyC8gvyC/8gsAmGMA7bI8aZvDYK+wXelg8UvJgWWx/Z60E0nbnbTtSXsmaet0LcgvIL8gv/ILAJhjALOzb8yBpGy7oWtBfgH5BfmVXwDAHAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABm4XjSPljSNusWkF9AfgH5Rd0CANBtt5J2d0nbrVtAfgH5BeQXdQsAgIkgIL+A/IL8groFAMBEEJBfkF/5BfkFdQsAgIkgIL8gv4D8groFAMBEEOQXkF9AfkHdAgBgIgjyC8gvIL+oWwAATAQB+QXkF+RXflG3AACYCALyC8gvyC+oWwAATAQB+QX5BeQX1C0AACaCgPyC/ALyC+oWAAATQZBfQH4B+UXdqlsAABNBQH4B+QXkF3ULAICJICC/gPyC/IK6BQDARBCQX5Bf+QX5BXULAICJICC/IL+A/IK6BQDARBDkF5BfQH5B3QIAYCII8gvILyC/qFsAAEwEAfkF5BfkV35RtwAwx+5qWolmIii/mvzKr/xq8iu/8qvJL6hb3zuapmlax+aTOlNzAmMiqMmv/MqvJr/yK7+a/PoBAHXre0fTNE3zA4Cm4EwETQQ1+ZVf+dXkV341TX5B3fre0TRN0/wAoCm4bCs73h8fmAhq8iu/8qvJr/xqmvx2Lr80S9363tE0TdP8AKA5gTERlF9NfuVX0+RXfjX5lV/8AKBufe9omqZpNc4nwUTQCQzIL8iv/IL8yi/qVt0CAJgIgvzKL8iv/IL8yi/qFgAAE0GQX/kF+ZVfkF/UrboFAGBStzImbbt1C8gvIL+A/KJuAQAwEQTkF5BfkF9QtwAAmAgC8gvyK78gv6BuAQAwEQTkF+QXkF9QtwAAmAiC/ALyC8gvqFsAAEwEQX4B+QXkF3ULAICJICC/gPyC/Mov6hYAABNBQH4B+QX5BXULAICJICC/IL+A/IK6BQDARBCQX5BfQH5B3QIAYCII8gvILyC/U3kkaR8n7UbSbiftUtK2e111CwCAiSAgv4D8gvx218akXcv47LEd8LrqFgAAE0FAfgH5BfntpsshezE8tjtJe9TrqlsAAEwEAfkF5Bfkt1s2h/zF8MV2xOuqWwAATAQB+QXkF+S3W3aG0Qvin3hddQsAgIkgIL+A/IL8dsuWMHpB/JjXVbcAAJgIAvILyC/Ib/dcCcUL4k94XXULAICJICC/gPyC/HbPU0m7EbIXw9/0uuoWAAATQUB+AfkF+e2ux5J2OgwWxheSdilpL3hddQsAgIkgIL+A/IL8groFAKBBN9LJ4HB7UbeA/ALyC8gv6hYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA6q3QBUDPnUvaNt2AGgUAAGbIGh1QqbVJO5m0O6F/iwrLkvZs0t4Lg0WV60m7lbS76f/+lbQvk3Ys/XvLlAtqdC77+Mm0HxeS9qAuQY0C5HogaTvT84ev07nIrfRcIo5RvybtdNJeT9pG3QVQysNJeylpnybtu6Gx9XY6tv6RtLNJe7cF531bk/afpJ1J39fC0Pv8Pf0OeCNp6/XjRPq8RicH/elHa10NWpm0I+k//t20Pdujz344aVeHPnuZFkN8SOGhRlvh0XRSdLfC9p7SQ41W5lzFn71s2630UKO1LUjEMejGmJ/3e7kEyBXXYC5M8F3yR3q+uLKh97k8aa+FwY+847zP+Nk268fSawB9XaOTg/70o7Wuhr2c/gMv7dBnezKwXA3Tnbj9kC7sgBqdnQ8qXpCJC7WPKD/UaCUeDtX/+FG27VB6qNHKxROumxlzjbfC4G6A59PPdSBpp8LgCrOsHwLcEQAwsCZpX1TwnRLXdXbV/F7jVehZC54Xw2BtaUf6PbAnaR/nfAd8GOpZXOxSPxbp6xqdHPSrH611NSgW5E8FHTnvg8sbFZ68/RkGWzKAGm3e2pwv1GnaKeWHGq3M4TCbhdW4QOmqENRodeKWY0vvlIi3aO8uMQZ+nvH541WN+5Qf0HOb03O1Kr9f3m3w+/KPEWtHa0P2XXaX0z/rYz/m6fManRz0qx+tdTVkUyh3G8g8Dy5HajiJ+7Pi4NJvarS8d2voK18gqNHq/BZms7j6qdJDjVbmoTC4an/4/f+VnleU9VpOP7ypBIGe2pyOpXV8x5yo+L1m3c0ar94te0fqRzn//bqe9WOWvq/RyUG/cmCtqwGPpCcaZTtwXgeX/RmfNZ74HQ2DX1yHb8GJe3ptTU9YfizRZ+eUGWq0UfFqxJsVf3l8owRRo5V5LsxmYTW2F5QfarQSK5L2bcb7n+Tq/WM5fXFQKQI9Exf8qr5Sd2k7VNF7zbqYJW6d99SYx8la5L4SBj8y96Efl7JGJwd9y4G1rgYWH94Jg+0HLiXteBjsQXWrh4PLpiWfOwYk7k9a9vbruH/X9RH9tkXJoUYbU+W2DXfSL5bNyhA1WpkzwdYqqNGu1+hnGe//xwmPFT/z5Zw+2aYcgR65mDEOfhcGi11x0WvF0N99IGmPp+d6n4fyW0vGueO0z1vZn3Ps9yY41qMhex3qXA/6cZg1OjnoYw6sddXstbSD4sR9w5I/29uzwWVZuPdXo6+TtnrCoi0quo/MZVCjjVge7v2V29WDqNF2WR3ufbBq/P/xKqdd6Z9Vtfi5Kdj+BzVal305c4mXpjhm3l0Xcf/cVcoS6IGXw/1XwG4f47+PY+V7odyi3YUp3mdcQ1oI2T9iPzjhMY/mvM9X5rgfh1mjk4M+5sBaVwPiVU1Fv9As9GhweaXCk649ofhJ2aBG63doyWdaroRQo63y1pLP/0RNr/NOxji3U/mhRqcWb0W/FrKvAHtoymN/nzNH+VBZAnNu5ZKxNY6Hqyc8VrxzatQVsbFNevfod6G6q54XrQnZVxzfCOPt4d2lfhxmjU4O+pgDa10tcL4ng0u8xeVq+rlOVXTMoqezW4hEjdYr/oI8/NDGN5QQarR1fkk/e5xIbmjgdRbbQrD9D2q0Cv/JmUNcrODYrxTMUTYpTWCODf/4/HuYfLFuUdzyYtTWMccnOO7+guOtn/I9nw7TX73blX4cV1/W6OSgPzmw1tUS53oyuLwU/tmvdEVFxzxa0HcPKi3UaK2Gv4hvyhxqtHW2hWYedPpkxvj2mfJDjU4tnjzdyJlDHK3g+GsK5ihnlScwp+KPv78PjXdbKzrua6F4we7KBO/z15xjfV/B+90Z8vcY3zBH/TiJPqzRyUG/cmCtqyX68gNAvGUn/or1WIXHfLGg71YqLdRorYZ/8X1H+aBGW2fxoaEnan6drP0qbf+DGp3evoI5RFXv/4dQ31V1AG20fWicO1nxsX8OxYt241wVu7vgOIcreK/xiuC8B4+emKN+nEQf1ujkoF85sNbVEn0YXB4L9Wy/8HxB39l6ADVanxeGPkf8wlyjhFCjrbIq/dzxVs+6r8D4Pdj+BzVah9MFc4iqTuBOFrzG28oUmEOfhH/uDq36oeeHQvGC3ZNjHOvrguM8XdH7zdvqJn4/r5yTfpxEH9bo5KA/ObDW1SJ9GFziL1M7ayiCvIL7WVmhRms1/BCek8oHNdo668Jg8XBXza+zNdj+BzVal7yHEN6pcL6yt+A8xHwamEeLD9is40fO9aF4wW57yeOsLTjG7Qq/A44UvM5Lc9CPk+rDGp0c9CcH1rpapC9bANUhb7+uo7oGNVqbpzMWIq6kCyqvpH/uF1/UaD+8H2z/gxqtw4aC84ObFb7OMyNOLh9VQsAceSL8cyfYqppe42aYfsHuQMExLjVwrhrb+Tnox0nN+xqdHMhBnf1mPbbHg0udXg3ZV0U5WUGN1ufCiMWCxV/k45flG+kXI6jR+fTHkn6Ne0s+oFtQo7WejF6v8HWWjxgr9ykhYI4sPlvl/Rpf46sw/ZYdRVvAfVzhe11d8Dp3Qv4e413px0nN+xqdHMhBFazHGlwadSqjz97XLajR2mwOoxdWs1rcf/lYsNCKGp0nWVcO2/4HNVqNfxeMV9cqfq1bDZ1gA8za42Hw4NCNNb7GmTD9QzuvFxzjYIPfAS90vB8nNe9rdHIgB1WwHmtwacy/wv1P645bPHjaNGq0PmfDZIurw+3bgi9RUKPdkfXwUNv/oEarcSw0cwfAqBPsr5QRwFjyFuyulvzvHxkxT616jvrfgtd6t8P9OA1rdHIgB8WsxxpcGvXGkr76Mwyebg1qtB6PhekXVofbhfSLHdRo98RnKFwLtv9BjdblZGjmGQDR+YLXuqGUAMaSdzFK2TvQXhwxP636btWibVa+7HA/TsManRzIQTHrsQaXxsSngQ9frRT3d31ct6BGa3UiVLu4uriwsEO5oEY757lg+x/UaJ2KfgC4U/FrfTFiHASgvG9zxtI9Jf/7IyPG5Kq3/fgotPNH4Gn7cRrW6ORADvJZjzW4NCYG/VK4d6uGtboFNVq719PxKrYL6aB/J1SzyPqKskGNdkrWJNn2P6jR6hweMSatq/C1zox4rRXKCaC0rL3Eb40xln5WMB7fruH9vhWaXWhtqh+nYY1ODuQgm/VYg0tjVgz1Vyz6N3UJanSm4hYL65O2K2nHk/ZdsMCKGu1Dn94Itv9BjdZp34jxqMo7k06NeC37uQKUszZnHD05xjGK1of+quE97x/xHbCto/04DWt0ciAH97Mea3BpTNyHeXjhJp7YxYdxrNE1qNFWiVclHkraz2H8BVZXEKNG229HRr98rltQo5V6fsRYVOVJ1+cjXmuDkgIoJW/f8o1jHOO3gvH4zwbf8yznvlX04zSs0cmBHNzLWpfBpRHxKq74gImbOX0Uf3l6J7g6CTXaRttD/r51eQ823KikUKOt9mnwwwhqtG7LR4xFX1X4WqN+AFilpABKydp+7vSYx1gIzT6M9IUR3wF7O9qP07BGJwdyMGCty+DSiHib9sGk/RrKLcpcNRijRltrT/r5y/TTT2F2e+zRX2q0/Li3EGz/gxptwveheP/bqk62Rv0A4KQOYLS4UHYt3P/Q9vVjHqfo+VXnanjfo+44O9DRfpyGNTo56HsOrHUZXBrxWNKOZhR72XZYSaFGW+mhUPwwH32EGm2/XcH2P6jRpox6EPDBil5n1A8AfuADGG1nxvh5dILjFI3HZ2t436MWPj/oaD9OwxqdHPQ1B9a6DC6N2B2Kr3Qapx1VVqjR1nq5RP/EPeVccYgabZ+shcJdSgY1WouHQ/EVcFfC4AqxaZ0peI07SgqglItLxs9fwuChmeN4YMT880wN7/vZ0K6Fzyr6cVrW6OSgbzmw1mVwadTB9KQthvmLMNjX6/qIE5+iZkECNdpeO0v0z0tKDjXaKnHbo9vB9j+o0SZ9HOq9CyD+gPBHaPZBewDz5qmM8fPpCb/H2rbwebKD/Tgta3Ry0LccWOsyuLRCPDHZmC60nB+jAOPJjCuIUaPtNeoq63NKCzXaKnuC7X9Qo01bFwZ3HBXdjTTNfrCvz+AkG2DeLL1a98gU55V9vvK5qn6cljU6OZCDf/4trHUZXGYm3g59vGTh2X8KNdpup0LxAw6XKSfUaGucDa7uQI3Owt4Rc4l4W/jqCY67v8Q85aSyAii09Mfnr6Y8Xl8XPqvux2lYo5MDOchmrcvgMhOb0hOeUU+iBjXaXqtC8ZWNTygj1Ggr/CvY/gc1OkvHRswnfkvalpLHin/vfCh3BdcepQWQK/74+me499ksD015zIXQ7N2nox5+eqij/TgNa3RyIAfFrHUZXBoXw/DDiKLbqptQo632TkHf7FRCqNFWyLpS2PY/qNFmjfoRYPGquDguDd92/WB6Yvt20n4c+rvx5Dre0n274HgblBZAruE7z64l7dEKjnk9tGvhc29H+3Ea1ujkQA5Gs9ZlcGncwyMGB7edoEbb3z95fbNf+aBGWztXsf0ParR5+0LxXUllW7ylfEMovuXdA4AB8r06NF7eDNUtdH1dMC7/XMPn2Dni+2JnR/ux6jmFNTo56FsOyp4nW+syuDSq6EGNrlBEjbbff3P65oCuQY3OXLy6Y+k+j3FrleXKAjU6E2vDYC/a22G8Rf/YR/EOgaeHjlV0V8FHSgsg09ahMTj+73MVHrvo+VPXa/gse0Z8d2zraD9OwxqdHMhBeda6DC6Nig9h/D2nDy/qHtRo6+UtQLyta1CjM3cg43OfUhKo0ZmL2/zsTtqnYfAj5c2hE8iFdN7xRdLeD4O7IVZmHONqwXnI80oL4D7xitfhfbqrvjL4RMG4vFDD5/l3KF74XN7RfpyGNTo5kIPyrHUZXBr3Xk4fXtM1qNHW2x3cAYAabausW3BfVBKo0c7bFoq3/1mmiwDuEe84uzw0Vu6r4TX2heKFyKrH5uMFr3Wjw/04DWt0ciAH47HWZXBp1I7Q3O1BoEartT3M7mE7oEbzrQ73b60SrzC2/Q9qtPs+LzgHeU/3ANxjRRhczbo4Th6s6XW2huKFz4crfr3PQrMPW22qH6dhjU4O5GA81roMLo1aGfzihBrtqs1hNg/bATVaLGtPR9v/oEa7L5443wn5zwp4VBcB/N8DSTs/NE6+WfNr5Y3PdWzPVrQe9W6H+7GuPnlWDuSgJzkYh7Uug0vjsh6GdkG3oEZbb1XOGPi0rkGNztTFYGsV1Og8Knr4rwe2Adzr7NAYebSB1/u2YIzeU/FrXS94rRc63o+TskYnB3IwPmtdBpdG3XQSgxrtpC0h+wrEB3QNanRm1mZ8ZluroEbno99uhfyr/9frIoD/G94u7YOGXvPdkL9G9H6Fr7O84HXuVPx9Oot+nJQ1OjmQg/FZ6zK4zLzgDusW1GjrZe0Zd1m3oEZn6lCwtQpqdB59UnDucUz3APzfh0Pj4ycNvm7RQ9rPNPQ6F+agHydljU4O5GB81roMLo3K2iNsm25Bjbbeqxn9cly3oEZn6ptgaxXU6LzZUnDecTUM9nAFYHCF8eL4eLrh114WBntnZ43VNyt8nVcKvhMOzkE/TsoanRzIwfisdRlcGpN1G/j1dNAANdpuZ4P9/1GjbfJIsLUKanTe/CtpV5x3AIx0dGhs/DLUs+XjuhF//kHBeL2hovdwKuRve7JmTvpxEtbo5EAOxmOty+DSqF3Bbcyo0a4uSCx9YMzPugU1OlOvB1uroEbnzYcF5xxv6x6Avx0eGhu/TtqKGl7jyfT4TxX8nc0FY/bLFbyHuDB3I+f45+aoHydhjU4O5GA81roMLo36KNz/a92jugU12nqvZYx9+3ULanSmvs/4zLuVAmq0sw4UnG+c1T0A98354jZzdWyLFi8siReSlHmW1Hc54/aXFbyPZwq+F56Zs34cV9/X6ORADsZlrcvg0pgYpIVg/3DUaNfEL6yrS/rle92CGp2p9cHWKqjRefJcyN6XdfFqNP0GMLiaeHiu91BNr3MmfY1XS/zdPSF/a5LVU76PkznH/mEO+3FcfV6jkwM5GJe1rg4PLnFP1Y/D4DaYeDJ1KWnbW96HR8L9DzF7SGnRwxrtWn6PLumXW0l7TLnQ0xptS34PB1ur0G5trNG2fv8+HfJvbT8f6rkVHaBr9oZ7t3lcXcNrxH2/Pwn//Gj9YMn/7nLOGP7GFO8lLtjdzDnujjntx3H0dY1ODuRgEtZjx/BliwaXjSH/KdsHKjh+fAL0vjDYH6qqgtiQLsi4c4LQ8xqtK7/Ph8Ev4ItXD/6ZftlsmfL9Zt1ut0cJ0tMarfv7dxw/yiYt17YabVN+hz1XcGL7aajnIXQAXbNzaGz8LQweZlmVuL/442Fwde7wQ9g/mnI+GtvvYfI7uN4K+XeFzWs/jqNPa3Ry0J8cWI9tgb8KBpfnGn4vlwveyzR7OMUtFC6G+2/VjrfbTPO06li0Py057kElRU9rtI78bgj52wbE9sWE/fNYxkTmdWVIj2u0ru/fSfrT1iq0PfNtq9G25HfYgYKx8Q1lBPC37el3yN2G25Njvs8TOcd5c4LPHK9GzlqDuh4GV5rPcz+W1Yc1OjnoTw6sx7bE+hH/kPsafC+bSxTWkQmPfbjgmPHKpEme3r0qDB6kMXysV5UUPa3RuvL77xLHvTbmRChexbB0T/VDSpAJzUON1vn9O663g+1/aLe21Wib8hvFLX0+zHkf8e6obUoI4G9xPFwIzS/WTbK3+PKM88rFrSk3jXmssznva3sP+rGMvqzRyUF/cmA9tiVOjvjH/KbB97KzRHF9MuGxPy9x7EvpAFdGvP3nt3Dvr3QvKCem0PUarSu/+8f48jkWRj/ZPh5veC/i+Kv788qPKcxDjdb5/TuunzNee68yo0XaVqNtym/c7/9KyL8barXyAfjblpD/fJS626RXyMarbb8L2VuglL2K91jOe9rTo34cpS9rdHLQnxxYj22Bt8ZYsFjW0JdgmfcyiSNjFPDFdAHm4SXHiA+1eDEMHli2dMBzQsO0ul6jdeU33v52a4y++SMMbsHbMHSM2E8vhcGv08N/90KYzbYIzJd5qNE6v3/H8UTI3lrFQ0JpizbWaBvyG8fBT0P+3ri7lQ7APd8l18NsFuviFcIrp3jvcfHzXM78tuhu13i17mcZ/11ctNzRw37M06c1OjnoTw6sxzYo3qayOS3EXWlAfxnzHzZO3k+kE/h4S0r8xWVdDe/1yoj38cSEx10TBrcdj1vQt9Iw3sw42ftoyQIOTGMearSu/O4M4y2wDu9JmLX/8E/plwdUZR5qtK78juNoxuueVl60SFtrdFb5jduVnQzZ+83GOU38sdMPeAD/iOdm18JsFuvupms6VTgUsh/yHq9Oj9twxMXM59P1ow9z/m5c6Fvf037s+xqdHPQrB9ZjG7Svpn/sGzW816dC/q0rb0557PhAxe+m+LyxyOI+XXG/5weVFTXoeo3Wmd8N6SLLnSnGq/jrsL2HqfOErss1Wmd+y/o12P6HdmtrjTaZ33j1Wrxj6VLI35ogPgD4AeUCcJ8yW2HU2ar8QXht0o6H7EXNohbPd3f2vB/7vkYnB/3LgfVYcgvjdDrILKQnGFXu5xR/aY23oJwJg18z4+vcGmpxv+Wf0z//MC2wOOgt809DQ7pco3XnN97eFffG+zhpX4XB7W4LQ30Tv3jjr+Dxlry4mPpK0rbKLw3qco3WnV+ge/mNJ7bx6sT3k/Z9yL46K+7vH/eAXeefAaB34g++cSHz5NDcd3HeG7+P4p2tp5L2WnDFrjmGHPQ9B9ZjAQAAWibetj68bVk8KYv718Zb27c4IQMAAAAAgG6KD2GLzySJV2xZ7AcAgBz/A49ahLdxAXzUAAAB6XRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtZnJhYz48bW4+MTwvbW4+PG1yb3c+PG1uPjE8L21uPjxtbz4uPC9tbz48bW4+MzwvbW4+PC9tcm93PjwvbWZyYWM+PG1vPis8L21vPjxtZnJhYz48bW4+MTwvbW4+PG1yb3c+PG1uPjM8L21uPjxtbz4uPC9tbz48bW4+NTwvbW4+PC9tcm93PjwvbWZyYWM+PG1vPis8L21vPjxtZnJhYz48bW4+MTwvbW4+PG1yb3c+PG1uPjU8L21uPjxtbz4uPC9tbz48bW4+NzwvbW4+PC9tcm93PjwvbWZyYWM+PG1vPis8L21vPjxtZnJhYz48bW4+MTwvbW4+PG1yb3c+PG1uPjc8L21uPjxtbz4uPC9tbz48bW4+OTwvbW4+PC9tcm93PjwvbWZyYWM+PG1vPis8L21vPjxtbz4uPC9tbz48bW8+LjwvbW8+PG1vPi48L21vPjxtbz4rPC9tbz48bWZyYWM+PG1uPjE8L21uPjxtcm93Pjxtbj4yMDIxPC9tbj48bW8+LjwvbW8+PG1uPjIwMjM8L21uPjwvbXJvdz48L21mcmFjPjwvbWF0aD7HYGv9AAAAAElFTkSuQmCC" style="width: 302.67px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator 1 over denominator 1.3 end fraction plus fraction numerator 1 over denominator 3.5 end fraction plus fraction numerator 1 over denominator 5.7 end fraction plus fraction numerator 1 over denominator 7.9 end fraction plus... plus fraction numerator 1 over denominator 2021.2023 end fraction"> là A. 1011 2023 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAP4AAADlCAYAAABzh0oJAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAAEUNJREFUeNrtnQFkV90bx4/JZCaSSSYxyUwSef1NXhlJkteMJJNJZJLkFZO/TCYmSZLIJPPKSCYzf5FXkldGJkkSSZIkkkkmsf85787026/fvef53d89597d+/nwMLbd85z73O895zzn3HOUKi5rtY1ou66AeFCPwrNG27C2r9oWtM3l3N8ubSe13dL2RNsXbfPavmv7pu2jtkltF7Tt1tZEPKgH/KRV21krnIUKm8vpQzSk7WWVrxL7pO28tg3Eg3qUmRZt/9X2OUIoeQvQUI2HqNLM7+7b1n8+5u++2QeyiXhQjzKxWttp2wLGtZB5CdAWbU8jfPxg67K+xv9t03Yx5iUwq62DeFCPotOs7U8rFknXOA8B2mv9qOXflE0YuTDinom4hmmVfice1KOIrNJ2qo7A5CVAB7X9iPBtPEFrdC+m699DPEpbj8JhxrAntL1T9SfCsg5Qb4xfDxtINj2LqesO4lGqehRS8IPa3tobbVrNR9rG7Jj3n5wHqNu2wrV8MlNC7Q1cu1MtTvfVuvZ7bW3Eo/D1KCwv7A022e2TEQ/zjZwGqM3RdRxKoYyRmOvfIx6Fr0dhMYsluhx/sz6nAZqO8eeDHas3iunyx00LHiMeha4HPYOcBeiQw5/hFMsajSnHZPrXEY/S16Ow3M1RgFY7kkU/GhzbV7PJUffrJY8H9SgwkzkK0BmHL397KPOh40WzpcTxoB4I3ztmPvijw5dBD+WecJQ5hmAQPsL3xxFBQqjdQ7mbHWWaab/1CAbhI3w/PHL48dpj2W8dZZ9FMAgf4afPRkFrP+6x/FuOsl8hGISP8MOPs40NeCz/mKD83xAMwkf46TIlEN5Oj+X3CMofQTAIH+Gnh1n7Pe/w4Yfyu2FGs0D4TxAMwkf46dEtEN37APfhi+Dl04pgED7CT4fjAuFPBbgP0wI//kAwCB/hp8MtlW1Gf4m/cjLOR/hQigA9FghuOMB9GBX4MYlgED7CT4d5geD6A9yHwwI/3iEYhI/wG6dFyXZrCTG27hP44Xt2AeFDKQK0Syj8vQHuwz6hL50IBuEj/MboFYotxNbXeXkJIXwofID6hWILMX++RujLAQSD8BF+YxwViq05wH1YLfRlAMEgfITfGJeEYgtxvl2z0JcRBIPwEX5jjAnFFgqJL9cQDMJH+OUT/hiCQfgIH+EjGISP8BE+gkH4BMjFdYSP8KF8Abq6AoV/FcEgfITfGMdWoPCHEQzCR/iNcVjlZwGPdB6fBTwIH+E3SJ9QbC0B7oP0S0GW7CJ8hN8ge4ViC3F+XZviIx3qgfCDBGitUGx7AtyHHqEvHQgG4SP8xvkhENv+APdhv2IjDuqB8IMF6LlAcAcD3IcDAj/eIhiEj/DTYUIguOMB7oPkE+E7CAbhI/x0GFbZr5ZTSrZ8+ByCQfgIP9zYeiIH9yFUrgHhQykC1CoQ3GyA+/BEuRN7LQgG4SP89Hjm8GE+gA/zOXj5IHwoVYAkW3D5nD/vEJQ/imAQPsJPF8nW1n0ey5dM5XUjGISP8NPFLIr55PDjosfyL6vsj+lG+FDKAF1x+PHQY9mPM3zpIHwodYC2K3dW3cfnua3KvWy4C8EgfITvj1mHL70eyjzoKPMRgkH4CN8vAw5fxjOofx+CQfgI3y8myfcuxpdvKXf312n7HlPeSwSD8BF+GAYd/gymWNZpR1mHiAfCLypTOQuQafWfBmiFV6nFz2yjypkhHtSjyLzMYYBMhj8u037Ec2tvuv9dxIN6FJUW5Z7KCrHrTC1Oxfj00Y7Pk7LBPnhR1z9FPKhHkZGeT9+TkX83Y3yaamAo8SDmujeIB/UoMmbhymthgO5n6OftGL+uJ7he3I4/d4gH9Sgy69XiEtiFOuxqhl2zKw6xrhXW+Z7K7misIsWj6PUoFEYc++2N/lpncJbsjVrcKstsd90c2H8ztfYlwi/zgc8ZbRtr/F+H9flLTJKpn3iUvh6FYae2D9o+K/cmE0lt3l7flHMgQJ1MUm5cubPFD6zNKfeWXu3Eo/TPVaHY7SkoUXY4YN06tV0TCDtq9Z/JDWwlHjxXsDJpst3D82pxpdgr292ct/bVJprM70bt3zKeBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBIFjAMy7UhfAxD+AgfwxA+wscwhI/wMQzhI3wMQ/gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQDnZoO6ntlrYH2j5r+6btu7Z5bV+1vdY2qe2itl5tzTmuT1dFfZ5o+2Lr8d3W66OtywVtu7U1EQ8vrNK2395n4+sb63tlLD5ou6vt6gp4rgpBu7Zz2t5pW0hg320wd+WkPmu0DWl7maAun7Sd17aBeKT24h2zAk9Sj3Ft25Bo+gK5aG/wQkr2j7btGdZpyLbqUf6Z3923rX/cw2haoLOBewBFiod5eU2kWI+b2tYh2cbZ1UCL4rIf2oYD12eLtqcR/pgu5Glt62v83zYrtqiXwKy2DuJRF72Ol29Se2eHPpCQI/ZhWPBsU9pWB6jPXm1zMT6sFVzDiHsm4hpmXP078RBxxnMdTJy7kXD9HA/wgFXaPZvY8cXBGNGM13mt1dbfqK5/D/GI5VygOpgX8SakLOePwA9ZUgHW06WMKvNhwmu2ansW09rsIB51vcDMS3na/t601JWZevNzp315G5++1lGHGeQsY3NMd/iVWsxk99pxcFNVcExmtk/bFbU4DZPkYTuScn26bStcq6yvNrmUlM6YBNt7bW3EYxk7IwR/sc44tNhchHQG4CCydlNr/PpcLc5dJ0lEPU7QPUsrK9tmE3ZRZQ2lUMaIo7tMPH72kN7WaI07G7jmdkd8l+wJso5nsMZNu6Ian6oajGl1a9nFlOozHVPGh5QSWOaBjstMHyMe/3Kl6ppjKp0p0C5h138z8o7uPn2qulkjKXe5PwsftG9WUI1wyFFGmtNWox5azCLFo8tjPQynBXXoR+K1qZ5emfBQRo+ST0cdbaAc05LHzXX/aHBsX80mR12ulzwekxXXueqhHs3KvR5gDIn/SlOVUN6k0OJGMSx80O6k+BKrtr891Ouh40WzpaTx2FJxjfsen+Fxh/+3kPmvVE8X7fFYVnONJE/UlFgSzNzzR8e1Bz3U60SKLU6R4nFJ/Zzl8LmU9rDD/wlkHt8VuxugvD+FrUySr66OCK7b7qFOm5X7Q5L1JYtHU0WeYq/nOuynxa+/hfxe0SXtDFBmm3BsmWQF3CPHNV97rJer5TxbsngsifF2gDrsdvh+Aakvp3JV23jAcmcED9q+Oq+5UWW3OlDZViWu7Fcli4fJS5gFRBtyIPw+pF57DLYQqHVZ4oaHB+2E4JoDHut0TFD+byWKR0j2O4ZZa5H6cpay0fcClysRSb3jwinBNXd6rFOPoPyREsUjJHHJvdvI/Fdu2nHvnsDlHhA8aFvrTCS51m7/UH43zGhWjS8fLUo8QnMtxm925slpbiENkXYLHtz3Aer1RVCv1hLEIzRR26excGeFPWgv6rye5Hv1qQD1mhb48UcJ4hGSHSo6mdqK1PJFn0o3+35LZZvRX+KvFMb5RYhHSGrF3izi6kBmKysZk+QbasnnpiH2kxsV+DFZgnhk2dob0W9HYvkk7jt2M/1S7yezkk0Z+nMgoKXNIIsejxC01hjbm+49n+DmmLgtletdXtmiZEtOQ4yt+wR+5DFRlmY8QjFdw0/G9DnnRcyDVu8BD7uEwg8xD71P6EtngePhG9P7uKuWz9YcQFL5pzXmIZtNcL1eodh+D1C3PL2EsoqHT8yy7JkaQ6chWvv8E9cd7k1wvX6h2EI8GGuEvhwocDx8YaZs51T8bkfmBcBZejnlpkp3K+Sjyt9nvkm6oRJfBgocj7Qx6/CfKfkegWbjkj3ILF+sinlr/5bwmpeED0SIhFqz0JeRAscjLb/MC/2pSn4uwBitf34YiAjSjQauOSZ8EEIh8eVagePRCGZe/rKSbwQqOQy0DdllT62FNmbBxbqSCX+swPFIOlx7lZLYq830GvgsN0N2RgRmf4PXRfj5ikcSbtkhh9kjf96D+O8iv+z4R6Wz9TTCz3c80syXmF16zdoIsyLSfC/wpgHxH0aC4ak11z6bUvLlOsLPVTxC5AEuqfipPZ+nJ4GQlhpvarP7alpHGF9dgcK/WuB4hMKsmTCHhv6oQ/x/IsdwXFS/rlVP8wz5YytQ+MMFjkdozM5Ar4X3/QVyzC6BdDTlMg6r/Czgkc7jDxQ4HllgZiGkc/5bkaVfzBRK9V7z5zyU0ycMeEugbnRel+yGikdWrFeyY7Pp7nvmrgqT0NorFNuWAHVuU/n9SCdUPLJkt+Des+uuR84GvNlrhWILsX67R+hLR4HjkTWubdafI08/VB9uEGKTS0lmd38Gdc/DRhxZxCNveaVKm0ei6WPmWCvnV83BEKsClPtcILgQ+8ZJ9qd/W4J4ZI1roU8TUk2PTVXJFXOAZagFExMCwR0P4IfkE+E7JYhH1riOBOOrvZQwSa3KuVTz8UfIHVGGVT5Wy0mWD58rQTyyph/h+8ck1yrnUM3Pob/ukoytJwL4MZmDXEMe4pE1rpkeuvoNYlqRyo89Xqpsvn9uFQguxP5xT5Q7sddSgnhkTbsiuecN0126r5YnrTZk6I9re6YQAZ/P8OWTt3hk3SAxnecB01WqnC81WxxvzNgnyRZcPufPOwTlj5YoHlnSkvGQr7BUZtHNji1bcuCTZGvrPo/lS6byuksUj7x29Vmym5DKzLXZGy0v54+bVu+TQ3gXPZZ/WWVzTHde45ElcQeb/IfbUz+Vn3TOBbyJZqx6WLmzsVcc4nvo0cfHGbx08h6PrIj6YvMdEq6fyrnybyrMyTRL3Lbl7nD83Xblzqr7mMNtVe5lw10ljEdWRB1Xfh4Z18cptfz01JAHFiyNnZ8J/37WIUAfp8McdJT5qMTxyIIPES/9TUhZzhEV/tTZJTrUzz3WTwr/Z8AhwnEPfroW7vSVOB6hifo0dwwpy6ne5OJQwLIrl52aVk26N3qTHctFifBbyt39dda/qPJeljweoXlQIwZzqrxrGupmX9W49VjAsrep5WvN6517HXS0wIMp+nraUdYh4hGMqKW6J5CzjB7bMoaa+zSt9GY7Vr6rfk2U7U5wvacBWmHzievbmHJmiMe/SUezcMlsg26y7e2efF4bEYtp5CyjW9W/Z7lPe5OwHttVfKb9iOfW3nSHu0ocD/NSvBORZJtU6c9yTEf4ug5Jy7p0n3P0kBk720B9TsVct9Ez4jY4BHmq5PE4q9xTqxdSyreMq9oLpjqQtJvNVgwLObNGp2Buxlw76TZUTRFJpDRPm13p8Xih5Hvd70p4j9ao2nvsvVJM3Ylot2/IvD1k91Oq3+2YMpKcFxe3488d4vEv9fZUjIDrWRBk8g/vIu4/p+MKqN6tJU+W5j55VxxilTwsZu/2e8rv0VhFicdkwjLMAqwhtbgoqXIYYH42WfuRiPtjXpSHkLMMM8Z9ltOH7LNKfy24eTC+RJRnPvA5o2p/zmrGisMx/2vG+v3EYxl7A/llhkP/VWEOTCkEJogzOX3IjF32VO8NEcmgaiE/sObKqE+odKaoihiPsx79MbEZUOXYNThVmnP8kIU446xT2zWVbKrsm80NbCUeopZ/NoXy5+yQ7KgdcgE03NKa8eR5Oy41GeGvanEbrXn782v7u1H7t2zWmOxFO2h7W/+zQ6vK+7x0rz/YRN+EHc+bZcqbi3hD/g+rCMSGHudk9AAAAGh0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1uPjEwMTE8L21uPjxtbj4yMDIzPC9tbj48L21mcmFjPjwvbWF0aD5DXpJWAAAAAElFTkSuQmCC" style="width: 40.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="1011 over 2023"> B. 2022 2023 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAP4AAADkCAYAAAC425msAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACMJCpdlQAAE2pJREFUeNrtnQ9kV98bx4/JZCaSSfIVMzNJIvlKkpEkyYwkyUxkkiSR/MxkYjLJJDLJfGUkM8lP5CtJMpIkSSRJkkgmM4n9ztPOft19du89z72fc849O+f94mFsO+c8932ee+75L8TyY6u0U9JuSXso7Zu0GWk/pc1K+yHtnbQJacPSuqQ1euzPxoQ/z6R9V378VH59Ub5ckrZbWgP0gB+xsF7aBWkfpc2VsJ9KsF2e+LNK2jlpb0r48lXaRWnroAf8CJVV6u36s6QwafZE2pYKfTqnWvWs8tHvHqjWfzbn76g16nf8BRCKHiHWq2DYVcebWGe/pA049qdd2ouM8nyWdlba2pT/26wqadZL4Lm0VugRbb0Kil71EOcs211pKx34s1fadE4ZVjPSoOCeykiD+qM7oUd09SooTjgQJmn3pa2w6M+hnMo2VjCtlaq8WZ/+ndAjmnoVFAcci1M2ALl05eT5qGSazdJeZqRJXxVboUfw9Soo2nI+h9+K+ZHsLtUPTg5o0ZQKTYl1SxuR9r6kSL2G/dmuWuG0vH6oEeWydOQMTH2S1gI9gq1XwZHWf30l5ueuywzgPC0oEPWT1xjypUUN2GXldc5AHoOaz0zoEV69Co6+lAc2IuqfqurLaXXTbNiQP/dy8vhsaOCHPvnzpgWPQ4/g6lVQNIn5RSnJBzVo+JP7G1OgGRVQ9XBYk4fJ6Z4hCy1NKHqEVq+C43zNQxq3kAeNdnOncY7VkQ+15HlzxL/q7NvXskHjy/WI9QipXgVHQ02gvLf4ZhxgCnTH4Eus1v614NcjzYumPUI9QqtXwVE7zbLHYl40SvuBIdB0yfRpzvaLJu0+C36d1OQ5GqEeIdWrIJlIPJhJB/mdYb6dy+y66mWku96CT21Cv5FkbWR6hFSvgmOF+DMXTZ+kHQ7ybGH2ycqsgHusSfOdRb90LU5/RHqEVq+CI7mqzeUKpymGQPsKpvmXqHYV1y1N3m8j0iOkehUklxMPpMNhvjcsCHSSkWaPRZ+OM/LfFokeIdWrIFkYjb7vOF9OkOwtmOZdRpo7LPrUych/MBI9QqpXQXJT9Xv3OM73IEOgTQXSo6mjWaHfp23zwIxGhk/PItEjFD+AxbEFE0G6nSH4Jwd+fWf41RyBHvADlBLodcH0OPu87zrw6x6jHAci0AN+gFS6hdnR91vCj33Z/xjo54egB/wAqRzVCHSoYHqcbZouzmEbYpRjIgI94AdIJW8fOy38KLpldpYRcEc8qHhkHyPQA36AVMZzBLpVMK0mwVuq6aJv3c0oh48DTCb1gB8gk9c5AhW9GGEXM/BdzN/uY5alI2A94AdIpTlHnOcl0utiBttOB7759BKqSg/4AQp/DneVSO8IM9hczJ+vYpblYMB6wA+Qys0McaZKpndM+LMdcyWzLD0B6wE/wBJou2bWMcvbSqZ5mRlsLgbUGpllGQxYD/gBltCTIc6NOtIcZQabKzhluRawHvADLCFtoQ0dlbUmssAfDVgP+AEWsSMjCPbXmS4C3y894AdYxBNh5uhpBL7fesAP8H/S5tppbtXESPt1BL5XesAP8BtaUlt72SHdrrLBUPpXl2HgXw1YD/gBfjMslq5VN3nS6fFlGPgDAesBP0DqwIvpa4yOCn8W8HDn8XsC1gN+RM5qsfSs+QsW8ulmBluTo89PX5fsutIDfkTOpHAzoLWXGWztDnxuEf5u0nGlB/yImP4acW5bbgE4webixNdOZllaA9YDfkTKfuH+kEvO1Un7K/Ddh4M4qtADfkTGVrF4swRdqLDCQb6vGAHn4rw1zrnuHyLQA35EBM2ffk6IQxdYujrjbJwRcCcclIOzRfhOBHrAj0igQa13CXFo04TLiyMGhB+r5TjLhy9EoAf8iAAaXHuREId+dr0ritO3HndQjgkPxhp80AN+BA69fZObJN6ot3QV5dAFnItz154J/cBeUwR6wI+AoVVqD8TiQat1FZbnpSboZh2UYbbCl49vesTuR5DQdFTyWmq6kPKvisvEOYLL5vx5KyP/oYj0iNmPYEmOotNJJ+0elIlztHW3xfw5U3nbI9IjZj+CJDly/U3aZo9ai6+awBu2mP8VUc013b7qEasfQZLcCkkLKv52lC/18Y4K/Yq3EU3wPbJYxqcVvHR81yM2P4IkOVc+I9zcTLPAbZXvVs3fbRH6UXUb23ObhX7Z8MYI9YjJjyA5LRbfOrrHYd4LfeeXzL9/rglAG7eqHNLk+ThiPWLwI0h6hftbZxdoVf09yvcU8396NEE4ZqGcuoU73RHrEbofQVJ7yMVhh3knl2tSa7Ca+X/UX/uYE4Qzhj/316jyZeX3JnI9QvYjSPbV9FuPO8x7s1i8Rrvocts+TQvcZ7CsZzV5HYYeQfoRJJ2qZVx4QGcs50etdJvqK0+KpQNlu0uk98JBK0xbQz/k5DMFPYL0I0hokcm04J0k48Lel/Rji8gfae+13NrTZ+RG6BGcH0GyOTHo4Yv11+HP6Zx0671bbZ2mIp+GHsHWq6BoU8Ew55nVe0HCzZy0yx7fRJ+QD3PSvQE9gq9XQbBezC8p9U2cB4b8u52TR5l71vJO/LkDPaKpV8ua2lNOfDKT5+SNaIKVM62zVsyf92bzaqxQ9IilXi1LqI/70lNxvgnza6hpau17Rn60wee8SN8GSgs+BnL+l/r6R6BHtPVqWUHOT3kqDtkVS37ToNyYJu9p1Yd/yBiJHleftNAj7nq1bGj0WByyTZb975B2reQU04waG9gEPVCvwPL98qHNIRfF/Jr7t9J+iPljtGbVz+/U74bU32IbJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKZg8FgXhsCHwZD4CPwYTAEPgIfBkPgI/BhMAQ+Ah8GQ+ADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIiDrdJOSbsl7aG0b9JmpP2UNivth7R30iakDUvrktbosT8bE/48k/Zd+fFT+fVF+XJJ2m5pDdDDCiuk7VfPmcr6XpU9qcVnaZPSri6DehUE66VdkPZR2lwJ+6nE3OWJP6uknZP2poQvX6VdlLYOehh78Y6qAC/jx5i0zQhR8wEyrB7wnCF7Im1LhT6dU616Vvnodw9U659XGakF6nf8BRCSHvTyGjfox01paxCy9bOrjhZFZ7+kDTj2p13ai4zy0CfkWWlrU/5vswq2rJfAc2mt0KMQXZqXb1n7qLo+oCS9qjLMWba70lY68GevtOmcMqxmpEHBPZWRBvWrd0IPFuct+0A6b0cIF+eEgwqWtPtqYMcWh3KCZqxgWitVebM+/TuhRy4XHPlAL+INCGU+BxxXsrIBWOSTMivPRyXTbJb2Mqe12Qo9Cr3A6KV8T/2eWurkSD393KFe3lSmHwV8mEI482jL+Rx+K+ZHsrtUP7ihRhwame2WNiLmp2HKVLZew/5sV61wWl4/1OBSWTpyBtg+SWuBHovYkRHwwwV1aFJjEdwZgEMIaz1p/ddXYn7uusxA1NMSn2emRmVb1IBdVl7nDOQxqPlchh5/vpA+pLTGHXWkuUWj74I9Q1jn05fy0EZE/VNVfTmtbpoNG/LnXk4enw0NYFGFzhuZPg49fjNSk+aoMDMFupH56d+G8M7+fPpa87AGDX9yf2NWtBkVUPVwWJOHyWmrIQstZkh6bLToB3GW4cMRhHg6tdMr4xby6BT86ahjdeRDLXneXPevOvv2tWzQ+HI9cj0mEulcteBHo9CvBxhFiC+loSZQ3htocbMYYFa0OwZfYrX2rwW/HmleNO2R6tGeSOOBxTo8pin/LYT5Umqni/ZYzKsxZZAna0qsDDT3/EWTdp8Fv04abHFC0uOy+DPLYXMp7VFN+ccR5vmfYpMO8jvDbGXK7LrqZaS73oJPbUK/kWRtZHo0JMYp9lr2YT9a/OIt5M/EJ2mHgzxbmH3LMivgHmvSfGfRL13L2R+ZHgvBeNuBD7s1Zb+EUF9MclXbmMN8pxgVbV/BNP8S1a0OFKpVycv7bWR60LgELSBa50HgdyPU0/tgc45alwVuWKhoJxlp9lj06Tgj/20R6eGS/Zpu1mqE+mIWRqPvO86XEyRF+4V3GWnusOhTJyP/wYj0cEne4N5thPlSbqp+7x7H+R5kVLRNBQeSdGu3fwm7B2Y0ivqXj4aih2uu5ZQbJ/N4OrZgIki3MyruJwd+fWf41RyBHq7JOj4NC3eWWUV7XTA9zn71uw78uscox4EI9HDJVpE9mNqMUPOLbmF29P2WqHZEf4F/DPTzQ9DDJWna0yKuVoTZ8hqMKbOHmrPd1MV5ckOMckxEoEeVrT0F/RaEmJ/k7WOn6ZeiW2Y5hzIc8SCAFg6DDF0PFzSn9O3p8x5bcD0m70jlossrmwRvyamLvnU3oxw+DpSZ1MMV91LKiT6957zOqWhFL3jYxQx8F/PQ+5hl6QhYD9vQ18ekWDxbcxAh5T/NOZXseYn0upjBttOBbz69hKrSwya0LHsqpet0Dq29/+R9DneVSO8IM9hcVIxVzLIcDFgPW9CU7bTIP+2IXgC4S89TbgqzRyEfE/a2+Zb5DOWUpSdgPUxD6/BfCv4ZgXRwyR6EmV+syHlrbyuZ5mVmhXAxoNbILMtgwHqYKhe90F+I8vcCjKL194eeDJFu1JHmKLMiuIJTlmsB61EPNC9/RfAPAuVcBtqCsKuetIU2tOBiTWSBPxqwHmW7a28NBXut0VcDtuVWyI4MYfbXmS4C3y89ynBLdTnojPxZC8E/ifCrjifCzNHTCHy/9TA5XkKn9NLaCFoRSfsF3tcR/EcRgu5Jm2t/bmjw5ToC3ys9XIwDXBb5U3s2b08CTJpS3tR0+qqpK4yvLsPAvxqwHq6gNRN0aeivAsF/BuHojmGxdK26yTvkjy/DwB8IWA/X0MlA75jP/TXCsboBpGOG8zgq/FnAw53H7wlYjyqgWQjunP8mhKVdaAql9qz5Cxby6WYK3uToM9rXJbuu9KiKtYJ3bTY+9y0zKdwMaO1lBlu7A59bhL+bdFzpUSW7Gc8ep+5apN/hw17NDDYX67c7mWVpDViPqtEds/4K4WmH2ssNXBxyyRnZ3V+B7z4cxFGFHr6NKyVtFiFqHppjTc6v0sUQKxzk+4oRcC7OjeOcT/8hAj2qRrfQpwGhao4NNYMrdIGlqwUT44yAO+GgHJwtwnci0KNqdFeCYdeeIWhQKzmXSps/XJ6IMiD8WC3HWT58IQI9quYIAt8+NLiWnEOln13v7uL0rccdlGPCg7EGH/SoGt1MDz7164RakeRmjzeimv3PzYyAc3F+3DOhH9hrikCPqlkvMLhnDfpceiAWD1qtq7A8uuOZXAg+W+HLxzc9qm6QMJ1nAfpUSs6X0hHHf1VcJs4RXDbnz1sZ+Q9FpEeVNFXc5QuW5Cg6ndjS7kGZOEdbd1vMnzOVtz0iPXz91MeS3ZIkR67pbDRf7h+nVu+rJvCGLeZ/RVRzTbevelRJ3sUmf+PxFCe5pXPa4UOkvupRoR+NHdEE3yOLZXxawUvHdz2qImvH5keEcHGSc+Uzws3NNAvcVvlu1fzdFqEfVbcxh9ss9MuGN0aoR1VkXVd+EWFcjNNi8e2pLi8sWOg7v2T+/XNNANq4HeaQJs/HEetRBZ8zXvobEMp8eoX7W2cXaBV/zlg/xfyfHk0Qjlkop27hTnfEergma2vuKEKZT+0hF4cd5p1cdkqtGvds9AbVl8sKwhnDn/trVPmy8nsTuR6ueZiiwbSId01DYfbV9FuPO8x7s1i81rzo3GufpgXuM1jWs5q8DkMPZ2Qt1T2JcObRqVpGV3Of1Eq3qb7ypFg6ULa7RHovHLTCtMX1Q04+U9Dj96AjLVyiY9BptH29pTKvztDiHsKZx3ZR/Mxym/a+pB9bRP5Ie6/l1p4+hzdGrAe9FO9kDLJNCPOzHPcyyroGIc37pPvmUSUj66/Dn9M56dZ7R9w6TUCejlyPfqGfWr1kaLxlTKQvmGpFSOtpU8Ew55nVOwVzMyftssdQNWQMIpm8bXa56/Fa8M+631XyGa0S6WfsvRWYumOxXr0hfatkDwz5dzsnjzL3xeWd+HMHevym6JcKBXCRBUE0/vAx4/njdlwGtae1+GQmz8kb0QQrp7LQ2e33hd2rsULRY6JkHrQA65yYX5SU7AbQzzRqP5jxfOhFeRjhzIP6uC89rWTfhPm14FQxvmfkRxt8zov07azUVxzI+V/q6x+BHovY66hc1B36j3BzYUoQkIhTnlYysiuW/F6XMRhUG8gPlelG1MeFmSmqEPXot1ge0qZHxHFqsFEaPa5kLu4465B2TZSbKptRYwOboAer5X9uIP9p1SU7prpcANTd0lJ/8qLql9KI8A8xf4zWrPr5nfrdkPpbHNZY7kXbp762/qu6VsnnvPCsP6uBvnHVn6dlym0hPpD/AWByP4r2k3lUAAAAaHRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtZnJhYz48bW4+MjAyMjwvbW4+PG1uPjIwMjM8L21uPjwvbWZyYWM+PC9tYXRoPv9qYHUAAAAASUVORK5CYII=" style="width: 40.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="2022 over 2023"> C. 1 2023 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAP4AAADlCAYAAABzh0oJAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAADSBJREFUeNrt3Q+EFtsfx/FjZWWtWFlJrlgrayWR6ye5siTJurIkSVYi60qSyHWtlUSykiSyknVlSdbK+on8JMm1JEmSSJJrXbGyVlaW/Z3v7TyafXpm5sw8c87MzrxffIlq/p35PDNzZuaMUoBSHbou6LrJpgDKb52uEV0LupZ1zbNJgPJq1zWs67MJ/DLBB8qrTdcfuubqAk/wgRJaq+usrk8hgSf4QIm06jqjazYm8AQfKIE1uk4nCDzBB1axFl0ndX1MGHiCD6zSwA/p+mACvKTria4xXaO6nhJ8oHxem+A+03VKV2eDf3OL4APlIg/h9Mb8mw0EH6j2mQHBBypkiuAD1TNJ8AGCT/ABgk/wAYIPgOADIPgACD4Agg+A4AMg+AAIPgCCD4DgAyD4AAg+AIIPgOADIPgAwSf4AMEn+ADBB0DwARB8AAQfAMEHQPABEHwABB8AwQdA8AEQfAAEHwDBB0DwARB8gOATfIDgE3yA4AMg+AAIPgCCD4DgAyD4AAg+AIIPgOADcOA+wQeq5w3BB6qlTddSTPDl71vYVEB5HI8Jfa362FRAObTremcZ/IdsLmD126DrsWXoa3WdU35g9enQ1W8CvJAw9LV6r2tE115drWxSoHh26ZrVNadrMWXQ42rRTF/mc5BNDuRvj6Owh9VRNjkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQEMsURRW6CD5FEXyCT1EEn+BTFMEn+BRF8Ak+RRF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA17NB1StcdXY90zen6ouurrkVdC7re6ZrUNarrgK7WAq9Pb2B9nun6bNbjq1mvf8y6XNa1R1cL7eHEGl39ZjvLsr43yx5si1ldU7qur4L9qhQ26Tqv66Ou5RT11TTm7oKszzpd53S9SbEun3Rd1LWR9sjsh3fMBDzNeozr2kZEsw/IqNnAyxnVU13bc1ync+aoHrZ88ncPzdE/ameUI9Cw5zOAMrWH/HhNZLget3WtJ7LN293EESWulnSNeF6fLbpehCyPnEKe1bWhwf/bZsIW9iPwXFcX7ZHIgZgf37T10Vz6IKVjZmdYdlz3da31sD77dM1HLEOHxTQk3DMh05Dr6l9oDyu/O14HaeedRDi53zzsYMF6YDp2XDkUEZrxhNNaa5Y37NS/j/aIdN7TOsgP8WaibO9XzztZ2gAmOaUMm+fjlNNs1/Uy4mizg/ZI9AMmP8rT5u/lSB3sqZc/95gfb1mmhQTrMEOc7XRHnA6/Vd96sg+Y6+CWusaRntkBXdfUt9swaXa2Yxmvz05zFG40rwXTuZRWT0QH29+6OmmPFXaFBH40YTu0mb4I2zsAh4h1vEbXr6/Ut3vXaTqi/kpxepZVr2yn6bALm9e5DOZxIeZ0mfb4fob0ocHRuKeJaW6Pad9aPSPW0YYabLRrqvlbVUMRR91GNZrR+kxHzGM2ow4s2aGjeqZP0B7/ulY3zTGVzS3QXstT/27iHX769KluY13I+JR7znJH+2IC1YzDMfPI8rbVJQdHzDK1R6/D9RBnLdbhCBFvrP72yoSDefQp+9tRx5uYjxzJo+51LzV5bV9vc8y63Kx4e0wGpnPdwXq0qvjnAcaI+I9a6oLyPoMjbpgRyx3tXoY/YvX1Pwfr9Tjmh2ZLRdtjS2AaDx3uw+Mxy3+HmP+o/nbRXofzam3QyRN2SywNuff8T8y0hxys18kMjzhlao8r6vtdDpeP0h6NWf4JYh59KjblYX5nLI8yad66OmYx3U0O1qlbxb9IsqFi7dES6KfY53gd+jniJz9Cfg2ckvZ4mGen5bVlmifgnsRM853D9Yo7cg5XrD1qYbzrYR32xCz7ZaK+UvCptnGP852x2NH2J5zmTyq/pwOVOapEzfttxdpD+iXkAaKNBQj+AFFvfA227OnoUnPLwY520mKagw7X6YTF/H+uUHv41B9zmdVB1Feq9UY/8Dxfm5AkvS68bzHNXQ7Xqc9i/hcq1B4+RXXu3SXmP7ptrnv3ep7vQYsdbWvCjqS4Z7eXlNsBM1pV84+PlqU9fLsRsdyMzFPQvoUsQrrTYsf928N6fbZYr/YKtIdvYcOn8eDOKtvRXiecns376vc9rNe0xXL8WoH28GmHCu9MbSdqxTKgsu19v6Py7dGv+TOD6/wytIdPjdpeHuLqImarqzMmzTvUNq+b+hhP7pLFckxWoD3yPNpL6LcTsWKKeo9dbr8kfWXWZlCGIwUIUG0wyLK3hw/tDa7t5fSeV3ALLGpI5aSPV7Ypu0dOfVxbD1gsRxE7yrJsD1+mGywn1/QF9zpiR0v6gYfdlsH3cR96v+Wy9JS4PVyTs48ptfJuzUEiVXztETvZ8xTTO2AZtl88rFuRfoTyag+X5LHsmQaXTuc42hdf1OnwgRTTO2IZNh87xjrLZTlY4vZwRW7Zzqvo0Y7kB4Bv6RXUbZXtUMjHlbvXfNOchtosy2CJ2yNr8hz+S2U/RqAMXLKXmBXLmohf7Z9TTvOK5Q7ho0Ot1XJZLpS4PbJaLvlBf6HSfxdgjKN/cQyGNNKtJqY5Zrkj+GKzLDdK3B7NkPvyV5X9QKA2HwPtJHb5a/SgjTxwsb5iwR8rcXukvVx7m1HY60vOGngtN0e7Qhqmv8npEvxitUcad8wlh4yRv+gg/FPELz9PVTZDTxP8YrdHlv0lMkqvPBshT0TK+wLvmwj/USLoX6N77c8z6ny5SfAL1R4++gGuqOhbey6/ngRLbQ1+qWX01aw+YXx9FQb/eonbwxd5ZkI+GrqUIPxniKM/o+rHZ9Wz/Ib8iVUY/JESt4dvMjLQO8vt/po45teBdDzjeRxVxXmAx/Y+/mCJ2yMPchfC9p7/VmLpltxCqR9r/ryD+QxYNnibp9Pooj6y66s98rJB2X02m9N9x6aUnw6tfZZh2+JhnTtVcV/S8dUeedpjse0ZddehYY8bu8MybD6e3+6zXJauErdH3uKGWX9FPN2o/7iBj0EubXp2+3NY9yIMxJFHexStXylYi0Q0e3KPNXh/VT4MscbDfF9ZBM7HuHE249N/qEB75C3uQZ8WopqdzXWdK/IBS18PTExYBO43D8th84rwvQq0R97iPgnGW3sZkU6t4L1UefnD54goI6oYT8vZPD58vgLtkbcjBN896VwL3kOVP/t+u8vm2nrCw3JMFqCvoQjtkbe4Oz2c6jdJjiLBlz3eqHzef263CJyP8eOeqfiOvbYKtEfeNik695yR06WHamWn1cYclydueCYfDb6Y449P0doj7wMSt/MckFOl4P1SGeL4p5yXyWYILpf3z7ss5n+pQu2Rp7acL/lKK9iLLiO2bCnAMtkMbT3gcP42t/J2Vqg9inqqzyO7KQV7rmVstKJ8f1yOep9igjfqcP5XVT6f6S5qe+Qp6sMm/2HzJBd8pXPe40aUa9WjKr439lpM+B47XMa/cvjRKXp75CXsjc2PRDi54L3yL8rPl2lq7pr57oj5d9tVfK+6i3u47Sr+seHeCrZHXsI+V36RGCdzWq38eqrPDxbUrp1fWv775zEBdPF1mEMx83xS4fbIw2zIj/5momzvmPL/1dmaLvV9jPVTlv9nMCaE4w6WM+7BnYEKt4dvYa/mjhFle/WDXBz2OO/gY6dyVLMdG73FXMuFhfBLxqf7683yhc3vTcXbw7dHDdpgXlX3mYbE9tddt57wOO9tauWz5knvvQ7FHIGHMlzWszHzOkx7eBP2qO5J4mynzxwZfd37lKN0t7lWnlI/dpTtSTG9Fx6OwvKK64eI+czQHv92OsqDSzIMuvS2b3K0zB0hbTFNnO3sVMnHLHdZ71Oux3YV3dN+zPHRXk6HeyvcHvKjeC+kk21SZX+XYzpkWdcTabtTurkC7WRSw02sz+mI6Tb7jbiNMYE8XfH2GFbxt1YvZ9TfMq4aPzDVRaTjdZswLBesmr0Fczti2mmHoWoJ6UTK8muzq709Xiv7se53p9xG61TjMfbeKm7dWdlkfiGLtpM9zGj97kbMI8334qJG/LlHe/wr6ZmKBDjJA0HS//AxZPvzdVwL9aO1FKmyHCfvWkxYbXYWGbv9gXL7aayytMdkynnIA1jn1LeHkoKXAfJn6bW/ELJ95IfyMHG2I9e4Lwu6k82p7J8Flx3jc8j85AWf31Xj11nlWnEk4v/Ktf4R2mOFfZ6WSy6H/lB+PphSCtKIMwXdyaSuOlrvjSGdQfVBfmQqrkd9QmVzi6qM7THscHmkbQZVNUYNzlRrgXcyH98469F1Q6W7VfbF9A1spT2sjvzPM5j/vLkkO24uuYCmj7RyPXnRXJdKj/CC+jaM1qL58zvzd5fMv2WwxnQ/tEPmbOu/5tIquJ1r23rWdPRNmOt5eUy5u4wb5P8erz4Vpzf/qAAAAGV0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1uPjE8L21uPjxtbj4yMDIzPC9tbj48L21mcmFjPjwvbWF0aD6OVPP4AAAAAElFTkSuQmCC" style="width: 40.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="1 over 2023"> D. 2021 2023 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAP4AAADlCAYAAABzh0oJAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAAE+ZJREFUeNrtnQ+EV0v/x8fKylqRrCRXrJWVJHI9kitLkuRaS5Jkrci6kiRyPdbKilwrSSIrWY8sSZL8RB5JrmtJkiSRJFeuSJK1EvubaWefzn73nDNz/syc2XNeLz4suzt/zmfeZ2Y+M2dGCADIwmppY9Ku8Cj8sk3acWnXpT2Q9lHajLSv0malfZH2WtotaePS+qW1B1yfTZH6PJb2Sdfjq67XP7ouf0jbJa0Nf1TCKmmjuj5z0j4jRfesl3ZG2jv90LPaV93wdgbUiE5Le5mjLh+knZW2Dn94oVPaiH4hR+uA8B0LZFw3lLmS7E9pWyus0+mYRhQ19bv7uvefTfm7Gd0g2/CHEzqk/VuPYOLKjfAdsbNAj2Kyb3rY5pON0p4mlOe9tFPS1sb83xYttqSXwBNp3fijNFZqX3wwlBnhO2BIN4Y5x3ZHO9o1e3RDSSrDaos0lLinE9JQvdIv+KMQKu5wUr+EbcqK8EvmNw8NLGr3pK1wWJ8DKaKZzNEb3UsZ+vfhj8yovE5kEDzCd8CvnhtZXgHa0p+S58MCwaZnKY1xG/6wQsVGjhWYviD8kuhJGQ6/EvOR7H49D25rGaKpJbEBaRelvcnpyKGS67Nd98JxeaklofUF0u5NCbD9La0Lf6QKflja20h84ZG0CR1L+RPh+yVu/vpczK9d5wlE/ZWxoal58pqS6tJlGDqeLiGPMcNwGX/E80Knr1ZNjie8JK8ifD8MxzzYi6L4UtVwSq8bZ+Ml1eduSh7vSwpgqSF/2rLgUfwRy6gekaSxFuG7R62Xti6djJU85P5o2dBmtKCKcNCQR5nLVucc9Jh180fRkQHCd8TvLQ90ykEefcJ+OepIgXxWGoJF3wrO7VvZYKjLlYb7owi3Eb472lqE8sbhG37UsqHdLPEl1mr/dVCvh4YXzcYG+6MItxC+O1qXi3Y7zEtFm986nLup9eB/DGkPO6jXMUOeEw31B8IPmOjDve0hv5OWvUyer8eGLNJd76BOPcL8QczaBvoD4QfKCvFjLVoNSXs95NllObfMswPukSHN1w7rZeo5RxroD4QfKNFdbZMe8522aGh7M6b5k6h2N9p1Q96vGuYPhB8w5yMPsddjvlcdNLRjFmkOOqzTUYv8f26QPxB+wCxEo+95ztdGJHsypnnHIs0dDuvUZ5H/WIP8gfAD5pqe9+72nO9+i4a2OUN6aglsVpi/N3d5YEa7RZ0eN8QfCB+Mc9kyRLrdouH+7aFenyzq1dkAfyB8yNXQXmRMz+Z79Tse6nXXohy/NsAfCB9iGRDlRt+vizC+L/9PCfP8OvgD4UMshw0OPZAxPZvPTX2cJ3fOohy3GuAPhA+xpH3HrjawZP1kdtZCcIcCEJCydw3wB8KHWKZSnHk9Y1odwm7LqY+59YCwO822rcb+QPiQSNp31lkveNhpKXwf69B7LcvSW2N/IHyIpTPFkU9ypNdvKbZfPNQtpJdQVf5A+JB5ONyfI71DlmLzsX6+yrIs+2vsD4QPsVxLcOJ0zvSOiHA+K11pWZbBGvsD4cMSVojk46J/zpnmeUux+QiotVuWZazG/kD4sITBBAdeLZDmhKXYfGFTlss19gfChyXEbbRRR2WtaZjwJ2rsD4QPi9iR4Lx9BdNF+GH5A+HDIuKuRbpSQroIPyx/IHz4H3Fr7WqNuIxI+xWEH5Q/ED58R22pbb20Ud0Ss6Gk9C8tQ+FfqrE/ED58Z1ws3ate5omtR5eh8Edr7A+ED7EBpLKvYzoswtnAY7uOP1hjfyD8hrNaLD1r/oyDfAYsxdbhaRgd6pZdX/5A+A2n9cJDVwGtPZZi2+ihzl0i3I90fPkD4TeYkRYH3XDck9mIzcfJtX2WZemusT8QfkPZJ/wfcmlzBdS+CuoewkEcVfgD4TeMbWLxRx/qYogVHvJ9biE4H+fG2ZxP/7YB/kD4DUKtA7+POEVdYOnrrLYpC8H95qEcNp8I32yAPxB+Q1BBrdcRh6iPP3xeHDEqwtgtZ7N9+EwD/IHwG4AKrj2NOEP97PvrLpu59VQADdVHrCEEfyD8mqN6kejHHi91b1NFOUyC83F+3GNhDux1NMAfCL/GqF1q98XioNW6CsvzzNBIZj2UYbbCl09o/kD4NUQtR0WvpVYXUv5UcZlsjuByuX7ebZH/uQb5A+HXkGgUXZ3YsjGAMtkcbT3gMH+bpbztDfIHwq8Z0cj1R2lbAhqFfDA0lHGH+V8Q1VzTHao/EH6NGG956P/ylK+aqx4W5h1vFw0N5aHDMv5VwUsndH8g/BoQXSufEX5uplnghs53m+HvtgpzVN3F57mdwrxteFMD/YHwlzknxOLbU3d7zHth7vzM8u+fGBqLi9thDhjyfNRgfyD8ZcqQ8H/r7ALdet6q8j1u+T+DhsYyWUEDHWiwPxD+MqT1kIuDHvOObjtVvdpqy/9T8853KY1lpuTh/hpdvqT8XjbcHwh/mbG3Zd561GPeW8TiveZZt9sOGxrMcIllPWXI6yD+QPjLhT7dMy484JOO81O9dI+eK98WSwNlu3Kk99RDL6w+cX2bks80/ijEHYTvj+0i+SLFKuxNznpsFemR9iHHvb0aDm/CH4V4ifD9Dek+BtTIlI0UqM+JlHSL3hG3ziDIE/ijEB3CvETq+zSjWtKjxTAXmBW96OFaStp5j6FSje1BSrpX8UdhjliWpw/p5me9mN9SGloju19S/W6k5JHnvri0E39u4o/CdLYEE0MoU+3oyvCQfVuZ5+RdNIjVZnlqrZg/t87l1VhN8UfaM36YsVyXGPJnQ81xnwXayD46cKZaWvuUkJ/6wOd3Ef85q9q4Mpryv2qufwh/5Ea9dPdpAX8pEHRUPlK7GNuRdvo8dTrQRqbsgqN6q6DcpEW0+IE2U0R9Sg/N8Yc96iqv9/plMuuovLM6fZXPfuT+g/aAG5myzY7r3yvtssi3VDajYwOb8Ucudnku+2HkDnE9rRoenhXzO8Ve6eHmrLYves6tfndO/y3zSQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIZA7DsKAN4WMYwkf4GIbwET6GIXyEj2EIH+FjGMIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZrBN2nFp16U9kPZR2oy0r9JmpX2R9lraLWnj0vqltQdcn02R+jyW9knX46uu1z+6Ln9I2yWtDX84YYW0ffo5q7K+0WWP+uK9tNvSLi2DdlUL1ks7I+2dtLkc9lU7c2cg9Vkl7bS0lznq8kHaWWnr8EdpL94JLfA89ZiUtgWJli+Qcf2A50qyP6VtrbBOp3WvnlQ+9bv7uvdPa4yqBxrxPAKokz/Uy2uqxHpck7YGyRZnZ4EexWTfpI16rs9GaU8TyqOGkKekrY35vy1abEkvgSfSuvFHJvoNL9+89k5PfSAnQ7oxzDm2O9JWeqjPHmmfU8qw2iINJe7phDTUvPoX/GHF747roPy8HQln5zcPDSxq93RgxxUHUkQzmTGtlbq8SUP/PvyRyhlPdVAv4g1I2Z5fPTeyvALMMqRMyvNhzjQ7pT1L6W224Y9MLzD1Ur6rf6966mikXv3cq1/eqkxfMtRhGjnb0ZMyHH4l5iPZ/Xoe3NbiHBWZHZB2Ucwvw+RpbEMl12e77oXj8vqig0t56U0JsP0trQt/LGJHguDHM/qhQ8cibFcADiBrM3Hz1+difu06TyDqrxzDs7Kisl06YJeU1+kS8hgzDJfxx48R0tuY3ri3QJpbDf5dsMfIOp3hmId2URRfqhpO6XXjbLyk+txNyeN9SQEs1aDTItNH8cd3LrakOSHKWQLdZDn070HeycOnDy0Pa6zkIfdHy4Y2owVVhIOGPMpctjrnoMeskz82OayH4pRFHQ4h8Xhal1emHOTRJ+yXo44UyEf15Glr3d8Kzu1b2WCoy5WG++NWJJ1LDurRLsz7ASaQ+FLaWoTypoQeN4lRy4Z2s8SXWKv910G9HhpeNBsb6o+NkTTuO2zDk4byX0fmS2ldLtrtMK/2mCBP0pJYHtTa8z+GtIcd1OtYiT1OnfxxXvxY5XC5lfawofxTyDx9KHbbQ34nLXuZPF9dDVmku95BnXqE+UOStQ3zR1skTrHHcR320eNn7yG/RoakvR7y7LKcW+bZAffIkOZrh/Uy9ZwjDfPHghhveKjDLkPZ/0Dqi4nuapv0mO+0RUPbmzHNn0R1uwOF7lXS8n7VMH+ouITaQLQuAOEPIPX4Odicp95lgasOGtoxizQHHdbpqEX+PzfIHz7ZZ5hmrUbqi1mIRt/znK+NSLLOC+9YpLnDYZ36LPIfa5A/fJIW3LuBzJdyTc97d3vOd79FQ9ucMZBk2rv9Tbg9MKNdFN8+Whd/+OZySrk5mSfQ2EIZIt1u0XD/9lCvTxb16myAP3yTdHwaG3eWWUN7kTE9m+/V73io112LcvzaAH/4ZJtIDqZ2IrWwGBDlRt+vi2oj+gv8p4R5fh384ZM436tNXN3IbHkFY/J8Q23zuamP8+TOWZTjVgP8UWVvr0S/FYmFSdp37Gr5JesnszaHMhwKQEALh0HW3R8+6IyZ26vhPZ/gBkzakcpZt1d2CLstpz7m1gMW5QgxUFamP3xxN6aczOkD50VKQ8t6wcNOS+H7WIfea1mW3hr7wzVq9HFbLF6t2Y+kwqczpZE9yZFev6XYfvFQt5BeQlX5wyVqW/Z0zNTpNL19+KQNh/tzpHfIUmw+GsYqy7Lsr7E/XKGWbD+L9NOO1AuAu/QC5Zoo9yjkI8LdZ755hqE2ZRmssT/KRu3DfybszwhUB5fsRmZhsSLlrf1zzjTPWzYIHwG1dsuyjNXYH2WVS73Qn4r89wJM0PuHw2CCk64WSHPCsiH4wqYsl2vsjyKodfkLwv4gUJvLQLuQXfXEbbRRGy7WNEz4EzX2R97p2quSxN5qatTAZ7kVsiPBMfsKpovww/JHHq7rKYc6I3/WgfhvI7/q+FOUc/Q0wg/bH2XGS9QpvWpvhNoRqb4XeFNA/IeRoH/i1tqflBR8uYLwg/KHjzjAeZG+tOfy9iSwpCPmTa1OXy3rCuNLy1D4l2rsD1+oPRPq0tBvGcR/Ejn6Y1ws3ate5h3yR5eh8Edr7A/fqJOBXls+9xfIsboA0pGS8zgswtnAY7uOP1hjf1SBWoWwXfPfjCzdopZQWs+aP+MgnwFLh3d4GkaHumXXlz+qYq2wuzab4b5jbgs/Aa09lmLb6KHOXSLcj3R8+aNKdlk8e07ddciIx4e92lJsPvZv91mWpbvG/qga0zHrz5GnG1ovN/BxyKVNZHdfBXUP4SCOKvwRWlwparNItHzUGmt0fVVdDLHCQ77PLQTn49w4m/Pp3zbAH1Vj2ujThlTLY0NLcEVdYOlrw8SUheB+81AOm0+EbzbAH1VjuhKMr/ZKQgW1omup6uMPnyeijIowdsvZbB8+0wB/VM0hhO8eFVyLrqGqn31/3WUzt57yUI5bAcQaQvBH1ZhWehjqF0T1ItGPPV6Kar5/7rQQnI/z4x4Lc2CvowH+qJr1guCeM9Rw6b5YHLRaV2F5TMcz+XD4bIUvn9D8UXWHxHKeA9RQKbpeqo44/qniMtkcweVy/bzbIv9zDfJHlXRUPOWrLdEoujqxZWMAZbI52nrAYf42S3nbG+SPUIf6bNnNSTRyrc5GC+X+cdXrfTAIb9xh/hdENdd0h+qPKkm72ORfPJ7sRD/p/OzxIaq56mFhjsZeNIjvocMy/lXBSyd0f1RF0heb75BwdqJr5TPCz800C9zQ+W4z/N1WYY6qu1jD7RTmbcObGuiPqki6rvwsMs7GCbH49lSfFxYszJ2fWf79E4MAXdwOc8CQ56MG+6MK3ie89DcgZXuGhP9bZxfoFj/OWD9u+T+DBhFOOiinaePOQIP94ZukT3MnkLI9rYdcHPSYd3TbqerVbM9Gb9NzuSQRzpQ83F+jy5eU38uG+8M3D2J88Fk0d09DZva2zFuPesx7i1i81zzr2uuwoQceLrGspwx5HcQf3kjaqnsMOdvRp3tGX2ufqpfu0XPl22JpoGxXjvSeeuiF1Seub1PymcYf34OOauOSOgZdRdvXOyrz6gRf3EXOdmwX2c8sd2lvctZjq0iPtA857u3VcHhTg/2hXoo3E4Jst0T5qxx3E8q6BknbDek+BtTIlI0UqM+JlHSL3hG3ziDIEw33x4gwL63+UVK8ZVLEb5jqRtJmerQY5gKzoksw11LSznsMVVtCEKnM22aXuz9eCPuz7nfmfEarRPwZe68ES3dWrNdvyNAa2f2S6ncjJY8898WlnfhzE398J+tIRQk4y4YgFX94l/D8uR3XgtbTWkKyMs/Ju2gQq01jUWe33xNur8aqiz9u5cxDbcA6LeY3JUWnAepnFbUfS3g+6kV5EDnboea4zwJtZB9F+XvBVcP4lJCf+sDndxH/OauaK46m/K+a6x/CH4vY46lcajr0b+HnwpRaoJw4HWgjU3bBUb3XJQSDWoX8QJspoj4lylmiqqM/RhyWR/lmUDTj1OBSaQ+4kfm446xX2mWRb6lsRscGNuMPq57/SQn5f9ZTsiN6ygVQuKdV88mzel6qIsJfxPwxWrP659f6d+f033JYY74X7bAebf2fnlpFn/PCs36vA31Tej6vtin31PGB/D/3Dmve81Vs+AAAAGh0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1uPjIwMjE8L21uPjxtbj4yMDIzPC9tbj48L21mcmFjPjwvbWF0aD6S7JMvAAAAAElFTkSuQmCC" style="width: 40.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="2021 over 2023">

Giá trị của biểu thức: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mn>1</mn><mo>.</mo><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>5</mn><mo>.</mo><mn>7</mn></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>7</mn><mo>.</mo><mn>9</mn></mrow></mfrac><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>+</mo><mfrac><mn>1</mn><mrow><mn>2021</mn><mo>.</mo><mn>2023</mn></mrow></mfrac></math>

A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1011</mn><mn>2023</mn></mfrac></math>

B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2022</mn><mn>2023</mn></mfrac></math>

C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2023</mn></mfrac></math>

D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2021</mn><mn>2023</mn></mfrac></math>

  1. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1011</mn><mn>2023</mn></mfrac></math>

  2. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2022</mn><mn>2023</mn></mfrac></math>

  3. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2023</mn></mfrac></math>

  4. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2021</mn><mn>2023</mn></mfrac></math>

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Tìm số nguyên x biết: x ( x − 5 ) &gt; 0

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG