Square root
VBT
Calculator
magnet

Câu hỏi

Giá trị của biểu thức: 1 1 . 2 + 1 2 . 3 + 1 3 . 4 + 1 4 . 5 + . . . + 1 2018 . 2019 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABgAAAAC9CAYAAAB1arb6AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAB0l0wnuwAAIlNJREFUeNrt3Q/kXeUfB/DHzCQzkslkIpPJz8QkM5ORZCYTmZmZjMwkk8hkJj8xyUwyJplJRmaSJJLMJJGZJIn8TCYzJjNfM6Pfedzz1el2zrn3fu/5/329ePz4Vffc+3w/73Oe5zn/QqAK9+kCkF9AfgH5BQCMMYDhWJe000m7l7TtugPkF5BfQH4BAGMMoN9WJ+1Y0haS9lfantEtIL+A/ALyCwAYYwD9dTBpf2R2KnYuIL+A/ALyCwAYYwA9tjNpP+fsVOxcQH4B+QXkFwAwxgB6aFPSvinZqdi5gPwC8gvILwBgjAH0yCNJ+2iKnYqdC8gvIL+A/AIAxhhAD6xJ2ttJu5u0S0k7mbQzSbtj5wLyC8gvIL8AgDEG0E+vJe1m0j5O2saxf7bXzgXkF5BfQH4BAGMMoJ8uJO3xkn++YOcC8gvILyC/AIAxBjA8X9q5gPwC8gvILwBgjAEMz+d2LiC/gPwC8gsAGGMAdi6A/ALyC/IrvwCAMQZg5wLILyC/IL8AAMYYgJ0LIL8gv/IL8gsAGGMYYwB2LiC/8gvyC8gvAGCMAWDnAvILyC8gvwCAMQZg52LnAvILyC8gvwCAMQZg5wLILyC/IL8AAMYYgJ0LIL8gv/IL8gsAYIwB2LkA8gvyC8gvAGCMAWDnAvIrvyC/gPwCAMYYgJ2LnQvILyC/gPwCAMYYgJ0LIL+A/IL8yi8AYIwB2LkA8gvIL8gvAIAxBmDnAsgvyK/uAfkFAIwxjDEAOxeQX/kF+QXkFwAwxgCwcwH5BeQXkF8AwBgDsHOxcwH5BeQXkF8AwBgDsHMB5BeQX5BfAABjDMDOBZBfkF/5BfkFADDGAOxcAPkF+QXkFwAwxgCwcwH5lV+QX0B+AQBjDMDOxc4F5BeQX0B+AQBjDMDOBZBfQH5BfuUXADDGAOxcAPkF5BfkFwDAGAOwcwHkF+QXkF8AwBjDGAOwcwH5lV+QX0B+AQBjDAA7F5BfQH4B+QUAjDEAOxc7F5BfQH4B+QUAjDEAOxdAfgH5BfkFADDGAOxcAPkF+ZVfkF8AAGMMwM4FkF+QX0B+AQBjDAA7F5Bf3QPyC8gvAGCMAdi52LmA/ALyC8gvAGCMAdi5APILyC/Ir/wCAMYYgJ0LIL+A/IL8AgAYYwB2LoD8gvwC8gsAGGMYYwDz+8LOBeQXkF9AfgEAYwxgeP4s2bk8q3tAfgH5BeQXADDGAPpnQ8mOJbZ9ugjkF5BfQH4BAGMMoH9OT9i5fKuLQH4B+QXkFwAwxgD65c0JO5bFdiJpK3QXyC8gvyC/8gsAGGMA3bIqaZvD6FlhL6Q7i9+m3LEstt+Tdippu5P2XNKeTtrDuhbkF5BfkF/5BQCMMYD27JtxRzJtu6VrQX4B+QX5lV8AwBgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2nAyae+Ptc26BeQXkF9AflG3AAD0252k/TXWdusWkF9AfgH5Rd0CAGAgCMgvIL8gv6BuAQAwEATkF+RXfkF+Qd0CAGAgCMgvyC8gv6BuAQAwEAT5BeQXkF9QtwAAGAiC/ALyC8gv6hYAAANBQH4B+QX5lV/ULQAABoKA/ALyC/IL6hYAAANBQH5BfgH5BXULAICBICC/IL+A/IK6BQDAQBDkF5BfQH5Rt+oWAMBAEJBfQH4B+UXdAgBgIAjILyC/IL+gbgEAMBAE5BfkV35BfkHdAgBgIAjIL8gvIL+gbgEAMBAE+QXkF5BfULcAABgIgvwC8gvIL+oWAAADQUB+AfkF+ZVf1C0ADNhfmjZFMxCUX01+5Vd+NfmVX/nV5BfUreOOpmma1rPxpM7UTGAMBDX5lV/51eRXfuVXk18nAFC3jjuapmmaEwCagjMQNBDU5Fd+5VeTX/nVNPkFdeu4o2mapjkBoCm4fKt73h/vGwhq8iu/8qvJr/xqmvz2Lr80S9067miapmlOAGgmMAaC8qvJr/xqmvzKrya/8osTAOrWcUfTNE2rcTwJBoImMCC/IL/yC/Irv6hbdQsAYCAI8iu/IL/yC/Irv6hbAAAMBEF+5RfkV35BflG36hYAgKW6kzNo261bQH4B+QXkF3ULAICBICC/gPyC/IK6BQDAQBCQX5Bf+QX5BXULAICBICC/IL+A/IK6BQDAQBDkF5BfQH5B3QIAYCAI8gvILyC/qFsAAAwEAfkF5BfkV35RtwAAGAgC8gvIL8gvqFsAAAwEAfkF+QXkF9QtAAAGgoD8gvwC8gvqFgAAA0GQX0B+AfmdyyNJO5O0W0m7m7RLSXvOdtUtAAAGgoD8AvIL8ttfjyftRs5vj+2A7apbAAAMBAH5BeQX5Leffgr5i+Gx3Uvao7arbgEAMBAE5BeQX5DfftkcihfDF9sx21W3AAAYCALyC8gvyG+/7AqTF8TP2q66BQDAQBCQX0B+QX77ZUuYvCB+wnbVLQAABoKA/ALyC/LbP7+G8gXxJ2xX3QIAYCAIyC8gvyC//fNU0m6F/MXwI7arbgEAMBAE5BeQX5Df/nosaefDaGF8IWmXkva87apbAAAMBAH5BeQX5BfULQAADbqVDgaz7UXdAvILyC8gv6hbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKp3ny4AADpoddKuJu2vtN3RJajRQfk8adt1AwANsf4FcrDsrEva6aTdW4YD7/VJezlpHyXth6T9mU7Y7iZtIWl/JO3TpL2TtGeStkK5oEY7Y0X6m99NFw5upn2zuPAS++qLpJ2QX9Ro750Nfy+sWlxFjQ5nH/lkuh+MY5o1ugQw7+vFvG9r0v6btAvp91rIfM/fk3Y+aW8kbUMH+7kr618b0r93HD98lZkn3Ev/91bSLibtTNJ2J+1+OZCDgeVgZdJ2pd/j68zf+l7ah/9L+/D1pD3uEDGfeKXSsbRjFycrzyyT3x5/5zdjE7VpWgz10bTvQI22t++Kv/HajH0TD8KHg0VW1Gjf7M7pK4urqNH2PJpOzv6qsL2rjADzvk7P+1Yl7bUwWpSb5XvG37a5I+Pztte/4hj/YBgtbM/6944Ly6eS9rAcyEHPc7AuHffdmrEPL6djbmZ0MA3KeIcO/QTAQ0n7rIJJSuy7F5QRarSVgcG1OfvmSrp4AWq0++Ik52ZwAgA12iXvh2oX/+PJhEeUEmDe19l5X7xCOG/BM16hHteWdiZtR9L2hNEV63dz/t0PQnsXqXVh/WtXTh/GfopXsx9O//mOtMVFzuNJ+zHnO99O2ityIAc9zcHhtIbH575vZjIQ+/FA0j4p6MN4IsAdAVOIHflzSWiGfAIgnm27XvGE5R0lhRptzBsV9kvs5yeVHGq084quBHICADXajnUFk7F52ifKCDDv6+y872jIX2x9ZsKx4vOc/+6n9J81pQvrX/ExJ2dC/p1va6f47+OC6NWc//6sHMhBj3KwJqcv4gU0k67oj/10Luc7xzsY9jmU5NsUprudZqgnAOKO5c+KdyyL7ZTyQo3W7lgN/XK94QMvw6ZGq/d6Sd84AYAabcc7NezrnOwEzPu6Oe/Lu+Mr3uk67V1bHxb893U/xqYr61/xBatf54wPds74OQ8k7buc739ODuSgBzmI9Xt5bJt/pt9vWq8VfPcjDil/iwX50QxBGeIJgIdD9WcVx9thpYYarc3+nN8Tr4I4ng6esrfQxWfybU0PED9O0S+fKz/UaCf9J5RfZewEAGq0efHqrdsVj0++VUqAeV8n5315J3zjI9uemvFz8hYgfw2jRcGqdW3963zONl9e4metLaid1+RADjqcg3gSLO/k1VKu3j9R8P0PLfcDSxygv51OTC4l7WQY3XZ0Jyy/EwAXc37nD+mOcmtakItWphO6+Myuc2H6W5zjDsAzqFCj1ds0tt+KA4X4PLhpX5Ia++nmhL7ZogRRo50S93m/TOgTJwBQo807Gqp97n88CbpZOQHmfZ2b9+0P1b2w/dGQvw5V5UUuXVz/yuvD72v4zPgb18uBHHQ0Bx/nbO/HJX5WnF//VPAbti/Xg8pr6WJC7OiNY/9sb1heJwAOhn9fkfncDP/9g2m4p32rN6jR6qwI/7xCOt4+uXYJn7MplC+wfqgMUaOdkr3N9tfgBABqtAvi3UvZq/UOKQOAQc774hrSQsh/+eyaJX7m8YLvWcXLbLu4/hXnCL/nbO9gTZ97Qg7koIM52FewvZfn+MxnQ/FLoB9cjgeWC6H8TNdCWB4nAOIjF26Ef74peu0SP2t7mHyFZmyuYkKNVueVzPf+aM7P2lPSJ38oRdRoZzyX+d2/lPSLEwCo0WYdHtsnrVIKAIOc9/0QqrvqedFDIf/K7Vth/vdddXH9a1fB9jZW8Nl5LxS+Lgdy0LEcPDD2t87emTHvY48uF/yODxxq/u3LsDxOALyZ+V2/z7FjWbQlTL515qTyQo1WIt7qdy39zp9U9Jk/l/SLhQzUaPuyzzaNg8NNJRMoJwBQo82JVxxezfy2N5QCwCDnfftLPm/DnN/5fGjnTtc21r/OFGxvRQWfXXQ192NyIAcdysF/C7Z1sYLPfqXkt2wK/MPnYfgnAMZvjdpa0ee+NmHn8qvyQo1W4uXw9/Ph7qvoM4+X9MsaJYkabd2nmd97JP3/nABAjbYvOxGe59Z3APO+7s774vf8X8FnXa7g+xYdL+MJ9Y019n8b619XCrZXhZ0Fn71TDuSgIzmIF67dKtjW8Qo+/6GS3/KpQ077O8CmZW/PPl3xZ0966ZsriVGj8/shXTyp8kqGF0v6ZLWSRI22Kvs80ItTDJKdAECNNid7d9LbSgFgkPO+3SWfc7SC7xrvni16geupGvu/jfWvosetVHHR0I6Cz94lB3LQkRzsK9lWVXV6JdR3l8agLIcTAGfD31cpVf0iiMMTdi5PKjHU6FweC/U8YmBHSZ+sUJKo0dZsyEyU/kza+sw/cwIANdqu5zO/KU5YH1IOAIOc931d8jnbKvq+RY8hiceXui52aWP9q+ixNDsq+Oy+3gEgB8snB+dLtlXVxXOnS7bxlsNOuzvApt2s8Q+/YcLO5Tklhhqdy6p0QaXqBc+ixdVflCNqtDWxD7Mvcto79s+dAECNtiv7ErzTygFgkPO+dSWfcbfCMe+xku28XFP/d+kOgCoef7Kn4LOfkgM56EgOiur/XoV9uLfk91jfaXkH2KQn0t8Si+7BmrZxOzgBgBrtm101DsRAjS7N25nfeW6GPnECADVav205E7f4LN2Pw+gFbNuCO+gAhjDvO1DyGZcaGOvG9mVN/dPG+tfPBdv7vYLj5nuh3sVpOZCDeWws2c7tCrfzdCg/6fOow097O8AmLT5v6r0at/FV8Agg1GjfvBryz0I7OKBG27FtbEK0ZoYBshMAqNH6fTNhcrW46BAnq2+kE3wA+jfvK3tkx5kKv+vaku3EMW8d76prY/3rXMk2X5/zs3/M+cyv5EAOOpKDspMbNyvczqoJ49N9Dj/t7QCb9J8wejnH4zVu40LwEmDUaN98ktMX7ylH1GgrHkja1TD5mZpOAKBG27E5TF78L7q68URwMgCgT/O+myWfcaji73unZFvP19A/bax/vVyyzVth6Rf3PFHwmXvkQA46koOXSrZzo8E+PBNobQc4NEU7l2u6BjXaSfeH0VWK2b6IjzFYrVRQo634OEz3iCMnAFCj7fg0LO0EQLZ9V9MkFoDq5n2PTNiXV70f/75kW+/U0D9trH+tzRnXZ9tPYXShwaw+y/ms70VADjqUgxOhmTsAQig/YfOVSLS3AxyaoknRx7oGNdpJb4z1w/VQ3RvoQY3OJvvysitJW1ny7zoBgBpt3mNh/sX/bPsmnVgD0L1534sT9uFV39FV9piVL2ron7bWv94Pk0+Sz3ISIO/lv9cdX+WgYzk4HZp5B0D0ZSi/04bgBEAVvgv9vPUKNboca3Rd+OfZ4T/C6DZEUKPNW5/5rXGBdNJJDicAUKPNOxWqPQGwOBHbqbwAOjfvOzZh/13142M/DM0u2rW1/rU2lF+hvHgnwPopPmtLGL1A96+x+cIm5S8HHctB2QmAexX/ps8m/M0ITgBU4U7BRO8+XYMa7ZR4oL4U/nmlxTrlgRptzcXMb31lin/fCQDUaPNeT+cLsX2TLmDcC9WcCHhFiQF0at73cSh/0XvV3gzNLrS2uf71/BTHxZuh/PEyz4bRgvBf5rRy0IMcHJ3wux6ucFsXJmzL+mxwAmBe6wr67rSuQY12yn2Z/V08+B9RGqjRVh0Js9/a6gQAarQbViRtQ9JeSNrJpP0QnAQAGMK8r2x96M8avvP+CceI7RVvr+31r0kLvYst3n03/u6v18O/r6B+Kz0mIwddzMG+Cb+ryrtBP5mwLe97DE4AzKvo2WCP6xrUaGc8MrY4Ea+aiC/TeUh5oEZb8UT4+wri6zP8TicAUKPdFa/iOpy0X8LsJwF2KTmATsz7rpbsq683+J3rOj50Yf3rxJTHxvi3eD79+10a+2eXg8fYykH3c7Bjwu+q8oK3cxO2tVE0nACYV96zus7rFtRoJ8SrIeLLVG+XLMi8HZwNRo02Kd7pkF0gnOXKDycAUKP98Fwofv5u0YvgXDwD0P68byE0+zLSSY/F2Vvx9rqy/vXuDMfI7GP3roXRVdXIQR9ysGrC7/qqwm1NOgHwoGg4ATDvws2NnJ3zBl2DGm3VyqQdStr/phxUXbO/Q402JvsyqFkfRWZxFTXaL3vS/dc0+7mfQ/XPuAUw75tN2TtePq/he0+6QvhAxdvr0vrXpBfNjrcrjpNy0MMcXA7l71Oo6kK3SScAXPQZnACYR94k77huQY225rH0990IS3sO8VElgxqt1c7Mb/k1afdXsE9zAgA12m0PhPKX6TkOA3Rn3le2j/60hu89aeHz/Yq317X1rwMzzgW+T+cTyEFfcjDpRcCHKtrOpBMAK8XDCYB5XBzrr9+CN0ujRtuwO5SfWZ6lOYmHGq3H2jB6ZubilTibKxrUOwGAGu2Hg1Ps3+L7T1yhBdDOvG/lhH30hRq+9zNheZ8AiJ5N2s0Z5gJxTHFIyctBT3KwPpTfUREvuKniRdYXQvljtAhOACzVUzn9tU23oEZbEQdA59Kd/mdh9Fy+mxMONGXtBeWDGq11vPHmEj/D4ipqtN92TbF/e1k3AbQy75v0vO42Fj5PV7y9rq5/bV3CfCBeib5G+ctBD3JwJtR7F0A8gfBHaPbFzb2f7DgBML3xM4vHdAlqtHPigeDxdDHhyzD9Yms8eLgCETVanUOZ7/7tHJ9jcRU12n+T7gT4XBcBtDLvWxFc+dyGuN3rYWkXBcWrpx8VATnoeA4eDqO7PMvuAJ3nPZWvt/A36yUnAGa3J9T35mpQo/WJt5+dDNMtsnoOMWq0GhuTtpAZ3D0yx2dZXEWNDsMnofyFcCt0EUAr8z4Ln806Ef59EjxeGDTLI4Hiv7tNDuSg4znYO+E3xsc1rV3C5+6fIiOnA53cAXZd9vmwi2dcH9AtqNFe2ZQeYMoOEtd0E2p0bnER70rmO++f8/MsrqJGh+HBUH4l2BO6CKCVed9CaPYOrUkvPz1c8fa6sv4V/3bjV6xnFynXhdFjQ6c9CbAQlu/6nRz0JwcnJvzOq0nbMuVnxX/vyynzscfhols7wL74NNM/N4LbrVCjfRUHBVcmHCi26ibU6FyOZ77ruQo+z+IqanQ43i7Zt+3SPQCtzPvKrjxvY+Fzb8Xb68L6V3z859Uw3RXe+8L0dwMsLNP5qxz0KwcnpqjlC+lYMPvI2zVpP72VtB/H6j7eNXO35PM2Olx0ZwfYF69m+uZ2sDiIGu279RMO7h4DhBpduqcz3/P3MLrid14WV1Gjw9q/Fe3b9usegFbmfV+X7Jt/qeF3THo5fNUnhNte/9qSM7af9EiZh8I/F7nL2vX0+CoHctDlHMQTW7fC0t57Mf6op42h/BFKXgDcoT98X8QdyeIZpfi/z+oS1OgglL2M8JzuQY0uSbx7IXtl0/aaB8cWV1Gj/fR9QX8d0DUArcz7yt7RcrOG37InlC/wba94e22uf20O/170jI+rWT3lfx+PjQthukVROZCDruZgUXzM1fuh/Mr9vBbflRdPmmXfe1F2V8GHDhnd+sN3XTyDmn2mmNuSUaPDEZ///HvBPvCi7kGNLsm5zHd8t8LPtbiKGh2WognbW7oGoJV536lQ/oiZqr0Uyhf7VlW8vbbWv9aN/d2WurAbTyJcC5MXSV+QAznoYA7yxBNgu5P2URhdGBLv5Lib6es4D47vw3gvreu8E2ZlmdjhsNHNP3wXxSvEfsr0yT5dghodnHcL9oE3dA1qdEn+6mBzYhQ12j27gzsAALo079s34Vi1ouLtnSzZ1q0afl9b61952720xM+KJxN+m/B3uiwHctDBHNRheyh//M+KwCD/8FW7L/zzzeyHlAtqdJB2huZu74PlUKMWV+k6NdoNz4VmXnYHYN43na0TjlVVP1/+49Dsy1bbWP/aFqo/2R1PAky6E2CzHMhBh3JQl3Mlv+XdwGD/8FVambQvM31xRKmgRgdrdXAHAGq0ShZX6To12g2b9QVAp+Z9cVv3QnOP0yhbj3qnht/XxvpX0Qt811VwDC37W70lB3LQoRzUYX3J3yn+/486fAzzD1/nTvq4MkGNDl7ey2e+0S2o0SWxuErXqdFueLCgL7YpUYDW5n3flRyr9lS8rZsl23q+ht/W9PrXyoIxfFWPdXkrNHvluBzIQZeUvfz3nEPHcP/wVcreQvK+EkGNLgu3HTRQo5WxuErXqdFu2BLyr9haqUQBWpv3vVNyrHqvwu2sKtnOvVD9i0+jpte/ninY1lcVff7qgjlCbH/KgRx0JAd1iHfQ3Cnptw0OH8P8w1fpg8zvP6s8UKPLRt7A6ahuQY12yq6C8cod5YEa7aW895v8pFsAWp33lb1U80JD26nrLtem17/2NNCPZ0PxIqgcyEEXclCHsyW/4YTDx3D/8FV5L/PbzysN1OiykvfsuO26BTXaKRZXUaPD8mpOX53ULQCtzvtWhNF7pvKOZ7cr3M4roXgtqq6Xuza9/vVSqP/xJHtKfpMcyEEXclC1LSXfP74ce7VDyDD/8FU5nvndX4R6bj1+WLmhRjtpXc7+72Z60Ac12h0WV1Gjw5L3YkTP/wfM+9qf970fiteJNlb0HT4JxVeuP1RT3za9/nUg1H8F+dYwzBMAcjCcHFTp/qT9GqxjL7s/fFWOZn7z10m7r4ZtPJl+/lNKDjXaOS8Et42hRvvA4ipqdDjiBG78xYi/6BbAvK8T877NoXid6GAF3yFexHIrNP/y2qbXv/YWbOv7CrexumAbt+RADjqSgyp9UPLd33IIGe4fvgqvZX7vt6GeW0XuTyc0nmmKGu2mD8O/z7Y/qvRQo51jcRU1OszxzWLbr1sA+8XOzPt+KDimfVHB93g6FK9DPV1jHze9/rW9gXFB0QmAr+RADjqSg6ocKPnenzqEDPcPX4WDmd96OWkP1LSdC+k2XlVuqNHOiQOKheD5w6jRPrC4ihodhjjxvjbWR5d1C2De16l5X9Gz5eOFKGvn/B6nCz77Ss393PT6V3xszd2C7W2qaBtFz0P/rxzIQUdyUIVnQ/478RbvElnlMNK/P/wjSTsTRrfBxB3lpaQ9V8N2srdi/VJBcIt29otvpo6/ZY1yY+A12lR+q3Qs/PulMQ8oP5ZhjfYhvxZX6bq2arRvx9/jOf3zmPIBzPs6N+/7qeC49sYc3yVe3HK74HN31tzXbax/fVywvaMVff7+gs9/omdjDDkYdg7msS0UPyrpy1DPI6IG6YsO/eEfD8Vv2T5Q0+Tsahi9XLEq8Rle/wmjM4nZF1N8qNQYeI3Wnd94++S+MHoWelWLnxvTRQcvjSEs8xpt6vhb5b7RCQC6fvxuqkbryu+OMLoCbfFqq+vppHnLnN8373b3PUoHcNzo5Lyv6BElv4elX3H7Zii+irdubax/PVmwvT9CNVct5y3mXuzZHEEOhp+DpYpX/hedKPko1PNy6MH6s+QP/2zD3+Wnku9S1fOO45nKuyXbqas9qdQYeI3Wld/70wFM9vNi/8Tb5R6e4/vGBdqfxz73kPJjmdZoE8ffqicHTgDQ9YWcpmq0jvxuDMW3Wcf22RL3b4/lLCS8rmwA875Oz/tOFXzOkSX85nhVd94a1M0wutK8bm2tf50N9by09PFQ79X/1ujkoE0HSsajbwRmsmFCIPY1+F02TxHQY3NuI16dudDCjuWKUmPgNVpnfo+WfGY8E3xwCZ/5YBi9UCj7Wd7RQVimNdrE8bcqTgDQdU3XaF35fWmKz70x4yQxLlKMP/f/sJIBzPs6P+9blTMuXTy2zfoc+08LvlcTj61rc/0rXtjza6h2wTU+9iTvBbVv9miOIAfLKwez1PYHBd/velo3zOj0hD/8tx2YMGXb2Tk+P96ufKuFHYurilkONVpnfs9N8dmX0gHKNOLte1fDP8+yP6/8mEPfa7Tu428T39UJAMIyrdG68rt/hjHEiTB6ju2kz8uOceKVZzuUC2De15t5X1zAzltsjo9AmfaOsBMF36mpx8C1vf61fmyMv9gW0uP5LOICad5jXE71aI4gB8szB5PE5/0XnSyLd6CuDczszRkG9SsaOghO812W4ol0AaWNHcvCFJMi6HuN1pnfYzP8lovpIsP6sc+IL/d5MYxeEDM+YHEAYV59r9E681s1JwDouqZrtK78PhL+/f6RshafYxxvgd84ttDxchhdZZf9d78J3XmsGIB53/Ti4ufnBceAsqvY452teS/CjYu/Oxvq966sfz2UtO8Ltv1BzhwhT3xG+8+h/jt2rdHJQZPi2POjUPyuhd0OH5PF21Q2p4X4QvqH/G3GgMTOPpV2eLwlJV6d+HAN3/XXCd9jKc8xixORGy3tWKo+A8swDaVG68jv4iDp+hJ+1530YDr+wpj4fMEPxxYpYN6BfN9rtK78Vs0JALqujRqtK7+7wmwnAbLPBM57XmtcrHhRiQDmfb2f9x0O+S/ljFcOx0dWxsXMHen60QcF/268KGbDMl3/igurRwuOsfH4GS8IOpIeh3ekLf6W40n7seD4urVHYww5kIOs+IjI0yH/PRDX0yzc5/AxnX01heZWDd/1qVB8C9CRJX7muRZ3LF1aNKG7hlKjdeR3UXxp4A9z/MZ4MInP2YvPNF6j5KhB32u0zvxWyQkAuq6NGq0zv3GSfj6UvxB40nwh3snkWa0Aw1qbWJe0kyF/UbOs/RBmf9zNLPq0/hX78J2w9MXwuNBc92NjrNHJQR05iHdDxLtEL5XUdnwB8EqHjeEvopxPC2shLQjP5wb5jeJZ7Hhr44UwuhrhVrqostjiM4V/Sf95PMv+UjpoWeFPQ0P6XKOOv+D4W2RtushwJmlfhdFt+wuZfdvtdAEj3hIfF/xfCaOrER1/AYYtLtDFhczTmePD4rEhHifi1emfJO214A7sIvFYGa+ufis9lv+cHlez/bh4jI3H4b2hniuxzRHkoC7xREm8E+G9pF0O+RfKxOf7H2q4tgEAAAAAgDnExwhlH3MVL4iL70OIj0qK75pwwQgAAAAAAPRQfLl1fA9UvFt+0Iv9/wfkHddtPTuxKwAAAel0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1uPjE8L21uPjxtcm93Pjxtbj4xPC9tbj48bW8+LjwvbW8+PG1uPjI8L21uPjwvbXJvdz48L21mcmFjPjxtbz4rPC9tbz48bWZyYWM+PG1uPjE8L21uPjxtcm93Pjxtbj4yPC9tbj48bW8+LjwvbW8+PG1uPjM8L21uPjwvbXJvdz48L21mcmFjPjxtbz4rPC9tbz48bWZyYWM+PG1uPjE8L21uPjxtcm93Pjxtbj4zPC9tbj48bW8+LjwvbW8+PG1uPjQ8L21uPjwvbXJvdz48L21mcmFjPjxtbz4rPC9tbz48bWZyYWM+PG1uPjE8L21uPjxtcm93Pjxtbj40PC9tbj48bW8+LjwvbW8+PG1uPjU8L21uPjwvbXJvdz48L21mcmFjPjxtbz4rPC9tbz48bW8+LjwvbW8+PG1vPi48L21vPjxtbz4uPC9tbz48bW8+KzwvbW8+PG1mcmFjPjxtbj4xPC9tbj48bXJvdz48bW4+MjAxODwvbW4+PG1vPi48L21vPjxtbj4yMDE5PC9tbj48L21yb3c+PC9tZnJhYz48L21hdGg+YkwZbQAAAABJRU5ErkJggg==" style="width: 302.67px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator 1 over denominator 1.2 end fraction plus fraction numerator 1 over denominator 2.3 end fraction plus fraction numerator 1 over denominator 3.4 end fraction plus fraction numerator 1 over denominator 4.5 end fraction plus... plus fraction numerator 1 over denominator 2018.2019 end fraction"> là A. 2018 2019 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAP4AAADoCAYAAADPGVnXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAAGF5JREFUeNrtnQ9kV90fx4/MzExkZpJHzGQmiUkmyZgkkxlJMjMj80hmIkkmE/OYJIlMksxIZiaJeWSSjGSSzEiSzIyZzHwl+t3Pb2dP33137zmfe+85557tvl98FNvOn3vO+/z5nH9CAOCGPYENBvYAnwIkoSmwy4GNBvYqsOXA1gL7GVghsNXAPgc2HthwYO2BlXucn8ai/LwLbEXm46fM16LMyz+BtQa2a5uV1+7ABmS5/A7sh8dp3RfY2cDuy28+L9NdKKpfK7KcxgLrD+wIJGm3QG4G9k1Wnrj2UxbkCY/EcDWwuQR5WQrsVmB7PS+zqsBuSKEUp9834dcGdi2w2YR1i+yLzOtuSNWcQIalcH8bsjeBHc4wT1dDxFBs9LMp2asUFL+3JiubbyOAysCuy5FYWLp/eCT4e5q6Rb39B1keb2Taf2vK7gpkm44TKXp4nf2Sw0+XHFD0KguywtSG/N0h2fhFNQLvA6vzoLwqZB6WNN/eB+H3RDS+1Ag8ktPDCsVIhqYDLxR5fLsNRmRe0i3F+duyTSoK2CSnFL3FpHR86SBxz0SEQb3r8YzKqlzOdReY3/xHxo3T04h0PU0gVho5flQ05gchZT5/OxB8sb0MrMxifs4pGrHHCSruS8XQv8VhOdE364sh+KyFTz3164g0XU4Z7lREuIuejMa854xj0ScVIJd2RZzTKSraB4WomiyXEfkULqWYhmUl/KgG86ahRiWq55+XPwcR1CuGw/Txbkkh1ZY4tGioSUtiHYHdFese1iQVsttwfpplLxzlNNqXIuwGhVPqe2A1lgTfG9jXIj8J9aAj0gfxxmPhX49Iy6zBOBoVI7vbkHc0YfNXakVbEzoG38YUPs2Tqw3lpUYzBL5qII5BzfTFNJ9k2O/k0DiscXnoofBpqB3lGO0wHNcDEe1MxpA/hN6Qj3VXpF+q6lX0umE2bCg/zxVxLBhyKNLwUbUseNFwGQ3IXk1FrYfCv6/wiZheCj2qyPcdyHwztO5bugQ0aHjIvcwU/pqB+dh5TRwmlxGHHI1gkowMfBB+maK3n7IU55KiwQdFXCv5QGMW4mgR/OXBnhTxVGicXr9Szu1L2a/JSxb74ic8Er7KufrEUpzjijjrIfc/DqNioXwR9jygA0zhPzPYiJXavxbyNa1paA44LtNxj4SvGhGNWIpT5ec4A8mvU7p8d9JiXOT9/2pxDkrDykVN2L0W8nVJE+dIjoU/lkGP/48iznOQ/NZKMuEgvn5mr5/kNF83I9x9FvJUL/QHlGpzKnyVk3XcUpy3FHGeh+TXe8ifRUPSBgdx1jDn+kl2wL3WhPnZYr50I5kbEH7oXgobPFDEeRay3+x4eeww3hmG8E/HDPMvkd3uQGJUE/d8ToU/qUmLjbP0qunFKch+fTfTxgdpcBjvQwvCv8QIs8tini4y4j+SQ+GPadJiY21dda6/ArL/441+6ThejkjitsyTjDCPWcxTCyP+wRwK/6bQ79sw6f/YrZhKzkLy6zyS896TjuM9yxBJnOOUtCRZEPrz/zYvzChn5OldDoXPOfRlcgrW7YmfBWh8CyZE2syoXN8d5GuFka+qnAmfGkTO7U2mvO3vIsIvCLcrKyCB8D/FDI9zf8Ckg3w9Z6TjTM6ETzxhfBfy8B+1OLpAb+8BHYaHfqMiW49+nAo+mEPhHxb805lJHaB0g1LUVu1XkJwfdGoqQNzdVZzjvy7u9xtipGM8h8InxgT/roC4ezhoWhh1yQfVDdy86wmqc+w0H4y75FJgVKgLHjRov2WvlEfh0/x6UfCPZ3Ov4ipT5Pe5wM07XqFq/UdjhlXJrEgu5tYdgne78K4cCl8I3pJnsdEWctWxZvpZ1AGp65CZf6jOi8d9cOMEsxK52LF1mpmWhpwKn+iJKX5ajWkLCYdWcsK2SX8SeFnHS6oUhfw+QXjtzArk4uprXxohn4VP3BDx72OkUeJeWX9ui/DlOvLjlENifqIaDrcnCO8Cs+K4mOvtZqblbM6Fn1T8q3IEELZUi/v0POdRRKHOWB46uugJKphp6YLw/0+/SHYbc/EI8Tgk5T9lIvr67qTzstvMSuLifbtyZloGIfz/6Ewh/DsCh262BV0RBfgwRZgjzEriCk5a7kP4m1A9b6YzOu58FNLym7CNNrS2W50z4Y9A+Ftoipi/c20A8vKTYxEF1pYyXAh/ZwifqBXxH2Ep3ZqLgzieEfa8k4mrpyH8nSP8NhFvd1/U3fnNkJsfhK21k0fWhKf9AYS/7YVP9eCOCN++nUT89HcXILtsoS21pY9o0ksn+w2Ff28bCv8ehP8fVA/CztDT8990I/JUit4f23YzZFhs3atu8g35i9tQ+AMQ/v+hm5+WQ3rrUr9Pj0ju9R+CBN0T5tDrMRwHdx3YxQYe7jo+NvCEX55Coo/azpym94fH3yF0MULpIYqbFuLpYBZ+paNpDbbsxh8FxnkyO2nv3wlJumHCkUPrFLPgXbxfVyNwSEdH1JPZcToFekNhOqbw6RDPQcjSLqUHMJ5aHllwCt7FTcLc8+Z1ORV+VE//NmF4AzHFj+u1LdIm3F9yyXmSqy2DvOMijj90K75HY4pwT8cc+vdAouZpKikEugetzEG8HxkF7uKVVM57AV8dpMM34dMIZ01En7M3Ue+4G3/mIVOz0HrsQtEHpgcsXZ2c4lzk+LeDdHCOCD/LofBV6TH1ulFjDPGfhFzNObU+l8zZXF5yyJnruXijnrN9+GbOhN+gSMeS4biOMad9jyHZ9OwRmx8ppP9XO04DZ2495oHgXPkafBL+kOMyucoogyXINh3UqxcfvpmTvX8W6eDc1mKbd0Lv2KvMmfBVF6tesRTnLKM+/AX5JoN2qU2VOK32ZpieD0K/jmubggeNj0/C111F1m4pXs4IsA0Sjg8tRxU/S/3dgxaUcwWXzfXzOuHPvnFfhK/bXGVzI9M3kf0DKzuOYi86eVIPeJAmztXWHRbj5yzlNedM+Lpv0mox7vsC6/lGKfZc08mqQx6NQpY0hT1sMf47Ivtnun0T/vkMhX9O4OCOMYZLKo+rSw7Jd9Ap9Dve7moKe9piGt9m2OhsV+HbHOrrRoDdkDOP4rVy2oXl8j7zpzLeJs3v6Z5jJq+6jeO5VUK/ftyYQ+HrXjlqtxi37nGTc5C0nj6x+cy0y51PG/PED8zff59BZdMNK187Li9fhH9Uk44+i3Hrjki3QNZqSg9XnHEYd534c0ML99nkLuF+15ZOaB05Ff4uob43b9Ri3DWakV8ZpB1N6SUX5x3GXbwNmCrPnhiVTbWUs2Z4uF+tqdxzGZSbTxt4VLfmLFqM93RGvp5tz+mSeetFh3EfEpv3/sfd2tmrqfi9BtN6RRPX+ZwLX3dw6ZileC8r4rwEeYfTIjYfo+x3MCSsl3PlCbHVUdaaILxZB70wDRe/KuKZyaj8Jj0SPn2jBeH+DMWriPhWhNsDZNuGZpH8RlMb9iVhPg4LtafdxHKOqren4X9jRmU4J/w6lqsbgR02HF+jIq6rkHj4EHvZI9GT3UiRnz7N/DLNKcK9mgayL6MyrBT6pUUXtwBxe+CNFRuTdzdE+RVmM8i399SL9M8X2bC0D288UoSd9FqwXZqK/DDDcuxhflfXy1k1YuvDKjYuKLkeET51aHWQ+WbozvLvHop+ylD+niriSPJ+35jI9oadKGju+tnxt41DnaaeTaacf19RTG3wnl5IS/zZQ9Gb3l11VyNWznIhvcT6UmT3NJYubXGvnL6XwdCXpkiqTVZUF08nyHtU4/5N+HOexBuqhf4ce1a2bKFS0tLaioi+leWaCD9eTD3VgOJvqUfJ4pgnNVZtUsCrKZynlDfajVnuKN00n9cdaqLGge5JbFBMt07KvK8pGvRqyHzrh5vxVPS/ZcWw1eM8Fnqv9ytpuhWOMTlVcgGteS/IRrFg6bsXZPgUj+0Xfw4zRykF2XO/kFOUJY0D873AhZqRlHssejLbr55QT3JfJFu6XJO+Adcvs7Q6LgNXz04dEevHvdMsI6/KBv0EpA24Ix/qHW6J9R1v87ISFaStynkn/WxI/i6WhOyVBQmXNoyNytHAsmxoi8tjSfb+JHTahXccZQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCd+w2Awrw3Ch8EgfAgfBoPwIXwYDMKH8GEwCB/Ch8EgfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMC2YU9gg4E9wKcASWgK7HJgo4G9Cmw5sLXAfgZWCGw1sM+BjQc2HFh7YOUe56exKD/vAluR+fgp87Uo8/JPYK2B7dpm5bU7sAFZLr8D++FpOstlXbkT2ERgCyX1itL9PrCxwPoDOwIp2mdfYDcD+yYrT1z7KcVzwiMxXA1sLkFelgK7Fdhez8usKrAbsiErTr9vwicBP5F1JG5ZfJX1sgYSNS+Q4YSFEmVvAjucYZ6uhoih2OhnU7L3Lyh+b00Ky7cRQGVg1+VILCzdvgi/PrAXmnL4V5YF5eWXpiyoAaiAZNNzIkUPr7NfcvjpkgOBzUakh4aVVwKrDfm7Q7Lxi2oEaPhZ50F5Vcg8LGm+vQ/C74/oTKh8uuRoJWoqoGosaIp5FNJNTremhTVlk45a6VOywkelYQ8jDBL3TEQY1CMdz3Bu3C8bL843/5Fx4/QsIl2XY4TTHNi8olPpgYTj87cDwRfby8DKLObnnKIRe5yg4r5UDDdbHJYTfbO+GILPWvjUi7+OSNOZBOFRYz2tyOcNSJnPGceiTypALu2KOKdTVOAPClE1WS4j8ilcSjENy0L45QqR3kzZmHxQ5LUfkuY5W6KGwzSsuiWFVFvi0KJCpSWxjsDuBvYlYYXsNpyfZtkLh8VFS1v7UoTdoHB4fhd2vMz0zXvFuid7Y0hLPeiI9EG88Vj4jyPS8sXAaK9eUc5kZyFtNWHz149ife06iWPwbUzh0zy52lBeajRD4KsG4hjUTF9M80mG/U7Oh8Mal4ceCr9HkZZLhuK4pslvPeQdTm/IB7sr0i9V9Wpa41IbNpSf54o4Fgw5FGmYqVoWvGi4jAbkyEpFrWfCr1OU/08R7r1POpVQNfQzkPhWaN23dAlo0PCQe5kp/DUDleG8Jg6Ty4hDjkYwSUYGPghf1QA/MxzXDU2+Md/XDJPGLMTRIvjLg2mWYio0Tq9fKef2pezX5CWLffETngj/uMVyDmOvpo6tZNQQe8muEqF8MTj8ChuqcoT/zGAjVmr/WsjXtKahOeC4TMc9Ef60Jh025t2vNHEOQvLrlC7fnbQYF83Dvlqcg5J3eFETdq+FfF3SxDmSQ+E3aNKwainePka8VZD95koy4SC+fmavn+Q0Xzcj3H0W8lQv9AeUanMm/CFNGsYtxXuQUQcu5130ZeLPWvQv2UrbpoY510+yA+61JszPFvOlG8ncyJnw5zMcBelWkd7nXfjFu9oeO4x3hiH80zHD/EtktzuQGNXEPZ8j4dcxyqLTYvwvGPEfyLPwbxd9iAaH8T60IPxLjDC7LObpIiP+IzkR/nnGt2i3GP8DRvy5Xtrb8Lq+dBwvRySnYoY5yQjzmMU8tTDiH8yJ8O9ZKN84dDLif55n4T+S896TjuM9yyiYgzHCoyXJgtCf/7d5YUY5I0/vciL8cca3aLUYfxsj/oLYfleo7SjfggmRNjMK+ruDfK0w8lWVA+F/yFj4DYK3cnQIUvRL+J9ihse5P2DSQb6eM9JxJgfCX81Y+OVM4Z+DFN3SIcx630dFth79DZ54Ms/PWvgFke0cXwjekvFNSNEtOudL3JaYc/zXxf1+Q4x0jOdA+Jze1vbIhzPqeAwpukV1jp02FMU9MsvpYS540KCRfcuB8Dk3Mp+3nAbOadAJSNEtY4rCGI0ZVqUnPQxnCuNidcEH4XPuX7A95fnOSMMUpOgW1XnxuA9unGAK/5SDfJ1mpqVhhwufcxBrzHIaphhpWIQU3VElzO6hbmeKzcXV1740QlkLn7OZ6oMHwl+CHN2hGg4n2cZ5gSk2F+vnu5lpObvDhf+IOeWxeaU6Z7/+CuTojqhKkfROtB5h75hvXCqYaena4cLnNsY29+tz9lSgx3dEmYi+vjvpAZbbzErmYnsmd+PI4A4XPnfn3EjGwscc3xFdEQXwMEWYI8xK5gpOWu7vcOETnxnfYdlig8wR/jQk6Ya3Ea1udc6EP5ID4d9ifotuS/G/FH5s4849xyI+flvKcCF8P4W/n/kt5izFz3lPcBSytE/Y804mrp6G8P0UvhC8MxRkf2fkY7gDWdolbK39vTDjaX8A4XsrfLqCi7OdmvbVm7xq+ymzHDohTXvQltrSRzSX5FDQBPe2ofDv5UT4xHXmN6E3GvcYiO8qMz7bV8nnnmGxdeOGyTfkL25D4Q/kSPjEv8zvQs7fpK8Mk4P4cQzRu9rbkUvCHHqmn03q9KiQuev4XTkTPolyjvlt6PRinANVdbJzKT4YtMiIZx7ytAMN20oPa9i4+KCDWaEqHU1rsGU3HHrX7pPg98bkAyKnH12PtbHWT//SwyS0EkTvFLyJ+DvOnY44i2+JCUcOrVPMiuTiHvUagUM6us7ghYg3HI9jQ3LUxXmj8Twkap7S54qfWq5MvjhyWphpqcup8Deg9wuXDQqeduk1FoX/jvE3eDXXMKVXG7vYHcW5X60tg7zn9SIOboM9INRPmquMNujcKRE8wXlR6Q1kapYmsfkQDm2bLHMQ70fhx42qnLnlVwfp2A7CL6ZZjhIp3XPSUfdTNpJrcnRAdemJnPc3KcLiLOf1Q6rm2C82b5OkBywrHMU9JtzvDguDc0T4GYRvFd2d/tSY1EKu5pxaxaexaD3W5RvkHGeOizfqOduHb0L4VkcOeDrL4VxttujDzmbgOOHMrcc8EJwrX0Nehc85G3ACkk1Pldi8ljonku+8SpsOzrqwbXTeZBpmVkL41qaaOifvLCSbHlovLb7QkJxWez2e2xUcpKHgQeOTV+HfZzT+HZBtOmg5qvgmVbrD/K+M08S5gsvm+nmd4G0wgfDNc4DR289Atukp9qIvCje74nRwrra22eJzlvKaIXwrcK7zPgLZpqPYc03rq748NUyjkCVN4Q9bjP+OyP6Z7jwKn+PYvQ/ZpmO4pPIcdRQv+Q46hX7H212R3eWKbzNsdPIqfHLq6nb+ke9pN6SbnOK1ctpNddxh3Bs3qjRpfu+w0HvVyy1VQN0csxHCN84oo7yPQbrJ6RObX7N1eXPJxtyZ++TSe+H+EYdzmjhfOy6vPAi/mzHEvwzpmvvAZxzGXSf+nOLiFmKXcH8OWye0DgjfKEeE/kXeh5BuckovuXB5hrl4GzCNMrj3se3SzPvWDA/3q4X6Pfi5DMptJwuflo11V2fjvvwUnC6Zt150GPchsXnvf9zttr2aitFrMK1XhH8XPuxU4ZeeCYnai18G+SajpWQoZfsYI/XS9XKuPCG2OspaE4Q366AXpgqmegs+q00jkztQ+LVCf2/fE+HmjcQdSbOIftgyC/uSMB+HhdrTbuLpJlVvT8P/xozKcG6HCb9ObL2iPYtTjzsWGmIveyR6shsp8tMn1C+lpjlFuFfTQPZlVIaVQr+06OIWIJOjzyWNz+YspJucesG7lti1pX1445EFJxCJ5pXw06Pcw/yuLdugTl7RNGJzGY6qdgT7xPqWUt9EP2Uof6onlZK836e68edZhuVYJXjPU5v8trbq4yuhv1ilEtJNTk2MyuLaTN6Td1cjVs5yITmYVM8v38uwHClt0zG/7z3PhvyUFrozb1WRZqqrrZBtOmiO+8FT0S9bqJS0tLYSER/NI6+J8OPF5FwaUPwtzfUvZFB+1Fi1SQGviuTOU8ob7cbM8kmpC5oOaFWmE89eGWhdZzwVvc0njMkpp3tj7Yccar4S+hWOMTk0dQHtO1+QjWLB0ncvyPAXHDjN6DJWugR1XpOe2yLbS152FOUei57soOX80xvq90Wypcs16Rs46LjMWh2XgY1npHfJfDwU6m23H6Vzbw+kCmyNfGiYe0us73ibl8PKgrRVOQSlnw3J38UmkXiQ571Hjo5UUxI6YDUo1vdgAAC2KScVU5Jfslen5dZzGMoDsHM4WjRPn5a+lUsie0ciAMAiZZijR/M/BkBu3QklVnoAAABodEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtbj4yMDE4PC9tbj48bW4+MjAxOTwvbW4+PC9tZnJhYz48L21hdGg+OpDWugAAAABJRU5ErkJggg==" style="width: 40.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="2018 over 2019"> B. 2019 2018 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAP4AAADlCAYAAABzh0oJAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAAGFdJREFUeNrtnQ9kV90fx4/MzExkZpJHzGQmiUkmyZgkkxlJMjMj80hmIkkmE/OYJIlMksxIZiaJeWSSjGSSzEiSzIyZzHwl+t3Pb2dP33137zmfe+85557tvl98FNvOn3vO+/z5nH9CAOCGPYENBvYAnwIkoSmwy4GNBvYqsOXA1gL7GVghsNXAPgc2HthwYO2BlXucn8ai/LwLbEXm46fM16LMyz+BtQa2a5uV1+7ABmS5/A7sh6fpLJd15U5gE4EtlNQrSvf7wMYC6w/sCKRon32B3Qzsm6w8ce2nFM8Jj8RwNbC5BHlZCuxWYHs9L7OqwG7Ihqw4/b4JnwT8RNaRuGXxVdbLGkjUvECGExZKlL0J7HCGeboaIoZio59Nyd6/oPi9NSks30YAlYFdlyOxsHT7Ivz6wF5oyuFfWRaUl1+asqAGoAKSTc+JFD28zn7J4adLDgQ2G5EeGlZeCaw25O8OycYvqhGg4WedB+VVIfOwpPn2Pgi/P6IzofLpkqOVqKmAqrGgKeZRSDc53ZoW1pRNOmqlT8kKH5WGPYwwSNwzEWFQj3Q8w7lxv2y8ON/8R8aN07OIdF2OEU5zYPOKTqUHEo7P3w4EX2wvAyuzmJ9zikbscYKK+1Ix3GxxWE70zfpiCD5r4VMv/joiTWcShEeN9bQinzcgZT5nHIs+qQC5tCvinE5RgT8oRNVkuYzIp3ApxTQsC+GXK0R6M2Vj8kGR135ImudsiRoO07DqlhRSbYlDiwqVlsQ6Arsb2JeEFbLbcH6aZS8cFhctbe1LEXaDwuH5XdjxMtM37xXrnuyNIS31oCPSB/HGY+E/jkjLFwOjvXpFOZOdhbTVhM1fP4r1teskjsG3MYVP8+RqQ3mp0QyBrxqIY1AzfTHNJxn2OzkfDmtcHnoo/B5FWi4ZiuOaJr/1kHc4vSEf7K5Iv1TVq2mNS23YUH6eK+JYMORQpGGmalnwouEyGpAjKxW1ngm/TlH+P0W49z7pVELV0M9A4luhdd/SJaBBw0PuZabw1wxUhvOaOEwuIw45GsEkGRn4IHxVA/zMcFw3NPnGfF8zTBqzEEeL4C8PplmKqdA4vX6lnNuXsl+Tlyz2xU94IvzjFss5jL2aOraSUUPsJbtKhPLF4PArbKjKEf4zg41Yqf1rIV/TmobmgOMyHfdE+NOadNiYd7/SxDkIya9Tunx30mJcNA/7anEOSt7hRU3YvRbydUkT50gOhd+gScOqpXj7GPFWQfabK8mEg/j6mb1+ktN83Yxw91nIU73QH1CqzZnwhzRpGLcU70FGHbicd9GXiT9r0b9kK22bGuZcP8kOuNeaMD9bzJduJHMjZ8Kfz3AUpFtFep934RfvanvsMN4ZhvBPxwzzL5Hd7kBiVBP3fI6EX8coi06L8b9gxH8gz8K/XfQhGhzG+9CC8C8xwuyymKeLjPiP5ET45xnfot1i/A8Y8ed6aW/D6/rScbwckZyKGeYkI8xjFvPUwoh/MCfCv2ehfOPQyYj/eZ6F/0jOe086jvcso2AOxgiPliQLQn/+3+aFGeWMPL3LifDHGd+i1WL8bYz4C2L7XaG2o3wLJkTazCjo7w7ytcLIV1UOhP8hY+E3CN7K0SFI0S/hf4oZHuf+gEkH+XrOSMeZHAh/NWPhlzOFfw5SdEuHMOt9HxXZevQ3eOLJPD9r4RdEtnN8IXhLxjchRbfonC9xW2LO8V8X9/sNMdIxngPhc3pb2yMfzqjjMaToFtU5dtpQFPfILKeHueBBg0b2LQfC59zIfN5yGjinQScgRbeMKQpjNGZYlZ70MJwpjIvVBR+Ez7l/wfaU5zsjDVOQoltU58XjPrhxgin8Uw7ydZqZloYdLnzOQawxy2mYYqRhEVJ0R5Uwu4e6nSk2F1df+9IIZS18zmaqDx4IfwlydIdqOJxkG+cFpthcrJ/vZqbl7A4X/iPmlMfmleqc/forkKM7oipF0jvReoS9Y75xqWCmpWuHC5/bGNvcr8/ZU4Ee3xFlIvr67qQHWG4zK5mL7ZncjSODO1z43J1zIxkLH3N8R3RFFMDDFGGOMCuZKzhpub/DhU98ZnyHZYsNMkf405CkG95GtLrVORP+SA6Ef4v5Lbotxf9S+LGNO/cci/j4bSnDhfD9FP5+5reYsxQ/5z3BUcjSPmHPO5m4ehrC91P4QvDOUJD9nZGP4Q5kaZewtfb3woyn/QGE763w6QouznZq2ldv8qrtp8xy6IQ07UFbaksf0VySQ0ET3NuGwr+XE+ET15nfhN5o3GMgvqvM+GxfJZ97hsXWjRsm35C/uA2FP5Aj4RP/Mr8LOX+TvjJMDuLHMUTvam9HLglz6Jl+NqnTo0LmruN35Uz4JMo55reh04txDlTVyc6l+GDQIiOeecjTDjRsKz2sYePigw5mhap0NK3Blt1w6F27T4LfG5MPiJx+dD3Wxlo//UsPk9BKEL1T8Cbi7zh3OuIsviUmHDm0TjErkot71GsEDunoOoMXIt5wPI4NyVEX543G85CoeUqfK35quTL54shpYaalLqfC34DeL1w2KHjapddYFP47xt/g1VzDlF5t7GJ3FOd+tbYM8p7Xizi4DfaAUD9prjLaoHOnRPAE50WlN5CpWZrE5kM4tG2yzEG8H4UfN6py5pZfHaRjOwi/mGY5SqR0z0lH3U/ZSK7J0QHVpSdy3t+kCIuznNcPqZpjv9i8TZIesKxwFPeYcL87LAzOEeFnEL5VdHf6U2NSC7mac2oVn8ai9ViXb5BznDku3qjnbB++CeFbHTng6SyHc7XZog87m4HjhDO3HvNAcK58DXkVPudswAlINj1VYvNa6pxIvvMqbTo468K20XmTaZhZCeFbm2rqnLyzkGx6aL20+EJDclrt9XhuV3CQhoIHjU9ehX+f0fh3QLbpoOWo4ptU6Q7zvzJOE+cKLpvr53WCt8EEwjfPAUZvPwPZpqfYi74o3OyK08G52tpmi89ZymuG8K3Auc77CGSbjmLPNa2v+vLUMI1CljSFP2wx/jsi+2e68yh8jmP3PmSbjuGSynPUUbzkO+gU+h1vd0V2lyu+zbDRyavwyamr2/lHvqfdkG5yitfKaTfVcYdxb9yo0qT5vcNC71Uvt1QBdXPMRgjfOKOM8j4G6SanT2x+zdblzSUbc2fuk0vvhftHHM5p4nztuLzyIPxuxhD/MqRr7gOfcRh3nfhziotbiF3C/TlsndA6IHyjHBH6F3kfQrrJKb3kwuUZ5uJtwDTK4N7Htksz71szPNyvFur34OcyKLedLHxaNtZdnY378lNwumTeetFh3IfE5r3/cbfb9moqRq/BtF4R/l34sFOFX3omJGovfhnkm4yWkqGU7WOM1EvXy7nyhNjqKGtNEN6sg16YKpjqLfisNo1M7kDh1wr9vX1PhJs3EnckzSL6Ycss7EvCfBwWak+7iaebVL09Df8bMyrDuR0m/Dqx9Yr2LE497lhoiL3skejJbqTIT59Qv5Sa5hThXk0D2ZdRGVYK/dKii1uATI4+lzQ+m7OQbnLqBe9aYteW9uGNRxacQCSaV8JPj3IP87u2bIM6eUXTiM1lOKraEewT61tKfRP9lKH8qZ5USvJ+n+rGn2cZlmOV4D1PbfLb2qqPr4T+YpVKSDc5NTEqi2szeU/eXY1YOcuF5GBSPb98L8NypLRNx/y+9zwb8lNa6M68VUWaqa62QrbpoDnuB09Fv2yhUtLS2kpEfDSPvCbCjxeTc2lA8bc017+QQflRY9UmBbwqkjtPKW+0GzPLJ6UuaDqgVZlOPHtloHWd8VT0Np8wJqec7o21H3Ko+UroVzjG5NDUBbTvfEE2igVL370gw19w4DSjy1jpEtR5TXpui2wvedlRlHsserKDlvNPb6jfF8mWLtekb+Cg4zJrdVwGNp6R3iXz8VCot91+lM69PZAqsDXyoWHuLbG+421eDisL0lblEJR+NiR/F5tE4kGe9x45OlJNSeiA1aBY34MBANimnFRMSX7JXp2WW89hKA/AzuFo0Tx9WvpWLonsHYkAAIuUYY4OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIbfMBjMa4PwYTAIH8KHwSB8CB8Gg/AhfBgMwofwYTAIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALBt2BPYYGAP8ClAEpoCuxzYaGCvAlsObC2wn4EVAlsN7HNg44ENB9YeWLnH+Wksys+7wFZkPn7KfC3KvPwTWGtgu7ZZee0ObECWy+/Afnic1n2BnQ3svvzm8zLdhaL6tSLLaSyw/sCOQJJ2C+RmYN9k5YlrP2VBnvBIDFcDm0uQl6XAbgW21/MyqwrshhRKcfp9E35tYNcCm01Yt8i+yLzuhlTNCWRYCve3IXsT2OEM83Q1RAzFRj+bkr1KQfF7a7Ky+TYCqAzsuhyJhaX7h0eCv6epW9Tbf5Dl8Uam/bem7K5Atuk4kaKH19kvOfx0yQFFr7IgK0xtyN8dko1fVCPwPrA6D8qrQuZhSfPtfRB+T0TjS43AIzk9rFCMZGg68EKRx7fbYETmJd1SnL8t26SigE1yStFbTErHlw4S90xEGNS7Hs+orMrlXHeB+c1/ZNw4PY1I19MEYqWR40dFY34QUubztwPBF9vLwMos5uecohF7nKDivlQM/VsclhN9s74Ygs9a+NRTv45I0+WU4U5FhLvoyWjMe844Fn1SAXJpV8Q5naKifVCIqslyGZFP4VKKaVhWwo9qMG8aalSiev55+XMQQb1iOEwf75YUUm2JQ4uGmrQk1hHYXbHuYU1SIbsN56dZ9sJRTqN9KcJuUDilvgdWY0nwvYF9LfKTUA86In0QbzwW/vWItMwajKNRMbK7DXlHEzZ/pVa0NaFj8G1M4dM8udpQXmo0Q+CrBuIY1ExfTPNJhv1ODo3DGpeHHgqfhtpRjtEOw3E9ENHOZAz5Q+gN+Vh3Rfqlql5Frxtmw4by81wRx4IhhyINH1XLghcNl9GA7NVU1Hoo/PsKn4jppdCjinzfgcw3Q+u+pUtAg4aH3MtM4a8ZmI+d18RhchlxyNEIJsnIwAfhlyl6+ylLcS4pGnxQxLWSDzRmIY4WwV8e7EkRT4XG6fUr5dy+lP2avGSxL37CI+GrnKtPLMU5roizHnL/4zAqFsoXYc8DOsAU/jODjVip/WshX9OahuaA4zId90j4qhHRiKU4VX6OM5D8OqXLdyctxkXe/68W56A0rFzUhN1rIV+XNHGO5Fj4Yxn0+P8o4jwHyW+tJBMO4utn9vpJTvN1M8LdZyFP9UJ/QKk2p8JXOVnHLcV5SxHneUh+vYf8WTQkbXAQZw1zrp9kB9xrTZifLeZLN5K5AeGH7qWwwQNFnGch+82Ol8cO451hCP90zDD/EtntDiRGNXHP51T4k5q02DhLr5penILs13czbXyQBofxPrQg/EuMMLss5ukiI/4jORT+mCYtNtbWVef6KyD7P97ol47j5Ygkbss8yQjzmMU8tTDiH8yh8G8K/b4Nk/6P3Yqp5Cwkv84jOe896TjeswyRxDlOSUuSBaE//2/zwoxyRp7e5VD4nENfJqdg3Z74WYDGt2BCpM2MyvXdQb5WGPmqypnwqUHk3N5kytv+LiL8gnC7sgISCP9TzPA49wdMOsjXc0Y6zuRM+MQTxnchD/9Ri6ML9PYe0GF46DcqsvXox6nggzkU/mHBP52Z1AFKNyhFbdV+Bcn5QaemAsTdXcU5/uvifr8hRjrGcyh8Ykzw7wqIu4eDpoVRl3xQ3cDNu56gOsdO88G4Sy4FRoW64EGD9lv2SnkUPs2vFwX/eDb3Kq4yRX6fC9y84xWq1n80ZliVzIrkYm7dIXi3C+/KofCF4C15FhttIVcda6afRR2Qug6Z+YfqvHjcBzdOMCuRix1bp5lpacip8ImemOKn1Zi2kHBoJSdsm/QngZd1vKRKUcjvE4TXzqxALq6+9qUR8ln4xA0R/z5GGiXulfXntghfriM/Tjkk5ieq4XB7gvAuMCuOi7nebmZazuZc+EnFvypHAGFLtbhPz3MeRRTqjOWho4ueoIKZli4I///0i2S3MRePEI9DUv5TJqKv7046L7vNrCQu3rcrZ6ZlEML/j84Uwr8jcOhmW9AVUYAPU4Q5wqwkruCk5T6EvwnV82Y6o+PORyEtvwnbaENru9U5E/4IhL+Fpoj5O9cGIC8/ORZRYG0pw4Xwd4bwiVoR/xGW0q25OIjjGWHPO5m4ehrC3znCbxPxdvdF3Z3fDLn5QdhaO3lkTXjaH0D42174VA/uiPDt20nET393AbLLFtpSW/qIJr10st9Q+Pe2ofDvQfj/QfUg7Aw9Pf9NNyJPpej9sW03Q4bF1r3qJt+Qv7gNhT8A4f8fuvlpOaS3LvX79IjkXv8hSNA9YQ69HsNxcNeBXWzg4a7jYwNP+OUpJPqo7cxpen94/B1CFyOUHqK4aSGeDmbhVzqa1mDLbvxRYJwns5P2/p2QpBsmHDm0TjEL3sX7dTUCh3R0RD2ZHadToDcUpmMKnw7xHIQs7VJ6AOOp5ZEFp+Bd3CTMPW9el1PhR/X0bxOGNxBT/Lhe2yJtwv0ll5wnudoyyDsu4vhDt+J7NKYI93TMoX8PJGqeppJCoHvQyhzE+5FR4C5eSeW8F/DVQTp8Ez6NcNZE9Dl7E/WOu/FnHjI1C63HLhR9YHrA0tXJKc5Fjn87SAfniPCzHApflR5Trxs1xhD/ScjVnFPrc8mczeUlh5y5nos36jnbh2/mTPgNinQsGY7rGHPa9xiSTc8esfmRQvp/teM0cObWYx4IzpWvwSfhDzkuk6uMMliCbNNBvXrx4Zs52ftnkQ7ObS22eSf0jr3KnAlfdbHqFUtxzjLqw1+QbzJol9pUidNqb4bp+SD067i2KXjQ+PgkfN1VZO2W4uWMANsg4fjQclTxs9TfPWhBOVdw2Vw/rxP+7Bv3Rfi6zVU2NzJ9E9k/sLLjKPaikyf1gAdp4lxt3WExfs5SXnPOhK/7Jq0W474vsJ5vlGLPNZ2sOuTRKGRJU9jDFuO/I7J/pts34Z/PUPjnBA7uGGO4pPK4uuSQfAedQr/j7a6msKctpvFtho3OdhW+zaG+bgTYDTnzKF4rp11YLu8zfyrjbdL8nu45ZvKq2zieWyX068eNORS+7pWjdotx6x43OQdJ6+kTm89Mu9z5tDFP/MD8/fcZVDbdsPK14/LyRfhHNenosxi37oh0C2StpvRwxRmHcdeJPze0cJ9N7hLud23phNaRU+HvEup780Ytxl2jGfmVQdrRlF5ycd5h3MXbgKny7IlR2VRLOWuGh/vVmso9l0G5+bSBR3VrzqLFeE9n5OvZ9pwumbdedBj3IbF573/crZ29morfazCtVzRxnc+58HUHl45ZiveyIs5LkHc4LWLzMcp+B0PCejlXnhBbHWWtCcKbddAL03DxqyKemYzKb9Ij4dM3WhDuz1C8iohvRbg9QLZtaBbJbzS1YV8S5uOwUHvaTSznqHp7Gv43ZlSGc8KvY7m6Edhhw/E1KuK6ComHD7GXPRI92Y0U+enTzC/TnCLcq2kg+zIqw0qhX1p0cQsQtwfeWLExeXdDlF9hNoN8e0+9SP98kQ1L+/DGI0XYSa8F26WpyA8zLMce5nd1vZxVI7Y+rGLjgpLrEeFTh1YHmW+G7iz/7qHopwzl76kijiTv942JbG/YiYLmrp8df9s41Gnq2WTK+fcVxdQG7+mFtMSfPRS96d1VdzVi5SwX0kusL0V2T2Pp0hb3yul7GQx9aYqk2mRFdfF0grxHNe7fhD/nSbyhWujPsWdlyxYqJS2trYjoW1muifDjxdRTDSj+lnqULI55UmPVJgW8msJ5Snmj3ZjljtJN83ndoSZqHOiexAbFdOukzPuaokGvhsy3frgZT0X/W1YMWz3OY6H3er+SplvhGJNTJRfQmveCbBQLlr57QYZP8dh+8ecwc5RSkD33CzlFWdI4MN8LXKgZSbnHoiez/eoJ9ST3RbKlyzXpG3D9Mkur4zJw9ezUEbF+3DvNMvKqbNBPQNqAO/Kh3uGWWN/xNi8rUUHaqpx30s+G5O9iScheWZBwacPYqBwNLMuGtrg8lmTvT0KnXXjHt2OZ/A8IRW7dVbxOYwAAAGh0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1uPjIwMTk8L21uPjxtbj4yMDE4PC9tbj48L21mcmFjPjwvbWF0aD6ByAQSAAAAAElFTkSuQmCC" style="width: 40.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="2019 over 2018"> C. 1 D. 1 2019 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAP4AAADoCAYAAADPGVnXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAADllJREFUeNrt3X+EV9kfx/EjY2SMyMpIVowkSSJZycqQZCWJJEkSGSvJiKyVkRH5GitJJFlJhpWMrBVJRpJIkpURSdZKhpGMjAx9z1tn7KdPn88973s/95x7597ng7f9Y6f7+3U/555777nGAMYstTVi6zKbAqi+JbaGbc3Y+mzrA5sEqK5eW6dtvXeB/0zwgerqsfWrremmwBN8oIIW2zppa6pN4Ak+UCHdtoZsvfUEnuADFdBl60SKwBN8YAFbZOuYrX9SBp7gAws08IO23rgAz9l6YOuKrVFbDwk+UD0vXHCf2Dpua1mLv7lK8IFqkYdw1nr+po/gA/VuGRB8oEbGCT5QP7cIPkDwCT5A8Ak+QPABEHwABB8AwQdA8AEQfAAEHwDBB0DwARB8AAQfAMEHQPABEHwABB8g+AQfIPgEHyD4AAg+AIIPgOADIPgACD4Agg+A4AMg+AAIPgCCD4DgAyD4AAg+AIIPEHyCDxB8gg8QfAAEHwDBB0DwARB8AAQfAMEHQPABEHwAAdwm+ED9TBJ8oF56bM15gi//fxGbCqiOI57Qz9cAmwqohl5br5TBv8vmAha+PlsTytDP10Wa/MDCs9TWThfgmZShn6/XtoZtbbfVzSYFymeLrbe2pm3NZgy6r2bd9GU+e9nkQPG2BQp7uzrIJgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABK4jNFUaUugk9RBJ/gUxTBJ/gURfAJPkURfIJPUQQfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIKx1NaIrctsCmSx0dZxWzds3bc1beujrU+2Zm3N2Hpl65atUVu7bXWXeH3WNqzPE1vv3Xp8cuv1zq3L/2xts7Voge2vJbaG3X75bOtDSZez2x0r522N23rbdFzJcj+1NWZryNYmohjeCltnbP3jDp609cmFZ2uJwnDK1mSGdZmyddbW8pLvs15bp92JrHH5yxZ8CfB1d4yk3Rdv3HG5jIjmH5DRjDulXT20taHAdTrVIgyNJf/vrvv1n034u48uWGVrAfTY+tW1xFotd1mCv8rWX579cM/tC1mXOc++kBPAYiLbua0d/ML7as41P2NabetZm+WRZuVJW30t/t16d/JrdxKQ5md/CfbXYrcOU55tX4bgD7X5MZH9c8i1VtpdCiSdLOQS8weim91hzxk2r7od6Sy9wx3w7ZZhqWIaEu7HbaYhv0g/FnhtPOROXppt/qHgk9PNNst1PMV0Ntt6mfCjcoQIp/dzhMA31h1bXQHXZ1/CSexahgP3TkJzcyDifpJtdiJF4IsOvvyKP2izTLsyTE9O1hMJ63maKOvtihz6rAHU2p0wz4kODuDnCaHaGHgfSZ/CsQ4uw4oIfndCSM90eDJ5nrCuQ0Ra19nSrjkszaqzLkh9TR1aslPlltgeWxdsvc54QB7OeX02u1/hVvOSW1srOpj2moQOz39NmF5m2eaD5ktP9nyTVn5Br7g+iIclDv61NsvyOofW3qqE/Sy1l2gna3X9+rf5cu86S8fgo5TBl+vk73Jal2WeJvCpHOYx4rl8ydsLN+0n7nq41cnlagmDfyRhWY7lNI9fPOu7ini3Nthig10wnd+qGvScjZtrNKf1+TNhHm9z6lCUZmbSbcGjOe+jYdeyStJXsuD3J+z/T6Z1733WS4mkE/1jIv4tue/bfAtoJOcm97Qy+B9zOBj2e+aR523Ec5FaMFlaBmUIftIJ+GbO8zrtWW+u9z3NpLEA8xgw+tuDndyKWezp9Jrr8Nq+2UrPuhTxXPx4SYL/Y8D93MpyzzH2vqATcSktagrK6xybX62aqprg38zxJNZc9wKs14TnRLM68j69VZLgT3iWI8R1933PPEeI/BfNt++2B5yXXIe9CXgNKr3D7zzTHgywXsc887xSw+Cv8SzDTKD5nlDMt5fYf32QjEeY35DyVz/L23yHFdNdEWCdVhn/C0p9NQv+Oc8y3Ao033WKY+B43UPfZf67Fz3nztKhLVNe62d5Au6BZ5qvAq6XryVzumbBf1lgK8h3F+lp3YPf+FTbtYjzfawI/k8pp/m9Ke7pQHHDM++XNQp+v2JfHAw4/78U819d5+D/1rAh1kSc79UAwT+mmOahgOt0VDH/TTUJ/n7FttgdcP6XFfOv9a29+V7XO5HnqwnJjpTTvK2Y5paA6zSgmP9ITYJ/McD+TeOgYv5/1jn4v7vr3u2R57tXsWPWpZie3JKcNf73/0MOmNGtWKcnNQn+LcW22BZw/jsV8581C28ItUr1LeQR0s2KHf1vhPV6r1iv3hoE/3nBwV9jdHeO1hPFcgX/RcrpacYPuB1hvf5ULMeuGgR/puDgdyuDv48oxrXH5Nv7fsMU26M/73pJrvOLDv6sKfYa3xjdLeMzRDEuX+dL2jOx5vXfGOP7nVMsx60aBF/zaxu65aNpdVwjinElvccuDxSlfWVW8wtzoAQnNKl/ahB8zYjM+wMvg+Zt0HGiGNdYws64kXJaPSX5hdFcwsS4u1CG4GvGXwh9yfOvYhnuEsW4kt4XT/vBja3K4O+IsF4/KZdlTcWDr3kRayzwMtxVLMM7ohhPr8n3GerdyrDFGPq6LCehooOveZjqeQmCP0Uc40lqDmd5jPOAMmwx7p8vUS7L3ooH/3flJU/IIdU1z+u/J47xtDsoso6JdsSEe803rcXKZTlU8eBrT8Yhn9fXPFPBL34kXab98N1ZX2D5TXmQxXg8U/vgyEjFg699cu5KwcHnGj+SQ212wNUOpnlFeZDFolmWSxUPvnil2A7TAU/ImuBPEMk4HrU5635Xs+BfqUHwzyq3xeFA879jyvEYd+1tabPxd3Y4XYJfzuCvVG6LyUDz13xP8AaxDK/V553yGHqa4Jcz+Mbo3qGQ+rmgPobzxDKsVvfan5p8etovE/zSBl+G4NI8Ti3P1ec51PYfyv1wkGiGI4/UNn9Ec8o1BfNwcQEG/2JNgi9+VW4T+Ubj0hzmd0o5v9BDydfeqPn2wY08vyF/dAEGf7hGwRf3lNtFOn+zfmVYOoivpQh9rGc7aqlVh17en006WKKdrL2Pf6hmwZdQTiq3jby9mOaFqn7349L4YtA7xXxeEs8wpNnW/LJGiIEP9igPqJ5IlzU8stuafNfuhdH/GksfkHT6yfBY8/f65b/yYRK5EyTfKXjY5t9pxnTkXfxAxiN1aO1QHkgxxlFfZnhJx/dj8JdJ1xxPU+dcq0vzjcb9RDR/zZ8r/iPwwVSWjpwB5bL01zT48+T7hdM5Bl6e0lvbMP0nin/DV3Nz1jy0cYynozTjq+0sYN3rOhCH9oQ9bJI/aZ5U8oDO+abAC80XlR4S03xtNF+/hCOPTXZFmO/fphwjqmquLd9EWI6FEPxGm10rUZZ70nXUfXInyY+udSDH0nV33b8xYVqa23lDRDU/K83Xj0nKBywXR5r3mIn/dFgrmleEbxL8oHxj+svJpI+45tep1fg2ltyPjfkNck1nToxv1GseHz5D8IO2HPh0VsRrtWcNG/ZZAR0nmmvrsRIELlZfQ12Dr3k3YCuR7Vyv+fpe6qTJ/uRVp8uhuS8cmq83WZqZPQQ/2KWmr5P3GZHtnNwvbRzQUDqtlpf42m42wjLMluDkU9fgX1Kc/PcQ287I7ajGkVRlDPPvC14mzRBcIe+f9xvdAyYEP3+rFb/2j4lt5xp70d+ZOE/F+WiGtg55xtfcyttM8IPQDOe9idh2prHnWu6vluVTw9IKmfLs/NGA8z9viv9Mdx2Dr+nYvURsOzPadPD8EGm+0ndw0PifeLtgihtc8VGBJ526Bl86dX1P/knf0xKim13jvXJ5murHiPOeH1Flo+fvNhh/r3p3oAPQd425luDn7oZif28hutmdMF9/zTbmyCXz187aTy49NfE/4rDPM88HkfdXHYJ/WNHEP05089vAuyLOu9/89xaXdiceMvHfw/YFbQ/Bz9Um4/8i71Wim13zIBcx32FufAxYWhna8dgWea77Pubc3P/OJH8PfrKA/Vbl4MttY9/Q2YyX34Gfmq5bj0ac93rz9bP/aR+3HfQcGIM5LutJU74BH6oa/OZ3Qto9i99FfLMZaGpKhX6NUX6lV7lr5XHzbUfZtgzTexbhV1gOsKRvwRf10MjtCga/z/jH7btu4nwjsZI2m/YftiyiXmdcjw0muac9j083Jf3aS/N/bUH7cLJiwe833w7RXsRbj5UlTezpEoVe6nQH63PCJH8ptZO3CJd7TpAnCtqHPcZ/azHGKEB5tj6nPH02e4ludquMblji2NXphzd+D9AJJKG5b8rZo3xEuV0HFsAxedJzEpsssFVVCSvMl0dKyxb6uzmtX9InlbJ8vy9pxJ+bBe7HXqP7PHWe2zbU8Xjf+AdW6SG62S1LcbDErjzHybvgCavmdqF0MCV9fvligftRlm0i5fa9WLImvyyLjJk3k7DMcqxuI7adkWvc5yUN/XSAg1Jurb1vMz+5jvzFtH69WDqXhhP+rVzrHyhg/8nJaqcL8IzJ3nkq6yZPYxb5SakDnh+gGbecfPYqh7Pr45KGPuQnjKVTzveNtQ+uqXnf+O9wjLmmaQzy3Plbd1KcDbTdZ93030boNJPBWGUQ1Jee5fnNFDvIS6V0lzj0UusCr798Q/2SyXbr8qPrG1gXeZ9ti7wPQnxGepFbj6sm+bHbv13n3lKiilAtH2nmnjVfnnh76ZqVs65mXBNU/t8597c8JJKO9Lwfca2jpEsSecFqxHx5BgPAArU94ZJkzv2qy+3WfTTlger4oeE6fcL1rRwzxXckAgioi2v09v4PfnBhTRzS+/QAAABldEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtbj4xPC9tbj48bW4+MjAxOTwvbW4+PC9tZnJhYz48L21hdGg+dhpWswAAAABJRU5ErkJggg==" style="width: 40.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="1 over 2019">

Giá trị của biểu thức: <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mn>1</mn><mo>.</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>3</mn><mo>.</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mn>4</mn><mo>.</mo><mn>5</mn></mrow></mfrac><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>+</mo><mfrac><mn>1</mn><mrow><mn>2018</mn><mo>.</mo><mn>2019</mn></mrow></mfrac></math> là

A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2018</mn><mn>2019</mn></mfrac></math>

B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2019</mn><mn>2018</mn></mfrac></math>

C. 1

D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2019</mn></mfrac></math>

  1. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2018</mn><mn>2019</mn></mfrac></math>

  2. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2019</mn><mn>2018</mn></mfrac></math>

  3. 1

  4. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2019</mn></mfrac></math>

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Thực hiện phép tính:

2

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG