Square root
VBT
Calculator
magnet

Câu hỏi

Giá trị biểu thức là: A. - 33 30 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAPQAAADkCAYAAACv+QllAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACMJCpdlQAADHFJREFUeNrt3Q9kl9sfwPGPZDITkySTMZOZZMzPlVxXJJP5ychkJlckyc+VmFwzycgkyUQmmWtGMpm5Ij/JdV2RSZJEMkkSV2YyiX7n4/vMb7/9nj/n+33Oef7t/eJDP/3uOd9P3/P5Ps9znuc5RwQIt9VEv4kJE3Mm3ppYMbFq4quJLyY+mLhvYtLEMRNN5AEUS7eJqWDAf68ztECmTewnDyBfbSZmGxj8UXHHxA7yALKnp5mfHRbBWrwz0UseQHYueiiA9bFs4gB5AP5d8lwEa/G3iXbyAPw5GzFov5lYCP5ej0jrZ3z1z10mBoNJo5U6iuEJeQB+HIwogKvBpJKtZhNjYj+TPEgegFstJpZCjjpdKdrskdq93KRCeEoegFs3NgxOvVe7xUG73Zanrp3kAbjRvWFQXnbc/gWLQhgiD8CNuXUDctJD+zrZlHQfeIo8gPT2rhuMDz32M51QCDPkAaR3LRiI78Xvo4zDCYUwSx5AOjpZ9CkYiH2e++r3eGSrSh6Ak8F5N4O+DicUwgR5AOnoPdsBE7sLUAgD5AGU72wg6j3jVvIAyiNuMukueQDlcjOmEPaTB1Aur6QaD2JUJQ+gYb0RRfBaahNa5AGUyExIEXw00UEeQPmPzloEPeQBlEtLyDWnnp52kgdQPgvy/49FtpAHUC7bpLbjxFoB6AsTx8kDKJ89UlvyZ+P61SMlO6pVJQ+gYbqS5rLEL3erBdFEHkBx6fPNz8V+yVvdGO4IeQDFobs3njLxTBpfoH6qAEe5quQBNETvx14PTjtd7Drxp4md5AFkS49ir8XPVjJ6dGwlDyA7eu9VJ4rWNkV3XQz3yQPIl1436mqbR6X2nvB0MFHUaDEMkwdQzOvsaxJ/6ycsdLuZbeQBFNN2E+NS2yjOthjOkwdQbPtMvLEshJfkUW1Tks2m3XnFZrl/qYvf297r3UceFDQFXXy7xG5b1vPkQUFT0OVw2OLf5C55UNAUdHnMJ/ybvCAPCpqCLo+DCf8mq+RBQVPQ5ZL04MYW8qCgKejyuF2Rf5fbfL+AyFBFCmGIggZq+zhX4VS1KnkAqbRJNSaTqpIHkEqLVON2T1XyAFJpjimEWfIAqnPKfZ48gHI5GlMIP5AHUC7DEUXwjjyA8vktohDGyQMon7DXD3VFkHbyAMol6tXDKfIAyudRSBHoQny7yQMol6hHJc+RB+DGjyaumLgltVnbNk/96K4SSyFFsEAeQHq6Uds9CZ/UmTPR7bi/BQnfwXEHeQDpjUr8m0JaEBPi5hXA6ZD235voIA/AjZdiv8b0Tw32oYvUh629pRvGtZMH4E69W6nqgO6to/1BqT0xtbGde+J2l8aq5AGkMieNLZu0aGLExJENp7H6Z539vSzhO0zoqekJ8gD86JNs1k37aOJXqb1qSB6AR6MeC0AfvDgptVlo8gAyPFIvOhj4y8F15SmpbRdDHkCOukyckdqtmd9NfDKxIrW1sdZC//eHYGJpNrjOHDDRSR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpfCcIIpegoAmCgqagCYKCJgiCgiYIgoImCAoaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUzVYT/SYmTMyZeGtixcSqia8mvpj4YOK+iUkTx0w0FTifbhP/MjFj4qmJzxty+RjkqfkeNrGFIYAq0IE/FQz273WGFse0if0FyWW7iRETrxrI5ZOJcRO7GRIoozYTsw0M/Ki4Y2JHjvmMBEfhqM+nf/cwOFrH/Xjp0XuUIzbK5FjC4G803pnozTiXvSaeRXwevUS4YGJXyH+nZxVXY4p70UQHQwVFd9FDIa+PZRMHMsqlL+gv7HPMm2i1aEOL9klEG3+b+JEhg6K65LmY1xdCu+dcBk18i+h/us62tpl4EHMKfoihg6I5GzFgtSgWgr/XI+v6mWv9c1dQPFokK3UU9RPPlwxR/T5usM0WE89jzjp6GUIoioMRhazXkG11tNNsYkzsZ8QHPeRyIDhqhvW3Umc+G+mP19eItt+b2MlQQt70yLMUcvTsStFmj9QmnJIK+qnjXHYm9DvioI/LMe0/YDghbzc2DEq95+zilky35Sl4p8NcFmL6+RBcC7v4AYy7A3CaIYW8dG8YjJcdt3/BoqCHHPV1IqGfMYd5XZH4Cb8dDC3kYW7dQJz00H6TJN/PnnLQjx5538X08S3ltfNG7Qk53WJoIWt71w3Ahx77mU4Y/DMO+ki6d/5vD3k9TvgB2csQQ5auyX9nZ32eIg4nFNtsyvb1pZGPCX2c8ZDXuQzOPAArOun1KRh4fZ776vd8hP7Z4jq9zUNenZL8YsouhhqysFZkdzPo63DCwJ9I2f4fCe2/8ZjbUkLfoww1ZEFvvQxINq8CJhX0QIq291gcnac95jaT0PdrhhqqejYQdVramqLtcxYFfdJjbqct+v8HQwBVEjcplvaUf96ioA56zO2QRf+XGQKokpsxgz3NSiY6sZf0zPg38bsQQZNk/3grkKuo5X7S3tY5YFFM7zPI77PFj0oLwwBV0CvRk0VpB/lZi4KezyDHBYvP8U+GAqogbBZYHwLp8NR2ljPca37jOhqb9eisxdzjqP2/LAppLIM8r1h8jjmGA8qsJeTaWU+zXb4qabOIwlAGuQ6L3eKIQGltvK6cEbcTQ81ityJKFteuAxafw/dsO+CFvsZ4X/53lvm4h35+sizovgxyPmr5WboYHigTfQzzScip5oi4v21zzLKIslhit0g/LoATegtpWeJX8dDCdrXX1ZBlEWVx/3e75Wc5zjBB0elz2s/Ffule3eDuiIN+T1n2l8VmedssP8tJhguKaGtQUM+k8YX2p1IW2zXLfrKYiGqy/Czci0ah6H3l68Hps4vdM/6UxtexnrLsIys2n+UmQwhFoEfj1+JnSxw9yrdukoJmSSIUgt5D1gmvtc3dXRf1fQoayJdeN+qqlnoPVp+U0mem36Yo6mEKGijmdfY1ib+F5WJXi1sUNJAdvTc7LtHbuYbF+TranyxhQU8yLFB2+6S26qbNgH9ZR7unS1jQYwwHVIEu4m97z3qfZZvDUpwHS2zvQ/NgCSpjl9htL2t72j1gWUTNGeRm++YXj36iUg5bDHrbVUD7LIsoi/2ldgovZ2CTSlp294VlO62WRXQkg5wOWX6WDr5+VM3BhEG/WkdbNjPo/Rnk1C8scIBNLOkBFNuB/8KikAYzyOe4xedY4mtHVd0WNzPTsxaFdDaDfGxe5bzH146qGnJU0GNSjKezbB5DvcTXjqpKmqG2PeW2uXadzSCfuYJcywO5aBM3k2ItFoW0mEE+TyV5QqyZrx1VFVeIL+psK2n5o9UM8lktwI8KkJtmh6fINksR+bz/22HR/xW+cmzWU+7zdbZls4TugMdcbG5ZHeArR5XFLUz/Q51t6QTap4SCuuoxl+uS/3a2QK6i3pRqdP+nGwlF9dhjLn/l+GMCFELU9qvjDbbXI8mzzD5eo2yR5MdPu/m6UXUfIoquPUWbiwmFdcxDHoMJff7BV42qi3qFMu0TXScl+43fkx4oGeDrRtU9Chn4uqDg7pTtbgmuwaOK64vj025dheVrTH+v+KpRdVGPfJ5z1P6ZhCPmGYe5XEjo6wRfN/Kg263qgw+6LK7OPrd56kcXJFgKGfgLDvvQo/SzDI6aWyNyWYsnDCtkTQflPQmfnNJrQ9ezswsSvhPlDsf99Ej8zPPPno/OX4WZbeRgVJJv9Uw4uu6clvAHLnw9kvlLTF4fU/6I7Jb4TQR+YWghDy/Ffq3snxrsQxfbD1tDTDe+a/ec352YnOZTnNI/imn3NsMKeal3S1gtgt462td7tGGzzveksd0mG3E3Jp9bDbQXt0IKK5IgV3PS2KZy+gDHiNRW01x/Oq5/1lls3dT8TcQpdh4zvzcSitDmx0XXFH8gbHGDAusTP/s9h12z/ir5vuCvPySfIz6fvthx0cSekP9Or/HHYv5bvZYeYiihKEY9FrJea+rTW1sLkqtOZk0nfObl4HM/kuTdM/X0u40hhCIeqRcdFPBycAp7KjhFLaouEzel/u1u154202vvfQwbFJ0O9DPBUez34FR0RWrL66yF/m99sWI+OELp9bI+r9xZwny3BPMA48F8wusN+a4EcwH6d1eC/y8L5WfkP186dxofIvDuAAAAe3RFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtZnJhYz48bXJvdz48bW8+LTwvbW8+PG1uPjMzPC9tbj48L21yb3c+PG1uPjMwPC9tbj48L21mcmFjPjwvbWF0aD59AkMsAAAAAElFTkSuQmCC" style="width: 38.67px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator negative 33 over denominator 30 end fraction"> B. - 31 30 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAPQAAADlCAYAAABkpdrAAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAADT9JREFUeNrt3QFkVt0fwPFjMpmJSZLJmMlMMubvlbxekUzmb0YmM3lFJnklMclMMpIkmcgk85qRzMy8In9JXq/IJJlEkiSJVzKZRP/z89z5P+/zv/ee8zz3nnvPvft++NGrt3PueZ7ze+655957jlIARJuOSzpu8VGgjLboGNBxRceCjjc61nSs6/im46uODzoWdUzrGNTRXMB2btMxGbTth44vfPUokx4dM0Hi/qgzJNFndewrQDtbdUzo+FzTBhIapdCuY76BJI6KOzq2e9jOFh0XdPwdcdwkNApvMORMlUa809HnSRu36jin45PhmEloFNp5B4lcmyD7c2yfXNefDa73bY8XKKSLjpN5I2R425Fx22RS70wdiUxCo9BORXTo7zqWg7/fr/45cy1/7tYxrCqTX2t1JMqTjNrVpON0MNxvdEQBFMqBiES+qiqTY7Zkgklu+djOiA87TuQxHW+r2vNYVWbspV1/ktAoo9aqTl999uxOUGav5dD2qcN2rVbV8ZuOHSH/z20SGmVzo6YDzwRnt6R6LIfgXY7aNRkcQ5ydJDTKpKem815KufxzFgkzkvNnsEpCoywWqjrutIPyZdLMdD97JufPYJGERhnsqeq0DxzWM2tImDmPftRIaBTWtaDDvlduH8kcNSTMPAkNJCOTXhuPPPY7rmuAMzSQTZLdzaCuQ4aEuUJCA8nIvechHbs8SOghEhoo3mgg6n3pNhIaKI64SbG7HhwfCQ3U4WZMsuwjoYFiean8fKCEhAbq1BeRJK9UZWKOhAYKZC4kQT7q6PToGElooMGzsyRzr2fHSUIDBq0h184yzO7y8FhJaMBgWf3/452tnh4rCQ1EkKVxq19HlBc/jnp+zCQ0EGK3qixdVLsO97jHZ2cSGghxKuj4ccv2SmI3k9CAv+Q57efKfklc2eDuMAkN+EMWrD+h45lqfKH9GY/O1iQ0NiW5r3xdRW/qVm/Iutg7SGggW3I2fqXcbIkjZ3lenwQyNBd06o3N3dNO6kUSGsiXXP/KqqFHVOV9Z1nZ802CpB4loQE/r7OvqfhbWGEh2+ZsJaEBP23TMaUqG8TZJvVZEhrw214dry0TepWELrcZlc3m43lF8yb5HmURf9t71ntJaBKahPbfTmW3vexZEpqEJqGL4ZDFZ3KXhCahSejiWDJ8Ji9IaBKahC6OA4bPZJ2EJqFJ6GIxPYDSREKT0CR0cdz27HMhoYEERkhooDz6GXID5dGumBQDSqNVcdsKKI2WmOSZJ6GB8gy5efQTKJgjMcnzEwkNFMtoROK8y+l4SGgggd8jEmeKhAaKJ+w1SlnZpIOEBool6hXKmRyPiYQGGvQwImF2kdBAsUQ98nk65+MioVEaP+u4rOOWqsw+tzuqR3bHeBuSLMsefAZLJDSKTjacu6fCJ6fkjNWTcn3LKnwnyu0efBYvSWgU3YShE0tiX1HpvMo4G1L+ex2dHnwOLcq8drj8fRNdBj5bVfZrZf/SYB3bIoazsvFdhyefwwnLz+EgXQY+q3dLWEnMvjrKH1aVJ79qy7mn8t9tcoO89WW7CcADugx8tqAaWzZpRce4jsM1w3H5s8xiX4pIEhliH/Oo/bJO+KM62z7N0Bu+6lfZrJv2UceF4Fo1bzIyGAgSc63B9shE3mTIDxqQuwmHiSwPkBxXldn0vMiSwR+Cy4t1R+1cD8qXeo7SpeDDmXolhY79Jbg+PhEMZ31wSGW7iuso3Qm+6NYxpiq3mP7Q8SkYlq5XxVpwJpIJsvngenlIRxcfHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDI/CILIJUhogiChSWiCIKEJgiChCYIgoQmChAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWzRceAjis6FnS80bGmY13HNx1fdXzQsahjWsegjmaP29Oj4zcdczqe6vhc05aPQTulvYd0NNEFUAbS8WeCzv6jzpDkmNWxz5O2bNMxruNlA235pGNKxy66BIqoXcd8Ax0/Ku7o2J5je8aDs3DU8cnfPQjO1nE/XnL2nuCMjSIZNHT+RuOdjr6M27JHx7OI45FLhHM6dob8OxlVXI1J7hUdnXQV+O68g0Suji869mfUlv6gvrDjWNLRZlGGJO2TiDL+1vEzXQa+uug4masTocNxW4Z1fI+of7bOsrbquB8zBD9I14FvTkV0WEmK5eDv5cxaPXMtf+4OkkeSZK2OpH7i+JIhqt5HDZbZquN5zKijjy4EXxyISGS5hmyvo5wWHZPKfkZ82EFb9gdnzbD61upsTy358foWUfZ7HTvoSsibnHnehpw9uxOU2asqE06mhH6aclt2GOodT6GOSzHl36c7IW83ajql3HNO45ZMj+UQvCvFtizH1PMhuBZO4wcw7g7ASboU8tJT0xkvpVz+OYuEHkmprmOGeiZTbNdlFT/ht52uhTwsVHXEaQflNyvz/eyZFOqRM++7mDq+J7x2rtVhaNMtuhaytqeqAz5wWM+sofPPpVCH6d75fxy065HhB2QPXQxZuqb+Nzvrcog4aki2+YTly0sjHw11jDlo1+kMRh6AFZn0+hR0vH7HdQ04PkP/anGd3u6gXV3K/GLKTroasrCRZHczqOuQoeNfSVj+Y0P5rx227a2h7gm6GrIgt16GVDavApoSeihB2bstzs6zDts2Z6j7FV0NZR0NRA1L2xKUfdoioY87bNtJi/r/RRdAmcRNiiUd8i9ZJNQBh207aFH/JboAyuRmTGdPspKJTOyZnhn/rtwuRNCssn+8FchV1HI/SW/r7LdIpvcZtO+zxY9KK90AZdCnoieLknbyUxYJvZRBG5ctjuPfdAWUQdgssDwE0umo7CxnuDf8znU0NuvZWZK5N6Xy/7JIpMkM2nnZ4jgW6A4ostaQa2cZZqf5qqTNIgojGbR1VNktjggUVu115ZxKd2KoRdmtiJLFteuQxXG4nm0HnJDXGBfVP2eZjzqo5xfLhO7PoM1HLI+lm+6BIpHHMJ+EDDXHVfq3bQYtkyiLJXZ9+nEBUiG3kL6o+FU8JLHT2utqxDKJsrj/u83yWI7STeA7eU77ubJfulc2uDucQr0nLOvLYrO8rZbHcpzuAh9tCRLqmWp8of2ZhMl2zbKeLCaimi2PhXvR8IrcV74eDJ/T2D3jT9X4OtYzlnVkxeZYbtKF4AM5G79SbrbEkbN82yZJaJYkghfkHrJMeG1s7p52Ui+S0EC+5LpRVrWUe7DypJQ8M/0mQVKPktCAn9fZ11T8Law0drW4RUID2ZF7s1MqejvXsDhbR/nTBUzoaboFim6vqqy6adPhV+so92QBE3qS7oAykEX8be9Z77Usc1T582CJ7X1oHixBaexUdtvL2g67hyyTqCWDttm++cWjnyiVQxad3nYV0H7LJMpif6kdipczsEmZlt19YVlOm2USHc6gTQctj6WTrx9lc8DQ6dfrKMtmBn0ggzYNKBY4wCZmegDFtuO/sEik4Qzac9TiON7ytaOsbqt0ZqbnLRLpVAbtsXmV8x5fO8pqJKWEnlR+PJ1l8xjqRb52lJVphtp2yG1z7TqfQXsWPLmWB3LRrtKZFGu1SKSVDNrzVJknxFr42lFWcYn4os6yTMsfrWfQnnUPflSA3LSkOES2WYrI5f3fTov6L/OVY7MOuc/WWZbNErpDDttic8tqP185yixuYfqf6ixLJtA+GRLqqsO2XFf5b2cL5CrqTalG93+6YUiqRw7b8leOPyaAF6K2X51qsLxeZZ5ldvEaZasyP37aw9eNsvsQkXQdCcpcMSTWoIN2DBvqfMxXjbKLeoUy6RNdx1X2G7+bHigZ4utG2T0M6fiyoOCuhOU2BdfgUcn1NeVht6zC8i2mvpd81Si7qEc+T6dU/pjhjDmWYlvOGeo6xteNPMh2q/LggyyLK7PP7Y7qkQUJ3oZ0/OUU65Cz9LMMzppbItqyEU/oVsiadMp7KnxySq4N056dXVbhO1FuT7meXhU/8/yr47PzN8XMNnIwocy3eq6kdN05q8IfuHD1SOaZmHZ9TPgjskvFbyJwhq6FPKwq+7Wyf2mwDllsP2wNMdn4rsNx++7EtGkpwZD+YUy5t+lWyEu9W8JKEvTVUb7cow2bdb6nGtttshF3Y9pzq4Hy4lZIYUUS5GpBNbapnDzAMa4qq2lWD8flzzKLLZuav44YYucx83vDkIQ2Py6ypvh9xRY38Fi/crPfc9g16wWV7wv+8kPyOeL45MWO8zp2h/w7ucafjPm3ci09QleCLyYcJrJca8rTW1s8aatMZs0ajvlLcNwPlXn3TBl+t9OF4OOZeiWFBP4SDGFPBENUX3XruKnq3+5242kzufbeS7eB76SjjwVnsT+CoeiaqiyvsxHy3/JixVJwhpLrZXleuauA7W0K5gGmgvmEVzXtXQvmAuTvLgf/LwvlZ+S/86fnIWX5n1gAAAB7dEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtcm93Pjxtbz4tPC9tbz48bW4+MzE8L21uPjwvbXJvdz48bW4+MzA8L21uPjwvbWZyYWM+PC9tYXRoPuAQVH4AAAAASUVORK5CYII=" style="width: 38.67px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator negative 31 over denominator 30 end fraction"> C. 43 30 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAJoAAADlCAYAAACri+4DAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAADPFJREFUeNrtnQ9kl9sfx4/JZCaSTCaRzEyumOuauRLJZH5mZDJJIkmuK5HrylyJJEkmMslcM5KZzBW5kuu6IkmSjCRJEkmSyeh3Pna++u7peZ5znu/3nPP993rxoWw75/t5Pu/vc87n85znHKVai7+1fU0YgFd+SRFZLYW2RtuwtvPa5rS90PZJ25K2L9o+a3ujbV7bpLYRbe2Esb7pNYGrB6H1aZsygvpa0ESA09p+IKT1R5u2RznBi0W3ttkKxJVl17VtILz1w1lLwGIgw94HjyIr2Stt/YS49gw4BCs0vwUQWLl9NH5Cjeg0E+xaCu2PwCIr2XttWwh5bbjmGKRQHMvob1nbgvn5QCKTbDeJy5iZ9H8qILb7hDw+IwUCFILBDIFdMEmBKx3aJgpkqGOEPh4btb2rodBkyH6ZcrfpraLNHWqlpmbz5QHhj8dC4uK/iyy0y4n2p0yJpVr6HIfSbUggPEcTF/1aivBCCq0v0fYZz+2fdBDaODIIi3yTy6v/z80wFlNoc2XtTgbwUZIFWz1uCimEo83Mg8on3gMZQ2koofWUtXknoK/TFn9mkEM4JnKGrFhCu2jae63CPho6YPFnFjmE4ceUzKststDaypKOocD+DnNHi4/UmRbLLvInM4SpyEIrBf9GBJ93W/w5jyz8czVxkY86lDtCCE2SjlFtm+pAaKPIwi97Exf4r4zfi5l1xiBv6JT1auuRhj+k+v+27ALLv7taRGh5ycANpOGX+cQFHsn53WYT2pUcX1h565FD6vvqv2ohoT1TFGqDs1WtLPQrXdwXZiLeKkLrz/Bh0eE6QAH+TVxgl5WlzSS0mZTP/9Z8AcETySXRrg+sm0Vo/Rki24E0/CEXc7nsAj9U7ktvmkFonSlzMxkuWRLkkfbERZYVGj0F/r4ZhJb0YYY5mX8uJS7y8SqD1EhCW5so5cgD+31Iwj/Jxy23PdwNGkVom9XqpU+l9zhPcTfzizxKKV8nL6sjulpEaMcSZZy01+tOKfbi8MIN5V79bxahyXPMx8r9xRqpI+5BKpUzrr7fZ0I1qdBkV6HDKn9/EJtNcXerbG7yQRWr/jei0PpNovNe+XlbXYrZG5GPO3dV8ep/IwlN7l6LKszWCI8Uy4ScSL5O5uN1tXoT2oyZ6Jc23fMttnlklM92tbJwr/zb2daEQktD5ldShJbFnLLebFq5bVCTZQeQU/aFLs+2llSx6n+zlTfK53EXLaWONJOy0Fpk9T0XVHXV/2YVWol1amVDweUCYjuBrFazU1Vf/W92oZVPL547Cu0p0vqGZEjlO+9Iqt+F0HLZoNxrbtuR2LcMLPSrYs0mNGW+jC7bWDF8qpVVCOUXZTpQP80oNGG3g9Ba/q2oTWp1RfyFmfAitGLcsvj2pNWFljwqZzBgX80stEGLb0utLLLkUTnnAvfXzEJTyl7YbWtVodkCX6+2t06vp2338XaEhtB8MI7QEFoMhhg6EVoMukkGEFoMOilvILQYdCj2s20IYTc6eUMnj6AQmjf25vj2E+FHaL7I2gHyFaFHaD75M8Ovs4QeofkkbbmQrMTloFiE5o2spUJsM4rQvHJXpZ+xvomwIzRfZD16Ok7Im19oP6uVZU9XTTbYHcin5LsWJVsg3M0tNNmo5WbGpFzO8OyL4JOsS9tAuJtbaKctfYjg5DAwH0t20s7rlJ0g2Zm7BYT2VLm/a7mzwj7knYq0dwQWKWW0jtCKbj0lgukv0P6YWqn0J9u5qdg9qKWENqcqWxEi29jLFqF7EsNqu8kqZTel5xlD5X5C23pCG1JxlirJARa/q5WlQdCi5Y3TAQUmhdmDJruFFhda6c720IOwPpr5l+wO2UUIIYtetXLstpQi5GRk2bq+tMNjyeT/b0xiMGvmY7L3CMfuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw/AVw1SEY8K5sBhCwxAahtAQGobQsBYVGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED9sEbbsLbz2ua0vdD2SduSti/aPmt7o21e26S2EW3tdexPn7ZftM1oe6DtQ8KXt8ZP8Xe3tjYkED4gUyYIRc+VlKBNa/uhTnxZp+2UtmcV+PJO21ltm5CEX7q1zSp/h5le17ahhv6cMnetrM8nP7tj7m55Xyq5253mDueHEUtQKrVX2voj+9Kj7VHG55Gh/qS2rpS/k7vwhRzRPdS2FalUzm8q7DHNH7UNRPJlyPSX9jluaVvv0IaI6X5GG++1/YxkivOHinMmuARoS2BfxrQtZ/Q/XbCttdpu5wylu5COO8cyLqQEa8H8fCCRScq/e01Qp00W6iq2+4GH/qx+71XYZqe2xzl36X4kZGcwQ2AXTFLgSoe2iQIZ6lgAXwbMXSatv08F/UnSazLptLZfa9uIlPK/qS9T7ja9VbS5w0y0bUJ74NmXjZZ+T3no40xO+7eRUzaXExdrylPq3uc4lG7z6MtCTj9vzFzLxxczLyM/gqTSxVB+kc54bv+kg9DGPfW139LPhEe/zlkSnQ1IazVzZRdoMkD77Q71uCkP/aw1NbqvOQlNt0e/tlh8uoq0vtFTdmHuBOxn2hKUGQ992Gp/fwfw655F2D1IbIWLZdlSyFv9AYsIZqtsXx72v7X0cTSAX8cj3KkbHpnsvzMXZChwX8OB72iHHOaB3QH82qbsCwq6Wl1opeDfiNDXbktAzlfZ/j+W9p8H9O2lpe/TrS40SdFHVZwlLzahjVbR9maHu9l0QN9mLH0vMnjGv3tmDS/rq2j7uIPQDgb07YhD/z8igTjkJQPVDt23HAI9GNC3XQ79n0ECcbiSE4RqVt5KQmN7prqswi5QbFfxH7NBBs8Cpf8DDkF+HcG/Dw5i70QGYenPmSRXe/GPOQjtVgQfFxw+x/+QQljSsjIprm4N1HbMjLPEn8zT6u9uJiLb4an9/xwCPBHBz3MOn2MOOYShM2VuJsOlzyVBLosrxyP4ekC5vZQDEeYtM54nxB3KbQVvjLnRqMPnCJ39thyyXGc+kfXtC9DPTkehDUXwea/jZ+lFHn6Qx0H3U4aMUwHS+xHH4MZ4Fa6eRN/0SKnho8pfdSqC87UXx7hjcGPUr9Y5fpZ9yKRy5DnmY+X+ip1sDLPHQ7+HHfuLscnMWsfPchC5FGONCfQjVfkLxFNViuCiYz8xJuDtjp+FWpojUhe7ZIZBH2+r/6sqfw9yyrGPWLh8litIyD5MLaowWyPIXXF9iwiNpd0WZsxEv7Tpnm+xzSM0yJuX9JgaklTGp81Ev1KxHUBoUHQed9FS6vDxFvlVhAal2pJsw7lcQGwnCrQ/2YBCm0QW4diuVt5CcgnE0wLtHmlAoU0gh7BsKFBz2+7Y5gFVPwVb1zoaBdsIdCm3baxch89Rx+B2RPDNdSUJj6AisdshGK5vRQ05BjfG/hcbFQ/V6w7b63FPHNtZ7xjcPRF82uX4WdjBOyKDlmAsFWjLJaMdjuDTsGLhY11iK+y6BuSJqs0euUn2OXyOl4Q9Ptc8ZYoup7oci+CPy5Klm4Q9PuOehDah6qMa7/I47A/CHh9bxug6dLrMjWYj+DNXJ3NFSNDtKRnodAjwwwj+PHBIBDoIe3w6PZQ3StiWkS9F8GepDsQOKXR4HOpclnSHrF9tdej/HCGvv6HzRMG2XF51Gw3oi0tpY4CQ14a8F25/KthW+abPWXYhoC+XVO23zYIMslZeVLo/xWVLsO8F9OW/GoocLGRt83S2wvZ2OGR9IZYLdSr7Y7A+wl073mSIoZqDYh9aAj4SwI8xS5//EOrakbVUqNoK/kEVf0M+W6F2lHDXjrsq/fTeas87aFP5h4599jx8yqrhLzn9PSPUtSPr0dNxT+0fVfHOg7IdD7mfcK9GtnWSguJVkw12B+pHFiqmHWez4LEPuas9inCXWaPyj+a5j6xWX6ybGZPyuQDZUtrO1S+U/1P1dlgywUOB72ZfyDRXc9qhJHDe07wm7bxOKWSGejT0a45fb6sU9yaV/3L0r0hrNU+V+7uWOyvsQ14iTntHYLHKUoYL15X/swfaMpKZkl1DVt9TdOspCU5/wRpTWhZ4U1V3yFgRbii/R1HnrehlBW2FNaC8JS+yReiexLDabrJK2WzuecZQWYtM7LJFHC6il3dSbyu2OvBaavBtMif6XdV24Z8IPOu8JnkgL+exb075O5lDTuT8rczVxpFS9QlBNSZzmYMmu60HNmUkJUnh3DVm2w1pNmApqGnvbA89COujGYoOq/o+R1z2+r+iim+rVXq6IHO77cimugAcNd/6v8yQUtrhsWTy/zcmMZg18zF5nretAf1tM/PMs2a+upjw95OZa8rPzpnfbcgXgP8PfWQ9Cb+SNGkAAABkdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtbj40MzwvbW4+PG1uPjMwPC9tbj48L21mcmFjPjwvbWF0aD448R9QAAAAAElFTkSuQmCC" style="width: 24.00px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="43 over 30"> D. - 43 30 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAPQAAADlCAYAAABkpdrAAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAADhlJREFUeNrt3Q+EVtkbwPHHyMgYS5JkJJKMkRVjrWRlSUbyM4aMNUZWrJGslRhZGSuRJEkiI2usMSRjZKxYK2utFUlWsiJJksTKGBmJfufx3te+3b1/zn3fe879834/PEym7n1P93nee++5554jAuTvVxMfQgGggr6NKOYiC3qdiUMmzptYNPHUxKqJNRPvTLw18dLEkokrJkZN9HIYAZHBoEDKUNBDJmaDwv2QMbTQ50x8yiFFt+ox8SChSHwZMLHQRhHHxY8mNnJ40W3OphSGD3q5/CbHYm7GcxPDHGJ0iz0WReHaKQeF3BorQTuBWuuXRkdTkQX9g+NibsY/JrZxyFFn1y2LwZVjMft7b2I5+L2eWVt7rvVn7cAbl0bn12qGor7LIUddjWYoBBf2xhTyBWl0jtnqMzEj9j3i4xx61M0mE68LLGi91H8WcfYc7GCbu6XxTDqtLfc4/Kib5VCSv/Zc0JdD29dnzj05bHfI8hJ8BymAupgKJff1iAJ3WdBDoW2fyXn7Jy0KeoI0QB3omal1NNiT4PLXZ0Evtmz3ioM2aqdZ2vPsWVIBVdcT3Ke2dkDtibkEd1XQO1u2+YvDts6ltGeedEDVzSRc6voq6IvB9l6I2yGZkyntWSAdUGWfyX97ens8F7Tur9n5NuK4vYc4Q6Ou9Dnt45ZkXg0ufcVzQTeL7IaHNu9Pac950gJVdS2UzFMRf8dHQWvn25iJLSUo6DHSAlV0MJTIP8f8PZ+93D4kXXLr+9IbSA1UjY4Ge9WSyPrz5i4p6KROsRukBqpoKZTIowl/t24FfTWhLcxkgsr5Wv47Gky6qKD/FgaUoCa2S+OF/mYS6/vO/V1U0MMxbXhs8f8AlM4foUS2mamjTgU9H/H5XwVfdEClhKfysX3xoS4FPRxTzLtJDVSNJu37lkS+L/avJNahoPsj7p31MptXJVE5vaFk1jeqdmb493Uo6HAb5rlnRlVdCiXz8Q6LoUoFvV4+fkSnL34cJiVQVeFhjrdzOLtVpaC3ysevhDbn4Z7m7Iwq0iGMrfNo6dtMm7ukoHVG0BVJnrZ3WljrChVyQ+xHg9WloHWc9l9iP8GhPoc/QKqg7Cbkv+s4SU0LWlehPCrJ62+lxSxna5T53vGNZBsNVsWC1ufKl4LL5zxWz9BBN5tIH5TNHck+GqxKBa1n48fiZkmcB8LrkyiR8DS1eUyDW7aC1mfI2uHVXNw976JeIo1QBruk8YJ+69mmp4YFHUXvf3WwjE7aoO87z4ndQntxMUk6oeiEbu3dXZNso8GqXtBJ99kXJfkRVlTo4771pBWKckE6Gw1W14Ju+kQaC9e/z1DUJ0grFGGfdD4arO4F3Xpb8sSyoB+RWtFmxc+i3UVFkc8vtUe2daVGfYSzmYJOtFHsn1nvonwpaJ/CL+y7mIK2bgUtwZeezfKyXHZT0N4cDn2OOUf7qWNBq/0Wx5ZZQCloL7bIxyOkngYdPxR0NrdS2vaQ8qWgffg19Bn2OtxXnQt6b0rb1ihfCtq1b0P7P+d4f3UuaJH0ASg9lDAFXWSBlTUOljQ/r5e40xNdgILO1wQFDQq6PgU9wiU3KOj6FPQAnWKgoOtT0P3CYytQ0LUp6L6Ez7xAuqHbvkCqLumSm6GfoKAr5mBC2z7n8IOCrpbJmHY959CDgq6en2LadZZDDwq6eqJeo9SZTbZx6EFBV0vcK5SzHHZQ0NVzJ6I9OqHgFg47KOhqiRvyeZxDDgo6H19I43XQa9LofR5w1KbwXGzNWOZwg4LunC44d1OiO6cWTQx5aJO+F72Rww0KunOnU/ahhX1e8nmVcS5i+y9MbOdQg4LOxyOxnyt7X5v70DnXouYQ04XveEQFCjrHgs66JKwW5nCG7Y9LY+RXeDs3hdUmQUHnXtCL0t4bXPdNTJs4ELoc15+1F1tX33wSc4n9FYcWFLSbgh4RP69wvjLxvTRemQQoaHH32Oq0w0LWASRHpNGbDlDQ4uc59EhwGd1pAa8E98dHJf+1vgBkNGhiShqPmH428drEqjTm+GqG/llfrNAOsoXgflnX9trBfx8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjKB4IgCgkKmiAoaAqaIChogiAoaIIgKGiCoKABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDVrDNxyMR5E4smnppYNbFm4p2JtyZemlgyccXEqIneErdnyMS3JuZN3DPxJtSWV0E7tb37TfSQAqgDTfzZINk/ZAwtjjkTn5akLZ+YmDbxdxtteW3irIktpASqaMDEQhuJHxc/mthYYHumg7Nw3OfT3/0SnK2Tvrz07H2aMzaqZDQl+duN5yaGPbdlp4kHMZ9HbxFOmtgc8e/0quJCQnHfN7GdVEHZnXJQyK2xYmKPp7aMBPuL+hy3TGyw2IYW7d2Ybfxj4gtSBmX1g+Nibi2EbY7bMm7ifcz+5zJua72J2wmX4F+SOiibYzEJq0WxHPxez6ytPdf682BQPFokqxmK+q7jW4a4/f7W5jb7TfyVcNUxTAqhLPbGFLLeQw5k2E6fiRmx7xEfd9CWPcFZM2p/qxnbE6ZfXu9itv3CxCZSCUXTM8+ziLPnYAfb3C2NDqe0gr6Xc1s2pex3Ood9nEnY/m3SCUW7HEpKfeacxyOZIctL8B05tmU5YT8vg3vhPL4Ak54AfENKoShDoWQ8k/P2T1oU9ERO+/oqZT8zObbrnCR3+G0ktVCExZZEvOJg+72S/jx7Nof96Jn3ecI+3nd47xy2LaVN10gt+LazJQF/cbifuZTkn89hH2nPzn910K7fUr5AdpJi8Omi/Ns76/IScTKl2BY63L6+NPIqZR9TDtp13MOVB2BFO71eB4k34nhfhxyfob+2uE8fcNCuHZL+YspmUg0+NIvshod97U9J/PMdbv/3lO0/cdi2Zyn7Pk2qwQd99DImfl4FTCvosQ62vdXi7DznsG3zKft+TKqhrlcDcZelGzrY9nGLgj7isG3fWOz/M1IAdZLUKdbpJf8ti4La67BtX1rs/wwpgDq5mpDsncxkoh17aWPG34vbiQh6xf/wVqBQcdP9dPpYZ49FMb3w0L43Fl8q/aQB6mBY4juLOk3yYxYFfctDG5ctPsf/SAXUQVQvsA4C2e5o2z57uJt+4j4a3Xp21mLendP2/7QopBkP7Txn8TkWSQdUWX/EvbNeZuf5qqTNJAoTHto6KXaTIwKVFb6vnJd8O4b6xG5GFB/3rmMWn8N1bzvghL7GuCQf9zIfdrCffZYFPeKhzQctP8sg6YEq0WGYdyMuNacl/8c2o5ZF5GOK3TJ9uQC50EdIK5I8i4cWdl5rXU1YFpGP57+fWH6Ww6QJyk7Haf8l9lP36gJ3B3LY71HL/flYLG+95Wc5QrqgjNYFBfVA2p9of7bDYrtouR8fHVG9lp+FZ9EoFX2ufCm4fM5j9Yw/pP15rGct9+GLzWe5SgqhDPRs/FjcLImjZ/kNXVLQTEmEUtBnyNrh1VzcPe+iXqKggWLpfaPOaqnPYHWklI6ZftpBUU9S0EA577MvSvIjrDxWtbhGQQP+6LPZsxK/nGtUnMiw/SsVLOgrpAWqbpc0Zt20SfhHGbb7TQULeoZ0QB3oJP62z6x3WW5zUsozsMT2OTQDS1Abm8VueVnby+4xyyLq89A22ze/GPqJWtlvkfS2s4COWBaRj/WlNgkvZ6BLpU27+9ByOxssi+iAhzZ9aflZtnP4UTd7U5J+LcO2bHrQD3lo0yFhggN0sbQBKLaJ/9CikMY9tOewxed4xmFHXV2XfHqmFywK6ZiH9ti8ynmTw466msipoGekHKOzbIah/sBhR12l9VDbXnLb3LsueGjPYknu5YFCDEg+nWL9FoV030N77kl6h1gfhx11lVSIDzNuK236ozUP7VkrwZcKUJi+HC+RbaYicvn8d7vF/s9xyNGtl9wnMm7LZgrdMYdtsXlktYdDjjpLmpj+84zb0g601ykFdcFhWy5J8cvZAoWKe1Oq3fWfLqcU1W8O2/JngV8mQCnELb96ts3t7Zb0XmYXr1H2S/rw0yEON+ruZUzRbetgm/dTCmvUQTvGU/b5O4cadRf3CmWnI7qOiP+F39MGlIxxuFF3dyISXycU3NLhdnuCe/C44nqb82W3zsLyLmF/f3OoUXdxQz6P57T9qZQz5lSObTmZsq+vONwogi63qgMfdFpc7X0ecLQfnZDgWUTiL+e4Dz1LP/Bw1lwX05Zm3CWt4Jsm5U2J7pzSe8O8e2eXJXolyo0572e3JPc8f+347PxO6NlGAU5L+qOe8zndd85J9IALV0Myv0to16sOv0S2SPIiAt+RWijCI7GfK3tfm/vQyfaj5hDThe+2OW7fjwltutXBJf2dhO1eJ61QlKxLwmoRDGfYvj6jjep1vintrTbZjhsJ7bnWxvaSZkhhRhIUalHaW1ROB3BMS2M2zdbLcf1Ze7F1UfMnMZfYRfT8Xk4pQpsvF51T/LawxA1KbETcrPccdc/6vRT7gr9+kbyJ+Xz6YscpE1sj/p3e488k/Fu9l54glVAWpx0Wst5r6uitdSVpq3ZmzaV85pXgc9+R9NUz9fJ7gBRCGc/U93Mo4JXgEvZocIlaVoMmrkr25W6bo8303nsXaYOy00SfCs5iPweXoqvSmF6nGfpnfbHiVnCG0vtlHa+8o4Lt7Qn6Ac4G/QmPQ+1dDfoC9Hfngr/LRPme/B/ITdsAjC7whAAAAHt0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1yb3c+PG1vPi08L21vPjxtbj40MzwvbW4+PC9tcm93Pjxtbj4zMDwvbW4+PC9tZnJhYz48L21hdGg+hz+wewAAAABJRU5ErkJggg==" style="width: 38.67px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator negative 43 over denominator 30 end fraction">

Giá trị biểu thức Trắc nghiệm Cộng, trừ số hữu tỉ là:

A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>33</mn></mrow><mn>30</mn></mfrac></math>

B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>31</mn></mrow><mn>30</mn></mfrac></math>

C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>43</mn><mn>30</mn></mfrac></math>

D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>43</mn></mrow><mn>30</mn></mfrac></math>

  1. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>33</mn></mrow><mn>30</mn></mfrac></math>

  2. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>31</mn></mrow><mn>30</mn></mfrac></math>

  3. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>43</mn><mn>30</mn></mfrac></math>

  4. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>43</mn></mrow><mn>30</mn></mfrac></math>

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Tìm số nguyên x biết: x ( x − 5 ) &gt; 0

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG