Square root
VBT
Calculator
magnet

Câu hỏi

Giả sử f(x) đạt cực đại tại x 0 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAGIAAABXCAYAAAD/EpAQAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAAs8vz+fQAABhJJREFUeNrtXXFkXlcUPyqqIkJFVFSFiqmJClFRFREiaiKi1HwqZspUVFSUqZiYKhUVM1GmoiIiVExUVekfMVE1JqaqatRMTFWJiYiI8O0eOZ+87+Xec+99776bdd/5cUi+vHdP3vm9d8+5551zP4D8OKKkR8mEkkUla0q2lOwoea6kNef4OPaCknUa84OSKSVNIIA6JZfIQJtKyoz8qaQhg44TSp4y475WcqxWCehWMkN3fNlDxj31dNKdbxv3Rq0RcFnJO40hth2J+MtD13kl/ziOO19rRHxF8/OSkutKusg3AE07tx2M1uWg5wz5grIQoUcT+QUOjyxGm7Cc30xPjs+UNyLu+iA6LEZ7bom8llPHttLnXeSX0uOt1rKztuEPhojtxHSWxj2H6QanrR8oRL6VMRKrGUxbnooOzTkXE39/LCYMg0sWIkoav/AhsS6QuzwQGi1EPEwd/4Q+x0XhZ2K+sHjLELGaCokrn18Vs4XHHEPELoXBLYn1wlMxWTEYtkxPfYkpaUPJSTFZMWh3WE9Ufr4u5ioWLknBVTFT8VhyIKJDzFQ8vrOQ8EBMFAdfWIgYFBPFwVEKVU1EfCMmioffGSJmxTzx8IAh4pWYJx6+tPiJRjFRHFwTh334OEXpC46IKTFT8XjhsKB7IWaKt5jjQthKJlZQAM4ljI9Tky0Te1FMFh71UF08gK9FsVhgB7KX2AgyIFnykswlPWOIeCZmC4shMBcHcwlArsRG4Ams2v4I5iKAXoufuCAmDIPkG7dhzd/rLH5iTEyYHzfArSD4F4aIRUddbeTcpcwyhXbYL8vHaIkrDrvDELHloAvT6pVs7pCYfh94V75JONyzluNtL4ps59+Hwy3Dr6MbACPDFVojbdOUu0HT8+Rh+LvZhBGvOV4It8oeZc4t0THYmxc7Y9tIT7Nr40yZntyBPEqP00r3jOW48YTSRx7jr4B/3qkT9itCeiOTgNnh96n/828lN2Gvq6mBbHXFcG0LWW6ckVRkg9OO7nXmGFQ3Kfoougd+HUVtCUPciUzCuCGo4PzgMBxsZcM1VYur0guMcd7SHTBIDJcTeaR2z4vrA3uf3ed0LFaVV6rElyOToGtDW3I8t19zLgYyzS4nPwS/dqkyOV9f4Ap63VMPPnUx+6lHDDeIz5OvyySsuGQQ5j2NcyXHhU556MEn4nREEkwzQynDDafrnJq0nTjmaJidDP9UGifB3iBfJt9wNiIJmDl+Z5ias+AqZKhuxDXBS4f5uzvQRZcsulZ8HFwgTGQIq23h+kfNeL+5nDhGYeQWef/KQmWUVrYh0UUOcCOhaxEOp6CgGfSN+7s5/dOPBnIlM+ARJYWI1kxZZ6mCNzhW054ftwKMbco6nxPTV2MA+M6mvDC9nZRq+BRmoNgKk0nD+OsgbyarsGYw1JtA43Nlpz1i/v01jclIC4F0nGd0fC8U7OEyY6TpQDqOglSwWHGXMdJwQD2mxs4toWAPPzNEhFx0vWL0tAgNewsrk4H6A+p5DGGz2P87cL3gIROO3M5upVon4Qjwicf6gLpmQWp/jai3EBEyycn1Etb8CrvFQkRI3Gf0zNU6ET0RiZiOsHD8ZNEXkYi7QoQZvRGJGBEizGiNSMSUEGFGw3/ER9S8s66zEBGy2/UnCV95cM0zIXswZmRBx2ONMdCpgHrmJMXBg0vGhaw857K8kvSz5IAGAurhvp7nhNBgLosMPWWYCq/lxRChmyHidiAdmOU1dUrJDtAJI5kip1Bb3Z0GKR5wwjIUu4XRUKSA4JPHTTBvTVHk+JsgBWZVaINiX5cuguzy6Yxfobi9aU1twf1i9oMwpanzZkY7DeOuicn1wPfXGwY/kSf5Z+q7+FZM7m+0PBV/ui83xKlK9rtlcNywAn4ZOGyVp8EBX0O4hhVdmeVrCVndoes5x14Jn/cTo4Z1Q7uY1x3HDKtt1wgK+yHSpZy7Eq5mJ+OJhgysYeU2RRnURF/4u+xtmxPYVZpOCr6nz3uIFEzq4QYuuqZFrDaXb5sMmAKZA37Tr7TgVhLyTZMFoYmMO08R0SYt+LYp7MWpDDtIM2+T8S8yr9oe+p6AeAAAAGB0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bXN1Yj48bWk+eDwvbWk+PG1uPjA8L21uPjwvbXN1Yj48L21hdGg++LQIBwAAAABJRU5ErkJggg==" style="width: 14.67px; height: 12.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="x subscript 0"> . Hãy chứng minh khẳng định 3 trong chú ý trên bằng cách xét giới hạn tỉ số f x 0 + ∆ x - f x 0 ∆ x " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAA9IAAAEhCAYAAACTCphAAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAADJIpzoigAAKyFJREFUeNrt3Q/kVff/OPCXJJPETDKTmJlkJpJMkkiSZGImk2RkkpmMTJLJmCSZiUmSJJJkMpEkyYzJZJIxk0wSmSRJfH739Xvf93fv3c553XPf73vv+fd48PL9fNf7/b73PM/rvM7zdc7rTwg00f5O+V9O+VJ4AFrty8Q9Yr/wAABt9E0iQdotPAB0fJ64VxwUHgCgTVJvovcKDwBT7EvcM/YJDwDQBrsTCdG3wgNAhsOJe8dnwgMANNmHiUTotPAAkHA6cQ/5UHgAgCZa0SnPchKg650yW4gASIj3iRs595F4f1kuRABAkyzolAc5yc/9TnlDiAAoeD+5n3M/edD9dwCA2psV8t8gPA/eIAAwmBXd+0feCKdZQgQA1J0FYgAYtl2Je8sh4QEA6mxdItG5KDwAzMDFxD1mnfAAAHX0esifF/0wmBcNwMws6N5Psu4zf3fvQwAAtXI22KYEgNHalLjXnBUeAEBiAwCvSj243SQ8AEAdzA35W5P80ykLhQiAIVrYvb9k3Xfude9LAACV9k3IfzOwR3gAGIE9iXvPQeEBAKrs7U55mZPI3BEeAEYk7h39e87950WnvCNEAEBVnQ/5bwQ2CA8AI5Ran+Oc8AAAVbQykcBcFx4AxuBG4l60XHgAgKq5mkhePhAeAMbgg8S96KrwAAASFwB4lQe7AEAtXEkkLauEB4AxWpW4J10RHqis70P+goHbhadVtnfPe1Z9+F54aIrliYTlhvAAUAJzpaE+5oX8lzKPg5cybbW6e/6z6sXlbr2BWjuTSFY2Cw8AJdicuDedER6ojDc65VbOtfqgU5YIUast7ZSHOfXj105ZIETU1Vshf9/ov4QHgBL9mXN/ivetRcIDpYudoDs51+nfnbJYiOh4p1sfsurJbZ1p6upAyH/iv1d4ACjR3sQ96oDwQKle75Tfcq7P+AbyXSFiindD/pvp37r1CWpjVqfcD/mLQng6BJRhTphYiCSW14Sj1RaE/MVq7nfvY0A57fT1nGvzaaesECIyxF0XnuXUm2udMluI2m1tpxwKExPo4+T6590kIDYqcf7IyU7ZVJGb/6aQ/6T/rFMJlGTXlLZot3C03vnEvWqD8CBHLMXZxHW5yakm4cNE3TktPO0TG7zPw8Sc4v8VLPcq0NBcTHy/9U4rUJKp8+3+EI7W25C4V10QHuSIY/dl4rt/7ZRTwNeJOvSF8LTHyk6521MB4uIo8Y3Km92ficNfvsqpLF+V9L3jPIS8RcYeOK1ASVZntEkbhaX1HZEHIX8aknl1yBHLbaMny1WnnAHkbZcW+ydrhKf5dmZ0RuOQhKw5fbMTDU8ZleXTxPf5zqkFSpI1UuaasLTed4l71k7hQY44FvGh1b2Qv7jYQqedASwI+YuP3Q8ekjba/oyTfiLx83sSjeRPJXz/a4nv84HTC5RgUcgfKWMf0nb7IHgLhhyxbKcS33OL0840bEnUqTPC00xfhOwNxVMrzf2ZqCjPxvz9DesGquhQop08Jjytlze8+2Xw5gI54qhZoJZROZeoW6Z2Ncz6nJv40j6/978KNZI7Et/le6cYKEFMMh8l2iZb8vFDon5sFx7kiCMzN+Rvl/pPMKSbmYnrBTwJ+Qvv2QazIfLG8h8t8Lupp40/jvk4UluJePIDlGFn6L+S7T5harXNwRsx5Ihl+Cbx/fY49QyBleBbIGsRnPiWpMiTuC9yKkfcQ3DpGI9hVvc7573xmeU0AyW4VaAjfV8b1WqzE/evZ+oGcsSRWNT9Hlnf7w/XHUPsn/yR6J8sEqJ6y3sS/sMAf+NIz+/+3Slrx3wc60K1n3oC7bMqFN9fdZtwtdqPibqxTniQIw7dycQ195FTzxB9nKhrJ4SnvuJTkrxhN8sG/FuLuw1PHEI9u4RjSQ3PsQE6UIazA3SkbwlXq32eqBvfCg9yxKF6N3G93XbqGYHbIX9RSbt31NRnDWpEfkk0iu851cCYvRXydxHIKyuFrbXeS9SLX4QHOeJQnQ62u2K8UtthnRae+olPGvM2n99bs2OZk0hYnzjVNFh8sv99TjE0rVwHBuxEx3JO2Frtach/YzFbeJAjDsXiRM5416lnhO4m2vjFwlMvWxPJ3Ns1O5bUHoDnnWoabE6w5VtVk9DeVW7vF+hIu5m2W2rniU3CgxxxKA4njm2XU88I7UrUvcPCUy83c07k7zU8FvOj0ZHWka6S7Rkd5FWh2FDvQ8LXWnsS9eKg8CBHHMo9M29f3/jf7etLWfXvqfpXH6m5WEdqeDyXgtVO0ZHWka6OX0P2yJiLBTrS/7iZttbaRL24JDzIEWdsZ+LYvnPqGYOjiTq4U3jq4UjiJG6s4fE8C+aVoSOtI10NyzPOxZruv60JxeZKG17YTrND/qiFZ8KDHHHGLExL2d5P1MGfhaf64ty9ByF/Y/C6dTxTWxj85nSjI82Y9e5N2rvC7Z0CHWkL3rTX7US9eFd4kCNO2zvBlldUw2/a+fpalzh5N2p4PB8Fy8mjI60jXQ0Luslm6u3yrlDsrfQG4Wyl1LY8VuJHjjh9XyeO7UunnjH6MlEXvxaeavshNGvFuNRcg8+cbnSkGaPeLa+yFg+ZG/K3OZpaLgtnK1nVFTniaNxNHJvdEhinxcGItNp6lDh5H9bweC6E5s7lAR3p+ohDInu3uMpbmOdoKPZWeomwts7GRH24IDzIEacltYDaL047JTBfv4b6LXSzoIbH9DBxPPOccnSkGZOPM87BOzk/u6RgR/qYsLbO/ER9eCA8yBGnZX/iuPY59aiTFJFaifFhwzoRT5xudKQZoxthsKHZVwt0pON86zeEtnWeJOrEHOFBjjgwb/+oGqt319BfiZN2vobH80HieK62/FzHYabx6fKB7rmNQ06fdRPzK2Hm84Hi3z7bKY+7f/Nh9yYs6deRbqNlGfFf3+d3NoVib6X3asta15ZdSdSHVS435IgDiaM8Xjb0AYG2tN7yRtW+7NZbKmR5n2TtQA2P6ePE8Zxq4TmO21Js6TZk/RYzijfM6Qx9X9gpPyX+7u/h1cWV0JFuut4Fev4o+Hv3CnSk73cTIG1Ze9qyU4nv9bHLDTniQNq8u4u8sNrOJuK2RXjGp0gyNsxSldUNzS+YsLpTToSJJ4uDnMdBYxRvtA8L/N0vXJI60i0Sn7b3bnm1p+Dv7i14rW7TlrWqLfuqoR0a5IhlOJ74rp9oS+WFJdqWiNkPwjMeb465gXxaoWNv+1P7+JT1z4xjf17wXN4b4LPiMPp/Cv7dMy5LHekW2Ztx/RUdkpW173QbV5XVlv2X0VbIEYfn98T3fVtbKi8s0dsh/Safkm+4oygXK3TslxLfc10Lzv32bhIez8nuTlkZ/h0CGofnHCxwPlcW+Jy4wvDjAeqIBlNHui1mhVff9gy60vbxgtfVCm1Za9qydYnvdMllhxyxsLmJ7/pIWyovrIDUlnN2H6qIrX0q+PGaHtffiWN6vQXnNQ4pnd3nZ86Fmc17WhAGHxa2yyWnI90SmzPivnTAv7G84HV1VlvWmrZsXmju6snIEctuoyfLOW2pvLACzifitkl4quFYnwpe12HQeaswvnTK/8+yPuf+SuJ341PMaz0/u7j73+MTyxMZf+9WsKiEjnR7XO+J+Y1p/p1fCyQisV1bpC1rTVuWd3974bJDjljYgWBHBHlhtVkTowZuhnotDFFEarjOY6f8P/5IxOp5yF8R+HDoPywnDu85GiaeqMXGwDAUHem2WJIR84+m+bd2hGJP9b/RlrWmLUvNPZSUIkcs5kLiuDZqS+WFFZDaCvO88JQvXgwvQ/PmiNhDurjv+9wkl2X8zoYp//6jEOpI84retzgz2aYqDsUrsvLp4+4515Y1vy27FmY2hxHanCNOSrWrbe7gyQuro23z+BvV4azzHBFPcIrb0qcObO35+QVTbj6/B08TdaTpFa+J3m1F9s/wbxZZBKbtc83a1Jal3qSZN4cccWb3xyfyQnlhhaRGIM0RnnLtDM3c2y21OMZJp/0/5vepA73xmlwNPW5j8a7w6Ujzij3h1XmrC2b4N+P855cFOtJ3tWWtaMvavr0jcsSZ2hDqs7q4trTdUrsQrReecp3pc7GsrulxpeYUHnPaX3E3Ea9bU35u+5T//qmw6UiTqXefzmHt7XsxFHsrva7FsW9LW5ZaAGqHSxA5Yl/bQjNXIteWNk9qG8xtwlPdCyW+RZlV0+M6mjiunU77K06H9GrAcY7mm+HffQF/EjIdaTJlveUY1h7Pawp2pC9ryxrfln2WOM6jLkPkiH19lzg2HUJ5YZV4OVhRc/skY9dqfGwnQ/G5HaSfzE6+4ZocWhLnDr0lZDrSZLrcE+dfhvz37xTsTC/RljW6LfskcYwnXIbIEfuyzoC2tC6s+1TDExPL4Rof29nEcX3o1L/ivdB/38DJ/71buHSkyfRuRpy3D/kzdhXsSLf1KXVb2rLUYkBnXIrIEfu6FTyI1JbWN7eYLL8JT3n297lINtf42FJzCTc69ZmeFUjObwnTUKwr2BlqQmnTXLMj4dWtKYY99DG+JXpaIO5x2OV8bVlj27KNiWO7UMPjOd7wdrCOK+s2OUeMnieObVZAXlgds0J6X29KcqHPxfF6jY8ttcLdOqd+4IcPqb0D0ZHWkc7u4B4c0WcdLRj7vdqyxrZl6xPHdklHWkdajphk6yttad08CbbAqpzUvmR/1PzYroRmrjI5Sv2ePlvFUkdaRzpf75DruBjLohF91pKCsb8f2vlmpQ1t2crQrLmrOtJyxHF6P3FsP0tR5IUVdNPDjGpZ1OfiOF3z43uYOLb5Tn+mjaHZw7h0pHWkR6l3ddtRLwByrWD8t2rLGtmWvZ44vgc60jrScsQkizdpS+vG4ngV81Gfi2N7zY8v9ST1Nac/U7zRvwy2DdOR1pEe1NqM414z4s/cXDD+N7VljWzL5iWO75GOtI60HDFpa+LYTkpR5IUVdCpxHj4WnvHrN8duac2Pz1yC6fktEbdTwqMjrSOdqXdNhttj+Mw4ZPtewXOwQlvWuLasaXM8daTliONkH3Ztad3Y97xiUsMCnzXg+FIrDVqNcXrJzG3h0ZHWkX7F4oxj3jWmz95X8Byc0ZY1ri3TkdaRliNO37HE8e2QosgLK2hHsN1lZcSO5IvQ7PkhqW0NyPdxn2TA/PLmJNv2kR6OQz1xjSt3j2v6yII+bfk4Fj7TlpXHdijIEafnZLCuhLa0XkxHqJDlfS6KfTrSrfVZsLCEjjSDxLd3GsnhCiWE49iKS1umI40csW7OyXO0pTWTWhflnPCM144+F8X6BhzjSx3pgS0K6bnlsRwRJh1pkgnG2xVLeqcuQNWW9SHa0pbpSCNHnJ4fE8e3QRWQF1ZQagX1i8IzXqdDegjg7AYnGDrS+W4GKwDrSDOI2z0xvVzS9/i1YGd6V0vOS1vastR9HOSI+S4njnGNKiAvrKC1iXPwk/CUm/xNLb805Bh1pAezv+dG2fSbqI60jvRMrQ7VeVPT7w3SZPldW9aotkxHGjni9NxJHONiVUBeWEGpvd3vCs94E+vUBdGUld8M7S5uxZR4xSE82/ok44Y96UgzseDO1Hj+UeJ3iUnMo4Kd6Sa/bWlbW2ZoN3LE6Um1l/NUA3lhBc0L6albjMmGPhfDloYcp8XGipnb7QBMXa2y34qdB4RNR7rlFmUkm3tK/k7fFOxIX27oOWljW6YjjRxxelLzfue0vA7IC+uXzz0RnvH5sk8j+aaOdKucCNn7/V5uYSKuI01RBzM6LmVvAZLVuc8rS7RljWjLdKSRI07P08Qxtn2YsrywmmYn4v9UeMbnfOJE/N2g43yWOM5ZqsH/92H479zJqXvf7u+TpImhjnSbb2YPQzWHO14s2JH+TltW+7bM2wnkiNPnZYu2tI48PK2AB4kTcaZBx2nYTtrC8O8cofgk692ef1/bJxFfJYQ60i2VtbDX0op8tzUFO9LxQeP8hpyPtrZlOtLIEXWktaU60jrSY75I2rI1yj+J43xNVQhXpsRjW8a/x7duqfkwe4RQR7qlbvXE8UbFvt/dgp3pvdqyWrdlFp5Bjjh9L3SktaU60gxqS59GckWDjvVh4jjnt7wefBGKPWG+nojh+YKf9U6YWITCwwsd6Sb4IFR/8Z3dBTvS90L9h+K1uS17PXFMD1yqyBGn1SFpa0daXljvemvLwzH5NrRnfsOVxLGubnEdeC/8O6QprsqY2uYhtQrws4KduN+6P/+hy09HugFO98TwfgXbzXhNPy3Ymf5YW1bbtmxl4piuuVSRI+pIa0tb05G2kPKY/BTas+LepcSxrmvp+Y9P/+5MuSm+3+fnN/a5aPv9/rFQ7ryq2d2GOq5AGYffPuke94vu/44PWw6FZs/r0ZEenjjssXdV7P0V/a7fF+xI39SW1aIty7I+cTyXXK7IEXVItKWNywvz4v5C8zUeqcUVDjbsWFOr125s6fk/NSUGnxVscFLb6Xye+N2t4d83duMeSh8/Lz41/adgZyKW+IR0k440CQcyblwLKvpdlwxQ95dryyrblk03ob3gckWOmPRSR1peWMO80BzpEr3Xp8I0rRNxNnGsTRpOEufJbQj994XdN+X4zw3w92+Ewd9mxcR8cvuxtWOOx+bw6qqjccuOuDdmnN86rxurT3KO7Wxo1hx6HenhiEMae9ddOFnx73y9YLJwWltWybasn9R81jMuWeSI035oIC+UF1Y1L9SRLtEnIT1JvWkb0J9MHO/WhhxjXEFz6gqKcXjOzoyf2zPlZ/4asEE43OfmurLn59+Z0mB9M+Z47AvZi1+k5vtsy7ihxr0T39SRpk/7WfWFd/otHDS1/V+oLatUWzbTe/oJlyxyxFZ2pLWlzc4LdaRLdCJxAn5u4PEeTRzvzgYc36rE8cXtb+KTtvgUbuqb+Tj/470BP2dd6L/y79IpifvkW7txL3ZzMOO7XSz4u1lzDeOCGwsaUE90pIfjZk/sfqnBd57VvT6LdKa/1pZVpi0r6rPEsRx1ySJHTHqSON458kJ5YQXzwlQ+90QTNnq/Jk7Atw083h2J4z3WgOM7GYrP85jJ3PCYjD8e8HPi0803xhiLXTkN+SBPWPdn/I0bof6rlOpIz9zyaVxrdSuPSkwetWXTcyzxvXe4bJEjJqXmytZ1WyZtabPzwrmJ+D7WhI1Wv8UB1jfwmD9OHO+pBhzfmQEbsU9m8FlHBvic+OTx7THGIe8J7KDD92PD+EfG3zmkI916J1rQkS5zpI62bHpOhWZua4YccRweJY53nrxQXljBvHB+nxgzQmtDet+3WQ085k1h5pvGV9megg3YizDzOeFvhWL70sY5MO+PMQbx6dyfIXsI03R8mnNcy3SkW2tB+O98syaX29qy0tqy6bgQ2rMwFHLEYbuaOOYP5IXywgrmhctC87ayrI3dieCfbegxf5A45qsNOL449Ojn0H+eyuohfd7WPp8Vh7uMeyGGA2Hw7RdS4lP5rKfUv+pIt9a+lnSiJ8sabVkpbdl0XAvFF/sBOeJ/XQrNewOvLW12Xrg+EesfNWOjdS6MZmhHlbVhLkG8wPd0n0TFp8Zx1b7JDeU/D8Of8xiTs4vh3w3s4/+Nb/c3l3DsC0L2qptxeNpM5uF8F5q1ZZqONNqyardl09XEOZ7IEcflfGjmiA55YXPzwqaPtK20vJVb4/COeQ0+7rw5Py9Vido7mHNuZ7oqZN4Qt1s60kAN7m8vhAY5Yl+nE/fGj1QJeWEF88KPEnX2tNM/Oq+H9g4F+Dtx7K+rGrUV52s9zDmvXw3hb+fNiV1Rw1jpSEPzzAsWnUGOOBM/JI57u2ohL6xgXrg9UWd/UAVG58PQviE7k1JzYNapGrW1acTn9XLO3z5e047085xir1moJ3PlkCPOzOehXdt9yQvrnxceSBzjF6rA6Hwb8jfvnt3wY7c9SDPlbUf0ckh1+lDIn1s/S/iBkjV9e0fkiKOWWijrpGohL6xgXpjaJ3yrKjA613OC/l0Ljn1/otLtVzVq637OOb0zhiR1jfADJfsq0UYdEB7kiH1ZuEleWLe8sKkL5FVafAqTtyDJ0hYcv6f2zfNWGP02Hamt0752CoCSGW2FHHFm3k9cQz+rGvLCCuaFqS0Pl6kGo5E39+VqS46/6XtJt1Fq1cJhLZ6VWqDrslMAlOxyoo1aLTzIEWd0n3+iasgLK5gXPkl8hzmqwWgcD+0enqqhbJ5vE+d02xA/51nOZzxzCoCSSaiQI87c88R1ZD0UeWGV8sJZiWN8rgqMLuiPgiErDxOVb55qUjsXEufzwyF+zu3E57zpNAAlmZ9omx4ID3LEwn5JXEvvqSLywgrlhUsSn31LFehv3jQ6fXnbY6xygf1f2ahq1c6txPlcP8TP+VG9ASpoY6JtuiA8ckQ5YmFnx9QBQ144U6lt6s6qAvlig3ZnSrDiqnRFlzg/F6xEGB1NVL7PVLHaeZY4n+8P8XPOBdsMANWzK9E2HRYeOaIcsbDUkGD78soLq5QX7g72PR/Y0kTl6LfMeRxi0LsSY5xT9VYL45hahOC0alYrqTkiscwd4melVsW1vQxQljOJtmmL8MgR5YiF2dlFXliXvNBODdOQGkJwrc/vZm0c/mlL4/hOIo63VbNamdunwRzmIjvHE59z3KkASpKap/eu8MgR5YiFrUzE8IYqJi+sUF6Y2vpqhWqQLTVU4XHi9+ITxd6VCC+IZWYc4xPZ2apabbzZp8EcpmPBSAagWlL7/tpRQF4jRxzMrMT1ZCVkeWGV8sLniX6MFean0UieSfze+Z6f/S1YnfpSIpbrVLXaWDPGBvP7YGEHoFrWJtqlS8IjR5QjDswID3lh1fPCtxOf+5sqkO9KGPw1/mc9P/dnpywUyvBNsKBEE6wbY4P5rY40UDFfJNqlb4RHjihHHNjpRBw/Us3khRXIC631NILKkTUceUfPz/yqgfw/mxKxPC88tbF2jA3mLh1poGLOJ9qlTcIjR5QjDmxnIo7fCY+8sAJ54eFg96FpO5i4uF8LE+Pi47CG3r2Sj3f/nQlxsYG8eTBPhKc2Fo+xwTyiIw1UzNNgvQ/kiMO0PFhwTF5Y7bzweuJzl6sC/W3rlAd9Kspk+TlMPJ3hVT+H8ewzx+jMC9WYC2MoDTBu7/e59yNHlCMOLj5syFvI6UXwgEpeWG5eOLtbDy0wOUPxjer27hOPe93gxQs/vk2N82QOeSrRV2puw+fCUwuz+zSYw7zh/RBsfwVUx+eJNulb4ZEjyhGn7WLi2lovPPLCEvPC1BSOC04/47Q+URkvCk9tvEicx2EOVTuR+JwDTgMg2YdG+DJxbR0UHnlhiXnh14nP3OPUM06zEhfbi2Aftrq4n2hUFg3xc1IreW51GoAx6je8z/0Lpi81beJX4ZEXlpgX/pL4zKVOPeOWWvF0o/DUwo+JczjMuV8X1BWgIjYHix/CKOXNM48L+b0uPPLCEvLC1xOf97fTThl2JCrl98JTC6fCeLZ/+SnxObYMAcYpNTdvu/DAjB13jckLK5YXbkt83g9OO2WIT3fytsF6IDy18GkYz9Cax8EqiUA1eFsGo7UpWEdHXlitvPBcsC4GFXQ1UTE/EJ7KWx1GvyjIrJD/wOUnpwAYo1WJNu+q8MDQ7vv/hPx1dOYKkbxwjHnhnJC/LsbjYF0MSrQzccF9Jzy1uNnlNS6nhvQZbyfqyNdOATBGRxPt0U7hgaFJrcpseLe8cJx5YWpYty1YKZXh3fV3Lef83RzS3/8wjGfhCoB+CWLesO4XwbBuGKbUm02jP+SF48wLLyc+b7XTTdnsx1lveXs+Ph/x338aDKcBxmdD4l51QXhg6P4M+esRLBIeeeEY8sK3Qv4Lvz+daqogtZXIGeGpvHcS5+/9Ifz9vG3STgk9MEapxWZswwfDtzeY2iUvLDcvPJA4lr1ONVUQnx7lbeAeh8stEKLKy9ukfhhzBvMWHDFaARiXBSF/3t/9YHQMuO5oWl6of0JteOJTb7tyzt3ZGf7d5YkbKMC4pN6MHRAeGJljiWtvm/DIC0eYF36SqHvHnGKqJDUH4S/hqby4FcWTkD0fZvYM/u7B4OEKUL6/Qv5czbeEB0ZmSaIz85vwyAtHmBfeStS9JU4xVXMqUWG3CE/l5TVuM3lifC/j78UhPfOFGxiTLYl702nhgZFLLUq7TnjkhSPIC9cl6tx5p5YqWpaotDeFp/Li1i+PM87dz9P8e3nbG3gbDYzTz2G0C+cAae8lrsFfhEdeOOZ2f6lTS1Wl9mpbJTyVtyMM74nx7Yy/83uwuAgwPqm9bC8LD4zN2cS1uFl45IVDtCnYTYia+iBRea8KTy2cyTh3dzrltQH+xuche3/A94QXGKNriXvSB8IDY/N2yF/B+27wkF1eOByzut8tb6XuxU4nVXdV4lJrr+Ukn0VXaozn+Fl4dUEf210B45R6sHtFeGDsvg12eJEXjjYv3BPsXU7NrUhU4uvCU5tG81LG+TvXKfMSvxeHZ/Wu8hj//w1CCozZzcS9aJnwwNjFlaDz9vWNucKbQiQvnIGFIXul8ckdhF5zGqmLc4kEZpPw1MZX4dWhWA+6/31Nt/GMw7XiqrhZ8+Pj1gPvCiMwZqk5cueEB0qzMVhNWV44/r6HFzrUSmouTJy7YC5MfbwTJraIeZlooHrLn53yqdABJeg3R+5tIYJS2S5VXjhsHyU++6RTRh0dCObCNMkb3UYwLjoRV16Mi0Q875a4PUIc8nMoTKySC1AWc+Sg2uZ1O1ZZ12jMJ94SInnhABaG7G26Jod0z3OqqKM4F+FeyJ8Ls1CIABiiN4M5clAHy0P+yMUbwsMA8nZniPVrhfBQZxuCuTAAjEdqjtxG4YFK+SxxvR4WHgo4nKhDO4WHJjAXBoBR25K415wWHqikY4nrdpvwkLAtUXeOCQ9N8Xqn/J1T0R+GiTkWADBdC7r3k6z7zN/d+xBQTT+F/KG5a4WHDGtC/tSAy8JD06wL+U+NLgoPADNwMXGPWSc8UGlxMagbIX/xMfNcmWpZyF9c7GawuBgNdSiR6OwSHgCmYXfi3vKt8EAtxFEjP4f80YvvCxHdepA3+ujnYPQRDRb39sxbWS8ulb9SiAAYQHxTlTe877rwQK3MDxNvFLOu50fBm+m2W96tB3lvoucLEU0X57E9yLkI7nf/HQCK3E/y1t/42/0EailuUfdjyN861VSNdloX8rc2/DHY2pAWiU+UnoX8J0qzhQiAhDkhf07l0+59BqivI2FitGJW2SE8rfJpoi4cER7aaFPIn9N2VngASDiTuIdsFh4AoMk+TSRCnjABkOVI4t7xqfAAAG3wVSIh2ic8AEyxP3HP+Ep4AIA2+TqRGH0hPAB07EncKw4IDwDQRvEtQ95CAl8KD0Cr7U3cI4xeAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDy/E9RFEVRFEVRFEVRGlp0pBVFURRFURRFURRFR1pRFEVRFEVRFEVRdKQVRVEURVEURVEURUdaURRFURRFURRFUXSkFUVRFEVRFEVRFEVHGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDKmNMp33fLa8IBAAAAabs65X/dsls4AAAAIO3OlI70H8IBAAAA+VZP6URPlo3CAgAAANkuZnSkrwkLAAAAvGpRp7zM6EjHskR4AAAA4L8O5XSiYzkmPAAAAPCv2Z3yKNGRftEpC4QJAAAAJuxMdKInyz5hAgAAgAm3CnSk73fKLKECAACg7VYV6ERPlm3CBQAAQNudHaAjfUu4AAAAaLO3Qv6WV3llpbABAADQVgcG7ETHck7YAAAAaKO4cNjD8OqCYv060vEN9mLhAwAAoG22Z3SQV4ViQ70PCR8AAABt82tP5/h8979fLNCR/qdTXhNCAAAA2mJ5Rud4Tfff1oRic6V3CSMAAABtcbKnU3y759/vFOhI3xVGAAAA2mBBp7wI6bfLu0Kxt9IbhBMAAICm693y6ml4db7z3O5/79eRviycAAAANFnc8qp3i6sjOT97NBR7K71EWAEAAGiqjzM6wu/k/OySgh3pY8IKAABAU90Igw3NvlqgIx3nW78htAAAADTNsoxO8Po+v7MpFHsrvbflsY1D5uO2YXH+edyPOw6ffxYmHjJc6ZTFM/z78W+f7ZTH3b/5MEwMyfcAAwAAYIR+6On8/lHw9+4V6Ejf73Ym22R2p2zpdnD7Lcz2V6fMm8ZnLOyUnxJ/9/fw6kJxAAAADEF8c9m75dWegr+7NxR7K72tJbFc3SknwsQb5/8NUPYN+DnLw8Sb535/9wvVGwAAYPh6O8PPO2V+wd/N2nc6q/zS8Bh+1Cl/Zhz384Id6XsDfNYHnfJPwb97RvUGAAAYrlnh1eHZg660fbxgp25Fg+O4vftA4WKn7O6UleHf4exx2PbBAvFZWeBz4mrpj0PxN9060gAAAEO2OaPztXTAv7G8YKfubIPjGIfHz+7zM+f6xOdAn9+Pb//vhcGGjO9SxQEAAIbrek/H68Y0/86vBTp1LztlUYtjvaxPfK4kfje+3b7W87OLu/89vsk+kfH3bgWLjQEAAAzVkozO10fT/Fs7QrE3pN+0POZ/JGLzPOSvbn449B+uHc/n0TCxxdZXYXorgQMAAJBwLAxvm6o4rLnIKtJxfu+cFsf8+z7xWZbxOxum/PuPqi0AAEA54tvK3i2a9s/wbxZZUKvt83a39InN1p6fj/OiJx9Q/B68ZQYAACjNnp4O3Itup20m4vznlwU60ndbHPf5fWJzsufnL3X/+9NOeVe1BQAAKE/vnsenhvR3L4Zib6XXtTj2dxNxuTXl57ZP+e+fqrIAAADl2RBGt8fzmoId6cstjv/pkF7ZPM43fzP8u1/0T6osAABAuS73dN5+GfLfv1OwM72kpfHfFvq/rZ8c0v2kU95SZQEAAMrzbkbHbfuQP2NXwY70sZaeg/dC//2kJ//3blUWAACgXEd6Om2PwvS3vMozN0wsjtWvIx0XOJvf0vPwrEB8bqmuAAAA5crq4B4c0WcdDcXeSu9t6bkosijbMlUWAACgXL1DruPCVotG9FlLCnak74fhvxGvg/194nJcdQUAAChf77ZL50f8edcKdqa3tvBcbOwTk82qKwAAQLnWZnTW1oz4MzcX7EjfbOH5mBMmRgTkxWSnKgsAAFCuSz0dtdtj+Mw4ZPtewc70ihaek98S8TilygIAAJRncUZHbdeYPntfwY70mRael+OJeNxWbQEAAMpzqKeTFlfufm1Mn70gTGxz1a8jPcqFz6rq4z4xma/qAgAAjF+ci/ukp4N2eMzf4WQo9lb6YMvOzWfBgmMAAAC16Ky9PebvsLxgR/pRt+PfBvHt+5M+8Tii+gIAAIzf7Z7O2eWSvsevBTvTu1pyXm4Gq5kDAABUzuqMztn6kr7LjoId6d9bcF72h//ODU/NG5+tGgMAAIzP+Z6O2R8lfpfYIXxUsDO9psHnZMWUznMc2r2tTyw2qMYAAADjsSi8+rZzT8nf6ZuCHenLDT0nc8PEw4zJ49waJvbaTq1qfkBVBgAAGI+DPR2y56H87ZSyOvd5ZUkDz8mJKcd3fMp/v9zChwoAAACVEodRP+zpkB2ryHe7WLAj/V3DzsmH4b/zwKfu470/EYf4AGSWKg0AADBaWQt7La3Id1tTsCP9LJT/Bn1YFoZ/54c/7ZR3e/59bZ9YrFKlAQAARutWT0fsRsW+392Cnem9DTkfV6Yc07aMf48jCFLzpPeo0gAAAKPzQUZHbEvFvuPugh3pe6H+w5q/mHI8ZxI/dz0Rh/MFP+udMLE42WsuAwAAgOJO93TC7lewMzovTAxxLtKZ/rjG5+K9MDHHeXLrsXmJn02taP6swGfN6ZTfuj//ocsAAACgmDgXt3dV7P0V/a7fF+xI36zpuYhvhe+EfxcMe7/Pz2/sE4d+v38s9H/rDQAAQI8DPZ2vOO92QUW/65KCHelYltfwXJya8v0/K/DzcZ50amuwzxO/uzX8O/pgvssAAACgmDh8u3fLq5MV/87XC3akT1fk+77eKRtC/z2u90357ucG+Ps3wuBv5uNDhmfdn1nrMgAAACjuk4zO14qKf+ctBTvS8U3twpK/667w35W147DtnRk/t2fKz/wVBntDfLhPHFb2/HxcXOxB99++cQkAAAAM5mZPp+uXGnzn+Bb9XsHO9Nclfs9Vie8Vt/L6slM2d8rZKf/9SZhYbGwQ60L/VcyXTnkIMTkC4ZrqDwAAMJjlofh847qWR2FiZeoynJzG9904zQcLjwf8nPjW+w2XAAAAwGBOtKAjHcvOkuJ7ZsDv+ckMPuvIAJ8T30i/rfoDAAAMJq7K/aIlHenbJcV4T8HvF8/D1hl+1luh2B7bcW70+6o/AADA4Pa1pBM9WdaUEOO4J/TPof/85dVD+rytfT4rru79pqoPAABAlcV9nuOb6bioW9xu6nmYWFDsSpjY43nY87fjCt0Xu58x+Vnnw8SiZgBQef8P5d9e8EE5+ZIAAAE7dEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtcm93PjxtaT5mPC9taT48bWZlbmNlZD48bXJvdz48bXN1Yj48bWk+eDwvbWk+PG1uPjA8L21uPjwvbXN1Yj48bW8+KzwvbW8+PG1vPiYjeDIyMDY7PC9tbz48bWk+eDwvbWk+PC9tcm93PjwvbWZlbmNlZD48bW8+LTwvbW8+PG1pPmY8L21pPjxtZmVuY2VkPjxtc3ViPjxtaT54PC9taT48bW4+MDwvbW4+PC9tc3ViPjwvbWZlbmNlZD48L21yb3c+PG1yb3c+PG1vPiYjeDIyMDY7PC9tbz48bWk+eDwvbWk+PC9tcm93PjwvbWZyYWM+PC9tYXRoPl6KwFQAAAAASUVORK5CYII=" style="width: 156.00px; height: 45.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator f open parentheses x subscript 0 plus increment x close parentheses minus f open parentheses x subscript 0 close parentheses over denominator increment x end fraction"> khi ∆ x   →   0 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAXMAAABFCAYAAAC47gaWAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABEsZUXFwAADDhJREFUeNrtnQFkV1scx38yyUxkJkkiySQZk2SSSCZPMjJJJo9k8mRiksyTkcw8mcgzM8/EJJnnGc8zM3kiM5PMeDKZJGby5C/jvft73b3u/+7ce373f//33HPv+X74kfb/33Pv73/O757zO7/z+xEVh+2ejPiygwAAABSSXk/+8eUG1AEAsJDDnvzgyYQnrzxZ96TiyRdPPnvywZNnnjzw5Iwn21xU0puAMV9GnwEAWMJOT/o9WQrYKKl89GTQkz2uKOukQgnn0IcAADnT78++o4w1/+13f5Zeifkcz9rvujBTf654+Bn0IwBAThzyZCHCML/35JYnuxXfO+rJUIxhn/fkQFmVts+TjYgHb0WfAgAYptOTTxE2acqTXYJrsMF+GXGNNd8bUToexCxNHqFfAQAM0h0zuRxPeC2OypumaLfL6TIproG+bhBEGXPeIW5B/wIAGOBCjC2arfGaTZ4sRlyTZ//tZVHeNdLvBt9BHwMAZMwJf7asskF/e7I3xbVb/Ymp6tqrZZmwzguM+TtyNFYTAGAENqbvY2xQfx3auBdz/emiK7CD5LGaV9DfAAAZ8WuM7WEjX48T6exuiQtxvFZkBT5JYMzn0d8AABlwSWN7BurY1v2YdjjCpbmICmT/0wYlO0l1HP0OAFBHeMb9LsbmbFA6X3mY/Rob97iIShyg5MdiJ9H3AAB15LbG5vyRQZuzmpfHoSIpkDczP9DWTU6dMd/w32wAAJCWBoUdCsv1DNq9oWnz5yIpsUdhpDtI5nZ5gD4IAKgDVwX2Zm8G7R7UtMkhjLuLosRXoZt/6v//c4FyeTcYuc4BAGmZ09iavzJse0XT9t0iKLBdceOn/L+dIpnvvBf9EACQgn0COzOeYfsTmrYLkQJ8LHTTi6G/vxEoeQl9EQCQAp3fmqUnw/YlJ9+P2axAPmX1RTPL7hXOzjvRHwEANTIlsDEdGbZ/WtD+PZsVGA5H5HwHYf93o///ugedRn8EANQAR9NVSB85l2UKke0CG/fKZgWGww+HIz77k3B2jlznAICknBDYllUD97EueKE02ajAbsXNHoz4bKvQmCPXOQDRMz+gRuLKnTJwH78K7uO8jQqcS+gm+UPwoOx/b0bfBKAKLj7MpwwHoAolukiSrCNZNvmFCug3b1Pc5FnNd74Tzs77He+Y7L465Q9cjtdnV9Zn/0XHRWbTnpjla3NCtDX/mnxibhgvUasJliq7DHVs4U+BXTHxIrwvuI9ntinvMdUWQ7lCyHWugo8hd/lGVrdZ/JZq87vxCbTfYq77mnB4y1bCebMR+VVNRWBXTLwErwjtmzU009ZwxD7hd/sJuc6DcAHYUYquhlKvSk3tpM9ZwXITdsHa1Vpwds79pQNq+Y9G4Zgx4avuIlk+Kmsmq2GDzG/FncLvquLSVfKy5B3wIn09WvyPQpeSjrmSoC3e6V8XXncCtsFa+ITjGlXnym6DWsSnzE2sZs5RgaL2tilcJUkjUH4WPvCxEnfAHv+lxrlr+OTa8cDbuoniy1ElyQXfGjIAMObFJnwwhVdbRx3XyQVh3z7p2ItFy3nFjR2uYckveeAnJe6A7Kpq0HxmktJt6LSQbI8COXKKRa/CoB9xWB+XhX3bRHz3TuG9XLRBceEk7HM1XueV0Le0z+FO2qbRz++aFdRM6LP7/f/nGf0oqcv4YQO0GAxjhv4/3wsNqIk4/R3Ce+nJW2mtdXzDXBU+9KDjg3Y5RjcVit5IGRK4Tvj35JO5HP54myw9mQYiCcc0rxlyJdj+YosSE5uO24X3knus+SOqXwihpCLIZgd1+eTbiEY/qg2wTjJ76g3kx7NQf+Aol+8c04F0D84U1p90b6Kt4XNpk63fI/hxdehCnS6FPt8SeEm+xmzbSYOeVWk0GPP6GfNcy8j10dZj9y0pr8n+cElZOZdznes2VMZCn9/MDcEHjw4RcAVVRa8RGHMYcxXhmOjxDDuhSs44PFCXYvQyH/hcsA7r97BvTsEHZ1SRSzN1mHTBmJfImHdSdjHg0rhMl3OdxyXv4ZUN7z/soW/x5L/BtjnJw4g+8p6+lXEsI49hzOVMU7anM98Qcp3Hocv3cCbgXvlE2VQfB/YzQ/rIsDLmPBqh4hnzXFxghyj7GElpWTlXc50fIX28+ea/b8CmOQcnUJsUjqEFKl8KgGtUPGOeSyrjcAznxwze7tKycrzputPRAStJxDUPuyYeTC7Lhj+uyzKWrpA9h4akcebGDw2pjGxWwe7SsnKu5jqXbBQj6RKMeRLhPRaOUmso+O/dJXzeRkM208rj/L1k7ni9tKyci7nOmbtkcagTjHmhhcfULSrumYRO4XOaCNVtIUsTbYVD4p5m3N6MUBGXHDRQutSa5wnAmKeTok4Idgmf76yBezktvJcDJhWkuqmsw5vOCxXxwkEDtZ3iD1hdgw2HMa9R2JU6RMVOaic5fGgizYGkNKbx4hThKtOLBtpU5Up3Mdd5FAuUb7FaGPNyyRffiJfhUNFrwfN2G7iPi4L7WDGpmP2UX36UO8KO6GIRhbiTbosEYMzl8tz0Uj9jnpAdOZ4k6XifmlTMA8UyzFSea2lZORdznXdrdOJq2KbrcDQKh+dJSg6uUjmzKg6QHXsCktQCP5pSCvtmP4UaHzL8w4wJZxf3HBu01wmboKD22Sm74sqaRVPiqzZRuewZ2eG7jzQYppdj0rJyH8mdXOf7FC/ZsAzDnjnNRES/WCcz/uI8aSI7DtXpKqixR6HRlFIWyY4EV5Kyci7lOn9BiPIB0XB4nqpwN2+a73dEB4ua8VExcA86V5exU9onKZ/YTBXSsnKvHeikd0Nvdl0GReAeU4r+wPlaXKrpKikfl6WX4YCg/fumlPE01PByjj9Mg+9GkRj0Mqf3PBYw4Oxm0eWh6CQA90r6KmBFRJJOuyvD9iVhiSdMKEJV9acv5x9nUGjMy5rrvJGqCzrzyVeOxY+L9hkg4BLhXN7cN7od1cU2wQQwy2AOXX6pVVOKCNfjZN9P3qFu0rJyZc11PkrqsKppB19sYCvhcDxeuZ11XCcPNXZiNsO2/8zxRVLl0vhAduYOl5aVe1iyTnmBqvcFgr7PuKRbFXIzEZlrhA+nrJlawltOG+mjSbKIgGsSTDwPm1DA1bwaFiAtK/eZynNoZndguagqzKxL5tOBMV1qwjHVHwnpj4PMa8bHhQza1B3om8vr4ecs+3GWhAa9LLnOg5WDrkSspOL85n0Yz6Weef4dMuRHoZYqekh/eKre6A4LdZl48BN5NZyAG0JjvlICF8NNkuWfmaX0uR8O0le/6w6M/0LAqS5WQ66VY1DLFtgGvNOs4uvpamnWTK6WTD14uPK7jcUfmkhWVs5UZrSs4Fqfm4cOlin+6PWgprPq4M68kOGyE9SfYL5/Hg9wp0WjS31xvY5t3SIL6i+wbzbstLc1PlVagbuopyB5dvyGvm1i6pbOumIVuu8/InezTxaRYOQKj9mzUIl2dr5gYLbcQPFpu1/m0UE2Y1RtzW0sLSvH0l7AzjeecNbQQPG75z/EfPdSYBWGTIv2w6uoYLTZZahERJtmjFzNeFbO9tRIIMk22hqOOGb5jzMrNOa/WHK/nC+jk/Qx8MEc7pMJrj9Xwwql3XfD8GdOY7wXBj4qzv7y21BFIm7GjBG2f80prr2H4pPf3TT1kJepeNV7pFW4+W28O+d77aXqTRF2oahKu/UFPvM24Ux5SKOH46HP84bne/9vgxjnhaMFKqiJuJTaUykmw3E1i0dNPuCLvHw7KVcT0rJyP+Z4nx0U76vjpRnnHg/mn+Y3/JGE7ZwhfXTP4cCLcHMlNoPxDRxjMmacPK7henG5441WEpLmCy+y5JnrfKyG+z1X48ttLWE7b1MuLQEoKg81BniX4Bq84o9LpzFi+qFGyY06h3lVrJ9IeJ9pNrSGE7TDM/MDGNPAYXjzfz1mAsh7EqpylDxuBmK++4ly2JiW1tgsg+RV5LhPeH9fKH0M6l6SxeCzrxwnBQH4unE5rhkvbJxnfNFV+Hrij0Pj3CG3qpDnkeucY8Z1GdTYn32yjrMNXV6IPRjDAFTBUWaPBMY66mAe+9qPQI3lp8Gfob/wf/iK32k47wrHgNfbn8+RK8/9NjbbYj8gijwDEA/vPfEhLI7w4hwry/5qt+IL//sv/2/3/c/W7ZT8vymbnR84KW6KAAAAk3RFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtbz4mI3gyMjA2OzwvbW8+PG1pPng8L21pPjxtbz4mI3hBMDs8L21vPjxtbz4mI3gyMTkyOzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1uPjA8L21uPjwvbWF0aD7Jhs5EAAAAAElFTkSuQmCC" style="width: 58.67px; height: 9.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="increment x space rightwards arrow space 0"> trong hai trường hợp ∆ x > 0 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAASkAAABHCAYAAABbELEcAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABEsZUXFwAADKlJREFUeNrtXQFkHkkUfiKqIkJERUWUqIg6FaKqoipExKmoUFUVUUdUREWEqIqoCFERp6rEqaiKEHGq6oQ6ERGnRERURThVVRWlok79Tujt0/l1s7f/zNv9d2Znd97HEPn/f2fn7cy3M2/e+wYgOzjmlYeiHAcGg8GwDINe+SbKEJuDwTCKM1657ZUFr2x65cArBa/865WvXtn3yu9eue+VTq9UuGikNz6S2uM+w2BoR41Xxryy6xt71PLJK1NeOemKsS6GGOFn7kMMhjaMidlSKRLCz16KWVVB8j2cZY27MLN6FtL4Ve5HDEbiaPbKdgnC+eiVUa/Uh/zurFdmJIS15ZWmvBqt0SuHJRrewn2KwUgM3V75UmKsPfdKLeEaSESvSlzjs1gV5Q73JVPJR9yvGIxEcE0yGXgS8Vq4+74iWf515MlwlfDdAVeKpHBn4QT3LwajLFyRjLG1mNes9spOiWvibK0tL8YbAPUuwl3uYwxGbFwQs5uwsfWPVxrKuHaLmEiEXftDXiYYWwSSeg+OxmQwGGUCSeKjZGyNJVDHpOT6K1k3YDvQYzL6uL8xGJHxQjKmkLySyOzAZZ8slGEgywZcjEBSW9zfGIxIuK4YUxMJ1jUtqQd3/OqyaEBcBx9CtAjX89zvGAwScIb0XjKWDqE8X1QQpxRjdy6LRpyA6GH4S9z3GAwS7ijG0p8a6lxTkGJzlgyITvB9+L9zXEVSh4KxGfkGvuGPsRliozJkfAXLLQ31Dinq/C1LRuwPIZ924vLvPvfB3AM3SdCpiztP1WyOyLhJGEcNGuo9ragTQxXqs2LEzcDNL4v/PyMY9wBYa8oFkvJn2mPyag2bhYx1xRj6W2Pd7xR1j2fBgG0hN35JfHYJaL6pQe6HzpCUP4L5HmR0l8ggGgnj54nG+hcUdWdCgmk+cNM7gc/fEIy8y33ROZLyR0hPZ2nZYBhDhPHTr7F+SgbJOZsNeAL+H0IfnBUNEmdT3dwfnSQpv39jVpNvJct4TrBdu8b6Owj1T9pswImQt2LQv1Ql/q9q6Ar3R6dJyk9WqInPu77fd80LoN4h15lidozwzDZtNmAwzGC2xHd/JXZQ1prKJ+rE2/YfoJMVDj7c4m522G4XCHb6YOA+DgjPyspd22shN3u6xHdbiB2TtaaYrMIGwIKjLzCKq+S5gft4QbiPHhsNuB5xufYncarPuz35R60gqy8QLUMBTzY565CdFiDdnb0inkIG/VKtITfZpfjNZWJHHHN8AOMyGkM30N+3LJbUXwWBv0zAV4PXxkTwz+Ka+2KZXpcSWd2LQVZ/QI4E2CT4i2CLCQP3MU18gViFOYgXK/EOWGsqDJj20CvIQ7UUehtz/V8vBnep676G9IJqa8Rgi0pWq8Jvk1cUCDa4YeA++ojj1iq/QjDsYIT42zFgrSk/UOD+MZRWWUxK2bQN1LlfWIZTtkdcskLXQ2fO+kYVse0mfEG9QPMdWjO5CBJNAegpDmFxVWHlVc7J6Sp8T2X4FmJLSsd8F6EunGkcEK+7YIl9sD+NR7jvYsHlUV7i7ajZGiba+zNkaHe+ImTJFnVH7jdig8/lmKT6BVljbiNGFJ/3vYVwKTcJyWhxtQjf07eMkRT4bDEesQ1FQcXejPeRK8S2mjhuyibCVKIn5MbOxFh6UBq8mGOSqhN+KBmWoDyH6QmiDzALOZRxyWrHkM9GB24Q22giPqmGeC9XbTDcWogvIA42iWvcRnAXrQr7vFTMeFcD3z0l/n9e+MHCZh+2q1HEJatdMXvN0obML8S2mdDpOk68l/60jdaSIHPeJDZ6CtzGnsQ2BcmgmyEs4fB5YiYAhjncgWzpPOG93o1BVm/FbDELZDVLbJOJthwj3kvqsVKPILlQAYrSYFHw3WVFx4cK+7SG/KYbzEYj20BWnyKSFfbd25b3Larv1hSszxjBzhDcJi9X7GoSWGtKBdXW7/UQP1SR/F+DOyqYVWI2uB+RrIpqoceZpBIhqVTlhEcg+aPSG4EmL+yy1pTKYTkf+H4xxwoDQl1MzI1LVkW10GomqeySVDCmJ6l8oWfExnc6TFS7QDu70K8z/wu4jSoxQ4pKVhiXhWk6tUxS2SKpbtAXw0SNv3BZa0qW3IkzUfTvnYQfTuQ/gFEELuNGY5AVzkSnElgtlIM5Jik6VkBvNPgbYK0pGVR5U52+ZR6mk7CyZWmy+hiRrHAHdUa8BEzjYQZJ6mEaD7cZ9MdCUOWFXdWa+gnU8VLFv4eYj6TA3byRGGSFPtgHYFYtdCCDJDWRxkMNxmqggzHpuAyqvDB2FFePQaIkIG8xB2knq0OxDGuyYAZtMpiTGidlPJgzjDx0BWtR5YVd1ZqibDC0MvfEJqsPMcjqqWYXRC/xXqoMcYGVaTGDYC5NhSov7KLWFGIccnTctaVkNRyDrLAsiSV50ugm1m8i1OQEWJpgHNz6XtZc3yrRENcdHEQqqYwe5pnEyGo5BlHpWHbVEuvtMmCXDuK9NJl8WGE3dUlznT1EQ2w4Onhkga8DzC9lA8+uW4tBTrg7rUtpgRLsfNmAbSjS38ZF74KnQ+wYqDNMq8pFralS2IZ0xfiZnI6WbQM+mNeE+7hmwEZXIVkhxrJxCtLLn7sL2RRnMwFZBPIOc01kXIxJTn+J5bcJLIIdua0U2Zhlkw/vPqhPJdYFqrywi1pT1xQ2qWHeIQHdFusxyGnNgMsjiAmwI8qbkqJzz6TvIyiCP2P4wcxDRrRrDOMWsPO8XHLaiEFOmGaU1ok0FF+QCQXb38EO31jJgdBk+MFQ5YU/gTtaU42gPkFllnkoFB0xyQkHZtqxZ9VgRxCvSkkXVzZVpoyyA3Yk9m4Ca035QRlkG8xHR9AJtMM1g0V3kGa5YzIsv1A3VKcYGct2uAjpxGCEgSov/NqBwTYeeGOpFBGYnKKTUzHdxUYNLoqMsM7VThOh/mlTxggGse2l+GAqgS4JeynHA+6cj5hwuafK5+pmcoqcOPwr2L0JQ5Ez0nl8FyX8wIjPLkwlcyTlhzMFbmtNVcHRgxgw0r4C5LufEw6SU1cMcsIda9zFPpmB9lUQXtg6N7dUebUfTBliEuKfSmySOF3SmvIfO+XfZl4BFgeMS044G8Wt8rqMtfUBqMMjdEFlYyO7/2Ent9ii3USVF36QswHoP70W/W7HS/ioohxzlSdyehWRnLB/Y6BwVg+mUJ3BiC9zHTvd1YSJwhkTBriZVsUJrcexfIX8BDPW+6b3YQcqqJI925mcjixFRsHg9rhGbCnaekVDnaoA4vW0Gr9u2cPZBbe0pvxKm30lZr4yv9RIzsipOwY5YR7ZIORrt7Nf0WYd+ZuqIM5eEw2/kFbFETAUoWNmfakzDLT8RFnOGTWH6jR8d7TberQ65sdtRiQnfKEN5HTJi216r1hNJLnkq1O8DI0dNRc8icRGUblqoMkLm8oI14Wf4EfQ3J7CfzKl6KwqYGfe1rhMKAeXY5AT+u1uQP6hSo26lWBdo2CBrlt9iFNs3NKHQz05I6tR1zibKZ6ag0R1ljDLkNlB9ftHYJ+aRA/B7xIW6exSzmIFyCV7kprdVIJcNumVqQYHM6yTOJVYF1oidNy2DHa+JxHfhpUg33W5Lfntdd+sucYSctqOSE74MuoCN9GqePY3Nc+ikCeMbKwhIwfDDuYtfzhU7Z+nltwvyr92gzqGy6+htRTh+usxZpRt8OPkmY4MkhNKTLcDYxjk4RblxIFhgKssmX3YVCNvQPbULqmnZxyKpWyaGISjTkdcyoVJ/I74vvM24sxmRmGH84Hvo6O8eITTVIq2QR/YTkRyegFuqrHKIJM0el7G5EV21sBjkw3cSGuNWebsjyovfC/F+2xX+AxGxSzCr7qIb66oJ450gnq384yP4Pd9s5G0XjJRyWmR4F9zGUsS283FuJ5MCdSo8mYbxDsNI0slTa2p+Rj3G0eOFkn7c8R63kI6KSF9EE2RAH10zcxBJDxQEEst4Rq48pClWxk/Pv2xAySV5gkqCxHvs5yt81mIlhrSlJJNKCT1rxgMp5h3IgM3Qw4kL+w7EK70gP1hQvLbL5BCaAdVQzwPJa3DCUaALhNSbqxJA9BiyD6mvGySkVRBkG0Dc01ZOAlHd4lLkc6qKCql18W0nsldRwgqTa0pjHlSZY6jv+higm9RVX5V2pIkYSSF5DoF9oa9ZBW4m/yIQEKlAoHnQM+JzAzLUClmVBviwRdEp8G8vNsa/GW4k/dM1FGsC/0RtgQ69gWWHxg0zKfb6AX6LLvEiwBz8PbEi6EgCv79t/hsWny3gs3GcBV9YsmJSeBVbA4Gg2EbGsCdk30YHv4D066E8tFQN3MAAABxdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1vPiYjeDIyMDY7PC9tbz48bWk+eDwvbWk+PG1vPiZndDs8L21vPjxtbj4wPC9tbj48L21hdGg+UCVLeAAAAABJRU5ErkJggg==" style="width: 46.67px; height: 10.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="increment x greater than 0"> và ∆ x < 0 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAASkAAABHCAYAAABbELEcAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABEsZUXFwAADItJREFUeNrtXQFkV98XP2YmM5HJ5GdikkkyJpPJRDLJ/IyfmZnJjySTzI9JZjIjyfxlYn4ykxkzmUlGfmYmiUkmSSRJMpGZn0xG/3d0v35vr/e999z3fe++e989Hy5p7/vuvefe+3n3nHvOuQDuoCYok6LsAwaDwbAMV4LyQ5RBFgeDYRTHgnI1KLNBWQ/KVlB2gvI9KN+CshmUh0G5HZSzQanyUUivQyT1lucMg5E59gdlOChvQmuPWr4EZTwoh3wR1ukYIZznOcRgZIZhsVsqR0L4tydiV7UjeQ53WSM+7KwWYzq/wvOIwUgdR4PysgzhfA7KX0FpiPndiaDckRDWi6A0FVVojUHZLdPxZp5TDEZq6AzKdpm1thSUA4R3IBE9L/OOr0IrKhxuS7aS93heMRipoEeyGZjRfBeevi9L1L8zRRJcNfw0wJUjKTxZOMjzi8GoCL9L1thqwnfWBWWjzDtxt9ZaFOFdAvUpwg2eYwxGYpwSu5u4tfVvUH6r4N3NYiMR9+5PRdlgvCCQ1Efw1CeDwagQSBKfJWtrOIU6xiTvX3ZdgO1A98no5/nGYGjjkWRNIXmlEdmBap/MleGSywKc0yCpFzzfGAwt9CrW1GiKdd2S1IMnfvUuChD14F3Q83Bt43nHYJCAO6SPkrW0C5XZoqI4rFi7Uy4KcRT03fDnee4xGCRcV6ylfzKoc1VBikddEiAawTfhV+O4iqR2BWMzGC7jMGR7EFQds76i5XIG9Q4q6vzbpUEaiCGfdqL6d5vnOMNRNAm1B+d5TYb1XCSso98yqPeIok50VWhwZbDWI41fEP+/SBDuFnCuKYZbQF+iB5GPcJYktaZYQ+8yrPuDou4RFwasNabhHeJvHUCzTV3hec9wAMfhpx01bg5nRVKNhPUzk2GfZxV1O5GCaTrS6I3I318ThPyG5z/D8g/xkmIOZ0VSg4T1M5Bh3ykRJCdtHryD8KsLfXRXdIW4m+rktcCwDBh+8oQ4f7MiqSVC3e0ZyuAMof4xmwcx6naAcUNR+1Kt+H9VR5d5TTAsAaYmWQU9d5osSApPDHdAfUKe5cliDaHv67YOJAom6mYwUebZ/xEHmnNNMfLEuaA80ySnNxmqW6cI9X8yIJctAlHW2TigPTGNPVLm2WbigHOuKUYe6AJaYHwcOWW5i6GYSpYMyOcRoR1dNg7smqa69g+ho2jfquc1wzD4od1IQE6mguNnId+TvRIegIN2qZaYRp5T/OYCcRIMe75w8MuMrhto71sQKvU3QeBoxK3UQx/fjYHgX8U7N4Wa7tPHYQD0b1PB5/sMt5Oieo4aaMctQjse2jbIU5DMV+IDcK6pOGDYQ7cgD9Uhw/uE+j96Bj+WvPcVFNupFufUZTFXbSenEnYI7TPRtn7iurUG9fCr28EQ8bfDwLmmwsBTpPtQPstiWplNW0Ed+4XlWgFljKdTg0CLJQ0X9O/rzbHdtcR2mrAFdQMtDteazUWUaJDt9xN/G+dXFVeeF5yc/oCfoQw/YmRJmZgfNOrCE6It4ntnCyTjfeLj+ckxcgqr5bb4F54Hh07nq2JUNt0Tub+JHT5ZYJIaEGS9KL7ybaGvEKpyY5BOLq5mYXv64RFJ1YkP6RdHyamE34ntNnHdlE2EqURXTMOOJVA9KB2eKzBJ1Qs7lAzzUJnB9CDRBliUGErczY9o7BrDtrg/LOxPH7H9dYZkS2mLFXKMeuGuJXzPOlHHbQR/0aKQzxPFjncl8mwp51GbsIPFpXN20XBeL3ae/xaEnEr4E/INx4mqzpS2DOQttOYUmfMisdPj4DdkJ1E7UN5QeYegwuF4YiQAujlcB0s9hiVoEP3UPXTYEKqU7Zgg9seEsbqG2JbcfaXuQXquApRMg6WE7zUek9SkQj4tMb/pBLPeyKbRKMj1e0HJqQSq7dYUrI8YqYv5YlWa7GoMONeUCqqj394YO9RmSJ2pK5AsSlkwdcnppWPk5DJJ5ZpOeAjSvyq9EWjphX3ONaUyWE5Hni/FWKF95mhBZNAs+rnrCTkxSSVE1KcnrXihRWLnz3pMVLLwjfDdheE8838WoN94ajwH+jcQITl1FaD/TFIa6ITsfJio/hc+55qSBXfi7gLte4fgP3+ox473t0Xj4xUlpwsFGvcpJik6liFbb/DXwLmmZFDFTZ0NqXnbkM2tISZwEuSxhbLd5PkCjvukgyQ1mYegjkL2vhDU9MK+5po6Dmp/qdK/Bx3sH6a+XWFy+gWXHCSp0TwEFfXVwFCDtP0yqOmF0Vi/31Oi+kZctC4Bd4BPE5DT84KTE3UHbdKZk+onZdyZM448snLWoqYX9jXXFMVG0+JIXy4IoklCTuc8GvNuolxqDXGBlWExUTUsyzAVanphH3NNIUbA/euucQK/ZHIio5MoHxOuJgfB0gDj6NH3Qsb1Ue0SvR5OWFWqDNuP3PsTkBOWi+AvDhBlZILAzxDb0mRSQHGN6si4zi6iIJ56OGFrQO7MeMny9mMQ8E34efqoQ1Joh8QDk8OeEhXFgdWE2wUl9bfxpHfR2yE2DNQZl6vKx1xT5SBTlWYc6QOG6WBW0U1Nstr1lKxeEWTTY0hVTzMRY8U4DPnFz90A/zJIUiHzQN5wrC9Js2YiWU15RFYUj3sTa5OSNmbBpGBug/pW4qxATS/sY66pHoVMXHTPQG/5QdBPzucLWY2CHV7elBCdmyZtH1G7wR3DAzMNjuSuMYzL4LbxXKXq49f6DZOVti3IRAbbh2CHbazsQmgyPDDU9MJfwJ9cU42gNjpPFKSvfaB/YWdRyaoO7HDiXSfIv9aUUKKTI6/A3nXgXFNhUDyzi3bqmeTq812hmhSJrFSEvWOgDapbjIxFO5yGfHww4kBNL/zKA4IaiSxCVUaEogHDZ9YSklVTAfpPSSOcZT+bCPXfMiWMBUh2K3EWqAb6lUQdBSaokyFiQnVP5RTZWWBZ4Ed0JQFZ4aUTRxzuNyWdUXeG9VPcD06ZsnlEv9JDOQ/OOPida6oW9l7EgJ72aGCWnX6OQvGBNstHHpFVFeGDneXhliqu9pMpQYxB8luJTRKnT7mmwtdOhY+Zl4GTAyJOgH7mTlfJ6q6iX6sZ1v0sR4Lco1pFPYBtyd1EzdB4t2ALMHx7Ldrd9pWxUelcc1VUYICtbg50fHYG3MkD30LoTxYn3XUEuR4zIYCLeVWckj6O5RsUJ9dUQ2h7H3ehgirYsx38BJ7oTYLebTIukZXqpDOLSydUDsRreXV+zbLBoTr4FSXXVDjTZn+Zna9sIQ6B38D0yROgPjaPktUDy8lqQNGHLOI3VU6c3SY6fiqvijUwSJxoHwqg6lwDWnziKlQeQ4V2mVFw82p1CjDESvf69V0hdxttnDi3Pyq0iTRVvnrFx9DYVXPRm0hsTCpXpzHRehxeVMdDX/+3IL/Yc1wxWVXAyfwyQzXBJuwXZPwV9IzsNpKVKjTqcop1/QUW5HVriDGKjVg60ag3Z7jqdY27mdKtOUhUJxTPq5LgqX5/D/zLJlEnTAKbDpNVFchT9qS1u6kGedD3c1MdjkZYp3ErcVZo1phUrQ4uoBnNr2E1yE9drkp+2xvaNft4sUWNUKs/OkpWLYqxTyObqWwXhTxh5GCtKuaLMm355FolTqYHlrQX0792EiZ2OIfWvMb71xLsKFvhv5tnzoDfwDWAsZ/vNMlqzgKyuiZp36awJyUFXjQrC2a/ZqqTfeBetkvq7Rm7QpXNE1dgr9ERVbm4FL9DoWfea+5s7ijk0BZ5Hg3ln8XfxoERJqt+0E8TkzdZyVIaLVUgC1no0X2THXyal45Z4WSiJke7mWM72xU2A9xKd8Feb2n8ch3XrOcsqE87j4UIvrRzXmFeKguMU9NNEzOfI1nNS9o1leB9Mg9+o5k3WyHZzR0ulTxzTU0naG+Syy6RtHVPrN5XqAr4Akzg9kxTtnnNt7sKYjlAeAdqHrJwK+PXp9/3gKTyvEFlVrOdfRXUNaFRD+6kmph/tNAB9DQxeSZgxMOQLckH+zrEp9vG+TAq+e12hfMzEag5xItQ8rqcYIjYvu9Qua8JeldTfMjQFnWCOScx0On5scUkhUCD94yijdtC3V8BdabXOTG/jOOGJwSVZ66pfQRVAe1Fp1P8iqriqw4xz6QCPP5ftJSkSkD72D3Qv+Ow5Ag8lcA+ynAQ1WJH9VQM/I6YNBiXdzWDCd0mFs92qC60R3TxUGRGBKjW71pIUmGbJWbWxZNcjMF7K3bdO6Lgv9+Jv90Sz1bx0DIYxUKT2Hl8B38uBWEwGA6ikXche/F/EoeE0FhO8BsAAABxdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1vPiYjeDIyMDY7PC9tbz48bWk+eDwvbWk+PG1vPiZsdDs8L21vPjxtbj4wPC9tbj48L21hdGg+ScNunAAAAABJRU5ErkJggg==" style="width: 46.67px; height: 10.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="increment x less than 0"> .

Giả sử f(x) đạt cực đại tại <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mn>0</mn></msub></math>. Hãy chứng minh khẳng định 3 trong chú ý trên bằng cách xét giới hạn tỉ số <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>f</mi><mfenced><mrow><msub><mi>x</mi><mn>0</mn></msub><mo>+</mo><mo>&#x2206;</mo><mi>x</mi></mrow></mfenced><mo>-</mo><mi>f</mi><mfenced><msub><mi>x</mi><mn>0</mn></msub></mfenced></mrow><mrow><mo>&#x2206;</mo><mi>x</mi></mrow></mfrac></math> khi  <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2206;</mo><mi>x</mi><mo>&#xA0;</mo><mo>&#x2192;</mo><mo>&#xA0;</mo><mn>0</mn></math> trong hai trường hợp <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2206;</mo><mi>x</mi><mo>&gt;</mo><mn>0</mn></math> và <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2206;</mo><mi>x</mi><mo>&lt;</mo><mn>0</mn></math>.

N. Huỳnh

Giáo viên

Xác nhận câu trả lời

Giải thích

Với &amp;#x2206; x &amp;gt; 0 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAASkAAABHCAYAAABbELEcAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABEsZUXFwAADKlJREFUeNrtXQFkHkkUfiKqIkJERUWUqIg6FaKqoipExKmoUFUVUUdUREWEqIqoCFERp6rEqaiKEHGq6oQ6ERGnRERURThVVRWlok79Tujt0/l1s7f/zNv9d2Znd97HEPn/f2fn7cy3M2/e+wYgOzjmlYeiHAcGg8GwDINe+SbKEJuDwTCKM1657ZUFr2x65cArBa/865WvXtn3yu9eue+VTq9UuGikNz6S2uM+w2BoR41Xxryy6xt71PLJK1NeOemKsS6GGOFn7kMMhjaMidlSKRLCz16KWVVB8j2cZY27MLN6FtL4Ve5HDEbiaPbKdgnC+eiVUa/Uh/zurFdmJIS15ZWmvBqt0SuHJRrewn2KwUgM3V75UmKsPfdKLeEaSESvSlzjs1gV5Q73JVPJR9yvGIxEcE0yGXgS8Vq4+74iWf515MlwlfDdAVeKpHBn4QT3LwajLFyRjLG1mNes9spOiWvibK0tL8YbAPUuwl3uYwxGbFwQs5uwsfWPVxrKuHaLmEiEXftDXiYYWwSSeg+OxmQwGGUCSeKjZGyNJVDHpOT6K1k3YDvQYzL6uL8xGJHxQjKmkLySyOzAZZ8slGEgywZcjEBSW9zfGIxIuK4YUxMJ1jUtqQd3/OqyaEBcBx9CtAjX89zvGAwScIb0XjKWDqE8X1QQpxRjdy6LRpyA6GH4S9z3GAwS7ijG0p8a6lxTkGJzlgyITvB9+L9zXEVSh4KxGfkGvuGPsRliozJkfAXLLQ31Dinq/C1LRuwPIZ924vLvPvfB3AM3SdCpiztP1WyOyLhJGEcNGuo9ragTQxXqs2LEzcDNL4v/PyMY9wBYa8oFkvJn2mPyag2bhYx1xRj6W2Pd7xR1j2fBgG0hN35JfHYJaL6pQe6HzpCUP4L5HmR0l8ggGgnj54nG+hcUdWdCgmk+cNM7gc/fEIy8y33ROZLyR0hPZ2nZYBhDhPHTr7F+SgbJOZsNeAL+H0IfnBUNEmdT3dwfnSQpv39jVpNvJct4TrBdu8b6Owj1T9pswImQt2LQv1Ql/q9q6Ar3R6dJyk9WqInPu77fd80LoN4h15lidozwzDZtNmAwzGC2xHd/JXZQ1prKJ+rE2/YfoJMVDj7c4m522G4XCHb6YOA+DgjPyspd22shN3u6xHdbiB2TtaaYrMIGwIKjLzCKq+S5gft4QbiPHhsNuB5xufYncarPuz35R60gqy8QLUMBTzY565CdFiDdnb0inkIG/VKtITfZpfjNZWJHHHN8AOMyGkM30N+3LJbUXwWBv0zAV4PXxkTwz+Ka+2KZXpcSWd2LQVZ/QI4E2CT4i2CLCQP3MU18gViFOYgXK/EOWGsqDJj20CvIQ7UUehtz/V8vBnep676G9IJqa8Rgi0pWq8Jvk1cUCDa4YeA++ojj1iq/QjDsYIT42zFgrSk/UOD+MZRWWUxK2bQN1LlfWIZTtkdcskLXQ2fO+kYVse0mfEG9QPMdWjO5CBJNAegpDmFxVWHlVc7J6Sp8T2X4FmJLSsd8F6EunGkcEK+7YIl9sD+NR7jvYsHlUV7i7ajZGiba+zNkaHe+ImTJFnVH7jdig8/lmKT6BVljbiNGFJ/3vYVwKTcJyWhxtQjf07eMkRT4bDEesQ1FQcXejPeRK8S2mjhuyibCVKIn5MbOxFh6UBq8mGOSqhN+KBmWoDyH6QmiDzALOZRxyWrHkM9GB24Q22giPqmGeC9XbTDcWogvIA42iWvcRnAXrQr7vFTMeFcD3z0l/n9e+MHCZh+2q1HEJatdMXvN0obML8S2mdDpOk68l/60jdaSIHPeJDZ6CtzGnsQ2BcmgmyEs4fB5YiYAhjncgWzpPOG93o1BVm/FbDELZDVLbJOJthwj3kvqsVKPILlQAYrSYFHw3WVFx4cK+7SG/KYbzEYj20BWnyKSFfbd25b3Larv1hSszxjBzhDcJi9X7GoSWGtKBdXW7/UQP1SR/F+DOyqYVWI2uB+RrIpqoceZpBIhqVTlhEcg+aPSG4EmL+yy1pTKYTkf+H4xxwoDQl1MzI1LVkW10GomqeySVDCmJ6l8oWfExnc6TFS7QDu70K8z/wu4jSoxQ4pKVhiXhWk6tUxS2SKpbtAXw0SNv3BZa0qW3IkzUfTvnYQfTuQ/gFEELuNGY5AVzkSnElgtlIM5Jik6VkBvNPgbYK0pGVR5U52+ZR6mk7CyZWmy+hiRrHAHdUa8BEzjYQZJ6mEaD7cZ9MdCUOWFXdWa+gnU8VLFv4eYj6TA3byRGGSFPtgHYFYtdCCDJDWRxkMNxmqggzHpuAyqvDB2FFePQaIkIG8xB2knq0OxDGuyYAZtMpiTGidlPJgzjDx0BWtR5YVd1ZqibDC0MvfEJqsPMcjqqWYXRC/xXqoMcYGVaTGDYC5NhSov7KLWFGIccnTctaVkNRyDrLAsiSV50ugm1m8i1OQEWJpgHNz6XtZc3yrRENcdHEQqqYwe5pnEyGo5BlHpWHbVEuvtMmCXDuK9NJl8WGE3dUlznT1EQ2w4Onhkga8DzC9lA8+uW4tBTrg7rUtpgRLsfNmAbSjS38ZF74KnQ+wYqDNMq8pFralS2IZ0xfiZnI6WbQM+mNeE+7hmwEZXIVkhxrJxCtLLn7sL2RRnMwFZBPIOc01kXIxJTn+J5bcJLIIdua0U2Zhlkw/vPqhPJdYFqrywi1pT1xQ2qWHeIQHdFusxyGnNgMsjiAmwI8qbkqJzz6TvIyiCP2P4wcxDRrRrDOMWsPO8XHLaiEFOmGaU1ok0FF+QCQXb38EO31jJgdBk+MFQ5YU/gTtaU42gPkFllnkoFB0xyQkHZtqxZ9VgRxCvSkkXVzZVpoyyA3Yk9m4Ca035QRlkG8xHR9AJtMM1g0V3kGa5YzIsv1A3VKcYGct2uAjpxGCEgSov/NqBwTYeeGOpFBGYnKKTUzHdxUYNLoqMsM7VThOh/mlTxggGse2l+GAqgS4JeynHA+6cj5hwuafK5+pmcoqcOPwr2L0JQ5Ez0nl8FyX8wIjPLkwlcyTlhzMFbmtNVcHRgxgw0r4C5LufEw6SU1cMcsIda9zFPpmB9lUQXtg6N7dUebUfTBliEuKfSmySOF3SmvIfO+XfZl4BFgeMS044G8Wt8rqMtfUBqMMjdEFlYyO7/2Ent9ii3USVF36QswHoP70W/W7HS/ioohxzlSdyehWRnLB/Y6BwVg+mUJ3BiC9zHTvd1YSJwhkTBriZVsUJrcexfIX8BDPW+6b3YQcqqJI925mcjixFRsHg9rhGbCnaekVDnaoA4vW0Gr9u2cPZBbe0pvxKm30lZr4yv9RIzsipOwY5YR7ZIORrt7Nf0WYd+ZuqIM5eEw2/kFbFETAUoWNmfakzDLT8RFnOGTWH6jR8d7TberQ65sdtRiQnfKEN5HTJi216r1hNJLnkq1O8DI0dNRc8icRGUblqoMkLm8oI14Wf4EfQ3J7CfzKl6KwqYGfe1rhMKAeXY5AT+u1uQP6hSo26lWBdo2CBrlt9iFNs3NKHQz05I6tR1zibKZ6ag0R1ljDLkNlB9ftHYJ+aRA/B7xIW6exSzmIFyCV7kprdVIJcNumVqQYHM6yTOJVYF1oidNy2DHa+JxHfhpUg33W5Lfntdd+sucYSctqOSE74MuoCN9GqePY3Nc+ikCeMbKwhIwfDDuYtfzhU7Z+nltwvyr92gzqGy6+htRTh+usxZpRt8OPkmY4MkhNKTLcDYxjk4RblxIFhgKssmX3YVCNvQPbULqmnZxyKpWyaGISjTkdcyoVJ/I74vvM24sxmRmGH84Hvo6O8eITTVIq2QR/YTkRyegFuqrHKIJM0el7G5EV21sBjkw3cSGuNWebsjyovfC/F+2xX+AxGxSzCr7qIb66oJ450gnq384yP4Pd9s5G0XjJRyWmR4F9zGUsS283FuJ5MCdSo8mYbxDsNI0slTa2p+Rj3G0eOFkn7c8R63kI6KSF9EE2RAH10zcxBJDxQEEst4Rq48pClWxk/Pv2xAySV5gkqCxHvs5yt81mIlhrSlJJNKCT1rxgMp5h3IgM3Qw4kL+w7EK70gP1hQvLbL5BCaAdVQzwPJa3DCUaALhNSbqxJA9BiyD6mvGySkVRBkG0Dc01ZOAlHd4lLkc6qKCql18W0nsldRwgqTa0pjHlSZY6jv+higm9RVX5V2pIkYSSF5DoF9oa9ZBW4m/yIQEKlAoHnQM+JzAzLUClmVBviwRdEp8G8vNsa/GW4k/dM1FGsC/0RtgQ69gWWHxg0zKfb6AX6LLvEiwBz8PbEi6EgCv79t/hsWny3gs3GcBV9YsmJSeBVbA4Gg2EbGsCdk30YHv4D066E8tFQN3MAAABxdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1vPiYjeDIyMDY7PC9tbz48bWk+eDwvbWk+PG1vPiZndDs8L21vPjxtbj4wPC9tbj48L21hdGg+UCVLeAAAAABJRU5ErkJggg==" style="width: 46.67px; height: 10.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="increment x greater than 0"&gt; Ta có f ' x 0 + " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAZIAAACWCAYAAAD0ZA5YAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABgjZbzxgAAEttJREFUeNrtnQ9kV+sfxz9m5koimSSJJFeSmCS5EpNkMpHkShKZSZLIZOZKJJkkkUySiSSTJJJkcsWVJLkimUlySSYzE/2+j5392r6d53POd9/z53me83px3G5t3/M97/P5nM95nufzfD4iAMn0144fluMU8gD8winFZ/qRB6rGOcUhjiEPgJXjiu+cRR5gJCJyGnkAEjmj+NAZ5IHQOaY4wHnkAUjNRcWXepAHQqVbMfxbyAPQMLcUn+pGHgiNzbVj0mLwz2pHKxIBNIzxm1GLXxl/60AiCIX22vHJYuzjtWMZEgE05V/jFv/6FP07gNe0KG9MU7wxAWQ24p9SRvwtSAQ+w4IgQDH0Kr52AXnAVzoVwx5BHoDMGVF8rhN5wDeWin1d5LOwLgKQB+2Rf8X53cfILwG84baQlghQBl2K791GHsCQAaDZF7ku5AHXWST2VMSvtWM5EgHkzvLI3+L8cCzyUwBn0YoxnkQegMI4KRR3BA9ZUzu+Wwz3LfIAFIrZO/LG4o/TtWMtEoGL3FXegHYhD0DhaOuVd5AHXGOLYrDPkAegNEYV36SyBDjFE8VYtyIPQGlsVXzzCfIAhgoAvOhBEDxWjHQb8gCUzjbFRx8jD5RNh2Kgo8gD4AyslYCzDCvGuQd5wMPR9OJAr3WP4qvDmAKUxUqx7xv5gDxAIHGO9xZ/NX68CnOAMhhQ3nBOIw8QSJzjtOKzA5gDFI3ZNWurqWV2zdLeEwgk7tEe+aet7TWdFKFQqPALBBI/oQIFOIPWiW0n8gCBxFl2Kb57D5OAojBd1myL7J+QBwgkTtMi9u6l00IXxabYUTsu1I5HteNL7ZiKRP1WO17WjhsyM51T9hzi+mg0MBl9v1e143DB3+GI8kZzGVMCAonzXFZ8+Chm0XhkPi4zqao/Uh5jUl6Hsc21Y0LKz5J6KpRbAAKJz1DWKCNMtdp/6wQ0Oda9tWNF9DNttaPPInZfCd/5tXLzzQiqiK5nTGsBgSQMbNNb34XprVQcjXkY3qodv8X8bKvy8N5e4HdenmK0VETGxWHl/FcwLSCQeMM1xZcPYRo6/TGiDSk/r7WrfFjg996RIpDsLuB73C35/AAEkmzQSqaQwq9wIkawf6JRh433itiTBX73JSkCSd5pt2ZNybaZaVrYzAQEEp9oVfx5En+OZ6fEzwWuT/i9H44Ekhaxr03MHnn3YO5Uzn0fEwMCiXfcV3y6E/OYjykL8DlGqEspfve9Qw/PLwmBJO83iHPKuU9gZkAg8Y7jik+fxzzmE7cL2wzplqf43RNiz5JaX/B1PFBu+kQB53+hnH8DZgYEEu/YoPj0C8zjJ7YFpWsNfMZg3e9+lJnF76K5qdz0Zzmf26RCfy8xiAEQSPLhm9jTgFsxkZmpHtvU1KYGP2t17dgnM5lJZYmrDUPzzrLQijTexdSAQOItWiZmFyYi0mMR57Wn19Ot3PC/cj436yNAIAkTbYvDWUYjM+VMQmq6tEa54ftyPre2PkN2BxBI/EXbo/ag6gZyQBFnjcfXZcv77sj5vJPCPCqUz0FJXxfPhcOHsuytYl//nKy6wT23CPPG8+t6aXmY55n6u05xlFc824BA4n1/D62O37qqGpuW0jbo+bXdjrmmdzmfc5+i5y2ebUAg8T6Q3JLyps2dZVDCrQd1RorP2Lqk6NnDsw0IJN4Hkl7lGi5W0dCSun/5Pp8fl7nVn/M57wmFGoFAEnIg2S20352HVg9qNIDri8vc6s75nJ8VTRfzbAOPIWtrBq0obCX7DF2rwBBtqu66VuV4rjYptywLAIGkGCYUX2+rmhj/KWJ0B3KNo1Jceh4tOYFAUl0tZo9tVRJiu+jzle2BXOfcmluPcz7XfkXPmzyHgEASDFotv/1VEkLL1voc0HXOLf1yNedz9SuanuE5BASSYOhTfH2gSkJ8kGoUFpybYXGAt5TSaIlGwQORfY3LzFTjdPSAWp3BCNukdn+JPvNz9LK0jOc/gYTZh3zoEH1aK6SI+pssvIpxo1Bjaz4mfXxv9ID/lmBzHxb4UDJ9ch4qn/smsgEgkGSJlvEaRM2tMSk293s1/vV/Pio6La2QDn/UjiGx1xzLavqvQ/R0ayouE0jyYrEEvDSwouAg8g3fmoetmNv3ily/KQ8R19NmKqU9jTVwLpMh9zXl5w5jmgSSAv192vcL219wIBnBt/7PIkWnLxXR4FDkRMYujtWOLfKzQKZ54JxNYVNbUpzn90jTtHZKICGQ5IH2IhP8dOqBBKe7jr8sCPaQzCxsJ5XVuSPNrc+1S+PTt72YJ4EkB542+ULkNVcTnG4//rIgaK+bjk0J9qft9Wmpc97ZbK+WyHGHYj7vpbDYTiDJB62uXvBtd58Li+dFj/RuIM883ilaTYm9X8xFSZ6uMtNel6Lg3SfUNyOQ5Edl0/2Ng35XLv4/fGXBHFZ0vYo887iS8DITl6a9a86/30dCAokDaLM7h0O+8K0JDnwHX1kwWh+So8gzj70Jdli/cdSsi8ym+b5hlEEgcYQexYYvhXzhR4V8+7y40cCDseosSbDD+qnA2Y2eJt18HfIRSBzhT8WGh0K+8OEEB/4DX1kwtyX8SspZ8q+i18s5P3dozt8fQTYCiScj6+GqOq/J/2/BVxbMiNAZsRG0vtdmHc+kEZsNtrP7RR4iGYHEMSrZKXFRwmjkKX7SFNTZaoykNrCdczQ1TYRWIhmBxDF2SuD1tuLoSnDci/hJ5k7GlKGdDZK8n2T2z8eQywnMqHCq7qhyINlSxRfz/gTH3YOfNIVWPHAJ8sSSpqjjS2QCR1kqFezdfi/BYZdiF01R6bo7C2QkRSDZhEzgKFoF4GD35GkPunfYRNNMKPq2Ic+CRsnUfQOXaVNsdyLEC16V4LC3sImm0aZpyIaLZ7cw3QoEEm/Yl+Cwh7CJptF6boDdEbWSPVQEANfRasYFx6WEQLIeeyCQlMQrofc1EEi8QKubP4ktZMJ3AsmCuK7o9hp5gEDiBmZ+flrolVGWQRFIdJK6epI6DT76fXDttTsSHPUMtkAgKZEeYcEdCCTOczjBUXdiC5nA1FbjmGzCiQT7HEQm8DCQBDe1laY4HjQPi+2Nk9St80f0MwAEkpJ5rVzsC+yAQFIS/XUvNLzsAIHEUZLy9GkBmx1sSEzP5jl2aaa2kioB70IycPT5WokNibsSHHQvtpAZlEhJh2ln8E7md49MyiwcQDYgkJTHqYRAsgJbyAyKNqZjSOJraT1S9HuEbOAglSnaeFe50I/YQaZQRj6Z7jmavKkLsFoBxylhehDcozJl5D9JRXsKlwCNrXSWR29pRo9vtWNd3b/vSBg9b0NCcIxKNLZanuCYvdhBptBqN32gPRjz7yYzS1snOYmE4BiVaLW7NyGQbMYOMkVr0rS74tqcSDkSfibNl/JZKzOL86xLQd5obRDuhXKR54U55yK5rejdXWFdNsjPPTYmW0vr8X1OmisuarJoXqE5OPCyHszSwUMhC6ZIbih6H6ioJmZU8HbOy8vGJt7wfqT4/aslO3FrFMBMZtqozKSAmuuejv5spvcuCOs9ofCnYqtDoVykttP6LDaQOVrPl6o2aLo5R4OelA9ibQPtceV3D0Q/My7FZ8ktiUZTXyW55MvsYUZOXbiN12gFRy+FMp2gGTEGnD1accyQKgiYlEez0fX3hJ87M+f67zTw+aPSeN0tU+F6trLAjoL1MNWJ67MjTWq92cO1VWam8n6P3l7jru22kB7uK1cVWz0c+pCL2kX5oPXVCKXTX6/Mz6x6axltnZzzMx8afFBeTHgJ2lL382vnPMjPFazHGYlPCtDWgQ7GzBaYPTVsDvZ7xF1/7A/hAoeUC/yb+58LXRJ287BtyvX9G72B75H5SQcT0ei4EToTAsmY/GwNbRY7ZzeCFp23fzbmu42k/N24tFGTiNCOG3nFvdBnff5RLvA89z8XtiqaPwng+m5I+vn/ZtKeTTbhlwbPY0Y9ywoemcUFuEZGXnE7+UeFbEqfeNrAyNk7khYsaWSVD4sUzb8EcH3DDT7c/2ziXIMNnMeMSNY4MDJrNDOvReYXr5w9LuBK3hB0fT2t1MQkbzy5YgvgIbTdPJnywT4tzac7r5SZMipJ5zJrIxsL1MC8LLyX+Km9hXDEcl2bcCWv/X06hIs7pjjebe59rnxUtF/q+bWZN6y/JXn9Iqu6YgcSzmWmgYpeoB6QxtOSk2YP/ov5vH9wJedZnDBK9p47OU03QDKh19tqjUYmz6PRrck+mt1oZx6mWfddMfPMI/JzY5/5r0lc2FPCtbdL/N4s81bazPrMZaEago9odbbuh3CBY8pwazH3P1eCTwesMGclnyqvtqnol0juNEGn+y8NPUo6jtZTox95vKVF7P1m+jL4bFvVYwqrukufBNzRs1uY1uItBbJG2yOUxZSlrTvkdaRn9qEMbBV/zdwyu9nzJ/S9JFXFtsE3qyoRF8SeNk6WpZtoraG9b2Rn6+dwmfteCG2KcU0gj7eMW+7p2wJGstuR30kmlHvW5vOFaRsR13PfC0Pr3U6yg3+slPzT6bWR7F/cAudYIgH3aretjzClUixa/Z3dyOMd+5T7eaWAkSy9g9wj6M6I1xkaO4HWl6QHebxD6zR6MMPzTMrCO0NCsfQqNnHR5wszC3JxO2Sp9OvWG+wt5AlqhJnlpsHXynkoMe8WWt25va58ycXS+Fy6bZclLT2LZ61iZK+RxzteSjEFUO8LU6K+oAX9dWV/OfPQfzvnC5lMkbTF7+LKotzlfpeGbZqCpmLh3Ms0PeQbQSttdIDb4AxaUlPp05DrFYNNapCyIubCTGraSu55aYRec6sqtIheOHJRhufSNrgNcCucQauu/qDsL6cNa5Nq+cRtZjrC/S6Vc8r9PIE83rAoIZBkuV/gunIedri7wwnlPp0r+8tpw2etKZIZddRXJL3HvS6d0NvuVoUVCYEkS64KSRo+cFccbq+rBZLhBi7qlbDpzQXMm6ptHpUd7v6wvcBAckXoI+QDtoZrTqx/PlaMyFYBtKfu50zntuXcZ2fQmkBtRB4v6CwwkJwnkDjPRuUe/e26wcZFucPya0c1gohbaA+G48jjBTsKDCS9BBLnOa7co/OufElb4xxTcNG0OW2Jhtr1G6SuSwCN5gNE66A2gjxesLrAQDJIIHGeESlmT1HTmJILnxKMd+5Qagf31lm0hkXTQnlwH1gsbqyRsNhePq2KP0+66M9mofZQ9BYyJr/2xjbpvh3cVy/QMjzYrezHw0MLJFkurl4T0n9dZg8jRiiLw5J/5VjIl2nlHmY5pTwkbEh0GS3QH0IeyJOlYk8D/oQ8XjCuPEBWZXieW0KJFJexLTl8j/wcIFeeKA+IrcjjPFrViSzXKOlj4y7bhBbaUDJHFSOkBbL7aDWwstzJ/FA5D6n95aL1GDqKPFAETG/5zREpZsrpi9DYykVaxD6tNS1Ma0GBeJN/Dr/wh3Lvzmb4sLK9bDzkFpTKLgm4rS74hZY6OIw8zr+R2jK3bmZ0jjWKffzFLSgVrU8Ma1dQ+MNoXBketyOR0zy13LvnGX1+txSzoA+N0a68RIwLm4qhBAaUh8Vp5HGaU5b7NpXz53/jYVUqp4W9PeAYpneMbR78A/I4zVrJt5KzrQLCTaQvlQ9i3ztCB1ooDS2VdC/yOM0LyS/986uQiOEae4XaZ+AomxTjfI48TmMr895snaUOsc/BQ3nQTwic5pFioNuQx1lM//YJiV8naaZ4o619BOtm5aGlfD9CHnCBrUK5BV+xPfQPNvGZYzGfZ6a6liB3aTwVyhqBB1B/y0/MLua4HegLbbPazWjEqxe9x8gDLrFZMdZnyOM0ttYAnQv4rNcxn/NGSPktk+eKb25CHnANbcdsF/I4zXDMPXsrjfUniev/bfaNbEDe0uhSfPIO8oCLmLIYtl2zb3krdRoTMOLm0dNmcJnpk0n5dW8C6b7l0RL5na36xBokAldht7vfweSB5c11sfJ7pu5affaX+f9dSFoqJ4V6Z+Dxw2jMYrzm4UIfCvfpixlZfor+fnsUVMzbrNngFpf6/bJ2rEPGUlkh8ands1UnfkMicB2tTPVd5PECU0LF7Hb+rtzL+uO9zPQ6gfKhwi8EAaVTwmBZFBzMYrzJyDKL51PRYdKGzVTYBZnZ8AZuQCkUCAazP+GjxZg/Rw8oAMiW9si/4vzuo9D9EDykU3kzGkEegMzROpd2Ig/4ygXFsHuRByAzjim+dh55wGdMLrutzo+ZZ9+CRABNYypL2PZwUVkCgsDM234Se2lx2vICNOdftvXIj/gXhITpUTEp9r4lrUgE0DBttWNU7G2NO5AIQkOr+3MbeQAaZljxqT3IA6FyRDH8QeQBSM2g4ktsDIXg6VMc4AzyACTSr/hQH/JAVfhLcYQTyANgRSvGOIA8UMW3qinLcQp5AH7htOIzwY3m/wdfzjHa10xqwAAAAJ50RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWk+ZjwvbWk+PG1vPic8L21vPjxtZmVuY2VkPjxtc3VwPjxtc3ViPjxtaT54PC9taT48bW4+MDwvbW4+PC9tc3ViPjxtbz4rPC9tbz48L21zdXA+PC9tZmVuY2VkPjwvbWF0aD6yWI0kAAAAAElFTkSuQmCC" style="width: 64.00px; height: 22.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="f apostrophe open parentheses x subscript 0 to the power of plus close parentheses"&gt; . Với &amp;#x2206; x &amp;lt; 0 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAASkAAABHCAYAAABbELEcAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABEsZUXFwAADItJREFUeNrtXQFkV98XP2YmM5HJ5GdikkkyJpPJRDLJ/IyfmZnJjySTzI9JZjIjyfxlYn4ykxkzmUlGfmYmiUkmSSRJMpGZn0xG/3d0v35vr/e999z3fe++e989Hy5p7/vuvefe+3n3nHvOuQDuoCYok6LsAwaDwbAMV4LyQ5RBFgeDYRTHgnI1KLNBWQ/KVlB2gvI9KN+CshmUh0G5HZSzQanyUUivQyT1lucMg5E59gdlOChvQmuPWr4EZTwoh3wR1ukYIZznOcRgZIZhsVsqR0L4tydiV7UjeQ53WSM+7KwWYzq/wvOIwUgdR4PysgzhfA7KX0FpiPndiaDckRDWi6A0FVVojUHZLdPxZp5TDEZq6AzKdpm1thSUA4R3IBE9L/OOr0IrKhxuS7aS93heMRipoEeyGZjRfBeevi9L1L8zRRJcNfw0wJUjKTxZOMjzi8GoCL9L1thqwnfWBWWjzDtxt9ZaFOFdAvUpwg2eYwxGYpwSu5u4tfVvUH6r4N3NYiMR9+5PRdlgvCCQ1Efw1CeDwagQSBKfJWtrOIU6xiTvX3ZdgO1A98no5/nGYGjjkWRNIXmlEdmBap/MleGSywKc0yCpFzzfGAwt9CrW1GiKdd2S1IMnfvUuChD14F3Q83Bt43nHYJCAO6SPkrW0C5XZoqI4rFi7Uy4KcRT03fDnee4xGCRcV6ylfzKoc1VBikddEiAawTfhV+O4iqR2BWMzGC7jMGR7EFQds76i5XIG9Q4q6vzbpUEaiCGfdqL6d5vnOMNRNAm1B+d5TYb1XCSso98yqPeIok50VWhwZbDWI41fEP+/SBDuFnCuKYZbQF+iB5GPcJYktaZYQ+8yrPuDou4RFwasNabhHeJvHUCzTV3hec9wAMfhpx01bg5nRVKNhPUzk2GfZxV1O5GCaTrS6I3I318ThPyG5z/D8g/xkmIOZ0VSg4T1M5Bh3ykRJCdtHryD8KsLfXRXdIW4m+rktcCwDBh+8oQ4f7MiqSVC3e0ZyuAMof4xmwcx6naAcUNR+1Kt+H9VR5d5TTAsAaYmWQU9d5osSApPDHdAfUKe5cliDaHv67YOJAom6mYwUebZ/xEHmnNNMfLEuaA80ySnNxmqW6cI9X8yIJctAlHW2TigPTGNPVLm2WbigHOuKUYe6AJaYHwcOWW5i6GYSpYMyOcRoR1dNg7smqa69g+ho2jfquc1wzD4od1IQE6mguNnId+TvRIegIN2qZaYRp5T/OYCcRIMe75w8MuMrhto71sQKvU3QeBoxK3UQx/fjYHgX8U7N4Wa7tPHYQD0b1PB5/sMt5Oieo4aaMctQjse2jbIU5DMV+IDcK6pOGDYQ7cgD9Uhw/uE+j96Bj+WvPcVFNupFufUZTFXbSenEnYI7TPRtn7iurUG9fCr28EQ8bfDwLmmwsBTpPtQPstiWplNW0Ed+4XlWgFljKdTg0CLJQ0X9O/rzbHdtcR2mrAFdQMtDteazUWUaJDt9xN/G+dXFVeeF5yc/oCfoQw/YmRJmZgfNOrCE6It4ntnCyTjfeLj+ckxcgqr5bb4F54Hh07nq2JUNt0Tub+JHT5ZYJIaEGS9KL7ybaGvEKpyY5BOLq5mYXv64RFJ1YkP6RdHyamE34ntNnHdlE2EqURXTMOOJVA9KB2eKzBJ1Qs7lAzzUJnB9CDRBliUGErczY9o7BrDtrg/LOxPH7H9dYZkS2mLFXKMeuGuJXzPOlHHbQR/0aKQzxPFjncl8mwp51GbsIPFpXN20XBeL3ae/xaEnEr4E/INx4mqzpS2DOQttOYUmfMisdPj4DdkJ1E7UN5QeYegwuF4YiQAujlcB0s9hiVoEP3UPXTYEKqU7Zgg9seEsbqG2JbcfaXuQXquApRMg6WE7zUek9SkQj4tMb/pBLPeyKbRKMj1e0HJqQSq7dYUrI8YqYv5YlWa7GoMONeUCqqj394YO9RmSJ2pK5AsSlkwdcnppWPk5DJJ5ZpOeAjSvyq9EWjphX3ONaUyWE5Hni/FWKF95mhBZNAs+rnrCTkxSSVE1KcnrXihRWLnz3pMVLLwjfDdheE8838WoN94ajwH+jcQITl1FaD/TFIa6ITsfJio/hc+55qSBXfi7gLte4fgP3+ox473t0Xj4xUlpwsFGvcpJik6liFbb/DXwLmmZFDFTZ0NqXnbkM2tISZwEuSxhbLd5PkCjvukgyQ1mYegjkL2vhDU9MK+5po6Dmp/qdK/Bx3sH6a+XWFy+gWXHCSp0TwEFfXVwFCDtP0yqOmF0Vi/31Oi+kZctC4Bd4BPE5DT84KTE3UHbdKZk+onZdyZM448snLWoqYX9jXXFMVG0+JIXy4IoklCTuc8GvNuolxqDXGBlWExUTUsyzAVanphH3NNIUbA/euucQK/ZHIio5MoHxOuJgfB0gDj6NH3Qsb1Ue0SvR5OWFWqDNuP3PsTkBOWi+AvDhBlZILAzxDb0mRSQHGN6si4zi6iIJ56OGFrQO7MeMny9mMQ8E34efqoQ1Joh8QDk8OeEhXFgdWE2wUl9bfxpHfR2yE2DNQZl6vKx1xT5SBTlWYc6QOG6WBW0U1Nstr1lKxeEWTTY0hVTzMRY8U4DPnFz90A/zJIUiHzQN5wrC9Js2YiWU15RFYUj3sTa5OSNmbBpGBug/pW4qxATS/sY66pHoVMXHTPQG/5QdBPzucLWY2CHV7elBCdmyZtH1G7wR3DAzMNjuSuMYzL4LbxXKXq49f6DZOVti3IRAbbh2CHbazsQmgyPDDU9MJfwJ9cU42gNjpPFKSvfaB/YWdRyaoO7HDiXSfIv9aUUKKTI6/A3nXgXFNhUDyzi3bqmeTq812hmhSJrFSEvWOgDapbjIxFO5yGfHww4kBNL/zKA4IaiSxCVUaEogHDZ9YSklVTAfpPSSOcZT+bCPXfMiWMBUh2K3EWqAb6lUQdBSaokyFiQnVP5RTZWWBZ4Ed0JQFZ4aUTRxzuNyWdUXeG9VPcD06ZsnlEv9JDOQ/OOPida6oW9l7EgJ72aGCWnX6OQvGBNstHHpFVFeGDneXhliqu9pMpQYxB8luJTRKnT7mmwtdOhY+Zl4GTAyJOgH7mTlfJ6q6iX6sZ1v0sR4Lco1pFPYBtyd1EzdB4t2ALMHx7Ldrd9pWxUelcc1VUYICtbg50fHYG3MkD30LoTxYn3XUEuR4zIYCLeVWckj6O5RsUJ9dUQ2h7H3ehgirYsx38BJ7oTYLebTIukZXqpDOLSydUDsRreXV+zbLBoTr4FSXXVDjTZn+Zna9sIQ6B38D0yROgPjaPktUDy8lqQNGHLOI3VU6c3SY6fiqvijUwSJxoHwqg6lwDWnziKlQeQ4V2mVFw82p1CjDESvf69V0hdxttnDi3Pyq0iTRVvnrFx9DYVXPRm0hsTCpXpzHRehxeVMdDX/+3IL/Yc1wxWVXAyfwyQzXBJuwXZPwV9IzsNpKVKjTqcop1/QUW5HVriDGKjVg60ag3Z7jqdY27mdKtOUhUJxTPq5LgqX5/D/zLJlEnTAKbDpNVFchT9qS1u6kGedD3c1MdjkZYp3ErcVZo1phUrQ4uoBnNr2E1yE9drkp+2xvaNft4sUWNUKs/OkpWLYqxTyObqWwXhTxh5GCtKuaLMm355FolTqYHlrQX0792EiZ2OIfWvMb71xLsKFvhv5tnzoDfwDWAsZ/vNMlqzgKyuiZp36awJyUFXjQrC2a/ZqqTfeBetkvq7Rm7QpXNE1dgr9ERVbm4FL9DoWfea+5s7ijk0BZ5Hg3ln8XfxoERJqt+0E8TkzdZyVIaLVUgC1no0X2THXyal45Z4WSiJke7mWM72xU2A9xKd8Feb2n8ch3XrOcsqE87j4UIvrRzXmFeKguMU9NNEzOfI1nNS9o1leB9Mg9+o5k3WyHZzR0ulTxzTU0naG+Syy6RtHVPrN5XqAr4Akzg9kxTtnnNt7sKYjlAeAdqHrJwK+PXp9/3gKTyvEFlVrOdfRXUNaFRD+6kmph/tNAB9DQxeSZgxMOQLckH+zrEp9vG+TAq+e12hfMzEag5xItQ8rqcYIjYvu9Qua8JeldTfMjQFnWCOScx0On5scUkhUCD94yijdtC3V8BdabXOTG/jOOGJwSVZ66pfQRVAe1Fp1P8iqriqw4xz6QCPP5ftJSkSkD72D3Qv+Ow5Ag8lcA+ynAQ1WJH9VQM/I6YNBiXdzWDCd0mFs92qC60R3TxUGRGBKjW71pIUmGbJWbWxZNcjMF7K3bdO6Lgv9+Jv90Sz1bx0DIYxUKT2Hl8B38uBWEwGA6ikXche/F/EoeE0FhO8BsAAABxdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1vPiYjeDIyMDY7PC9tbz48bWk+eDwvbWk+PG1vPiZsdDs8L21vPjxtbj4wPC9tbj48L21hdGg+ScNunAAAAABJRU5ErkJggg==" style="width: 46.67px; height: 10.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="increment x less than 0"&gt; Ta có f ' x 0 - " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAZIAAACWCAYAAAD0ZA5YAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABgjZbzxgAAEpNJREFUeNrtnQ+EVdsXx5cxxpNEMpIkkjxJYiTJkxhJRkYkeZJEMpIkMjLGk0gykkQykjEiyUgSSTLyxJMkeSIZycgjGRljRL+7zZlfM7ez1zl37vmz9z6fD8fv/d67c8/d37PW2f/WXksEIJm+2vXDcp1GHoBfOK34TB/yQNU4rzjEceQBsHJC8Z1zyAPMRETOIA9AImcVHzqLPBA6xxUHuIA8AKm5pPjSMeSBUOlWDH8IeQAaZkjxqW7kgdDYXLsmLQb/rHa1IhFAwxi/GbX4lfG3DiSCUGivXeMWY/9Yu5YhEUBT/vXR4l/j0X8H8JoWZcQ0xYgJILMZ/5Qy429BIvAZNgQBiqFH8bWLyAO+0qkY9gjyAGTOiOJzncgDvrFU7Psin4V9EYA8aI/8K87vPkV+CeANt4WwRIAy6FJ87zbyAIYMAM0O5LqQB1xnkdhDEb/WruVIBJA7yyN/i/PDschPAZxFS8Z4CnkACuOUkNwRPGRN7fpuMdy3yANQKObsyBuLP07XrrVIBC5yVxkB7UIegMLR9ivvIA+4xhbFYJ8hD0BpjCq+SWYJcIonirFuRR6A0tiq+OYT5AEMFQAY6EEQPFaMdBvyAJTONsVHHyMPlE2HYqCjyAPgDOyVgLMMK8a5B3kAnGGP4qvDyANlsVLs50Y+IA+Ac7y3+Kvx41XIA2XQr4xwziAPgHOcUXy2H3mgaMypWVtOLXNqlvKeAO7RHvmnrew1lRShUMjwC+AnZKAAZ9Aqse1EHgBn2aX47j3kgaIwVdZsm+zjyAPgNC1ir146LVRRbIodteti7XpUu77UrqlI1G+162XtuikzyzllryGuj2YDk9Hve1W7Dhf8G44oI5ormBKA81xRfPgo8jTeM5+QmVDVHymvMSmvwtjm2jUh5UdJPRXSLQD4DGmNMsJkq/23TkATY91Tu1ZEn2mrXb0WsXtL+M2vlYdvZlBFVD1jWQsgDGzLW9+F5a1UHI15GQ7Vrt9iPtuqvLy3F/ibl6eYLRURcXFYuf9VTAvAG64rvnwIeXT6YkQbVD6vlat8WODv3pGiI9ldwO+4W/L9ASAbtJQphPArnIwR7J9o1mHjvSL2ZIG/fUmKjiTvsFuzp2Q7zDQtHGYC8IlWxZ8n8ed4dkr8WuD6hL/74UhH0iL2vYnZK+8azJ3Kve9jYgDecV/x6U7kmY9JC/A5RqjLKf72vUMvzy8JHUneI4jzyr1PYmYA3nFC8ekLyDOfuFPYZkq3PMXfnhR7lNT6gtvxQHnoEwXc/4Vy/w2YGYB3bFB8+gXy/MS2oXS9ge8YqPvbTzKz+V00t5SH/izne5tQ6O8ldmIAkA/fxB4G3Io8M0s9tqWpTQ1+1+ratU9mIpPKElebhuYdZaElabyLqQF4ixaJ2YU8Iscs4rz2tD3dygP/K+d7sz8CECbaEYdzzEZm0pmEVHRpjfLA9+V8b21/hugOAH/Rzqg9qLo4BxRx1njcLlvcd0fO950U1lHBDbQwdJeuG57o2Sr2/c/Jqhvbc4swbzxv10vLyzzP0N91irO84r0GdCRedyQGLY/fuqoamhbSNuB5227HtOldzvfcp+g5xHsN6Ei870iGpLxlc2cZkHDzQZ2V4iO2Lit6HuO9BnQk3nckPUo7LlXRyJKqf/m+nh8XudWX8z3vCYkagY4k5I5kt1B+N7WRjQbQvrjIre6c7/lZ0XQx7zUA79GSwlayztD1CkzRpuratSrHe7VJuWlZAKAYJhRfb6uaGP8pYnQH0sZRKS48j5KcANXgseLr26okxHbR1yzbA2nn3Jxbj3O+135Fz1v4HkAwaLn89ldJCC1a63NA7Zyb+uVazvfqUzQ9i+8BBEOv4uv9VRLig1QjseDcCIsDjFJKoyWaBfdH9vVRZpYap6OZ4uoMZtgmtPtL9J2fo8HSMt55wOpDPnSIvqwVUo/6myw8i3GjkGNrPiZ8fG/0gv+WYHNmYLOQqDZTJ+eh8r1vIhsAyBIt4jWInFtjUmz892ps6v98UnRaWiEd/qhdg2LPOZbV8l+H6OHWZFyGvFgsAW8NrCi4E/mGPc3Dlszte0Xab9JDxNW0mUppT2MN3MtEyH1N+b3DmCYU6O/Tvjdsf8EdyQi29H8WKTp9qYgGhyInMnZxvHZtkZ8JMs0I7lwKm9qS4j6/R5qmtVM6EsgDbSAT/HLqAQknVYFLcIZkZmM7Ka3OHWluf65dGl++7cE8IQeeNjkg8pprCU63H/tYEJTXTcemBPvTzvq01DnvbLRXS+S4gzHf91LYbId80PLqBV9297mweV70TO8m8szjnaLVlNjrxVyS5OUqs+x1Oeq8Taw/+c0gLyob7m8c9LvS+P+wjQVzWNH1GvLM42rCYCYuTHvXnP9+HwnBAbTVncMhN3xrggPfwTYWjFaH5CjyzGNvgh3WHxw1+yKzYb5vmGWAIxxTbPhyyA0/KsTb58XNBl6MVWdJgh3WLwXOHvQ04ebrkA8c4U/FhgdDbvhwggP/gW0smNsSfiblLPlX0evlnM8dmvPvjyAbeDKzHq6q85r4/xZsY8GMCJURG0Gre2328UwYsTlgO3te5CGSgWNUslLiooTZyFPsoinIs9UYBxPssXOOpqaI0EokA8fYKYHn24qjK8FxL2EXTaEVumHJ8Fc2SPJ5ktl/Po5c4CBbqjgw70tw3D3YRVNoyQOXIE8saZI6vkQmcJSlUsHa7fcSHHYpdtEUlc67s0BGUnQkm5AJHEXLABzsmTztRfcOm2iaCUXfNuRZ0CyZvG/gMm2K7U6E2OBVCQ47hE00jbZMQzRcPLuF5VagI/GGfQkOewibaBqt5gbYHVFL2UNGAHAdLWdccFxO6EjWYw90JCXxSqh9DXQkXqDlzZ/EFjLhOx3Jgrih6PYaeYCOxA3M+vy0UCujLIOiI9FJqupJ6DT46PfBldfuSHDUs9gCHUmJHBM23IGOxHkOJzjqTmwhE1jaahwTTTiRYJ8DyAQediTBLW2lSY4HzcNme+MkVev8EX0GgI6kZF4rjX2BHdCRlERf3YCGwQ7QkThKUpw+JWCzgwOJ6dk8xy7N0lZSJuBdSAaOvl8rcSBxV4KD7sUWMoMUKekw5QzeyfzqkUmRhf3IBnQk5XE6oSNZgS1kBkkb0zEo8bm0Hin6PUI2cJDKJG28qzT0E3aQKaSRT6Z7jiZv6jpYLYHjlLA8CO5RmTTy41LRmsIlQGErneXRKM3o8a12rav77zsSZs/bkBAcoxKFrZYnOGYPdpAplNpN39EejPnvJjJL2yc5hYTgGJUotbs3oSPZjB1kilakaXfFtTmZcib8TJpP5bNWZjbn2ZeCvNHKINwLpZEXhDXnIrmt6N1dYV02yM8zNiZaa7Hy2fPSXHJRE0XzCs3BgcF6MFsHD4UomCK5qeh9oKKamFnB2zmDl41NjPB+pPj7ayU7cWvUgZnItFGZCQE17Z6O/tks710U9ntC4U/FVgdDaaR20vocNpA5Ws2XqhZoujVHg2MpX8TaAdoTyt8eiD7zUYqPklsSzaa+SnLKl9nLzJy6cBuv0RKOXg5lOUEzYgw4e7TkmCFlEDAhj+ag6+8Jnzs7p/13Gvj+UWk875bJcD2bWWBHwXqY7MT10ZEmtN6c4doqM0t5v0ej17i23RbCw33lmmKrh0OfcpG7KB+0uhqhVPrrkfmRVW8ts61Tcz7zocEX5aWEQdCWus+vnfMiP1+wHmclPihA2wc6GLNaYM7UcDjY7xl3/bU/hAYOKg38m+efC10SdvGwbUr7/o1G4HtkftDBRDQ7boTOhI5kTH6WhjabnbMHQYuO2z8X89tGUv5tXNioCURox4284l7oqz7/KA28wPPPha2K5k8CaN9NSb/+30zYs4km/NLgfcysZ1nBM7O4Dq6RmVfcSf5RIZrSJ542MHP2jqQNSwpZ5cMiRfMvAbRvuMGX+59N3GuggfuYGckaB2ZmjUbmtcj85JWz10VcyRuCzq+npZqYZMSTK7YOPISym6dSvtinpflw55Uyk0Yl6V5mb2RjgRqYwcJ7iV/aWwhHLO3ahCt57e/TITTuuOJ4t3n2ufJJ0X6p520zI6y/JXn/Iqu8YgcS7mWWgYreoO6XxsOSk1YP/ov5vn9wJedZnDBL9p47OS03QDKh59tqjWYmz6PZrYk+mj1oZ16mWdddMevMI/LzYJ/5XxO4sKeEtrdL/NksMyptZn/mipANwUe0PFv3Q2jgmDLdWszzz5XgwwErzDnJJ8urbSn6JZI7TdDh/ktD7yUdR6up0Yc83tIi9nozvRl8ty3rMYlV3aVXAq7o2S0sazFKgazRzghlsWRpqw55A+lZfSgDW8Zfs7bMafb8Cf0sSVWxHfDNKkvERbGHjRNl6SZaaWjvC9nZ6jlc4bkXQptiXBPI4y0fLc/0bQEz2e3I7yQTyjNr87lh2kHE9Tz3wtBqtxPs4B8rJf9wem0m+xePwDmWSMC12m37IyypFIuWf2c38njHPuV5Xi1gJkvtIPcIujLiDabGTqDVJTmGPN6hVRo9mOF9JmXhlSGhWHoUm7jkc8PMhlzcCVky/bo1gh1CnqBmmFkeGnyt3IcU826h5Z3b68qPXCyNr6XbTllS0rN41ipG9hp5vOOlFJMA9b6wJOoLWqe/ruwfZ176b+f8IBMpkjb5XVxalLs879KwLVNQVCycZ5mmhnwjaKmNDvAYnEELaip9GXK9YrBJBVJWxDTMhKat5JmXRug5t6pCi+iJIxdleC/tgFs/j8IZtOzqD8r+cdq0NimXT9xhpiM871I5rzzPk8jjDYsSOpIszwvcUO7DCXd3OKk8p/Nl/zht+qwVRTKzjvqMpPd41qUTetndqrAioSPJkmtCkIYP3BWHy+tqHclwA416JRx6cwEzUrWto3LC3R+2F9iRXBXqCPmAreCaE/ufjxUjsmUAPVb3OVO5bTnP2Rm0IlAbkccLOgvsSC7QkTjPRuUZ/e26wcb1cofl14pqdCJuob0YTiCPF+wosCPpoSNxnhPKM7rgyo+0Fc4xCRdNmdOWaKpdf0DqhgRQaD5AtApqI8jjBasL7EgG6EicZ0SKOVPUNCblwniC8c6dSu3g2TqLVrBoWkgP7gOLxY09Ejbby6dV8edJF/3ZbNQeikYhY/JrbWwT7tvBc/UCLcKD08p+vDy0jiTLzdXrQvivy+xhxghlcVjyzxwL+TKtPMMsl5QHhQOJLqN19IeQB/JkqdjDgMeRxws+Ki+QVRneZ0hIkeIyti2H75GfA+TKE+UFsRV5nEfLOpHlHiV1bNxlm1BCG0rmqGKElEB2Hy0HVpYnmR8q9yG0v1y0GkNHkQeKgOUtvzkixSw5fREKW7lIi9iXtaaFZS0oEG/iz+EX/lCe3bkMX1a2wcZDHkGp7JKAy+qCX2ihg8PI4/yI1Ba5dSuje6xR7OMvHkGpaHVi2LuCwl9GH5XpcTsSOc1Ty7N7ntH3d0sxG/rQGO3KIOKjcKgYSqBfeVmcQR6nOW15blM5f/83XlalckY42wOOYWrH2NbBPyCP06yVfDM52zIg3EL6Uvkg9rMjVKCF0tBCSfcij9O8kPzCP78KgRiusVfIfQaOskkxzufI4zS2NO/N5lnqEPsaPJQH9YTAaR4pBroNeZzF1G+fkPh9kmaSN9rKR7BvVh5ayPcj5AEX2CqkW/AV20v/YBPfORbzfWapawlyl8ZTIa0ReAD5t/zEnGKOO4G+0DKr3cxGvBroPUYecInNirE+Qx6nsZUG6FzAd72O+Z43QshvmTxXfHMT8oBraCdmu5DHaYZjntlbaaw+SVz9b3NuZAPylkaX4pN3kAdcxKTFsJ2afcuo1GlMhxG3jp42gsssn0zKr2cTCPctj5bI72zZJ9YgEbgKp9397kweWEaui5W/M3nX6qO/zP/fhaSlckrIdwYev4zGLMZrXi7UoXCf3piZ5Xj077dHnYoZzZoDbnGh3y9r1zpkLJUVEh/aPZt14jckAtfR0lTfRR4vMClUzGnn78qzrL/ey0ytEygfMvxCEJA6JQyWRZ2D2Yw3EVlm83wqukzYsFkKuygzB97ADUiFAsFgzid8shjz5+gFBQDZ0h75V5zffRKqH4KHdCojoxHkAcgcrXJpJ/KAr1xUDLsHeQAy47jiaxeQB3zGxLLb8vyYdfYtSATQNCazhO0MF5klIAjMuu242FOLU5YXoDn/su1HfsK/ICRMjYpJsdctaUUigIZpq12jYi9r3IFEEBpa3p/byAPQMMOKT+1BHgiVI4rhDyAPQGoGFF/iYCgET6/iAGeRByCRPsWHepEHqsJfiiOcRB4AK1oyxn7kgSqOqqYs12nkAfiFM4rPBDeb/x9UPmiixfV2gQAAAJ50RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWk+ZjwvbWk+PG1vPic8L21vPjxtZmVuY2VkPjxtc3VwPjxtc3ViPjxtaT54PC9taT48bW4+MDwvbW4+PC9tc3ViPjxtbz4tPC9tbz48L21zdXA+PC9tZmVuY2VkPjwvbWF0aD47GscUAAAAAElFTkSuQmCC" style="width: 64.00px; height: 22.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="f apostrophe open parentheses x subscript 0 to the power of minus close parentheses"&gt; . Vậy f ' x 0 = 0 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAc8AAAB9CAYAAADEDejhAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABJzyRrqgAAFYRJREFUeNrtnQ9kVl8Yxx+TZGZMJpmMJMlkTJLMRJJMJpJkJjGTnySRJJOJyUySmEkmM5LMJJEkSSIzSRLJJJmYTDIT/d6n3dXb2z3POfe995x77r3fD4ffn3f3nPuc55znnnOe8zxEAIRzrVR+hpSlUumBeApFT9DvYfpwDeIBAACiulJ5qJgo50tlF0RUSNqD/g/TiweB3gAAQCFZWyrTignyc6lsgYgKzdZSmVPox8tSaYSIAABFgye+N4qJ8VOpNENEoMSmQB/C9OQVDCgAoEg0lMqMYkLklcZmiAiUsVlYgc4E+gQAALlmdak8UUyE30plO0QEQthZKt8VevO4VFZBRAD4xe5SuUzLTgrswLBIy56APNHzed3NUukslZqU28nnQ5PBBLMUfJEf81CeE4oJ8GcgRwBUdAm6cwviAY7m2ZOlMk7L5+5fy2wCz728Q3I3sBl7PLALzqkJBPRBGKyVZTbFyZ9XawuKdp31SK5nBPldxLgEBlwUdOgUxAMsUB/Mo28j2IOV8qVULpXK+iIIakeIkN6XyokyAfDW4zmFsM6l0OZXQufxV1GtB3JtF9r4COMTREB1telHqXRAPCBBzgarS9Xc9TXQx5fBXKv6Ha9KL+R5JdobDMDK7aA1Ib9dJQjK5QBeZ/D1sy9luTYEK3OVg9A6jFEQgUZSOxB9JDgQgfiwk5rKqZGv0Z1RzFvbSmVIMKR81Lcxb8K6EPKiN4TfnxaM1X2H7d5tYDz3pyzbMaFtBzFOQRUcFHRqHOIBMeDFhuoYbMrw44wN5AtSB39pz4uwTlH4JWzJg++9ZonuinoD47k3Rdl2Cu2awDgFMbjt8QcjyCaH6d/dx5UyFvFZvGP5QLARu7MurL0UfnayVfN3Pz0xnjVCZ6+UTSnJls9aP5L6rADbtSAO64UVwiyFH7cAoELy5n5S5TM5jKTKJ4V1ty2rwlKdnVwx+Ftp5Tnl+D3mNcYzrUPqS0KbTmOsggSABzdIAukeMV9LbIrxbA4zqkp08IkyGiVrksKzeJisiE6R2rt1q+P3uCdMIAspyXYDqQ/N31EB7z8Bazsv70idkWcDRAQMFlGfhTk0iet+A8LzH2RNYAcULzIS4RnDIV8Raexjj1nYbojLTaFNhzBeQYIcFnTtBsQDYiw+2Kgmsf3P27fSlZfeLH2tqrZdWyM+qzkwBuygkFaIsJPkl1POZqE9rzBWgQVU50rsD4DsPEDFEZKPvPoTrGtQqIeP3tZmQWB9OZvYpYPuNM59bhGupgC3SFdXELoPhMEryo+C3vCHV1OC9TVrDPWI7wLjVafqwv7ZjCrBRvJni7SZ1N6/bzFegUXeCpMgUtyBSs5pjJmNyGdPNMba64xS0jI9y5EfVN5crl2hhwT5nsB4BRY5IejeEMQDyuAjtjmN8eyzUO9/mjpHfRbaM0WjX2dcGaYVXzIuvVo55q/q3t0C4d4dSE//vkH/QBnHSB9cpslCvZs0dZre9nBOi9Do4YwrQ1iqr3eO29AryPcqxitwwBXKgUcjsM5TjRF7b7HuWU3dF3wU2DDlN5zXeUrf0/aFIN8WjFfggG2CDj6HeAAt3/3VrTrHLNY/rqn7nW8C4+3Lz8JSOeuZ6LtS/oKRtiNwPQW4ZEbQxc0QT+HRnTty6bFYf69B/dt9EtgeoaFPc6AQYR63XQ7rl5IUn8F4BQ5ByD4gMWVgvHZZrN8kE9aATwIbofx74lWGw3MZmkzKso5rAsAl0n06XJcqNjUkJ6124Wi52sB4vvRJaF+EhnblRDHKD8FdZnaRHLFeYLyCFMD5Owhjp4Hh+uSgHV8NDHidDwLr0DS0MSeKUR7j9qHDei8Isj2P8QpSADoJwjhhYDxdZMW6Z9COAz4ITPKyncuRYpSHHbyOr3xQYOB1C8LQebra9rRd4RZl5Nzzg9DAOzlSjP1l73XEUZ31pA7HN1egQVkT7HD0BzrFMTN563wp2AWIe+7Lz+arR/PBM+eCj8K1BFSoIsj8CPQWFI/nBkar30E7Bg3acTdtYbV5IChXrKHqs8NUyyEqbkBuvt50MDBq3zR6xh9w1ZxhcLSR+8JzXxMi56iYICQoAH+jcxbictRBO7oN2vHRZgNmDRqQZIHX6L+MpqyEadBOy3kiv0fUn6hnbW2kj7/J5RTUMPIENQLxFI5aw3Hq4qzxoEE7rHn9rndsOL9B90J5TfkMtK9aZYflgV001KHZCHWxV+BXw+eOQw1D2ahZsYNi0WE4nvY5aMt+w7ZYyUV72LHxnITuRfqS+5LD9+WoI0uBLnCUkh1lX4a8JTtgoEc7DOrhATMfQTdhPNVIV9TqIJ5C0WU4ntoLZshD0WUJH4U+xeKAINvbOXxfds7RhXG8TfHO2Bsp+nEEUr2puSPIrTOj77TH8cIhzZKk08xRwzpdfFTVG7blUFpKdl3TsMOYW2LRL8j2bEFl0qrROen+La9iH1f8tjn477xivRHyPE5FB4chNecof86CMJ7VcdywztUO+nCNYVt60lKyZwQHIJvcpfxmqYnDO0Eui6R2AihPJK7aiuUt3SvBiuocYetRRyfl75oajGd1DBvW6SIH8mrDtqRy15MF8IOKdSbnmjnCeVIY1zQDIuwa0T5yG+GkKOTxXB7GszpGDet0hUlbrqehYLoYhrcxr1j7cloouGx0buiVASwayz5EXmM1mTiS1/LqDL4PjGdxjGcqfjm6nGm4GxePfQTPZBU6Z4CbFb9fiXPJ16GQbzJ5pDiie2E8YTxhPP9GF8OwHXNKLLoJXswSUoq26bLf9ZT99+MQmxWkSbMbxhPGE8bTfPLiu3o1mFNicVWQL4yAHPiZz+L5ygsH+li5z3kfIrPGMfLsTAmkwgiMpx5dGKbH0KPYSJ62nRCPNnYlrx5WthP5jLgJIrNGHj1uQXR0jnw+Gs9rPg0WLkPQo9hMk+OQUhmjhfT3PVf++T+IyyqbhX6YgXgKg84Pxkfj6fwu8gXKQJLRjCPFc8WW+DImgeOnISbr1JB87xYUA5NMJq48sE3veToPknBX06AG6JG1jl+AeH4zaTA4WiEmJyxQvq6rgOiYZDLhUuugLaYZXpyH55Pudb2DDsVmmyDf5xCP8Q4IvJLd8QwfMIVnn6HBcnFdrJE8DAy/QdOYW9Ch2MABwwxd2iEcH7gDDm6gwdBgubj7u9uwLU7TOh4iTwPt5ggpW81NiOc3vB0ohYjshYicMUZIEAHk8ejyY6rToB3WkmGruKJp0FboT2z6BPlegXj+YkaQ1RjE4wzcSwbMawOj5eJj6pBBO2ZdC+ex0Jjv0J1EkFK9HYN4/kKKavIK4nEGAiUAZsLAaLnIj2uSHs3pERgvcZcI53G2uUnmQc+LzmHNAKmHiJyAowbA9JMfUX1MQgVedCmYNk1jzkN3EuE2wQnGlD6C05APHCBkWAJmZ40TDtpxl/w4e/3NMUrfi6oITJEnrtWew57fCxqdHIaYnCB5Pk9CPIWhjvwIXPKS9M5CtS4FYxKMG8TngSDnDojnN88MBuoziMkJ0tWArAXlR1aVeLzS1Oki6tQieRZ5TBLKC8wfifFGkHMzxPOLCxUfbvioS38XQNUHb2E8C2U8hynd+5UbDeofdKlQujt18KhLji+CnOsgHtpepou8bauLqYmtbvtI23VfYDwLZTw7DOo9aLH/TK6p7HSpUPtSFEbRQJxQNXxO8Y7+9j7WeYH3Q6WcfFznJR4zjGc8ajQLANuZt3SxCD65Vqgzmgatx/yRGN8EORd9C/IGhbu8S+fED6BS1lklyP8bjGehjCdzVVPvE4v995w8S5l5xydLnnOkw+4i01UmB45ksqbs/0lB4hcJadxckJe0ZDCe8WklvberjV20OtKHCHQeBe+z0JhxzBswnpZZV7YVxCuZyswMukDQu6BWMJ4wns6MJzOtqbvLQp26oClP05i40g63VCSWYDz/4WGZDLpD/v8qjdxOQ61gPIFTejR2w0bsaV1wBOe+Obokp9uhJ04moaIaz1OGuxxPKH7oyE207GC0BmqYmN7+gGgKCR+VfCQ5FnqSW7drNR/QqVyZGiScJ8F4pkML/dnGZi9b6arOJYqXtIAH8kqWli6oIfQWxEYXPrMvwbp0Tq2pxAW/T/BkxCTkHl79vSn7SNum+b0uObbu769Tumf4qwKjzR7FfDazELz3UvDPvHV9mfw9v1XJfQlDutCrzxkHq0EeO7PkYRAfyYFlAPqROD9gPH8xFvELdZVGdieFv13JCsLbTK4zsdQHq+avZO7owRNSp2f9hTNPEEarZlwmkWbxjObjLZU80y3kUWT6gpBnb9sGWg64sUXzu/NUXVaOpxQ9zi1nC/oe/Ga3Y3lwNpJKT/ZPwWTAUVDqAlkdVbzbBPmTdg3GE6g4JejHHC2fV1bLepIDy5xK66WPEuKGwngmwwn6+0Cft2R7Q353uuw3HyIahyHNx96Oit9vKjNelxzL4zyFOzZJ57rdIfrxmvwIUgLjCSSkPMVTVT6Tt4UfC8+9keYL3xAa9hz6YIU8hufbRfK5x5lgFVaeiX4h2PmIgu6O3mzZFs7B4Kv3ZzAAXTJA1afu2hvyt+xM1Zhi/+YpPB+wh5SreKSK501QfA97a0h50QahC1aQzr6yeoXiJkW/wL2/yi/R+Yj1fIi5bVTNCjzMqEdZYYdFVHpK6Xm+1wrynceQBmVc1Ri8BoNncOwBKSTntbRfUueAgeTXdshjVpXxiAbtaIy6hiPUwyvPjQ7loFqBR3Wjr6G/A+SvlMsp9W+9RsYAlHNEWCTw/HeOltPcVcJjtV/424WYc0diSCHPvhPud9riEXmSSidBThsasyWKfx+rieTg+iuFzzq3OZQBr87eU3Lu+scV79WaQv9KsUyRkByEwef0Y5oxysbwcVAWNL+dCMa+F/ynaSiww70crvZ5u1mX7YC3LtsT/LLVxbh07WTTT9Gv0Oh2hsJ2KV6m0L97KXlnEFAM2Jv8uoFxVC3i+Ky0xbeXkg53j6LPrSFlsMny1aBVwQr0WaD0i/Tn8j8bkKSdodizdpL+BBtYCGR7IIV3b6RwL2o+Folz3qo6P3IdIamTPHbcAJmgJvgIY693jlHLxxLfgnGzGPzz++D/DQa/9Xb3UxWxgbfW6tDX1rglTESHIJ5MMqDoz7hevqqjlWnH73dI0Nlb6H5QJBqwDZMaI4LseyCeTH5Rzyn681wCz1YFw3aZsEHKoDECFQBFoouwZZsWJwnXg/KEtKW5J4Hnq1z2Rx2+Yz95GOEFgDRQZVLhcyNEFbKL5OxyE+LJHKpAI0lF6LpM6vuVrs6EpHu8R6ACoEiociNehWhSXanA+SJ7qHIavkno+YcFfelw9I55dXIDIBJScIStEI91thFCIuaFJrJ/3WunUMdFR+8pxRdthRqAoqA673wE0TgBcULzg+SFes2BvrjKt5vHeMwARGaU0t0CAnJmFUR2yg6DQj92J1jPd1JfIrdNDSGjCgC/BkJY1BJsF7rlhTAhtUA8meGu0I9JBjJ4JdRjO5LSFqHuaagAyCJ1FD2YgSrM1i6I0ykTjiZdYJdpchNqcYqSzU4TBelaG8J4gkzBhu5NmQKzt5+pu3hYSD54eLpH2u7Dvbns8F3oxySD0kuhNG1fFZFiYONeMsgMW4UBq3MZ5+2dSi9bdgRoglidI10/GIN4MoF0FsilNsG6pOwU/ZbfU6r7MNQAZAVp+0YXRzPssvVxiDQVdpCcEQT4T63GeCbphToq1GM70pB0TWU71ABkBWmbSMrozqvLSg/PuxBnqqsW1V1beDBmg/Ua45kk1ym9wOwqz/AfBM9wkBPjOS78XWWEkBlC5pS0kTwoN0M83tPh0Hheo3ScdjYK9c5ABUCWeEjRt1D6Kn7HOdPWQZSpg9Rk2WaPQ+M5mJLxRCoyUIgBGxaE+hj9m4UehtMPeoW+RIxh/9nt0HieSMl4Dgn19kEFQNYYECbcNbR8DsFbSpUXuEeD/w/8oI3gNJRlmh0az+GUjOcTod42qADIIhz667Nm8JZHD9oNkXkHf+SonDGWCKnhfKeO/DjztLV9uorUibi/o/tBlmFX+J7gy3M2UGiejPnuJp+NXsbXofdMkpsINcCOcZGMZ5IfPyPk/qqKdEQET30AQKqcESaoAYjHe5aE/kvyiOQGuQ+ScFGo8zS6HgCQJlJuz5cQj/d8FPpvQ4L1SJ7ZtsLzSckLkPcXAJA6qrNrvoTeAPF4jRTxK0k/Ayl7i43A8A1CfZ/Q7QAAH5BCr/VAPF4jxX3tTLCe+0I9Nq6edQv1jaDbAQA+0ClMVJMQj9ccJzfbqfPk1utVyuICRzYAgBfwlZWvpL6yUgsReUs72Xf4kuIg37fwTqtJ7Qg1T4hnCwDwCMmbElu3fn/4qAxNUqnlpPiyFy28k7RlO4ouBwBkZQXzCOLxGlXKrmcJPb+L3DglrfBAqK8d3Q0A8I33pPa63QDxeIvqru6i5ed/o+S3UJtIvUX8Hl0NAPCRs+R2ew4kwyah37Yl8Pw7ZHdbuJx+4V3OoqsBAD7SSOrzs48ERw2fUQUU6E3g2SpnsqS9XmtIHfRhKdBPAADwkuvCl383xOMtqpRhcTOetAkfU0lzVNC96+hiAIDPbBEmsBmIx1v4OtEChZ97xgkQr0o/aGMLdVrQvS3oYgCA70iZVvZAPN4yYGHHYDbkebyNW59w26UMKnfQtQCALNAiTGQvIB5v4XiwYZGAnlf5vC6Hq87nhCDwAIAcMCFMZgcgHm85luCOwauQ57ym5B3HpPCQ4+hSAECW4KgyKs/btwTPW58ZD+mzNxQtv+dJCr/X2ZJwW2uCtqk8bJvRnQCArDFIuHOXRdhIhkUdMvW83UnLAd8rA2XYCMh+mnC3GACQM9iDU3Xvjj0710NEXhvQeyH9xtlK6oS/O0D/eu3yv++z0MZ1FO4hzOVDxJUyAAB4xX6CF2SWOUf/br9/Dv57R2BIeYv+IIXHlOXrI5sttU1KO7YPXQcAyDpSwuWDEI/3cPi+W6SOGauKI3vcYpsOCXXfRJcBAPJAHamDxvPViCaIKBOsDQwiOxSxJy07AC0GhfuRt3kvk/3MJetInVz7A8nbygAAkCk4TJvK+/YpxAMioEqhxvq1HeIBAOSNPlJvtQ1BPMCAIUGHeiEeAEBeQeB4UC3dhMDvAIACc5/U2267IR4QQgept/0fQDwAgCLADh1PSe1AhHMrUE4rqR2EnhEchAAABYKDkKuCec+VyjaICAR6MKfQk+eBHgEAQKGoD1YOYRPjF6xAC09boAeqFWc9RAQAKCocQm2K1CH8kP+zmOwhdei9KULoPQAA+MUw/blwX1mOQTyF4rigC8MQDygi/wO/TuoCCSvaKAAAAJt0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWk+ZjwvbWk+PG1vPic8L21vPjxtZmVuY2VkPjxtc3ViPjxtaT54PC9taT48bW4+MDwvbW4+PC9tc3ViPjwvbWZlbmNlZD48bW8+PTwvbW8+PG1uPjA8L21uPjwvbWF0aD5y0ZHgAAAAAElFTkSuQmCC" style="width: 72.00px; height: 18.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="f apostrophe open parentheses x subscript 0 close parentheses equals 0"&gt; .

Với <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2206;</mo><mi>x</mi><mo>&gt;</mo><mn>0</mn></math> Ta có

Giải bài tập Toán 12 | Giải Toán lớp 12<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><msup><msub><mi>x</mi><mn>0</mn></msub><mo>+</mo></msup></mfenced></math>.

Với <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2206;</mo><mi>x</mi><mo>&lt;</mo><mn>0</mn></math> Ta có

Giải bài tập Toán 12 | Giải Toán lớp 12<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><msup><msub><mi>x</mi><mn>0</mn></msub><mo>-</mo></msup></mfenced></math>.

Vậy  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><msub><mi>x</mi><mn>0</mn></msub></mfenced><mo>=</mo><mn>0</mn></math>.

1

Câu hỏi tương tự

Cho hàm số y = x + x 2 − 4 x + 5 ​ . Lập phương trình tiếp tuyến của đường cong tại giao điểm của nó với trục tung

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG