Giải hệ phương trình sau: C x + 1 y : C x y + 1 : C x y − 1 = 6 : 5 : 2
Giải hệ phương trình sau: Cx+1y:Cxy+1:Cxy−1=6:5:2
TT
T. ThuỳTrangNguyễn
Giáo viên
Xác nhận câu trả lời
Giải thích
Điều kiện: ⎩ ⎨ ⎧ 0 ≤ y ≤ x + 1 0 ≤ y + 1 ≤ x 0 ≤ y − 1 ≤ x x , y ∈ N ⇔ ⎣ ⎡ x , y ∈ N y ≥ 1 x ≥ y + 1
Ta có:
C x + 1 y : C x y + 1 : C x y − 1 = 6 : 5 : 2 ⇔ 6 C x + 1 y = 5 C x y + 1 = 2 C x y − 1 ⇔ { 6 C x + 1 y = 5 C x y + 1 5 C x y + 1 = 2 C x y − 1 ⇔ { 6 1 ⋅ y ! ( x + 1 − y )! ( x + 1 )! = 5 1 ⋅ ( y + 1 )! ( x − y − 1 )! x ! 5 1 ⋅ ( y + 1 )! ( x − y − 1 )! x ! = 2 1 ⋅ ( y − 1 )! ( x − y + 1 )! x ! ⇔ { 5 ( x + 1 ) ( y + 1 ) = 6 ( x − y ) ( x − y + 1 ) 2 ⋅ ( x − y ) ( x − y + 1 ) = 5 ⋅ y ⋅ ( y + 1 ) ⇔ { 5 ( x + 1 ) ( y + 1 ) = 3 ⋅ 5 ⋅ y ⋅ ( y + 1 ) 2 ⋅ ( x − y ) ( x − y + 1 ) = 5 ⋅ y ⋅ ( y + 1 ) ⇔ { x + 1 = 3 y 2 ⋅ ( x − y ) ( x − y + 1 ) = 5 ⋅ y ⋅ ( y + 1 ) ⇔ { x = 3 y − 1 2 ⋅ ( 3 y − 1 − y ) ( 3 y − 1 − y + 1 ) = 5 ⋅ y ⋅ ( y + 1 ) ⇔ { x = 3 y − 1 3 y 2 = 9 y ⇔ { x = 3 y − 1 y = 3 ⇔ { x = 8 y = 3
Vậy nghiệm của hệ là: x = 8 , y = 3
Điều kiện: ⎩⎨⎧0≤y≤x+10≤y+1≤x0≤y−1≤xx,y∈N⇔⎣⎡x,y∈Ny≥1x≥y+1