Gọi z 1 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAFsAAABVCAYAAAAmPJjpAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAArbJhr3gAAA65JREFUeNrtnU9kXFEUh48RURWhIkZlUaKiIqqMqoqKoSqqizGbURWVTVVl1c3oomJ2FV10ESEquqgKFREV0U1VRRelixFZRBlRFZFNVVVUlOk93hlzO5335s3knpeZeb+Ps3x3Jt97757759wMUTiumChHHKsUU2ZPQPbtuMp+H7Hox3EVfdrEnwhFv6IYk41Q9KaJnjjLfh6R6F0TAxRzSnVec37azx/zKZy22vwu7cWaEUvIvomUo3avmTiSdjkfpAnQfRHyy8SoozbPmTiwbuI0NHusipC8o/b6TGxbop9AsUfCxG/pPnodtbluiV6D4n/76y2HE4w5S/QnE6egWIcpS/SeiSSU6DBujTx+Oky0oIahmpHHJJTorakULdEzUKLHmiV6Hjr0KFiiN6BDj5wleksmMkCByyYORfSBJEigwFmZbZZFeApKdODZ4Ger+8hAiR6vLdF56NDD3nlfgg49MpZo3oHvgRIdLlkjjx0TZ6BEh0HyVu8qQ7xhKNGBNxI+imjeXBiHEj1eWv30HejQI08oEYuEW5boZejQY4y8XZay9Ne9UKI38vhK1RKxQSjRgScpm1QtEbsQYxdcbaC6XPyCUCLGxZ7z4mBK60Me1iTEvhi+1Tz6+mF5UJE9Sf+X9PKd5WXUgrxS3UxW8lOtA+eyR2rupl+8I299pJtIWbPjsrZsXkwqUXNF7IUukDxk5adyFLIT8rS2eowucYw/NE0nszzLO0y8Hn8Y8u90JnuRoj14xAnX3uHhErUoS4i5LnxPkn9aHhY+/fBFW/YDcnMuppktsRWfNh5FIHpR3sZ6dYc5TdnXrcY+mFggr1SMDy5tULUoMmxMhEzCfteXIho7B+UtNdlvyauXHgsYb+bkRoSR/c1Ef4PPvBlw/VEbJEw12f1NJDce6q2HEL4c4snyu3a/m2W3Ap/2KjYQfq9BG343bQmy6zMTMAHiGeeNgGsnfK4ZhWx/kvI01vtyPH7NBIzrT2Ik0tGyK3CCfePzJVdkLFvZdBiuc4Nm22hG2fayK1yUqW/YIWNRcgBBduvwDJF333k3flu6FC594O01rp56Ru1bBtFxsjsZyIZsyAaQDdkAsiEbsqEGsiEbQDZkQzZkQzZkA8iGbADZkA3ZALIhG0A2ZEM2ZEM2ZIMmSUB2dCQDZN+FHrcEHc17Cj1uCToVtwM97pijxsX7C9T60fHYcpW8A1Z85oePce9Sc7/wx11KVtrgkxP4p+w+DJD7n1hs+LsOfwFOOlMlqJtblAAAAGB0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bXN1Yj48bWk+ejwvbWk+PG1uPjE8L21uPjwvbXN1Yj48L21hdGg+5RL1UQAAAABJRU5ErkJggg==" style="width: 13.33px; height: 12.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="z subscript 1"> là nghiệm phức có phần ảo dương của phương trình z 2   +   6 z   + 13   =   0 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAv0AAABbCAYAAADgHDrOAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABTMkaS0AAAFHpJREFUeNrtnQGEFtv7xx9JkhVJkiSSlZUr8nMlSSRJkiVJksSVJFmxritJIkmSxFrJSpasZK0rkiS5IkmSRJIrK5Eka63L/z/P7z2vnbu/d+acmXfOmXnn/Xw4bm69c86cOc9zvnPmOc8RAWVdVAajMhaV91GZispMVKaj8iMqz6JyKyoHotJDdwEAAAAAdA47jKD/vwxFXwZuRGUl3QcAAAAAUF2WROVuRrE/t/yMyjG6EgAAAACgeqyIyrs2BX+8DNGlAAAAAADVYVlUPhQo+JvlOl0LAAAAAFANHnkQ/M1ymO4FAAAAACiXUy2E+gvz/3+NyoLYv10YlS1RGTD/xkX0f4/KUroZAAAAAKAclksj9WZToH+Jyp4Mv98mbvsAztPVAAAAAADlcCUmzD9HZXWOa2h+/j8tov9rVObR3QAAAAAAYVGxPm1Euf53QxvX0rAfW7jPVrocAAAAACAsJ2OCfLCA6+npvf+kiP7TdDkAAAAAQFieGDH+VooLvbmVIvpH6HIAAAAAgHAsjonxvQVed3uK6B+j2wEAAAAAwtFvhPirgq+rXwz+QfQDAAAAAJTPVfF3cNbbBNF/h24HyIyek7GCbgAAAIA8HJLGyruPNJrjCaL/Et0O0BK1w41R2R+Vi1EZlcZXuGZ2rVG6CKBtlkjjzJghugIAoBjuJYj+fXQNwH9ZbuxBxcezqMy0sBcNk3sdldtS7L4bgG5D97CdjcpPY1s/KtrO+VHZLY0FMp1HP5o2TxsfMRWVyajcj8p14xcW8HihRvRJI7OkRoZoGvjvc8b/F2MbaiO6h5TznyrARILoX0nXQBfzqzRW8d9I8mb3SfMioJP5IroMoC30LJozRjjE7axqol+FzrDMftnLUlQMaWa8X3jc0MEv5Zo2/l2O8a8Hv14QQmBL5XmLB/OKboEuRE+4PheVT5ZJWyf8zXQXQCHoC/MfUfmWYHNVEf26EDaaQ+gkFU2ZvZTHDx3EYIuX8njRv3sojVX/tJfiKfOCz8p/CbR6MAN0C3QR68xknnZY3RcjTJikAYpBT4bXQyC/WsRxFUT/XovYyVv+lsb+IIAq0yuNxeCkL95qx8tb/E6/aF1OeQF4GZU1dG84lkrrlcxldA10yfgfsoj9H0bsE74DUAwa1z5gxIKLMC5b9P/uQezPvb9NDAuoKDvNGG01djURzBKHa6iwf55wDf3Ct4VuDkN/iwdwjW6BLuCQJIcTNMtdIfYQoCh04+upDGK/CqL/nGfBHxc+qxkiUDE0Q13SothIxmvpl70Hkhzus43u9s+w/O8qPxt4oc7o6v6YwwRM9iqAYtC43RPSCGXJuxJeBscT2qMiaML8va7QxzPy6J/XGbGkouhnhvt8zlCBCrE3Zaw+yXlN3az/OsXOCXXz7Ii/zOn0c3QL1BiNL/zkMPHy4gtQzBxzLGZzKpafSmOxSeN8n1VY9G9OEPuXM/oHDQvU9KOumX72M2ygAujL7FTCGP3Z5hypL8UzCdf+LISXe2PPnM7WHMML6Rao8aqFbdVNcw2TRxugGJqnvWsmj5MJk/nNCor+nhaLA8+NWMnLBnELa3rBsIGSWWYZq4MF1HE+5foPeAR+eDKno7fSJVBTfnOYbK/QTQCFoivcfZZ/s7yCov/anPr1y0QRqQX7xC3cZy1DB0pkQtLPpilicVhfrNOyYf3GYyiWTXM6+DJdAjXFJfPGJboJoDTeVkj0982p+3zB1z/t4I8OMiSgJA5YxubZAuu6KOn76kiPXSAvY537lzSyKgDUjT8cJtghugmgVO5XSPTfi9V73cP1NXzQlu9/mCEBJaAr+Gmb7XVPS5H73VYzN4chHuqgG3mX0yW5mG8mhVaFzC/lc9JB8E/QTYC9l869ioj+3lidDz3WMyL2vUUAobF9FX/koc4nlpeMXh5Le6yS2UMWdGf2f+iS3CxIGazX6Z5S2ecg+N9HZTFdBdg7ot9wRWYziPgMLThkud9RhgSUsKjxxTIuj3mo94Tw1csbuhHpr1hn7qFLEAE1ZIMkpxprFk2ft56uAuwd0R+bH7+a+nZ6rmu3sNIP1eKI2BfKfKSyXmupU1N7Eo3S5iqGlsN0ByKghuhx4LY8/FpO01WAvSP6WwjxuwHq2i4kFoBq8dQyJj94rNs2Z5/h8WTnYKwDB+gOREBNsW0I1PKKbgLsHdE/B00h2B+VFRUQ/f0MCQjIKod5c8Rj/XfEHooLGdCTBZvhDpy4iwioK7Y42WZhHwtg74j+MkkL79FwhiUMCQiILa7ed3SIyzk6zNuO6AmCX5mYEAE1RzfdfXNwHPfoKsDeEf0VXqC4y3CAwIw7zJ2bPda/zaH+8zwmO7rp4rPpsNt0ByKgxtwQt1V+Nu8C9o7or7K/+oXhAAHRDezTFvv7R4o5kTqPb22WFzyqdHS380fTWeN0ByKgxvQap2RzGg/oKsDeEf0V4J2QnhCqwSaHufNzgHbYDqzTOb6Hx9UaDXV4LbOHKXDaLiKgztg2ATXLTroKsHdEf8lslOTNiogaCM1xh7kzxMLxhEM7SDPfAj1s6LnpoGc4EURAzel1FPyf6SrA3hH9FV2k0EOR1jAMoCLjMWTmnia3hbj+zCyU2SONNS0hGQAQAXXnmqPov0JXAfaO6C+ZjQmCfwNDAEriL4f582yAdlwUT4k4fnUUCUWWEBlDNITngalPY/mXFXx9PRZ8G/aBCKgQOuZ/OtrgloRr6MbeATO+X5vrzZiif/5k7FdfLjR39qIA91VXH4W9QzeLfv3qPjeWX0N61vL4oURsm3i1HAzQDpeU23/nufDZEibUAwE6rHkokYYxFH1U8lFz7V7sAxFQIVzz8k/N+Z1+ETsVlTc5bFlfBjS+cavH+6qrj8LeoZtF/9yY5TtC+C2UyyLH+SFELH2/QztyZRF6HHgyDXF8cDMm64sHYb7eiKan2AcioMOEQrOMxX6jm5YmC7LtZ+InBWgdfRT2Dt0q+nWRIX5SuC7M7eORQwXYKtVJgrHLsS3rsr7V/CPhJtM7ATpqyNSl6Y42FnztvphAOop9IAIqhIb2zDja4WlpbJJ77sHG1Z8MFLzyUjcfhb1Dt4r+VS38joYoDAqr/FA+e6W98NjKv4D0S7jJ9Kn4T5V5WWbDF4p6KAtM51+S2VivKbNaAYiAqrAzgy0OGdHg096LOvyubj4Ke4duFf3HLX7nmxH/C2r+bLdL+HDFskqn7Y066HhfIV5QFzu2JdNXsuFAD1430i713EEh436HmJMQARXjguRfmdcN7yfMi3J8Y67GCq4wqx+XZfZwu5Cr5nXyUdg7dKPo3y2z5+S42uIORD+ivwSOOt5XiBfThY5tOZzloh9aTNK6sra2zRWvI3Pe3n3vxj8ZeCBvYk5CBFSM8Rzj+IY0Prdnob+F3/CZ2qwuPgp7h24S/fONgHrVxjw7LPVc9Uf0V5crjvc1L0BbFji2xTlXf/wQH41TLyr+XVcLZ2KriL7TWh4OPIjfMB8hAirIVIYxrPbeTrYd/RpwN0N9m3PWUxcfhb1Dt4h+tdGr5kW6qOQAy2r2bBH91cX1y3IoXBfvnDhmfqC5t/sKauBqaWTMaTbmiOcO6S9hEA8IIAKqRU+G8av2WdSqtquDfJtzZaQOPgp7h24Q/bqq/97TnFu3gzUR/Yj+IkX/cFanMlig8Ijn+b7ouTN2iXu2kiIzk9Rt1QER0Plk2cRbdH5h13SaJ9oQPp3qo7B36BbRf8e0SV/Qp6X4ufc+oh/Rj+jPL/rnGcOclOJi5iYCG+jDEgZwnRwPIqA+7BP3T+VFs8pxkv+Y8bp18FHYO3SL6E8aHxqipwt0enDgiGRPBhAvhxD9iH5Efz7Rr4aou+mLOoTmUqwBmoOXdJaIAERAOI6Ih13+GTjvWP/2DNfER2HviP56Hs6lcf9XJHva4EnsFjwzJDUO7ymKQ/Lvk/WWM24QAYiAoFxydA6+QtP0ui4HaN0sqX/wUdg7or96aB7yC5Lt8D321IFPrneg6A/qazUrx0zMCfUxZhABiIDguHyS9C0S7ju04WsJfYOPwt4R/dVmvbinAX7L0ACP/NaBov9sqMaslH9nwdjJeKks3RRDONyFz9dF9D/y3IYDjs8nZD78bvVR2Duiv9PQg/Fcc/qvZ0oHTxxyHIMhzo9wzdN/OETHLJpjoCcYK4gAREClRb/vDVXLHJ/PvkB90s0+CntH9HciGnY3KYT4QHm4poFfFGgOq8ycGv+Uz2dcRAAiANGvfHJox7lAfdLNPgp7R/TXeezeZUoHT7imv+4N0BbXhTTvX7DPxSr7kzGCCEAElM7Vioj+MYd2jARoR7f7KOwd0d/JjFvu/Q1TOnhiiaPf2RGgLdsc27LGZyP2xyrSdHo9jBFEACKgdFxSdobIS3/FoR1jntuAj8LeEf2dzWbLvU8zpYNHXLJJ7Q7Qjt0O7dC2zvPVgP9EZcpUpJvjVjI2EAGIgEqw36FfJgK043DJ7cBHYe+I/npgO8RrngD44Y2D39kfoB0uh25+8lX5CpndYKOT6kbGBSIAEVAZdjn0y6sA7XDZBDWBj8LesXdEv4WbUn72FOhORh38zvEA7TgqJX051xPwXsQq2cuYgATI210OLht+vlfk5cOH6MdHYe+I/npxENEPJXG2IosNLgk6vCTGuBurYJDxAIiASjIt9tg/3+xwcFLj+CjsHRD9FmxZVAjvAV+4xNKPVsAHeNlbEH/juclYAERAZXno4CAWe25DGen28FHYO6K/fqwUNvJCOfQ4zGMvA7TjhdgX8go9L2Bv7OKPozKfsQCIgMrikjlnewVEf5GfRfFR2Duiv/uEV6en7OymPTf3OvQZvZbyM0jZvt4X+uKxQWazYLyTRu5SAERAddnr4IAPeG6DS3jPKXwU9g6Ifgtpp5GOdvi9Ifqrj8sims/8+Gsc6r9YVGW6KfCzzKa9WyMAiICqo6vcMxYnMeS5DS4beffgo7B3QPRbSAvvGUD0I/o9s9Xh3vo91u+SrnNTUU78mcx+vtiM7wVEQMcwYXESTzzX7+KoluGjsHdA9LexgPAroh/R7xndKP7Vcm+XPdZ/1VL356Iquh276EH8LiACOgrb4Vj6JcBn3PtxS/3v8FHYOyD6HTiUcN9/1+DeEP2dwTUpbxHtrxAvHIOxC57B5wIioOPQOFjb5p9dHuu3HahzFR+FvQOiP+PLfbxcQPQj+gOxQezZc3ycF9Fjrp1Wd1+7lcTzko4KACKgU7kh5R0q8thSdzuf5fFR2Duiv3tE/2SCyFqN6Ef0B+Sl5f58HAS531Ln03YrWG8ciF7smXDSHSACOpl1FofxTfwcbKPXTNtI3E6aPXwU9o7o7x7Rv13KOwUVII4tZHakBNtvawOxbqr7ZC70UdrfZAeIAERA+YxbnIaPWPhtljoP46Owd0D0O/A44X5XMCwgMLqY9XeKHU5JsYtQSyV98aytfXG6oe+pzK7+reP5AiKgFvwi4U8TvOrBUeGjsHdEf3eJ/p0J93uCIQElccxii8cKrOu0eDxr55bMxslt47kCIqBWDEu4WER97t9T6tqBj8LeIRO2r3UhRf8WaRwEpOd8aFadlZ7q0QP2PrW41wmGA5SIrva/Er9Z6ZT5CeO/WZ63c/EB+femuB6eKyACaoWGwXxJeR4forKwoLpOptRzEx+FvUNm3lVA9KsIGZPWG2r1S0RfwfW1OmdEQ/qWMhygZDZIekadIwXUkbbKP9OOve1MMOIXUTkXlV6eLyACasEei3Ao4pno6txkwvVfSyONKD4Kewd3Fok9ZZ/+/TzP7Tjj0IZLUkxM84i0PoCI07ahKpxKsYUvbb6crpDZZBWtyqm8F9bJ8rvY0yw9Mm82AIiAzuacxdZ/a/P6dxKuqy8CecIA8FHYe7dzVNzSIfoOeXvr2A79d1tz1rFYWocyvZd6pOeEenErxQ7Gc15TX97T0l3n/Vr+3xW5D5Itx+o5njEgAjqeIYud590k93uK4M+zGo+Pwt67nZ4MNvDQc1u+ZbRFFT0bM1xf85G3yowyZnwBQBW5m2IDQzmuN5pyvbG8jdQ3iUeS/3CFvJ8RV5rViPmME0QA3VMqFy12ro7HNSXeQvM8k/Lx51mhw0dh793O8qg8yTj2r4u/MJ97Oe1Rs4Pp6dk75N+hP/pnDd07n/Bio+E8BxgG0AFcswj1JY72/sCXDx2S9k5Vu5NjtSL+NjRjRAcgAqA89kn66t20eU7bE4SEvhTopt2Pknx4zqKcbcNHYe/diIqD3aa/fuYc+2qPZ1uI7HbZKWFObdV46D/a8B0AZaAvqEmhqF+l8SV8VYvfrTH2mvRbje1v6yyd4wUZ5mCGOscSrvE74wQRAKWiWX1uiNtGQZ2M/5RGrvy0TUaazmwLPgp7x96tbJZG+Ns385LtQ0RPm+tPmhf9djgj/sS+xjHroX18ZYNORRfCRsSeaeuxKT/E/sW9rZS48eOsn5jJXuN3h81kPpPRSF026/RKeppAQARA+WgIjq5sf845YavvuC/tbybER2Hv3cR2CbN63iyHCmizrvi/LKAtP8zLtm5UXs5QgBqxzsxdP3LYhZ7qq1+61xfREI0Xep5yMX3D3i/ucYS66Waxpc5dFqEAiACoFrr57phZsdDNgd+MI5o2RcMONFZfY3w1Rd8eKW51Dh+FvUPnCJumn9AX8q/GN0zP8RX6hUE39eqqpcbv90dlLd0HXYCGxWqY3QUzX76fYyP65w/m7y6af1vonpzFGS6o6e8mHCbVUct1lqb8dpIxgQgAwEdh7wAAUD4am/tK2svtnTQx36R7EQEA+CjsHQAAqoPG1SbtLtZNfjtSfrs14Td9dGvtRcB0QrlK9wA+CnsHAIBqopttbkry5oO9Cb+bJ2TFAAB8FAAAQEehm+zGJfkgAs3g0cwPvKbFJHyWLgQAfBQAAEBn8EtUbol7Gr1283cDAOCjAAAASkJPs9QTw25LI5VfM71f8xACjefcTDcBAD4KAADAL/8PW7Qghk+P0akAAADydEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1zdXA+PG1pPno8L21pPjxtbj4yPC9tbj48L21zdXA+PG1vPiYjeEEwOzwvbW8+PG1vPis8L21vPjxtbz4mI3hBMDs8L21vPjxtbj42PC9tbj48bWk+ejwvbWk+PG1vPiYjeEEwOzwvbW8+PG1vPis8L21vPjxtbj4xMzwvbW4+PG1vPiYjeEEwOzwvbW8+PG1vPj08L21vPjxtbz4mI3hBMDs8L21vPjxtbj4wPC9tbj48L21hdGg+fip4HAAAAABJRU5ErkJggg==" style="width: 121.33px; height: 13.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="z squared space plus space 6 z space plus 13 space equals space 0"> . Tìm tọa độ điểm M " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAFsAAABCCAYAAAA476rKAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABBwf/jmAAABd5JREFUeNrtXH9kVVEcP2YmmZhJJhmTmUlikiQTyUxmRp7JJJFJksTMzCSRJM/+iMzMZGLmyUzGzEySSCbJRJIkM2YyM8+oe3TiOn3vu5/z477veXQ4/7x37r2f7/ed9z2f768rhNsYi+YvD/OJCHcseJDvrA8gl6M5E82X0dxxAPMsUEX3Oyp5M5qFaLZmAe5INIej+cMQ1EKAim6K5paFgtejORLN5nIBrYvmGwOAGwEq+5WFoueV7GUf5w1A7gam6AELRX+M5h4uwOcMwe4PRNHSvhYtlH2OE/TlSgKrRlU031so+jM38GeGgC8EoOw7lqzjLjdwU0ZygxnvcQeKd4ITeJsF4DFGvPJgWyUOvIpgUkMaIMThmWHEmyfYEcpI2B2yZQJQGujXTFjbCSzSdt8DlX2RU9G1amfEdwlCA38yYf2q4VhRrOQtqOwGTmXnNDASdA0IvKrMWMcJ8yFDDvUg3hVuEzKRQIsQu32Y2cMdTtgwSfNBaJSvXX3+CQDfWSaM9QTOFQsf4SynonXKtx0zDbMA+FyZcM5ozy1qYdA1AOs2g9krSfnidG4SEGC4DBh7iecOxr4/Bu7qArcJWdIA9ce+GwEEmMgYX4NyQuLPfKOtuQUquz8kyidnY+z7iwHslnnC2WpOWZM0mzmVnUuJhCHx7Q8Z4qNSXLe0NdVgeJU9yqdTvsfa9y3goZPFaFJOU5rH2gXu6sehUb5uYtcggtRkgO2l9owt9QPoYxTE2B0S5SsmKA1JoB71jO028YzrCWtXAXzFjDaENeVbTFiHxBvOe8TVQniuywlrD4K7ejE0yjeQsK4ACNPnCVOV8gp189GYsB5N4w2ERvnawEM0y3jDHUNujLrobSFRvvUSaxGHYdIDpuPEBlhI+Rf8BLCthUb5pgx+GGrOOuKpIQ66TWWTk8YJcFdPcitbp3y9JdZ2AAJ9c8STJ+55JeWaEVDZOU5FU4nd+pTYRJpAOw54Tgu6JMyUhydVbdVxKlunfO8AhoDsIJsyLirFtSHS01Z7CfseUo40kfLdB65BDqJ2CyxjljSyR1RAIQ5F+ZDMxWIG7nAncY/nDj+Srw2QGeVDMxfTgGCXDHBQKS5pPg6A138WFZCV0SlfweNOMomqUT9eL3hts6iQQpwfwi5z0e9RuAvEtdMGMlwDlX01NMqHZi6QA+kFcB8qxbWWQj318RxU9qGQKJ9J5gKpjkKKFeeI63oMA1VIVuYDtwlZcrCxtcK97YMyRVOGMpwBd3U+NMpnStUQJyLJHDQSXN3UfMiBFk52cio7R+xC08zFurBv+6Bc6y4LOZBEhjQz1SFRviWLe8wBgvaAIVqbWpM6cFfPhUb5Bi3ugQTq9bYPKsX13TI4hBZO3gyN8tn0k+SFWdtHlQpy6Ws6LOVAszKtnMoeEn76SfoAQePOCRVvHvf476Tm19Aon60b2w0I+0qtPUawF5lg2Gf57KPgrp7gVDRF+Wz7SU4KrO1Dshyqa8ulLhotnOzhVDZ1qNj2k+wBBX4k/Jd+IYWTuw7/nEwon2s/ic37Sb6of5jtQAsnl0OjfK71HV8slO0awEffFDHMqeg2Aw8PHbOGih71IEdeVEB79AjhxrpmLiYNFP1J+HmXB9Iizd4erTsUsx7ueddA2Sc9PK9BVEBWpkmUbvixHX2g8A89yYEWTrK2Rw+JbMp6kcNqVfh7FdA0qOx6TmVTzaIHPNy3VZSvYhSlfO85FU29saDo6d5p/ez3PMqBmqxxTmXPi2zfnrAtkvN+PoP26BsW2LLop4T/wsc0lvPXVfZZcN5rwHoucSi6VpRu5unw9Byq7cNnTV2r+LfcIaiWu71AsEaGOBszirf4KvOSYdw1Yeal7qh/dOajWh0kqyAwabtl30qLwzMHxb8vVnF1XGThu82rPeM4RpXL7r2+T/YJLgm7tzTGu7CkV2n6auach+DPTfXsdQf8pXb6O2Xunoo/tSZOY84jOFOm0unBfBQyUHJQB+j/YTF+A3WJG/PqOfDcAAAASXRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtaT5NPC9taT48L21hdGg+21i6GQAAAABJRU5ErkJggg==" style="width: 13.33px; height: 9.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="M"> biểu diễn số phức w   =   i   +   1 z 1 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAp0AAABuCAYAAABlTKigAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABEsZUXFwAAEuhJREFUeNrtnX+EFd0fxz9WkqxYKytJJCvrkUiSlUTWyspaspIkkTySJPJIVh6RrCSJJGtlRZIkeUgeSRJJkiSykiSxkmSt6Duf75373OnuzJy59869d845rxfnj6dn78z58Zkz7znncz4fEQBwiSVB2UE3ADhLV1D+DsrlFt2L+QQAAOYxEpRPQZkLyiq6A8C5D8qxoHwPyq+gfGvBPW+H97oTlOUMAQAAdAflZvhy0PJASisUAGA/nUE5GZSvkWe8VaLzWOR+ev9dDAcAgL9sC8rnyIthKigLHGnbhqD8E5QfYdHVlnUMOXjC4qCcCMpMldhspehUBsN7le87EZRFDA8AgF+crnoJXXSobcMJL9qfQRll6MFhVNDpCuOXhGeg1aJTwo+96Mfty6CsYKgAANxHt9MfVL2AzjnUvi75fWWluswGZQ1mAI6xMChHpeSX/StD+dbi+qnIfB+5v4rQfoYNAMBd9IDQdNXLZ9yxNv6Z4YV7FVMAR1B3mCM1iM12iU5lWZXw1A9ATrcDADjIRvl9i0vLFQfbOZnhhfsFcwDL6QjKoaB8qFFstlN0loXnx6q6cMAIAMAhtsr8Ledbjrb1esaXLoCtYvOgVFYM1U/5UfgBqbsWjwsuOpU1Mt/nFF9rAAAH2CKV2Hzl8lTcPUF6IcML9wNmAZbyOrThZ0E5HJSlMX9zteCiU+kPBXO0TkMMLwCAvWyU+SucusXe43CbBzK8cMcxDbAUDfDeZ/ibHgtEp3Kwqk4a2mw9QwwAYB8rZb4Pp64sbPag7U8kfZWzG/MAx3ltgehUqt1h9EDUMoYPAMAeNGzQ25gXzSlP2q9bjg9j2v8sFOMArnPbEtGpc1X1wSJ1/1nAEAIA2MGdmJfMcw/7YVNQ9gVlv5R8WyE7+tK/mFB20j2F55YlolMZiqnfeYYQAKD4HJf4TDx9dA3UwMIUwXKR7kF05kzcyuwAwwgAUFzWyvwToawaAKIT0Vl00bk6Zu7SbfclDCUAQPHQ+H2vYl4uGi6JgzOA6ER0Fll0Kpdj6nmZoQQAKB5jCS+X03QNIDoRnRaIzt6Eum5gOAEAisMKKeUxrp6s58TtmJyA6AR3RKfyj3AIEgCg0CTlG5+iawDRiei0SHTuTqjvboYUAKD99KW8WAbpHkB0IjotEp1qd3Mx9X0nJb91AABoI9cTXirfmaQB0YnotEx0KkmB7Q8wrAAA7WNVykvlOt0DiE5Ep4Wic39Cnd8yrAAA7WM85aWyl+4BRCei00LRmfYxPczQQhbU7+xA+CDott90UBY18X5qmOoD0pvDtY6FX1jqZ/JVSoc2yO4C7UbTFH5JmZxXedw3y8I5QLMz6Yrv66BsxWQQnYhOK0Sn8imh3g8ZWqh+EfYHZTQo5yIiM854RppUh6VBmQnvMdTgtW4k1F0FKPmHoZ2MpLxQvnjSB/qsb5dSfvWrQbmfMN9oppMuTAbRiei0RnTeSKl7r4XjsdEwHs0ot1w17m1ScvydqbFDmpVpYCpyj9EGrrPOUP9ZS40f3H+p3HSsrZre81JQroVzzWuJj0uaVJ5gLohO5gerROeJlLrbmPBirA2ic5erxj0YGni53JPk1c1oedqkukTvcbiBa23P0IYrzG3QBnRHYS7FLs841t49DU6+f2MyiE5Ep1Wiczil7tMWjse/LRacJ30zeA3VMm7olDnJN6TL4tAY81pN1e24n4Y2fGRugzaww2CXow7OJ51BWSKllHiDoRC9n3EC3oLJIDoRnVaJzuWG+tuUGnNxBi2RZ/E6KchzQ+esy/FeZ5vQ+VfEvMVuO9uk9cv+7Squ+LhcMLRzs0dzjGkF4YcQrxTRiei0TXSKQaidsmgsRlr4jnskpZ0wb9nfohWZtQkGeqfB63YahPMPRCeisw28MLRzoUdzzIShL4hXiuhEdNopOt+l1P+ZRWNhWrzKq+hOb7fvht9j6KSzOd0nSRi+zOHaS1Ou78IBBUSnfWIgbQVg1rM5xvRyJYsJohPRaafovJ1Sf50DF1kyFtXiWXdgdfVztTS2Krkvcs2Z8HogpRiXzVyFONqCB6sr4avrAqIT0Vmw8frg2fzyxdAfK5iCEZ2ITitF56ShDUMWtKE3Ul+NPbo+p+uqC9VcRIAThzjCVIrRNLoSuTx8eNK+hpr5sh9AdCI6W4zJZeWOR3NLr6EvSJuH6ER02is6zxjaMGZBGw6GddWIPnkllVkZlM+RftiHuf/OYWneVuDtDEJjcU7t6JD5AbhdOKCA6LQL09f/DY/mliOGvrgggOhEdNoqOvca2nDTonE4ntP19JzJK3E3PF4umOJdLq3zujulspqZtoWf10neatHpymAjOu3ijqGNEx7NLQ8MfbGD6RfRiei0VnTuFLtdiVQz6MLaJ8nvcOfdSPtvY+bxLDUYzmCdav9j+Pvx8Iun2X4f0QxFKnRXMrTQBt4bnqdLnvTDIkk/UKX+TgswF0QnotNa0TlkaMNPKfZuo7r/qAthXoHao2Ehn4o9B6naQlrKunrCJl2SimOuBoyekOaHZYpu5U0xpFDAZ0nLOU/6wRT77j6mguhEdFotOgfFvHvly4ntaFY2XXDrwcTTSYsrWGuQ1w0yPxzKqZTrH86pDc8jX1drGFJoAx0ZJuH9nvTFVUM/HMNcEJ2ITqtF59YM892gB2PZL5WT6jpufZh3Yw/AZI0v3bIT7YuEr4DqcjmnQc/zegD1sDjDJLzXk774ZOiHtY622ycf7Cs88l6LzmUZbGTE8XHUCD2fPRPZuZAWkb8WZ9gTEp97dViam4e0fGDhe/ggALSDrgyT8B4P+mGDoQ8+O9x2RCf4Ijo7M9jIbscXGaK7xIcw6+wckvTUTVlYJRV/tmtV/29Amhe3MHr6/gRDCW1kM6Lz/4wZ+mDS4bYjOgHR6UeMymhISFxaamRUGo/VeV+SVxvT0m02EoBe/ZrKmYjeCKdhofiCwwfR+dTQB6Oe2wCiE1wQnVnciVz1YY+eU7mHOdeO6RSaKYZV1GczLshqR5MerujADzCM0GayONa7LjpNLgY/w79BdCI6EZ12i86FGWzkbwfHLrpIp4tmnZhz7Sw3GE7aaaxuqeRX1iDwSauNPyTfVJh/SCUO4CRDCAWgD9Epuwztf+Z4+xGd4IvoXCT+rXRuiGiZz6F2gjpYIPWHPYjG4EzLMDIt+aXC7Ai/MMoD380QQgHI4uPk+un16x6ufCA6wUfR6ZtPp7oNlqNyqPBcjxk3xo8Uw9mZ8JvodqLJryEtPWCtqTDPRH47zNCBJR9vrsfp1I/B74b2b8FMcoE4nYhOG0SnK6fXdVX3GbojXz7UuDoTPcSj29ymzAM3JJ9UmFsiv7vGsEHB+GmYhF0WBCaf1h9S7LR4iE5AdGYnS4g4V+J0RvXLccw3H+6lGM75mL+PHuI5m+H6aRlKsp5m1Tzx5eVtFclLGDYoGJ8Nk7DLyQvGDW2/iXkgOsEZ0ZklRJwLwdKjIeCuYrr5cTPFcCaq/lbTTJZXdFQEZjm9dUwaT4UZ3aL3ZZvOJx+xWw6M111DGyccttVXhrYfYJpFdIIzonMgw5xue+71aGKbf4WwjLlyLcVwblT97WOp/WDE7gZXf45G/v60R+OC6LSLSUMbbzhqp8szjO8KpllEJzgjOofEHB7NZneadVI566JxwLsw23y5LNmyBh2U+sKf7JD6U2H2S2Vl9Yln44LotIvDhja6Gkj4oKHdb5liEZ3glOjcKe6mu1VXvo+RdqzCZPPnLzHH1tOQAV8j/15LyIAtUl8qzKgf54yHqyWITrvYbmjjR0ft9Lb4e4AK0Qk+is69js7n+myVd3M1I2M/5tp6A5oJ/yZ6gqtW37S08AppqTAfSLY4oIhORGcRMKWGm3XQRtXPac7QbkKMIDrBLdF5ytCGc5aOTdTVcDem2jzSMolo7L2o/4b6OdQaib+eVJh/S/oJekQnorOIvJbG0srahimN7pzggI/oBNdEp8l/faeF43I8Uv+TmGlzGZF0h+BoHM9Tdd7ju2RPhRkVuU89fmkhOu3jsqGdWx2z0XOG9j5gekV0gnOi0+RSs8yyMYlqjuuYaGs73OQcXG+C+5eSLRWmhlmYEfKbgnsfcLXEpbWFZ4b2moIpbxf7Q6sgOsE30ZmW2vqdZePxR9jnWvfH4t5uVCExbZGVy5EG7pElFebiKnG6jaEBy9CUaWk+jmcca6spC9O6lN+r2Pxq4UsK0Qk+i84Ow3N/yaKx0MPK78N6T4f/DS3AlMKuPCCNxN2aEnMqzOuRf/uLYQFLSQsSf8uhdpp2SD6l/FZ3TMr+r7swGUQnotMa0bnaUP8BS8ZB3fYeSeXA9BqPbbJX6t/FroueDKKz0ZNcab5uuuV4REiZB26QFg3ii0PtNJ1gvZLy23s864hOT7ljuegcMdTdlqDwE1I5V7LVU1vsDucM7YM9rbxxp+EheJnDPQ6kXD+6wvmm1YobIGfUTSRti90VP+WbUl+opCtS8dnuxlwQnZ7xxnLRebrOD80icbRKf/imOXSVV/3to7HXWyo6FxoegqEc7jEq5tVU7QAOFYALXBX3DxNNG57nxTG/iZ52x2cb0enjB6nJD7roKSTT3Ic2WTAGgwl9rocidfem13EbHEmYu/e0uiJJRpRX6sksJ+QHmZPAEdan2PmEI22cNTzPUTqkssL5K1wtAUSnb+yXbId2i7rd25Hy3L+woP9VUH7N0P8a6m2dg++kxyltbrnonGvyl8s6wyBzcAhc44nUfsDGJkwrNuUVXY1O8Tzy7/cxDUSnh+gW7ruMorOoz0h/Sp33Fbz/u2ro/0bjkheJ5VLxX/1VJNEZF7z9do7XX5TS2CnmI3CQHVJfKCFb+Ca1JwHQ1ZAlmAai0zP0sO7DGp8VHcuibbMnHR78IMV2CdC6PZD6E5fU2zYVfLpq3Y4EN6q5xqSURTJLO1suOmdkfvq6vP0r41ZGnoedA+AiSUkRXNheNmUlqS56gII4eIhOX9CVtaFwTL7XKXimQ+EwIMUIWp40nx0u+FhclsYy5tW6MKar2jeq9FQrYzTrqvNHKR2S2hqKZtVzb4skOquNqRnLytW+FGQcAtcZTlkZsJ09NUzajxCciE7H0a1ndZ3RBZxZaU664Nnw+nqfVuc3XyvNieHdbP7Mqe+P13DPpMgerXAjVIGtq7N9Mf9vtEiiMxo7TNVwM1Yfn1Q9PJuYp8ADnkrzokK0m3uGiVq3dk6KPbH7EJ1QL9uaJDSLIhLOJ9RjxJIxUfcGzZZ0SEqHGnXumquxz7dkuGevtDdFaFoYuq4iic5JqSwDb2zSPaLLzTuYo8ATkg7R/etI+3QSfxwKTP2Y/BZO6EeFOJyITnAB9cOOcxF4UPB6/xN+9P+R8P/V13JUsvvbfhCzT/r2lN/PFaBPCiM6ddVFt7+buWSvfgafEZzgIVcSHvSNdA0gOqHgjMXYmorQVRaI5ay7LLo4cDeD8LxuuE631Jca2DvRCQDNozv84Kp+0B/SNYDohAKzVOJXOf90tL0a4u2FQXgeMFwjSbxeRXQCQKtICqHEyj/UKjpnE8p5ugdyJm6X5q4H7Va3oaRA8hqJZyDlt1sSftOH6ASAdk/gevqzk64BgIIRFwz+vfjjq63xVZNSGqsP+3DC7zqkuAlwEJ0AHqG5l+Ni3bEtCgBFolPm5+hWobXWw77Qg0h3EsSahkfSWJjlOKqrYoTqWIHagugE8AydlL7EPPTb6BoAKAhT4maYt0ZQwa0pJbOGWlLf0M0FawOiE8BDtsRMXHrQqIeuAYA2ExdQfT/d8h+6Crw7KNeC8kp+DxenofDUt7q/oHVHdAJ4Slx2CE2gsICuAYA2oVvF1Smrj9EtzoDoBPCYg1J7HDgAgGagp6tnquajo3QLohMA3OFAzARwmm4BgBayUkrBy9lSR3QCgOPsEra0AKA9rAjKR/n9lDrxgxGdAOAw6ktVvbV1hG4BgCYLzg/ye6rG9XQLohMA3Kc3KG+qJoPjdAsANIE++X1LXdPyLqVbEJ0A4A8ajmOyakIYp1sAIEc0bFt0Z+UUXYLoBAB/Ga16Keip9oV0CwA0iAqMcpzg96EABUQnAHhOTyg2dVLQwMOr6RIAaADNC/46nFMuSWlnBRCdiE4A+A89ZDRENwBADmjK3X66AdGJ6AQAAAAARCcAAAAAIDoBAAAAABCdAAAAAIDoBAAAAABEJwAAAAAAohMAAAAAEJ0AAAAAgOhEdAIAAAAAohMAAAAAEJ0AAAAAAIhOAAAAAEB0AgAAAACiEwAAAAAA0QkAAAAAiE4AAAAAQHQiOgEAAAAA0QkAAAAAVtKB6AQAAACAZtOTIjr30j0AAAAAkAejKaJznO4BAAAAgDx4mCI639A9AAAAANAoZ1MEZ7lckpLfJwAAAACAkU1BGQjKcFDOBGU6g+AsF/1b3WofCa+xOSiddCkAAAAAROmuQWBmLRdNN/0fNvBaAu4c1m4AAADudEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1pPnc8L21pPjxtbz4mI3hBMDs8L21vPjxtbz49PC9tbz48bW8+JiN4QTA7PC9tbz48bWZlbmNlZD48bXJvdz48bWk+aTwvbWk+PG1vPiYjeEEwOzwvbW8+PG1vPis8L21vPjxtbz4mI3hBMDs8L21vPjxtbj4xPC9tbj48L21yb3c+PC9tZmVuY2VkPjxtc3ViPjxtaT56PC9taT48bW4+MTwvbW4+PC9tc3ViPjwvbWF0aD7vHjhCAAAAAElFTkSuQmCC" style="width: 105.33px; height: 16.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="w space equals space open parentheses i space plus space 1 close parentheses z subscript 1">
Gọi là nghiệm phức có phần ảo dương của phương trình . Tìm tọa độ điểm biểu diễn số phức