Square root
VBT
Calculator
magnet

Câu hỏi

Gọi x0là số thỏa mãn của x . 2018 + 1 2018 - 2019 - 1 2019 = 1 3 + 1 6 - 1 2 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABf0AAADRCAYAAAB2DBjzAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAB97pCfHwAAN9dJREFUeNrt3QHkVtf/OPAjSSaRZDKJmWQykZkkicwkSUySZEYyMzORmSQzJpNMRjIzSUxmMhkzM5MZkySZkcxMEpMkSXz/9/w+9/Pv6eme+zyf57nPfe59nteL47fft89z7n3OPfd5n3PuueeEQJN8mKX/5emU4gAAAKAmJzv6ox8pDgCA4R3qaGD9nqX5igQAAICazM/7orP90kOKBABgcAc6Glb/ZWmFIgEAAKBmK/I+6Wz/9B1FAgAwd7s6GlQxbVckAAAAjMn2rj7qbkUCANC/zVl6FKzjDwAAQHN83tFPjX3WLYoEAKC3VeHp1yb/zNJCxQIAAMCYxb7ptY7+6r0svaxYAADSlmXpZkcD6nGW1ikWAAAAGuKVvK8622/9O+/LAgDQZV6WfgpPr5H4iWIBAACgYQ539V1/yfu0AAB0ONHVaLqepfmKBQAAgIaJA/xXuvqwJxQLAMATO7oaSzG9qlgAAABoqLUF/djdigUAIIQVWbrb1VA6pVgAAABouONdfdm4se+LigUAmGbxlcjfuhpJt7K0WNEAAADQcIuy9G9Xn/b3YH1/AGCKdW9+FNNbigUAAICW2FPQrz2iWACAabQmS4+7GkaXFQsAAAAt0/0Ge+zrrlMsAMA0ia86XgnPzobYoGgAAABomXUF/durwTI/AMAUOVTQIPpOsQBUYmmWVikGABDnqdU3Bf3cDxWLe9Y9i/qH+sc0eCFL98Ozrz6uVjQAQ4kzyT7I0n9Z+lZxAIA4T61eDM8uYfsw7wPjngX1D/WPiXY+PDv74bRiARjKzizd6PhdFVgBQJynfp8X9HddL/esOoD6h/rHRNtY0ACKMyFWKhqAgcT1Yy/pXAKAOE8jLM/So4JrtlnRuGdB/UP9Y1JdLrj4pxQLwJzFh6XnCn5TBVYAEOcZr+OheFNf3LOg/qH+MXHeDMWz/F9SNAB9W5ylT0LxDDKBFQDEecZvRXh2bf+Y9iga9yyof6h/TJK4gcOfBRf+G0UD0Pfv6PtZutMjoAqsACDOM36nCq7bzfxa454F9Q/1j4mwL3Hh1ykagJ62Zel6ln7J0o4szc/SsixdFFgBQJynkVYnrt1+ReOeBfUP9Y9JUTTL/1fFAtDTx2FmM5z1Bf+2QmAFAHGexvqh4Nr9pVjcs6D+of4xCd5MXPQdigagp+U9/v2uwAoA4jyNtCVx/azt754F9Q/1j9b7o+CC/6NYACrxk8AKAOI8jXWj4PpdVizuWVD/UP9os/WJC35E0QBU4keBFQDEeRrrYOIablQ07llQ/1D/aKtzBRf7cZhZ6wkAgRUAEOcn2bK8D9x9Dc8pGvcsqH+of0xS4+ZHRQMgsAIA4vyUuBCKJ8M9r2jcs6D+of7RNocSF3uvogEQWAEAcX5K7Ehcx8OKxj0L6h/qH21zveBCP8zSQkUDILACAOL8lJiXpbsF1/EvReOeBfUP9Y82eS1xoa1bCCCwAgDi/LT5MnEt1ysa9yyof6h/tMWJxIXeoWgABFYAQJyfMq8nruXnisY9C+of6h9tcavgIj/K0nxFAyCwAgDi/JSJS/zcK7iWtxSNexbUP9Q/2mBD4iKfVzQAAisAIM5PqXOJ67lJ0bhnQf1D/aPpPktc5L2KBkBgBQDE+Sm1K3E9Tyga9yyof6h/NN2fiYu8XNEACKwAgDg/pRZn6XHB9byhaNyzoP6h/tFkLyUu8GVFAyCwAgDi/JT7JXFNVysa9yyof6h/NNX+xAU+rmgABFYAQJyfckcT1/QdReOeBfUP9Y+mOp+4wNsUDYDACgCI81NuS+Kanlc07llQ/1D/aKp7BRc3rlm4QNEACKwAgDg/5eZn6VHBNX2gaNyzoP6h/tFEaxIX9w9FAyCwAgDiPP8nta7/K4rGPQvqH+ofTfNW4uKeVjQAAisAIM7zf44nrut+ReOeBfUP9Y+mOZO4uLsUDYDACgCI8/yfnYnrekbRuGdB/UP9o2muJy7uKkUDILACAOI8/+eFxHW9pmjcs6D+of7RJHEzoscFF/ahogEQWAEAcZ6nPCi4ro/zvjXuWVD/UP9ohA2JC/uzogEQWAEAcZ6nfJ+4thsVjXsW1D/UP5pib+LCfq1oAARWAECc5ymnEtd2r6Jxz4L6h/pHU3yRuLDvKBoAgRUAEOd5Smri3ClF454F9Q/1j6b4NnFhtyoaAIEVABDnecpW19Y9C+of6h9N93fiwr6gaAAEVgBAnOcpSxPX9h9F454F9Q/1jyaYl6XHBRf1saIBEFgBAHGeQg8T/eh5isY9C+of6h/j9nziov6raAAEVgBAnKfQX4nru1zRuGdB/UP9Y9zeSFzUC4oGQGAFAMR5Cn2XuL5vKBr3LKh/qH+M267ERT2jaAAEVgBAnKfQ14nru0vRuGdB/UP9Y9zeTlzULxQNgMAKAIjzFPoscX3fUTTuWVD/UP8Yt1OJi/q2ogEQWAEAcZ5C+xLX95Sicc+C+of6x7idSVzUNxUNgMAKAIjzFHozWCrXPQvqH+ofDXU+cVG3KRoAgRUAEOcptC1xfc8rGvcsqH+of4zb94mL+rqiARBYAQBxnkKvJ67v94rGPQvqH+of43YpcVHXKhqAkftVYAUAcZ5WWpm4vpcVjXsW1D/UP8btTuKiLlI0ACN3T2AFAHGeVlqUuL53FI17FtQ/1D+aelEXKBqAkVqR+P2N6ariAQBxnkZbkLi+9xSNexbUP9Q/xu1B4qLOUzQAI/VJSWCNabUiAgBxnsaal7i29xWNexbUP9Q/xu1h4oICMDp7egTVmK5kabmiAgBxnsYqurYPFYt7FtQ/1D/G7VEw6A8wSuuytDlLO7L0UZjZ3O1/fab4NtbZLO3L0htZ2pSllxQpAIjzNIJBf/esexb1D/WP1jRSDPoDjP53dtBknVgAEOdp7vV/pFjcs6D+of7R1AsOAAAA6E8DABopAAAAoD8NAKCRAgAAAPrTAAAaKQAAAKA/DQBopGikAAAAgP40AKCRAgAAAPrT+tMAgEYK47E0S6sUAwCI8wDoTwMAGil1eyFLB7J0NktXsnQ/Sw+z9Cj/72tZ+iZL72fppTGc35YsHc/SD1n6r+vcLmfp6yztzNL8BpTlvCx9kJ/nt2M4/uosvZNfy9+ydDcvr8dZepClW/l5HcnSWrclwFQQ5ycjzsfvvyNLp7L0S0eMny2reG3PZGlPlpao9oD+NADAdDZS1mXpYpgZEP7fHNKvWdpUQ8f2YJb+mcN53cnS4SwtGFN5xgGJGx3nU+dgwL4s/THH6xhTHEzZ5vYEmEji/GTE+cVZ+jjMPGjot6zig4D4cGCl2wDQnwYAmI5GysIsnQxzHyDuTnHG4Chmkr2Wpb+6jhVnqcdZgFvDzCv1L+Wd77MFgxl/5XnUJQ6qXCoonzoGA9Zn6XrXcf/O0mdhZjbgmiwtytKKvOyOFJRtTN8FswIBJoU4PzlxPpbB7YKYvasjxq/J/+6rMDPY3z34/5FbAtCfBgCY7EbKkkTHddAUB5yXV3h+ewo693EGe9lMtVeydLPrM/F19x0jLst4TudKymbUgwEfFHzn+L/N6+Oz7+R/3z2IstytCtBq4vzkxPnjXceLS/T1etjxYpZ+LjjXH4OH+4D+NADARDZSnsvS7xUOBMym2BFfVsH5vVOQd1xneHEfn30+zMxw7/78KAYE4vl8Ep6dTVfnYMCRgsGPjXPMY1PBd/jToABAa4nzkxPnv+o6Vly/f3Wfn40P/78rON/fxHhAfxoAYPIaKWdHMBAwm34e8tzeDMXr0a6aQx5xY9ru2YNxMPzVisovdqLjJod3+iyTUQ0GFJXVewPm9UFBXufcrgCtJM5PRpw/VnCsd+eYR1zi6WpBPj+F/t4IBNCfBgBoQSNlXyh+ZT9uiLc57xzOipvrxfVr38rS96H/DQAPDHhuL4eZtXy78ztaUUc5zgxcPGT5bcvL65cwM6swllGc9Xix5sGARQWDEf8M0YGPn7tRcO6vumUBWkWcn4w4v73gOP8OGOfXJc77M7cLoD8NAND+Rkr3QPG9LL09h8/HNW0v9DEYcGuATmn8+6KZaA8G7MDHDnrR6/inhyi/j8PM+sjrC/5tRc2DAQcLjnNqyDyPFOT5tVsWoDXE+cmI83ED49sFx/l0iDxTDy02um0A/WkAgHY3UjoHdf8LM6/HD+LDPgYEds8xz4OJfD4f4vueTuS5bsD8em1geDfUN+h/ueA4e4fMc0tBnvfdsgCtIc5PRpz/LHGc9RXH+Nm3QAD0pwEAWtpImZ8PAMweb8uQ+X3aYzBgLuvBL+o6t8702hDnuDGR5y8jKuOfahoMWJA4zs4h812YyHdZA++jkwXnedLPCzDFxPnJiPMx5j4MxW9EDOt24vz3uX0A/WloNP1fAI2UpM41fqtYwzX1mn7nurP9Ss0ovFXBed5K5D2Ktep/DPUM+m8I1cy67Ld+btboAWg8cX4y4vxHiWNcrCDvM4m8/3T7APrT0Gj6vwAaKUmza7nGzV4XVpTnjlA+C7Df9X7/Tny+ivXkz4bhZyg2aTAg2po4ztER1U+D/gDNJ85PRpy/nDjG6Qry3lNyLTe4hQD9aWgs/V8AjZRC8ZX/x/lx3q4w39jZv1fynRb1kcfGUN16wUX2JvKOm/8taeFgQJQa9P9pyHwXJ/Jd0sD7SKMHQJyftDi/tKSs9laQ/9qS/MVQQH8amkv/F0AjpdD2/Bh/jSDv80MOBhwv+fyaEXdw3664LOoa9H85cZw44LNiiHy3hdGsIazRAyDOi/O9lb1ZsbOC/OeFJw+HhlmuCWDa+tOg/wtAIxspn+THeHcEeX9c8p0W9PH5a4nPPqzo/GIH91HiGOdbNhjQT6f98yHyPVpDGWn0AIjz4nyxD0vKemtFx/i75BgvuZUA/WnQ/wWgPY2UXXnHd+EI8t43RGd+cUl5XK7wHK8kjlH1LPa6Bv2jX0rK7rUB87wxwkEGjR4AcV6cL/dVGP2g/4WSY7zpVgL0p0H/FwCNlCi1lu7PfXy27DX2Kjfg+7bkOK+2aDCg0zsl3ym+or+8gut4SaMHYOqJ8/XF+W/C6Af9y45xTHUH9KdB/xcAjZSywYBP+vjs4ZLyOFXhOZ4Oo90Yr67BgE5xNuetku/1Z+h/4H9Zlm53fT7+/ysaXO80egDE+UmL82UPL3ZWdIyytwnOqe6A/jTo/wIMIw5G7so7Hr9m6V6YWY81DlTOZWmSxXmH8lr++ft5J3KJRkptDiW+z/o+PnuupDz2V3iOB0qOc7pFgwHd3ir5XjH9E2Y2/S0TN2H8veBzqzV6ABDna43zZYP+VT28+KLkGBdUd6AFDPozjfR/gUaLg49xo9DLoXygMs5efq6P/DaHmWVMivL4RiOlNl8XfJcbfX7255Ly2FXhOe4uOU6VA/J1D/pHZ3vcT/FB2L7EZ58Pzw74x2uyTKMHAHG+9jhfFtNPVHSM46H8LUGApjPozzTS/wUaaX6YmYkff5T+y9J3YWbm16WSgP1OjzxjR/FxyecfNLg8Jq2RUrSh7ME+P3uvpDy2VXiO20P5bPi2DAYUWdjjXup8ELa043PdD83ihowfavQAIM6PLc6fCKN/eFG2J9Ad1R1oAYP+TCP9X6Cx4gysovXBPw1z3xxuW+g9wHlFI6UW8YHOo67vER/sLOrz82UPbl6v8DzfKDnOwxYNBqQsyet8r/siXpt3w7Ov9sfzXqXRA4A4P9Y4v6fke9yr6Bj7g0F/oN0M+jON9H+B1lkQZmbld/94Pc47mt3W5X//IO8YzcvSK2FmHf/HHZ2izRoptdha8D0OzeHalw1Qb6rwPLf0ONa8lgwGlIkD/7+F3gP/3a/xb2tp3dPoARDnJy3Or+nxPV6t4BhvB4P+QLuNqj+9a459qSakvarD1ND/BVoptclb92BkXGc8vqL9MNFRXJp3ThdPaSNlHL7s+g43805+Pxb1aMCsqfA8V/U41nMVHWecg/6zZfrjHBqJcV3fhRo9AIjzjYnz/5Z8j2MV5F826P+7Kg+0gEF/g/7TSP8XaKXU5mtHEh2ttge2SRn0jx3o+2HwV/WX9mjALKrwXJf0OFZVD4rGPegfxTdkem3u25muh5m3ZTR6ABDnxx/nj4XymfjDPqz/oCT/C6o9MMX9aYP+6P8CVGxFIoCdL+ignNZIaYyDXef/5Rw//3KNgwF1zTZswqD/rMNzaCzG9Zrf0+gBQJwfe5xfGcr3QjgyZP5lEwPOqPbAFPenDfqj/wswArdCesOy2FGLg5J/hfYuRVJHI6VOcfZf5+vnfw3Qea9zBmCvwYC1LRoM6NeHAzQaz7XoHpuGRs//JGkCEu0kzo83zn8eyjcmXjVgvsvDs29vdKZPVX1xXpJaEOcN+o9u0F991v8VF9U/7TL1r3LfJA4aZztdzf97/YRXpDY50nHecVPlQZaH6dVBr3MwYJKW93k+Sz93HPt2lv6Yw43+R56HQX9BR5I0XqeXOD/eOB+XK/qn5PvcCDN7Xc21ffB7j3LapeqL85I0xYP+qM/6v+qf+uf3T/0bgfcSB72c/98vpqAitcXqMDPLbPa83xwwn4U9KtwLFXeep2Ej3835IH/nzMwV+b8d6rpuZelmx+c0egQdSdJ4nS7ifDPi/Kth5oFL2cB/P8sWLcjb2bf7uF/XqP7ivCQZ9Pe7pD7r/6p/6p/fP/WvSptKDnw778wZ9B+/eeHpWWKHh8yrrMJtrPC81/Y41rwJGPTfH55eAzhu0LusYCDn9z5v+L/DzDIAVWnj67I7BB1JalzjYVGLvvuWFrZRxPlmxfm4cXLZcjwx7se9Ft7IB/dnyz2+Kbsz/7e74ell/FLtgAfuT3Fekgz6G/RSn/V/1T/9Ju0y9W8UncxHiQPvn5JA2gYfh8E39CvyoKabfksoXxu3KuMa9D/Sdby4DnPZEj2HQvkmgZ1L/VS1xr9Gj6AjaTxovIrz4vxgDzRuDFkX72RpX37/pOL/efenOC9JBv0N+qvPBv3VP/0m7TL1bxR+CcUzmKYlkDbdtoo7htG1kvLYWuG5by05zr8tHww4WnC8DX18Lr7C/2cfN/5xjR6gQTRexflpi/NRfAB/OB+8n0sdjG/tfRSe7J+wu+Rv33Z/AvrTUBn9X/SbtMvocCJx8ZdP2PdsYyMlLgsz+3r4xSzNryjfb0vKY2eF57+z5DhVdtTrHgzYV3CsE3MMAhf6+AFerdEDaLxOdONVnG9mnO82P4+nX4WZZXri0j+P8xTfqvgzP5f4gKBo+aTvQnqZoOfdn4D+NFRG/xf9Ju0y+uiwTdoPT9saKXFd+H/yc/wpVLfcS3SypDz2VXicvSXHOd3SwYCV4dl1fh8N2Gn/sscP8BmNHkDjdWIbr+J8M+P8KK5zammfH9yfgP40VEr/F/0m7TK6OiNFF/+YRsrYxA2Ur+Tndyk8eT28KntKyuOzCo/zcclx9rR0MOB0wXG+GyK/syVlFB8mPNewulk0kHTSzyiAOD8hcb5qB3XyAf1paC39X6DVXg7FM5B+1UgZizjIO7vPwuV8YKBqa0vK4+sKj3Om5DivtnAwYHEo3vh6mE2vF2TpaqhnGQaNHgBxXpyvz7wws75/0bnfcCsA+tPQePq/QGuVDTjGBwHzJ+i7tqGRsqCjY3s9zLyFMapO6MNEefxY4XF+SBzjQcXfp67BgDcTx9k8ZL5lgzNNa1Bo9ACI85Ma56u2vyS+73c7APrT0Hj6v0BrfRamZ32npjdS4gOWi/k5xVlho95IObWp3P0Kj3G/pk56XYMBnyeOU8U6zD8l8j6v0QMwEcT55sf5KsUHPP8kzvu62wHQn/7/2rgG+17VYWro/wKttCk8mdH/XiKYHdZIqc23+fn8m6UVNRzvQEmZVDHzcHlJ/gdaOhjwzQjr0L5E3t9r9ABMBHG++XG+SkdKymej2wHQn/7/DPrTZPq/QOssyTud/8s7JdGDgh+zHzRSanEuP5fbWVpV0zHLOutVrCO/M6SXjXq+pYMBF0ZYh1Ym8r6o0QPQeuJ8O+J8VVaH4j2AYjrldgD0p59i0J8m0/8FWmd2xvLPHf/btwU/ZnE92HkaKSN1Oj+P/7L0SsV5b+/RIU4tKXNiRMGx6rWE6x4MSC2VsLCi/Is21L6g0QPQauJ8e+J8Fcr2y7pWYZsBYFL60wb9aTL9X6BV9oYns806Z2IdSgS01zRSRuZ4fg73RlDOs29zfFnyN3sSZXK1guP/mch7V4sHA75OHGdDRfkXbbr4tUYPQGuJ8+2K81X4MnGud7L0olsC0J9+hkF/mkz/F2iNFXnHs2iT3g2JgPZ+jzznT3kjZVBHw5O3KUaxYfL3ofeAdHyLI7XJ3DDLD6xJ5Pl3GM2bI3UNBrybOM7uivIvWgrgPY0egFYS59sX54f1fkhvnvyaWwJouabvkQf6v8BUu5T/SH2a6BgWDTqeL8kvvilwK8y8Xq6R0r+PwpN1b7dWnHd8CHMmz/96H3//QaJcPh7iHD5L5PnuiMqzrsGA1YnjnKsg7xcSea/W6AFoHXG+nXF+GHsT53g3VPdGIID+NOj/AjzjcP4D9UdIz8L6oeAH7V5JnnFPgDiDbFGF53kwS3+FmQcQf+fnXcWssaY0Ujpnge2sKM9YPi9l6UA+ADCb/wd9fDauPXuzoFxu5/82V8+FJ2+TdKabYXT7Q/xa42BA0bHiLM7FIxgsuKTRA9A64ny74/wg9ifOL06MecUtAUwIg/5MI/1foPE2hyezjVaW/N3hRCBfV/C3n+b/trnC80xtlHpxQhopB0J96wzGhybL+jyvrYk8Dg7wHY8k8toywnK9V+NgwMbEsT4ZMt9LBXm+rtED0CrifPvj/Fx9mji338PTe2cBtJ1Bf6aR/i8wVvE17zhYHwfM4+vW3ZuErc3Sf6G/GWevJwL5sa6/m91s50SF36PXBj77Wt5I2RPq3Vzomzme3/FQ/JbHijnkEWchPuij/lRpRUkZXB3RMU8UHCsu4bChwrrxlUYPQKuI85MT5/sRB/R/SpzXF2GwtygAmsygP9NI/xcYq9Ph2cHH+L9tCzOvG9/N//fP+8grPkAoWtc//m+bwsxr27Obmf4Rqt3E90zFndsmNVJ21DwQMOiMu28L8onXuZ/lm5Zk6VqY254QVfikRzmMYk38eB9cDMVLJaybY14bw7MzGOMyBgs1egBaQ5yfrDjfS1yS707BufybpTfcDsCEMujPNNL/BcbqUR8dwx/nkN93feQXBzdXVPw9zvY45rCvcI+rkbK1z2tUZbo5xPmeTgwIlC0LFWf+XSn43JcjLtt+ZlXG81o+gmN3bqTYmeIMyLhcQj/rGr8Xnp0xeTFUu0eGRg+AOC/OV2N9KF6OL064Odbw+A0wLIP+TCP9X2CsHvboDP02x07I1h75xVnJr43ge7zV47jvt7CRsqWP6zOKdLiCa3E3PLtZbVzWZlveuV6e//fJgsGOWEf2VVyWcQZ93D8izqb8KEuX51AecWD9bH5OcQbepnwAowoxz/8Kjhk3uD6en++6/B5cmd9fR8OzmyreD4OtrazRAzA+4vzkx/n4ED8uj1m0mXAsl7iUz4tuBWAKGPRnGun/AmP1eUkAjmuNLhkgz9QapbfCzCynUfkxcdzY0Rp2KaFxNFK+H8NAQJxt9kIF5x43BzweitfuLet0x8+MYuO6qsvpXoXnFu+xo/n9MdfziMsDHAv1zVLU6AEQ58X5crHNuTWPb7dD8Sa974f+N1IGmAQG/ZlG+r/A2MUZX3+GmVlasUMWB8nfHiK/OCs5Pky4m+d5I0ufZmnpiL9H7GQdyY83e9z4/1exGZpGymBi2cdNlr/K69W9/No8zP/7Uv5v8W8WKq7/m6UYHwDE5ahu5vfjbHnF2fxxPeTz+d/EGaLzWvb9NHoAxPlJ9X5eBo/Ds8spxSX9dof2PKQHqJr+NNNI/xdAIwU0egCg5TEuzuKPA/xxyb24vNESxQKgP43+r/4vgEYKTLK43vPDrnRCsQAAgP406P8CoJECAAAA+tMAABopAAAAoD8NAGikaKQAAACA/jQAoJECAAAA+tP60wCARgoAAADoTwMAaKQAAACA/jQAgEYKAAAA6E8DABopAAAAgP40AKCRAgAAAPrTAAAaKQAAAKA/DQCgkQIw7ZZmaZViAABxHv1pYGLMy9JrWdqVpWNZOpel37J0S9EAGilA07yQpQNZOpulK1m6n6WHWXqU//e1LH2Tpfez9NIYzm9Llo5n6Ycs/dd1bpez9HWWdmZpfkMagR/k5/ntGI6/Okvv5NcyNj7v5uX1OEsP8sZoPK8jWVqr6gOI8+J8a+J8/P47snQqS790xPjZsorX9kyW9mRpif40LbA5v/cvFrRZb2bpfP67tFJRMUYL89/eL/L+1aOO35tHeez6NI9TMAntMjRSgAmwLm9kPy75TSpKv2ZpUw0d24NZ+mcO53UnS4eztGBM5Rkbejc6zqfOwYB9Wfpjjtfxf/lgyja3AoA4L843Ns4vztLHYeZBQ79lFQcO4sOBSR4s1Z9urzjY9fccf5e+CzOTW6AOcaB/f5Z+LIih8fc1PozeHprxMBrtMjRSAJ5qxJwMcx8g7k7xyfQoZpLF1yX/6jpWnPETZwJtDTOv1L+Ud77PFgTNv/I86gzelwrKp47BgPVZut513NiJ+izMzEhZk6VFWVqRl92RgrKd7UgtcWsAiPPifKPifCyD2wUxe1dHjF+T/91X4ekZqLODUx/pT9MQL4aZCSeD/ibFmbBvK0ZG6IU8Fj0oqH//hpmH1YsUExPWLkMjBZgQSxId10FTHHBeXuH57Sno3McZ7GUz1V4JM68Ad3cKdoy4LOM5nSspm1EPBnxQ8J3j/zavj8++k/999yDKcrcIgDgvzjcizh/vOl5coq/Xw444qPpzwbn+OIEDBak3HGimOFHlv4p+lz5SnFQsvkF2tKB/FNO9LB0KZvUzme0yRuRhMOgP1Ou5LP1eYcCZTbEjvqyC83unIO+4nt3iPj77fCh+TXgUAwLxfD4Jz86mq3Mw4EjB4MfGOeaxqeA7/BnMHgAQ58X5ccf5r7qOFdc773dpk/jw/7uC8/1twmJ8aiY4zRPflrlX8e/SDsVKRV7L+0BF9SzuK2GAlUltlzFCBv2Bup0dQcCZTT8PeW5vhuLZWqvmkEfcmPZxQefv1YrKL3ai42Y6d/osk1ENBhSV1XsD5vVBQV7n3CoA4rw4P7Y4f6zgWO/OMY+4lMDVgnx+Cv29EdgGBv3bIQ5M3eq6TnHJqrgUZdxXalFXvY0be8fJLb32+4h5Pqd4GdJ7oXh99RifLCXFJLfLGLH7waA/UJ99ofjVsLgh3ua8kT0rvroYZ+S8laXvQ/8bzRwY8NxeDsXrJh6tqKMcZwYuHrL8tuXl9UuYmVk0P+/EXKx5MGBRwWDEP0N04OPnbhSc+6tuGQBxXpyvPc5vD8XrSA8S59clzvuzCajv8xPf7b6fgsb5Pjz9UKbfzbjj33zS4zfpPcXLEL8hXyXqVXwotUERMcHtMmpwN3HRFigaoGLdA8Xx9dq5zFyIa9pe6CPo3BqgUxr/vmgm2oMBO/Cxg170Ov7pIcrv4zCzDt/6gn9bUfNgwMGC45waMs8jBXl+7bYBEOfF+VrjfNzA+HbBcT4dIs/UQ4uNLa/zCxPf656fg0bZGZ6epPLKAHm8V3IP/qKIGfD342JJnFutiJjgdhk1Sb026hU1oGqdg7pxA621A+bzYR+BZ/cc8zyYyOfzIb7v6USe6wbMr9c6jndDfYP+lwuOs3fIPLcEM+UAxHlxftxx/rPEcdZXHONnZxu2fUCl6Hvd8XPQGJ1vk/4VZvblGNSvwcbNVCMO+P8U0jP8VykiJrxdRk1+TFywFYoGqND8PNDM/sZsGTK/T3sEnbmsB7+o69w602tDnOPGUO9soJ9qGgxYkDjOzgoav0X52hwIQJwX5+uJ8zHmFu359qCCvG8nzn9fi+v9y4nvdMVPQmPsCU8GUl8YMq9tJb9JJk3Sr/gg6oeQ3g/Ekj5MeruMGn2fuGCbFQ1Qoc615KpYwzX1mn7nurP9Sj25vlXBed5K5D2Ktep/DPUM+m8Io3u6Lx4BiPPi/Pji/EeJY1ysIO8zibz/bHG9fz3xnb73k9AYv+XXZFMFecVBtNQa15ZioV9fBWujM93tMmp0PnHBtioaoEKz6xXGdTQXVpTnjlD+tLnfdeX+Tny+ivXkz4b6noTXNei/NXGcoxXkbdAfQJwX58cX5y8njnG6grz3lFzLts5s3Z74Puf9JDTC6lD9ptGpt4bM9Kcf74R692FDu6yJ7TJqlHrKuFPRABXpnBXzdoX5xqByryToLOojj41htOvS7Q3ptT+XtHAwIEoN+v80ZL6LE/kucQsBiPPi/Mjj/NKSstpbQf5rS/I/2dK6vzvxfc74WWjM9bkZqhvwiq6F4iVZoJc1oXgD+Jjini3PKyKmoF1GzY6PsGEHEM3OgvprBHmfHzLoHC/5/JoRd3Dfrrgs6hr0T61fGxsWw+wHU7RO6gO3D4A4L87XEufLZvBVMSFsXkgvjdLWZQHeTnyfU34WJlbR3hSWc6Kf379rJb+xhxQRU9Iuo2b7EhfrY0UDVOST/Hfl3RHk/XFJ0FnQx+dTja+qZuzEBl5qRkfVr37XNehf1mn/fIh8jwavxwOI8+L8uOL8hyVlXdXSr3+XHOOlFtb9U4nv8o6fhYlVtNH1HsVCD4dC+VroCxQRU9Iuo2Y7ExfrK0UDVGRX3vFdOIK89w3RmV9cErAuV3iOVxLHqHoWe12D/tEvJWX32oB53gj2lwEQ58X5ccX5ss0lq4rHF0qO8WYL6/65xHfZ5WdhIq0Ok7URNfWIS73dDWb5o13GGLwebCICtFdqLd2f+/hs2WvsVW7A923JcV5t0WBAp7JNqOJsleUVXMdLqjeAOC/O1xbnvwmjH/QvO8axFtbP7xPf5Q237kQqmq29UbHQQ9nM6Pim2FJFxJS0yxiDRYkLdkXRAC0OOp/08dnDJQ2wKtdiPR1GuzFeXYMBneKsgVsl3yvOeup34H9ZeHZ91Pj/r1C9AcR5cb62OF/28GJnRccoe5vgXAvr5+3Ed1nu1p04cSmvm13X+X3FQg9xuZOyjU9NtmWa2mWMSdG6dF7NANogtT7i+j4+e66kAba/wnM8UHKc0y0aDOj2Vsn3iumfMLPpb5n44Pn3gs+tVrUBEOdrjfNlg/5VPbz4ouQYF1pWN1N7HD3O/43J8kHXdT6iSOjD/h79pd1df/9ilg6GmaVZ4gSrOC4X3waIy8XdzP/3g/pKtLRdxphcDzZhANrp64Lfrht9fvbnkgZYlWux7g71zO6oe9A/OtujIXs/zKz7V+T58OyAf7wmy1RrAMT52uN8WUw/UdExjofytwTb5MWQnvTAZFkXZgZdZ/fq2KdI6FPZPmjxAeGS/O/WZulij35V0VKomxUxLWqXMSapWR1bFA3QwobUwT4/W/aq5bYKz3F7KJ8N35bBgCIL8wZnr0ZpXMO3c73K2ED9Nzz9dtmHqjMA4vzY4vyJMPqHF2V7At1pWd3cESzXMQ3iYOzsMk5xA3AzrOnX8z36R1fzvtTJMLfB/u4UH9guUty0oF3GmHwaRj8DBqBq88PM646dv1v/zaHR87ik8fR6hef5RslxqlxKbRyD/lGcoXKljwZpvDbvhmdf7Y/nvUp1BkCcH2uc31PyPe5VdIyypS7aNuj/bhj9kk6M15vh6YeH8R40s5p+7erRN4r16WoYbsB/Nl0L3pam+e0yGvZjdFLRAA22teB361Cfn13Qo+G0qcLz3NLjWFWt+zquQf8oDvz/NsfGaXyNf5tqDIA434g4v6bH93i1gmO8HSZn0P/rMPrNmxmPl8LMHhOpuhpnuq5VTPRwps8+UXxAHdfqj+NyL3bEjPh/48SouIRcP0v/xElYBl9paruMMVobvJoItM+XXb9ZN0P/e5Es6tFoWlPhea7qcaznWjIY0E+Z/hj6H/SP6/ouVI0BEOcbE+f/LfkexyrIv2zQ//eW1c/UZIeNbt3Wikv3nArlbwl1prhigk2bSelnFv9PYWagvx9x3O5a6L3UDzSxXcYYzUsEtruKBmio2IG+HwZ/VX9pjwZTlbMklvQ41uIWDQb0Mj/03ty3M8WN5F9RnQEQ5xsR54+F8pn4wz6s/6Ak/wst6z8/CsUzdue7fVsl1um3svRrGGxZlV/Ck81YofM3otfDo68GyHdRKN8cuOo9a6Cqdhlj9nviB2OpogEa6GDXb9WXc/z8yzUOBtQ127AJg/6zDs+hsxQ7ze+p0gCI82OP8ytD+UDVkSHzL5sYcKZF9TO1FNJ1t26rbArFD2/mmuIDAzP+6fRi6D3xadAHhPEh09+hfINgaFq7jDH7MvGDsV3RAA0TnzJ3vn7+1wCd9zpnAPYaDKhqTdAmDfp/OECH6Vyw3A8A4vy44/znoXxj4lUD5rs8PDtLsHuplLZIbXp8xu3bKsvz8Y4dYWbT3n1h5sFW3K/hcuh/mZ+21V9G740e9WXYvT+2hfr2rYEq2mWM2e7Ej8UnigZomCMdv1EPwmDLw/TqoNc5GDBJy/s8n6WfO459O0t/zKHD9EeeBwDivDg/njgfZ5H+U/J9bmRp2QDtg997lNOuFtXRrxLfYb/bd6Isy69pP2uzxwcEqxQZuZ096koV66BfLjnGaZeAhrXLGLPU60c/KBqgQeIGWw87fqPeHDCfhT0a7i9U3Hmeho18N4eZQf7OGQAr8n871HXdytLNjs8BIM6L8/XH+Vfzjn3ZwH8/yxbFga33utoHdWyuPGqpQWADIZNrdx/1+JRiIrenpJ5crugYB0qOcdsloGHtMhrg31D8Cqf16YAmiL9FnbPEDg+ZV1mjfWOF5722x7Gq+o0d56B/nAXV+Qp0XKdyWUGDodcsv9kU16lcrsoDiPPi/NjifNygr2w5nhj34xKxcRmLBR3lHvcF2Jn/293w9DJ+qXbAgxbV00UT8B0YTGybXim5J2IdsJEz0d6SenK+omMs6xF7VroMNKhdRgOkNlZar2iABvg4VLtxTNkMti0VnveWUL42blXGNeh/pOt48QFy2RI9h0J/a6TGpX6s8Q8gzovz44vz8YHGjTDcJqd3wsxa6YtK4v/5FtXTnRPwHRhcHGgt20T1DUVEKB/0P1fhca6XHGeHy0DD2mWMWWpd/w8VDTBm20bQqbpW0kjaWuG5by05zr8tHww4WnC8DX18Lr7C/2cfAwXHVX0AcV6cH1ucj+ID+Di7706Y22B/HBj9KDzZP2F3yd++3aK6mtro+IDbeGqUPeg7pHgIM3uU1DHofy6MbrNgtMs81J4wzyd+LH5UNMAYxWVhZl8Pvxiqe23225JG0s4Kz79sI6cqO+p1DwbsKzjWiTl8Pg4CXOhj0GC1WwBAnBfnx753T7wucSArbmIbX/ePS/88zlN8q+LP/FziA4Ki5ZO+C+llgp5vUX29pr1C5pdEPfha0ZDZHuoZ9D9acpxPXQYa1i6jAYp2AH/kIgNjEl+h/Sf/LfopVLvcy8mSRtK+Co9T9nrn6ZYOBqwMz67z+2jATvuXoXzQ/4zbAECcF+fHPug/7HVOLe3zQ4vq6wshvbEx0yX15ooZsUSbQj0Pg8s2DD7pMtCwdhkNcCRYDwxohiXhyWZZl8KT18PraCR9VuFxPi45zp6WDgacLjjOd0Pkd7akjOLDhOfcDgDivDjf2kH/g2Ey1p3en/gOJ9zOU2dxoi5cUDSEmc3NU795Fys8zo6S43zhMtCwdhkNsDbxg2HTBqBOcZB39rXZy3kAquv3rupXc8+UHOfVFg4GxE7Oo4Lj7B+yYXw11LMMAwDivDhfn3khvfFp22bIp5Yl3OyWnkq3QjsfwlGPe4nfi9sVHmNbSfz53CWgYe0yGuLGiH+YAMos6OjYXg8zr5iNqhP6MIx+L5MfEsd4UPH3qWsw4M0RdXjLBme8ngogzovz7Rz0318S3/e3rN4+0k+mw8WC+nBWsZBLPSR8VOExyjaSf8sloGHtMhrik8SPxiZFA4zY/I4GdJwVtnzEx0ttKne/wmPcr6mTXtdgwOeJ41Sx3t9PwfqoAOK8OD/OOF/1QMI/ifO+3rK6m1rD3Wza6VW0WbjNU5l1OKQH5KuKfWWD/pbopontMhrgFQ0aYMyN53+ztKKG4x0oaShV8YR7eUn+B1o6GPBN4jhV2JfI+3u3BoA4L863btD/SEn5bGxp3e1O693WU6vooaIlKZm1oeT3b3tFxyhb0/8Vl4AGtstoiD9C8auL8xQNMCLnOn5rVtV0zLLOehWN9p2JvB9n6fmWDgakXlWtwsow+g2vABDnxfnRWx2Kl8OJ6VTL6u5zie/yl9t6ql0qqBNLFQsdbiV+A49UlH/qDaQHip6GtstoiHcTPx6vKxpgBE7nvzH/hepnJWzv0SFOLSlzooJjnwyjX0u47sGA1FIJCyvK/3FB3hfcIgDivDjfmkH/uKzP1cT5XquwzVCXtxPf5bBbe6p17xnyqyKhy4nEb8fPFeX/cSJ/fSea3C6jARaF4tkMNqYBqnY8/325l6XXKs477jofX1X7suRv9iQaS1crOP6fibx3tXgw4OvEcTaMqAP1v/yYAIjz4nw7Bv2/TJzrnSy92MI6/Guo520O2qNoSWQbp9JtTUi/DbakgvxTy66qizS5XUZDnA7FO40vVjRARY7mvy1xoHfLCPL/PvQekI7LlqU2mRvmNbdUI+/vMJql0uoaDEi9Cba7ovyLHji/51YBEOfF+VYM+r8f0psnv9bCOvxS4vucd3v7betIN4OlkCn2S+I3ZH8Fed9K/NYuVOw0uF1GQ6Q29DX4AlTho/BkpsPWivOOu9CfyfO/3sfff5D4vft4iHP4LJHnuyMqz7oGA1YnjnOugrxfSOS92u0CIM6L840f9N+bOMe7LR4A+DSM9g1H2icuX/VvsIEv/dmY+A25PKI+2SeKnBa0y2iIoqeSLiAwrPdH0EiOs2vibKwD+e/UbP4f9Nl4vxmKNzBfMMC5xA3f7hXkN8pZQL/WOBhQdKw4W2DYN8GKBgsuuV0AxHlxvtY4P4j9ifOLM1FfaWk9npfXke7vdMUtPtUOd9WHbxQJPaT2lhlmz8yPEzHNyhy0oV1GQ7ye+HHapGiAAR1I/K6MIsWlYpb1eV5bE3kcHOA7HknktWWE5XqvxsGA1IyVYWeWXAo2kAcQ58X5ccf5uUrNhv89tHvd+9SbC3vc5q0Rl7KIy3s9CDObp8aHU8M8mFsXnl6KMu7rYZCVXuJSckX7ll0fsD7GB89FDyS9cUKb2mU0xNVgN3CgGntqDDiDzLw5XpBH7GSvmEMeL+Udi+58jo2wXFeUlMHVER3zRCjelGpDhXXjK7cMgDgvzo8lzvcjDuinZrB+EQZ7i6JJ/ij4Xjfc5q2RehgVr+EgD+jivX+rK5/lipk+pd6GOj5AXkcL8jmpiGlhu4wG2JG4mC8qGqCC35JRpkEa9N8W5BM7fYv6+Gzcrf5aqH+zt096lMMo1sSPs1IuhuLXStfNMa+N4dkZjHEZA5tQAYjz4vx44nwvcRb8nYJziWudvzEB9XlDGN3mm9TjZo/75nSWlvaZ1+vh6ZnV8a0Bs1mZq5Nh+H0zt4Tmb+iOdhktUzTb35NEoF/xlfpHNQecm0Oc7+nEgMDKks/E2T9XCj735YjLtp+n9/G8RjETqXPDns4UZ0DG5RL6eV31vfDsjMmLfQ6+ACDOi/Oji/NF1ofi5fji237HJih+fx/q3bOB6l3q4965H2Y25X65pL6f7/r7Q4qWIRwL6YdQS3p8dndBv8mb0UxCu4wxeyMUr9X0vKIBeohPex+G+p8yHx7yvN/K0t3w7Ga1cVmbbXnnenn+3ycLgmqcub6v4rKMM+g3h5mn9h9l6fIcyiM2EM/m5xR/0zflAxhViHn+V3DMuIbq8fx81+UDASvzRsjR8OwMrNiROuiWARDnxflGxfk40B3Xiv410SeMS/lM0lvgqxNlvNft3ir75vibEtuhceJJnDX9Y3h6cDX+2zHjH1RkVyh+UyrGlc/zGLAm7zu9mser7t/f/0YQg9AuG2e7jDErauQdUyxAD9+PIeDE2WYvVHDu8bXd46F47d6yTvfxEXUKqi6nexWeW5yZEgfybw1wHnfyeGJdVABxXpxvRpyPb/PFh/TxgUfRhpFxk973w2QucVL0FuNVt3orxTp6Pwy+IWV8ALAnvx+gSrN9pztzrJd3837TUkXIBLbLGKO1iUavp93ApIsb0cUZGfH1yV/zTvTDPMX/vpT/W/wb69DPzFI8mneUbuaxYra8Yscrrod8Pv+bOBPBq/IAiPPN8H5eBo/Ds6/tx8HwuLzEJD+kXxWKBzQ2u01aa3GYeUsj1t/fwsyg6cOutunfWbqQpa/DzL4N67VPqUmsZ3HPiLjM1Hdh5iFrZ98p1tf4Bkp8ALtdvQRG6etQzW7jAAAANEscWIqz+OMAaVxyLy5vtGSKvv/Zgv7ud6oFADDp4uub3es2x9feVioaAAAAWmpNKH6zfYWiAQCmwYGCxpAdwwEAAGiriwX93A8VCwAwTS4VNIheUSwAAAC0zJaC/u2VYP1sAGDKrA4zm4p0Nop+VSwAAAC0zLWuvm3cyHidYgEAptGh8OxsiN2KBQAAgJZ4p6Bfe0SxAADT7OeuxtG/WVqkWAAAAGi4pVn6r6tP+0ewrA8AMOVeKGgkfaZYAAAAaLivuvqy97K0UrEAAISwPTz7OuRaxQIAAEBDbSjox+5SLAAAT3za1Vi6GrwSCQAAQPMszNJfXX3YzxULAMCzfuxqNB1WJAAAADRM96S1X7I0X7EAADxrSZZudDScHmfpFcUCAABAQ7wWnh7w/ztLyxQLAEDaS+HpjX2vh5lXJwEAAGCcupf1uZullxULAEBvG7P0MFgbEQAAgOY4HZ5+M/11RQIA0L8d4elXJrcrEgAAAMZke1cfdbciAQCYu/0dDaq45M8KRQIAAEDNVoSnl6F9R5EAAAzug46G1e9Zmq9IAAAAqMn8vC862y/9SJEAAAzvUEcD6wvFAQAAQE2+CAb8AWAi/D/x3IInaAu5zQAAAX50RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWk+eDwvbWk+PG1vPi48L21vPjxtZmVuY2VkPjxtcm93Pjxtbj4yMDE4PC9tbj48bW8+KzwvbW8+PG1mcmFjPjxtbj4xPC9tbj48bW4+MjAxODwvbW4+PC9tZnJhYz48bW8+LTwvbW8+PG1uPjIwMTk8L21uPjxtbz4tPC9tbz48bWZyYWM+PG1uPjE8L21uPjxtbj4yMDE5PC9tbj48L21mcmFjPjwvbXJvdz48L21mZW5jZWQ+PG1vPj08L21vPjxtZnJhYz48bW4+MTwvbW4+PG1uPjM8L21uPjwvbWZyYWM+PG1vPis8L21vPjxtZnJhYz48bW4+MTwvbW4+PG1uPjY8L21uPjwvbWZyYWM+PG1vPi08L21vPjxtZnJhYz48bW4+MTwvbW4+PG1uPjI8L21uPjwvbWZyYWM+PC9tYXRoPkaU0bsAAAAASUVORK5CYII=" style="width: 320.00px; height: 42.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="x. open parentheses 2018 plus 1 over 2018 minus 2019 minus 1 over 2019 close parentheses equals 1 third plus 1 over 6 minus 1 half"> A. x 0 > 0 B. x 0­ < 0 C. x 0­ = 0 D. x 0 = 1

Gọi  x0 là số thỏa mãn của <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>.</mo><mfenced><mrow><mn>2018</mn><mo>+</mo><mfrac><mn>1</mn><mn>2018</mn></mfrac><mo>-</mo><mn>2019</mn><mo>-</mo><mfrac><mn>1</mn><mn>2019</mn></mfrac></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>

A. x0 > 0

B. x < 0

C. x = 0

D. x0 = 1

  1. x0 > 0

  2. x < 0

  3. x = 0

  4. x = 1

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Tính: M = ( 1 , 4 − 9 7 ​ + 11 7 ​ 0 , 4 − 9 2 ​ + 11 2 ​ ​ − 1 6 1 ​ − 0 , 875 + 0 , 7 3 1 ​ − 0 , 25 + 5 1 ​ ​ ) : 2015 2014 ​

12

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG