Gọi F ( x ) là một nguyên hàm của hàm số f ( x ) = 4 x 3 − 3 x + 2 thỏa mãn F ( − 1 ) = − 2 3 . Khi đó phương trình F ( x ) = 2 x + 1 có số nghiệm thực là
Gọi F(x) là một nguyên hàm của hàm số f(x)=4x3−3x+2 thỏa mãn F(−1)=−23 . Khi đó phương trình F(x)=2x+1 có số nghiệm thực là
0
1
2
3
RR
R. Roboteacher73
Giáo viên
University of Pedagogy
Xác nhận câu trả lời
Giải thích
Ta có
Do F ( − 1 ) = − 2 3 nên suy ra
Từ đó F ( x ) = x 4 − 2 3 x 2 + 2 x + 1 . Bởi vậy
Do đó phương trình F ( x ) = 2 x + 1 có 3 nghiệm phân biệt.
Chọn đáp án D
Ta có
Do F(−1)=−23nên suy ra
Từ đó F(x)=x4−23x2+2x+1. Bởi vậy
Do đó phương trình F(x)=2x+1 có 3 nghiệm phân biệt.
Chọn đáp án D