Bước 1: 3 ( a 2 + b 2 + c 2 ) ≥ ( a + b + c ) 2 hay 3 ( a 2 + b 2 + c 2 ) ≥ a + b + c
Bước 2:
a 1 + b 1 + c 1 ≥ 3 3 a 1 . b 1 . c 1 = 3 abc 3 ≥ a + b + c 9 ≥ ≥ 3 ( a 2 + b 2 + c 2 ) 9 = 3
Bước 3:
( a 1 + b 1 + c 1 ) ( a + b + c ) 2 = ( a 1 + b 1 + c 1 ) ( a 2 + b 2 + c 2 + 2 ab + 2 bc + 2 ca ) = ( a 1 + b 1 + c 1 ) ( 3 + 2 ab + 2 bc + 2 ca ) = 3 ( a 1 + b 1 + c 1 ) + 4 ( a + b + c ) + 2 ( a bc + b ca + c ab ) = 3 ( a 1 + b 1 + c 1 ) + 4 ( a + b + c ) + ( a bc + b ca ) + ( b ca + c ab ) + ( c ab + a bc ) ≥ 3 ( a 1 + b 1 + c 1 ) + 4 ( a + b + c ) + 2 a bc . b ca + 2 b ca . c ab + 2 c ab . a bc = 3 [ ( a 1 + b 1 + c 1 ) + ( a + b + c ) + ( a + b + c ) ] ≥ ≥ 9 3 ( a 1 + b 1 + c 1 ) ( a + b + c ) 2 ( ( a 1 + b 1 + c 1 ) ( a + b + c ) 2 ) ≥ 9 3 ( a 1 + b 1 + c 1 ) ( a + b + c ) 2 ⇒ ( a 1 + b 1 + c 1 ) ( a + b + c ) 2 ≥ 27
Bước 4:
S = 4 1 ( a 1 + b 1 + c 1 ) + + 4 3 [ ( a 1 + b 1 + c 1 ) + ( a + b + c ) + ( a + b + c ) ] ≥ ≥ 4 1 . 3 ( a 2 + b 2 + c 2 ) 9 + 4 3 . 3 ( a 1 + b 1 + c 1 ) ( a + b + c ) 2 ≥ ≥ 4 1 .3 + 4 3 .3 3 27 = 2 15
Bước 1: 3(a2+b2+c2)≥(a+b+c)2 hay 3(a2+b2+c2)≥a+b+c