Ta coˊ x2−xy+3=0⇒y=xx2+3 thay vaˋo 2x+3y−14≤0ta coˊ ba^ˊt phương trıˋnh 2x+3xx2+3−14≤0⇔1≤x≤59.Thay y=xx2+3 vaˋo P=3x2y−xy2−2x3+2x ta coˊP=3x2xx2+3−x(xx2+3)2−2x3+2x=3x(x2+3)−xx4+6x2+9−2x3+2x=x5x2−9P′=x25x2+9>0,∀x∈[1;59] suy ra P=x5x2−9 đo^ˋng bie^ˊn tre^n [1;59].Vậy Max[1;59]P=P(59)=4;Min[1;59]P=P(1)=−4.Suy ra Max[1;59]P+Min[1,59]P=0