Square root
VBT
Calculator
magnet

Câu hỏi

Cho . Trên nửa mặt phẳng bờ Oy có chứa tia Ox, kẻ Oz ⊥ Ox. Gọi OE là tia phân giác của z O y ^ " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAKMAAAB5CAYAAABVyZHJAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABkivs33wAADNVJREFUeNrtXQFol8cVf5Uss61IJZNsC1YQF1JpJWBFtmAloxUnwQWHDU6sSLcSrDixsuBE0tDKZC22iBWkC2nIRLASumDF4UYqwYklFSc2iJ2IlbakoZmkaWatrXuPvP+8/vvP991933139yXvBz+kaXLf+9697+7eu3fvAARpMCvmvwUCJ1iEvIP8D/Ij/vcO/1wgyAT3IKuRTcg9yL8hP2XDm4if8u/t4b+r5nYEAm18D1mL3Ijch+xDfh5jeLr8nNvbx+3X8vMEApiBrENuRrYjzyG/tGR4uvySn9vOctSxXIJJjB8gn0D+HnkYeQn5tWPD0+XXLN9hlvcJll+QQ8xFNiLbkD3I64EanSmv8/u08fvNla4OB9OQDyF/jXwJ+XfkZx6MpNibdsnP+L1fYj08xHoRZIjvIx9F/hZ5AHkG+YXjjr+NvIjsQm5D1kPpOGM9//8u/v3bjuX8gvVzgPX1KOtPkAAzkY8hf4d8A/kv5FeOO/S/yHeRB5HNyCXIexO+z738983c3rvcvsv3+Yr1+Abr9THWs0DBD5G/QP4B+Sby38hvPEyzvci9yPXIh5FlGb93GT9nPT+Xnn/D8Xt/w/p+k/VP/VA5FYyOAr7zkL9Cvoh8G/mxhzXWx/zsF1mWeYHpKVQd5TZgT1/9I8inkK8g3/H01X+APILcgVyR46++kuXfwe/zgYfZ4wb34yvcr484mD1kPSTrai/ramOQp/hz5HPIvyDf9+Qp/hP5GvI3MJ6UIJ7i3YjDItbLa6wnHxGH99k+nmN7SZ3JVIVsQO5CdiOvSgxNYrEpeJXtaBfbVZXJCOha2A+Rf0U+j/wl8kGxo0zxIOv5edb7hx76/AFdYbMaCWXfNVy43L+/aiJYN9jJSHkP+Wfks8ifIe+XPs8V7ud+e5b78T2wk9nUbSLELsPGR0By9aYKSuV8jhjayy6TBzZENDSIPIH8I/JJ5E9AspinOu5hO3iS7eIE28lENtRg6k2X8oJ+LHoXWIjKGNvRA6JLQQYQuxIIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBIKegMybLYPx0XCfcLTQ1iryJvMX/Ur4fZU5T5gqVHaEColWiPkFazEFuRZ5kY0uT8TwA4+lVc0StApMRcB2MlyHJ6ognFYqaJ6oWTITpyBYYL3kXZUyUer8TxhNJK+HukVr6t4J/TvW9r8S0QyNtK8iRXEERNiE/gehzP7vBvGhnI0/PUUZ5FqZIESZBNBYjL8RMqS9DukoJ5ezIRBkkjcbV0h1TE2VsZFEGQsU/F1p85gsxz/sEpFzylEM1G1qUYXTwiGYbh2KeSyEhuQFhiqAB4s/9bs3w+TM0HKQu6abJjxaNsMs6B3I8oyHHCumuyYt9GgawxpEsFMoZhPgAuYR8JiE6NQzxaccy7dWQaYN03eRCu0an7/Eg1+Macp2T7ps8eFWjw497ko2mYJ1KwLXSjVPDWbkGfi8wv6wh4wvSlfnGGtBLVljiWU6dupjnpTvzC7r8Z0yjk9sCkLUL9LJ8JAieQ8zQnPouBhI26dA0xgbp2vzhkGbnLg5EXl1j3Cpdmy+s1+zY9oBk7tSUuVO6Nz/4EXJYo1NH+XdDwRFNY3xLujg/eEuzU9sCk7tHU+5TCdqugfHE3u3sKJ2G8cNiJy3KTwfN+mE8Y32U+8F6XHQJuL+0pjuhrA2a7Q8H6JUOaMo+GNEGpbmtRG5mozsH8QfHmizIvjmi/fU2ldTqwRjXJpCTPOIrmu3vDHBEv6kp+1DR31Fi8FGIT0XLKnZJeo9Kw6MY7gJbSup1bIi7Esq5TbN9mkJCu3l1hoF+hkuMhmM85XYzew2Mm1iXQvYFrhzF+8Dt7amHUnTmkOYzXg5wVFxpoKMhgxGLpuBrGm12ZPwhDdlQ0mqHhtgHyS/V3gn6Z5RDPFey3kBP/YZtV/DaMe6Y7H0p5D+l0X5qvA7uroGtSChjOcQnpxZ4ItAIQIeBrnoStD8H4o9XbEwZTova7RqzoaQrJaZRGi3npxjFgF9cXQPNT9HWJoOOXBWoMZ41eIekQe/tkG363CyYOHCfOsGjGr59bHKRJcUvVcINNG3WOwqJDEGYqftlhuvypPHRuBnkdorZqTi8NmzJF/g/mhXv05ZrPrdIIRtTtldn0In7Ah0V6w2XNKtTPCvurLat4xaritptTttgIb+uxWL4Qj2fbCO932RNWx+oMZpeqVydcjBwkek+rajdmrSN3eTp2dbh9WNgd3+VZLyh2YE3IFyYxHFtOAKnMvSqSxnjFRvrxQuQPABdjD/BtwsbTbfQ5uMGnRjqQfhyw/XiUQvPbIbstwdVf2NvqDE02rKyVWFrn0EnNgVqjGvAbIputvDM2THPOGzhGU1Ke4tCUXad4jmPWHSEAOLr46isCNQYuwyN0VaV26ipetRC1OEwt3UhFEVXFXnONkt0mOzlXg7UEOMSDNLuvEQhbh9/WcpQ1Si3sy0ERdMi+Lzycpstt984CdaLDWA2Ktrs2JqYZ+1O0fYGxRkKIiFFTXDdn0H7LQad+HSgxnjE4B1u8VrPJqLS7c6maLeP2zgYgpLbIPsKDYch3/HFmWB2W0IW516iYrS3E45qtUobC3wrWfWiLkB22dTHDTqyPEBj3GI4RS/MQIa4pc7qFIPEP3wrmI58Fg7MD0K2F+/o5i6OBDpFDxgYYlaZRnF74qbTbI0lByg1KIWocDvAmIPY0hhkd3gpaywzHBWzLPYUtftjGpY5ZGG9mRrTOexQeIlGB8/UXW8dCdAYT4DbHZcoxO2L6y6z1KMHXiteqF5hi6Nn6nZme2CGuNBAdsoNyDorfSnYKaVSOGbb71O5rZ46Xvew0YHAjLEbsj+YZoJpMbps1WhDTeNb7kuxqjfWC+kyv02hu3OxPyBDNBkVBxzqsyflMqFwvuaML8XWKk4E3VXiushmfw6N8SToHxpzmVwQtYEwGPO3a5Xf/akPpdJOwEeKsD5uA+3OmTGaHEXd7li2uIohEwW/KX5bOAbb40OpJMBpZYFd56lz92t2bAhbUjTdXtaU95gH+eLWjQ0x/oLVihEmUFOe1nns4LWQbVEAm2gD/ewiXzXFewxH6iplmeblg29x7OlFYV7AI42Kh0Evk3sY/F5+HlUEoVSybSHA7aWsYAPYzQS2AZ0iTz63A2lJo5MATCPMUs+6jDqhWHyGRY1N7vTxdRdCKachnMQDnVul7oD91CtdHAS91LDlAegybp+6XFlfFj6wq65tYbbiMV312LGloBu383H+ZYPmiBjSBZVnImQtfDBqhvgq119Ln7KmqYHw0BegE1MP8XvnIxBenmVUhIIy9SuVGdJ5zaIOsFeCxMdaR50KXaW/L4b43SGbpWJsIuqkIkVROhV9zncp2LYihyXki3COaRjkDkeGGFfYvh/CKmqvG6FQq+I6rYW+AkpvUfWzINWBKVGn3NuNjNe7yzVkOAhhZp2riMsTJc96uithqkGvZAillYd0w6dOEDyrKyu2xniiQ+DuIvWsZxlnnv8s0C/QHuL1FTqF8HdbfF4lxF/zcRTsVdDw7cQ4cwSn8WiX9JqMpBUIqtgJsZUutQf0chzLUupqW8wMQplMKyF/mGiGoYQYZ1U5DiY0xKRfDTlER4o83j2W3oXOSccl3w4kmHKoM2if9nrMQn8LhFmUNKm/kPQqlETYlNIQkxw5OJqx10u7Ruc1ZL7ES42GEg5OBY9uZIDHY9aFA6zHMsg3Zjlca38Halm5UzyFUYDzde6AW4YGqXNEsRr090FtjJLXLH1speKXneD5WKZlFNcwGna55qVI+lkeSUqBvvQmiL9aoUCawuICzCsh4ysaSmAVr21vpTRA2hKlsz6Nk2AU1Okbp1GAmQbrm1rQCzDHZfVUQPTuRJYo47ViC8vZy47IGK8ziaO8YD/Gv9PGxjcbJj/UmpddeRB4qcZ67JmE8ax2EPhcLxZK2V0Df4m+ibA5IrxxO8ZbXQYZX3goMMYh8Hy4Ki0qeTSbKEWqMSJW52P/WFAaaspba95fhhygic5RUBiHAtuFfdl5JQy4VezBG2qU6bl3Mr0YJbx2GHit58F/yv1UBoVyCicXByFfW5dGL7mOPbKLirc6wl/fq+DvmKvgLo4q6/Vlog6BL6gXW24RdQh8Qd2D7hB1CHyBjgwUMtLTXDgvEKQCOSiFvXrKA5gtKhHYchKpsgeF1GjfncJjUTmHZHgDiuc8V1QosIEKKF2knoys1O4JnRO6BHczcWpFhQJbiKqmQWE0OpdTztykrBFHIKdbfYJwMQjm6W9kkBLbFVjHTUNDJONdJGoTZAGT640vgL2rgQWC72A76B+UmyHqEmQJSsGLuj+Rjn+sFjUJXII85T72oImn+GfleXuR/wGZ+Uj2qVQbigAAAIN0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bW92ZXI+PG1yb3c+PG1pPno8L21pPjxtaT5PPC9taT48bWk+eTwvbWk+PC9tcm93Pjxtbz5ePC9tbz48L21vdmVyPjwvbWF0aD4jIJRKAAAAAElFTkSuQmCC" style="width: 24.00px; height: 18.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack z O y with hat on top"> . Biết z O E ^   =   20 ° " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAd8AAABsCAYAAAArKbg3AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABkivs33wAAFhhJREFUeNrtnQ1oVUmWx8+GTMhIWuiR4IhIQJwgvSKyIr2hEREckWwIISAZERGRkeBIIyJkpJEg4iI9QRppZEMjIYgr2EEkiGRppBFxRUZEgogjiIibbcQhuCFIJmSmtw6phzc379177r319d77/+AgmORW3bpVderjfBABW/yTkubY//1S/z8AAAAADNOgZLeSvyv5q5L/0f/+Q8lv9c8BAAAAkJM1WtGeUDKi5JGSD0p+TpAP+vdG9N/9Vj8HAAAAABE+UdKh5IiSi0p+1LvZnw3KX/Vz+fm/1+V9gqYHAABQ6/xCySYl+5T8u5JxJa9o8cj4Zw/yD10+1+OcrtcmXU8AAACg6mhT0qXklJL/VDKpZN6Tks0q87q+V3X9u/T7AAAAAEHwKyU7lBxTMqzkv5X8X5Uo2azC73Vfv+cx/d6/QhcAAABgC3bl+RclB5UMKfkvJf/rURGytfM7JW/0v3/3WJcp3R5Dun24nZrRZQAAAEhhV512Jb1KBpWMKflLAMptQsmfEpRbc2Rx8Cf9+1Me67yg221MtyO3528IrlAAAFD35HHlcXGs+x9K/kBmjnVLx+J/0M+9T36PxeEKBQAAdYILV54s8jf6aND0RyX/Ru4Nmtp0uX/U9ZjU9fLVJnCFAgCAKiV0V57fKflnCteV5xe6fr/T9YUrFAAAgGU7t5Bced7Fdm7/WkM7t0/0+/w+cnLwjuAKBQAANUtorjx8Z/lnWnpn+es6/Ta/1u9fujP/M4VxZw5XKAAAEBKaKw9b6z5X8j3BWjcLDbqdStbi3+t2XCC4QgEAgDc47V01uvKAYlSLKxTSMgIAanYS9rULsuHKA4oRkivUAhZdAIBa5i9U+648oBg+XKGeo9kBALXMGNWnKw8ohm1XqO/RxACAWmaQ4MoDzGHKFWoQTQkAqGV6Ca48wD5ZXaF60WQAgFqGrUrhygN8kOQK9Rs0DwCglmF3DliVgpBoJrgZAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIyyVcmXtJjTmrN1TdNicpB5JXNKZpW8VHJDyZCSHiVNAb/PZ5H3eaTkvX6Pef1eb/W7fK1kF4UV63+tkj4lw7SYFveWlptKRpUcUdKOLgsAANUJT/JnlLyhfHmp57UC2xHI+6xUMkCLCUzypJLl3N1rPNa/W8ndDHV+oJU0qFIa9ODp16uqcT0YZyMrRf53RndqHmyX9Edf67HenWQmsb1v6UIXBB6U1JAe26b68X0lWzy+04De3VaqH//sB70LnqPkVLOnHe+EeRd7r0DbP8BOuHpYp+S47oxFB+Az3VnXeXgHTmh/RcltvVioRuW7Et0ROGRHgZ1umnC6zEHH78NK50mF+vyk5KSS1WX+brNegFRSxI+VrHdQ/54yc9ec3uDwwrwpdlLRpzdAC7G/mdEbEhDoDnc/Ld7n2Bp4Vxx12CSFzIPtbZUo3il0S+CQQ2UmbRvCp2cuUrnu0UqnUh0+FTyD56uHFZ7B997bLdb/SJkyr1dYLJRbdJSby/eim4dDsz6SmUoZMHzs8ZVeba2OHLvwv6v0/5+nRaOLtHugQfJrwNCmj4+kkwWvNM/plWOLoO5Nul1X6sHZqTs9G3iM6raUTHLX0T2BI446XlhOKGm0+D59CWNsNMccOUGVj6F3Wqh/uWuzEzmec67MJmgnunsYA+6nhAEyoz9eW46jkmcpg++hcAVni+sZJop9Fspv1Ar5fkK5J9FFgQO6PZ3sjFp6n56EMu/mfCYvuicT5smtBuu/Vu+qTc0FZ2LPeqs3TMAD2xI6Uml1NCQ8lkna/V2i9GNVX4YAI8IJYtpBXQ5UKBt3NMA2G6jy0ewLvfjuiZ12lcY3u+v00qJtxaucCviQ4ffpSDjVmqViRqAbqbINDM9lrZY2BmMGnnkj9sxhdH23NGqlmjQYntKisYEpzqaU91OOnbUJrgknh2uO6nOqTNnN6LLAMg8rzAG7cjyLjbUeZFS+0wZ3Ya2UfJI3YHk+mzDw/I1ldtWrDLXNdGyD1Ybu74Z2PaiSBsII2XGMv5pS7nN9rOMSqWHZPkf14Xafi+06ALBJf5n+fpGK22P0UzabiiFD73MrZZFvYjHL81SSy9KRgs+/EHveGYPfezD27LMYAvbpSjhaKslxi+W3ULpB1xXHbTInnBhc3o3cjJR7Fd0WWGQFLQaOsDUZd9Dye8sk39mii+99KWWYdHE6b3En/yL2PJPeIetiz57EMLDLgKDz73dQjyOCeuxx1CZrhZPCI8ffajRS9jF0XWCR+DWHjesVtqqVui4dLlAO72iTfJMXyGzAn7aUd8l7n9oUe84rC98krtybMBTscFHQ6V35ffFRVpp/7TNy44K0VzghuD6WuRwpexe6L7A4Ft/EJnlb1z6DwrFWxKjoVMqz71h4r7spyj6PIekOsu9qGDfm+gLDwe4uysZqMw8XBHU66KAe3wknhA5P34wHbyO6MLBE3LVot8WyeGf1WjDWZnI+v1GwqO+38F7HUsr8Lscz4769IxbqHffygEeFxR1UJTnvoV67BPV67KAeLwX1mPXQPqVVKe5igE2ibic3HZR3QrjYzXMEekjwXBsx5jdQejChrHEM4sr3MpRvdfGNoDPe9lS3BpLdAdkMwN5OYbkYRRknP8ZnoH5opI++qjwWNzoos1U47vNEXkpLOPDS4nul7ehPZ3zebgdzUPzYGddbhpAYV3GH+dRjHV+Q37vWYyRTvgc8tE0p1dlhdGVgiWj0p1GH5T4UjLmsu7B15C+KFpPmQpnVXbCZ7J8CxoMrrcCQKI7EiIhXn597rucNQT2fWCz/plD5+srb2Uy47wX2iNpdbHRYruQqLKvylSykbdqQSDw4tmV85pvYfG0yq1krLfd9BgXZRDKn9jMB1PWKUPnZsL7kY29JisQn6FKgRilZ6U44LteGq+G44Jk2rXl3kvlTvOHY3x81WN/jVNwoDERoIdlR7lPym0mohDSmso0k8ruEZZ9HtwI1Co8/vgfd7bhcycncpowL6bRAOQuW57wmMh8roIOWH103GKpr/I66A8OhGFdJplC2BTT4JfW1EXHrnLBsGCEAYJYew4qyg8LIh/1e8F5ZT/Himc5OG6hnPCb1fXTJYhwQKpPLAdV5lPylG3tEslB3plbLa/ViA/kzAZRveoCdLEjyD487eK9bgnp0Z3zmZlpqHV40B29nmQXBZ+iS+WGDIEns1FnyZzxUDmkeXdP+h63k3sWoFAP2a3RXUOf0Gl5sS078XFhzS2xY8nhvxKN2cRCS7Tmes5uW2wMdR3cshtRq90xg9R4X1vuu4XL7hOUeMVReC31MZoFjbFDvpJ3S9WV8niR14aCD9zovqMeNnM+OW4jPZ1CcDVqBx/2rL4XYOT6nfMmgi0jej9JF8lyZLYG18zNh3d8aLleav9dUNJyvyPwxNgDVSlIeXFYqWdP9SbKSuUgYI7n6e1Pg+d9S+RSsHDKztczvr9E/e17m74I9gZMGADcpeXLF8kT+Uvj8rwJsZ2kqv3eGy31LMotwU7ve0pXANQIAJC1+s6bPXCGcQ7odvFcvyeIrFFmA76PKV4xs8HVXy0zCXLo35M4hTa5uSvJasEnjpPJd78rA2rglQ/tMGyx3i7DMbwyVN0RuE0UAEDpJJ147Mj5rh3A8u0hR2imsS9GAJq16XpnNMIfO6N3upyF3jBUkzztpQvImSm+h5QmwK8lQgO3cmaGNTO58TwrLNOH7GL++WEMA1DdJi+48IRR7hON5u4N3c70QYF3F9+NsTPZAK+MFLaxs2YXosv6dqoiU10vuFO+9Ao3ylbAM/hBtAbbzgQztZDKR/R1BefNU/G6WM538RG4zNIXGLnJ/feNLbhAoOr/25HjefvIXJS/OSmFd9qIblOc7R4OVk1avyllHjlDyVljORKDtPJKhrUz56EWzuNgsb2+Z73O2DscSlC+QjvuHOZ93WPh9mhy8W7OwLrh+qkDcgOmqXq1tKLh1j+aanNbPy8vRDJNCd6Dt/DDDO5jy0ZMeUfVnHHCb9bPZ1eCZx2MvKF8o35BppMqGQHmj7l0Qfh8XXgZNwrqcRVdYTjS/Kx8ZbjX03O20NG9m0ShHUheddxSma0sjZbtXN+WffNHTxDxbp+MJyhdEOUjmo+5JTypdIanLJXSF5fRHJktTIbfaYkeQhwo+74sME8LFQNt5J2Wb2HoNlfvc08Rcry5GUL4gSrlgGDw3rirwzGpUvsggVIZSftkBQ8/jS/6nZDZDTpY76VDjCJ/OOLG1GyhzrceJeX+djicoX5C2aehyNB9C+QZMKS0VHzebupyPBtq+aaiO74Uf+H3AbZ3Fj/qDoTIPk7+JeVWdjikoX1Difpk2G3a4GYHyDRjeXU2SmZRNzNe01JKv2fFkdiXQduaFTZb73jFD5UqTOEhPC/jeejUt+ivzdcV4hfd6iKEF6pxyho6PDW1yhqF8QZSoD+uUnqRNkMVgqC/QttlL2XYU/QbK5BMDSTSYorGX2/X3DjmZBQAu4UAQr2i5Iaip2APfVqHy/Rbdwg58t1GybGazepO5Ep9S9R91XqFsynedgTK3kzvDqIHYMzswJEAdM0TLg/6YtEU5UoXKdxDdwjxs1BO1bDYZTzRLLOQXgbZPA1X287MZ2UqaKOOAgbKiEXymMSRAnW9E4mPssOEypJHyXATZkPr5IsiGheOVJ5EGPmb4+dIAESHf93ZRtl3vCUPl3hOWt8bwd7qKYQHqFA7g/5rsX8FIwwGvcKQDEF7SA9GE9jbO9AcyKK3DgbbR9QzvwEf3rYZODCQGXqZiL0eV7z4MC4D50KqR0R5y566YRquwLnvQPcxxJtKwty2VIU0AH6p/70qSxVU2HVJSujI2FfKtFOh9gQJP3wWAJeJ+/Nct77BdZSlLQxo8aD26iBn6Io06SfayZ9zOoLiaAmynLynbkfNmQ+VeFpZnyjCq5GJ2D0MD1CHxq6VxB2VKTra6PLx7pSxzDegmxeFg4B/oY5i0tRbLkubunQm0raTxqE1nYppy3GalKGmnMTxAnbGVlhpU8jh2kUdW4gXiwvVS4kb5Gt2kOGycU8rX+oHMJWGoxAeh4robYFtJk0yXZIuhcjeS+9jLk1QsSwsA1UgbLc1fzSc/zY7KllzJHXVQD0kUvTF0lWJwp3pExZJAZ0V6X3o9wPaaIPcRrRjpUbdpw6jVGCKgjmBDo2gqVk6g0OKwfIkroYuoUpJQlwi6U5Co1e6AozKlyutyYG21OUPd58hc5BvmJiH2MgA2YYOnqIvlEw/jSXLX6iKz2A0K4+65Zhn0pOjmhIoktFyRN0iufE3ekzYITwseoUsDkAve3UYTJjwnM+6BeerhypUwiUeUbmy1At0mH1EfTs7M0+iwbGlkqJDihmbZ9T4z3J7SJBRn0a2tgaxGtQt7VPxASw2J1niszySln6r53iA9xpSQDzYC+hBZ4bn24XxE1ad8fxDWmVeEpg3WhoRl70DXhvKF8s18qjROS5PHrPNcpwvk1792vaD885gSstNKH11W3pIfJ2np8W0oyrczw8R10kL5T8h+FiPTO4kjjk9ToHyhfPMQtS7m+bA9gDpJPCp6LZYvcTNCkpUck+L9yNHFF57qIU2dNRxAm7ECeSGs7y0L5a+m6rMML6WLHIHyhfINmKhFLycO2RxIvXgRnRYLYchi+d+klD0FVZqdaAq8/R7rsU84CYQQzP8MybMvfeqxrfoD6WPdkTrtgvKF8g2U6FUO26B87qhcvks+IDilSst3bjMGwgOPir8miSYz8B2xaD3520lmYRPJwr1Nk73je2kc7I0B9LENui24Pq9qbPxA+dYOUS8Pvq7Z7rDskmtnml3IFkq3LbEReleSvOUzAmKivmPXAqnTSwo7vCR3bEmoN9uDVxKK800A35PdDiYDWuBB+UL5luM4Lc02ttth2aW71Enh7z9O+U42AiL1pZSJOO8Zd28l1577FE6iggvCiaDVU/2GBXWzPXi3CdsohJzH47FV+VoMPRAYh2Ljptth2esjp0JfCv/mILnJlhYlzRi2F91IBiuuUhLoVx4VWTmkfrN9Hup2kGQ7Xtu5LE8J22i/528ZD0V3C0MPBEY8HafL/NTRkJW8YJfahvC98JuUOcjkZmoVJQfzeY5uJKNRHxGU7iQ3BljHexSe0dVOSo8mNUNu8gzfESrfDR6/YTnL9W4MPxAQnbT0HvOI401G9Iot67VfP7kztDxJbuPG1ywj9PEIcGegdZQkbGZFuNJRfbZRevQtznay1UFdGklm7OXrXpwNM8aovBsCcnyCkOaYaBa1E5bLa9CLYT6xu1lmDO/K8bwnDnajPN+8TijnIbqSjBOxlVZLwHW9JVAwpxwp3mlKj53sKuxcD4VrHMNBACr5Pp/D8AOB0EHyULYuJK8HwJaUhfghy7te3gDBwlnAHipvls6Kg31W2wOr7zrBAHlPdu+rdwvqwAZYLo3VRoUD2mUgC97xj5O/sHcASNksWEy7liIeAMcTnsuRuYpkX1qTMv8dR3dKp10rqrROcIfMJXk3gSSQxE1LZR9PWVWyq89ex+3Bx+zSzE+3LdeFj6PYoEtyP/8jhiAIgA1aIYXmwlU0xehIwrPHcz6zQY/baknrGiRsQfcyY2cIKRmyJIm0ySPN1ZSeI3eM/CSTP5vxOx6wMHkdpsWAAHMZ6rEfwxB4hl3cpgJUvD8Yer/rZDYc77WU+Q8IVi93KL9DfUOBjr6TzAXQPy+o76WC5fG7nkg5IWAjhk5P37Iz53dkH+4v9d+vSvimfHTONgAc15uvKHr17n9UTxCzOcufJhhaAb+05tiAuBKTLpMXUxSmxJWJNxUTVB0Z5YJmuGDHyOrO0xJbgc2TuRRThwW7Lc6XmzW4BSskNipI8pub0grMhxJhg6/vqHqjIl3AMAQe4fE9GejYsLEw3ZewgeCrMjZSLZcacb0+Zaz0tzM4wZJz1FAHGchQ5hjZtUrmqFySNHq8Q+Wj8y5abpC1Su8CWeHyvehCijI/Sm5T4PFgHNInD7NU/SEJYQ0JfJ78PQx4bHxj6b3XULphJivTH7WkGZVeI0SmExONN8tZLvhI9pjeQd2m9GAReZKxtyf8/UvD78e74NeWBsS87ri+EtA3Ue3EAn6AoQg8EvpY2mT5/TfquT+PW9UHfXK6Cd0oGxN6xVep4Xgn16cVs+RD8JFsWkCLzhSFZoNuvUOcp+J+dmy910O1legdAAD4BICv487p+fKFPlWb0zKrN0j8s/P6d2GnkZOVGRqPXYskAS3Swp+touToTzZp1B1mQNeTj1Le69VbtIO91e/Kv3NGK9tWdBcAAAC+4PR3afepabFPKylx+IQBAAAACRyjyhZvC5RsTbyjwt/A6AYAAABIYbXerVa6iK+UrLmB/MRfBgAAAGoGNtiqFLOX3Yo4kEYprvH6Mgp7EE0IAAAA5IODkXP8UKlVMd8db0ezAQAAAMXhCFYc5eSKkqf00Zq45LDNTuNfoJkAAADUG/8PIRDhs1eEnt0AAADFdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1vdmVyPjxtcm93PjxtaT56PC9taT48bWk+TzwvbWk+PG1pPkU8L21pPjwvbXJvdz48bW8+XjwvbW8+PC9tb3Zlcj48bW8+JiN4QTA7PC9tbz48bW8+PTwvbW8+PG1vPiYjeEEwOzwvbW8+PG1uPjIwPC9tbj48bW8+JiN4QjA7PC9tbz48L21hdGg+D125ZgAAAABJRU5ErkJggg==" style="width: 76.00px; height: 16.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack z O E with hat on top space equals space 20 degree"> . Tính x O y ^ " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAKoAAAB5CAYAAACp3LoDAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABkivs33wAADYtJREFUeNrtXQFoVtcVPsuy2K5BkCiyjlYqVjIrVibOOStWJp3YVJw0pGIlrFJxYkXaUGklBnEyYWKLOEGspBJcQGywQawQtpCJs0Jw4iSzQrBixWZhwWaZTW3ndg45b97+/Hn33vfefff+yfngo22avHf+c89/7z3nnnMugMAFJmr+WyDwjp8i7yMHkLf4n/f55wJB7vge8mlkPfIdZCcb5X9jOMC/9w7/3dP8HIEgE0xCPovcinwfeQl5T2OUpvyKn/c+P/9Zfp9AMCq+g5yO/CVyJ/JD5I2MDNKWN/j9O1me6SyfYJxhAnIecj1yP/LPyC88GaUpv2A5Sd5XWP4JMpRjB5ORy5ANyBbk35BfB26UpvyaPw99rjf4c06WIQ9/6X4SWYvcjTyF/MyD8RTz+vOW4TP+/LtZH0/K1sEPHkb+BLkBeRD5F+S/PBjEl8hu5HvIzchnoHgc9Rn+/+/x73/pQVbSzznW1wbW38NiStlhKvIXyG3IVuTfkd94GOh/IDuQv0OuRT6FLE/4mcr579fy8zr4+Xl/JtJjD+t1G+t5qphcPL6L/BHyJeQe5Bnk5x4G7z/IT5DHkW8jVyAfzUkHj/L73ub3f8Ly5K2Dz1n/e3g8qnl8xh0qkT9D/hp5CHkBedfDgPwb+THLQLIsRD4SmK4eYbkiXX3Mcuetq7s8TqquKseSUf4Q+bwyS1zz5GDcRn6E/K0yS5SVqE7LWP5o9fmIP58Px/Gasvo8z+MdNGjfNRv5srLv6ve47/oD8s1xtu+K9vNv8ufv8bSf71f28y+zXZT7UAh5souRryGPsCc77NGT/T3yVfFkYyMkr7KeznmKkAwrEZLX2H4yzSx7HLkSuQPZhuz1HBv8DfJF5AyJDaaOOb/I+vQZc+5lu9rBdvZ40pkzb6MsPG35OchpS16YzPp+A/yd4t1POtP2OhTqDrILHpxf/xjk/Do0TOBxeQUe5EXccWgTvUkFbctIgE+RJ+FBRtATYgMljSfg25lmn2ZkJx8kFWgH2OdY/hXZDJJjOd6g5u42sx18ZWk/jUlfvjLmof9E/gm5DyRrXVAcajXEPraXuGqIF9J4/ZF39gFb/AtJvTOBoCCa1Mh2FUWTUtmVVFIK8oDYmUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAkEMqJx5CXIj8iiyHXkTOQQjRW73+J+DyKswkpxOrXbqoATKjQWljcdgJGG4A9I3+qUy50Z+pkCQycxJ/aM6wV2PAiqymy6qFiTBQzDSVOyWxtDOIrcja2CkOUSZYuBV/HPqdKIroKQZuglKt7OLwAM2QXz7HNp3Ul/SaZbPXcVLfpzBXgDptifQYD7ysmaZ3gvpChkr2KmKM1aaxWfKcAgKUc4GGGc8V5BzMnznLtA3fJsmQyOIMJONMM5omnkmzBrHNO+lsFalDJGghvebccay1eH7Kw2ctRYZpvGNbaAPHa3NQY4NBnIsl+Ean9hvYBy1OclC4ag+0B8OSNhqnOGogZGuz1mmfQYy1cvQjR8cMTCIPR7kWmYg10UZvvGBdw2M4bQn2WhZN2lvPleGURwnukTXZ0fCawYy7pKhHLuoBbPEkAWe5TTpUXtJhnNsgm7qMLnbamcAsraAWbaVHACMMVQaLqdXIIzQT7OhodbI0I4tHDMc+PmByGtqqFtlaMcO1hkO+pGAZD5qKPNRGd6xgR9AfFvuiEP8u6HguKGhnpQhLo6oiI2yz0/ASAEbOSiUkU61Q2lT0ejZrWxc9Ew6TqSTmqqEzztpOOA7A9Nzu6HcXQmeTXeqUtJ2AzttdLPfMI9fVqCixW4ewyEeB+dxX8rPXM0GNKRR3PWEnihlsZ/WODkPWT6zxnCwBwL0nnsMZe+LeQalItIV65vZIC+CvgixLgPZN8c8f50LZS3mfZvtdeXbLd8zD/SJGLaOA838vY7kzQOm98z2F5lUaKW7BcmKC9PGZknvcamSFKOelZWSakcZZFPl3bB4F90Bb3or3DGL575u+ExaIUK78KDSwrAGisyid3kZb2N2gt0Fy4tSyD4rT6e1npeIkzyNL4AHsUVS4i4DYUxOdqoNHR1bQ60E8+vY9wY4m64Au+vHTWe6Op5EdM9sdvwl689KUVWgv2td55U2af5+iqHSVG4ylH87mNfQh1iHtM5CJ90JxvYi6Eu1v59C/i6D5+eGuRphOjTf7s6C353GP18AxdPvLho6UxWG+13imUAjK80Whtqe4PmPgb7k5lcpQ4Jxp4B381ZonDDDMPpR5F6D5Zy2Be+yY/CWhVe+yWKQVwZqqBcsPkPSgH8DuE1xnASjH1rknkxzAOzzJZennA2yCuv0Q5jlHOVglouaNv6rW3m+SRG7LgwRDqRwijPBao0S1xTZl/YpcdGsY5eLLAZ4f6Cz6VLLffvqFO/SOcVZleAUXgK9MW+lTrT0Hk8pISEXnT8OWwzw0kANtdHSUNPocRrkU+FQVvDcah+KvQpmdT314LZYrswiHnsHwoVNl8AsnJIuh95/MUPt9aXYFs0+pxy+nRjiqg5pmcUAh9rEocJyf3oig3duBPdHqjOV5+0LNea3TFnyKSTiqrvyfosBrgvUUGvBbtnPYq83RfOO1gzeUac8b54v5c4GfTw1+vfNDuW4YjHAVYEaaouloWbVnTpu+R/KIDrSys+67FvBJkkrLuvQbc7GrwVqpLpkjrQnUnHQ5UUsSRluizLuXvetZJOcT5e5iKvGwP60Buxm0ywHvVrzrt0pnl2vOGbek390IZXDjt+/zWKA1wdqqMctPsM93ltmibiUyAspnnuWn3EoBCXrsn1cH1W2QmnHTyeC3a0qLuqkDmuiN0lmQzUfZFYIitaFVTY4fv9pi0GuCNBQt1gu+3McyKDbPq1OMYH8MSRlXwJ/lZKmuaeDgS77PRZG6irjS5djYLt0V2fkjOW6dLgOS5iWynQFaKRLLGdTl05pZ4ZjeCyD/a0T1GkU7NLjM93fHQ/QUM9AvidRaZxi0yQitRwluE4uuqM4lw6V6UAfCUxncyxkp/xe19UIiyGb9kFRqXd3aEZqkjHu8ozXtHDtYGB6a7Mw1MYc5CnT6LLJ4BlqquVzoRnqOQNFn3P4ftMTnQMlOpv2gL6GLSu0p9x6RPVY50Mz0saCeJsuk8oFukvQUDvAvAAxz0SOuMOTPs3frlF+d2FIRjpfMU6a1XSZVK6unWkrMUO1KYduyFm2BQmdYopPR1XF7SEZKSXUqsV9a3iPcy/lHicJDhgOegjHeOVg1qeVeMqDfLp96mgOVRM46ISSBdSS5sOG4RZXweo1kH2nFVfYCeZZXr7uEGi3nOEpx/huQJPB/6EetxU2L2uEZCXUaTA94BlKxWwwy+Af4M/kC3ENPIolUkfB/aBad1LXvX4YvUhPV0W5yJFcJg3RfB6hVoBZcjfNTIs9j3HcGBbWPKmx16Cazane6rpR9mBx+1RXybMmt90Rp3jS2yEwS98LIfaoO/evUPaz0ZfvOgSU8LPVcL/XBemPAWfwBt20J6ppXNJHvVS94Uwa0mW852Nkjb5MamVAMF1nZiveIG304859d0O6El/6ZkbZWKssZDwboEO1FPS5CIMQXp5sXCRlM28BByGwHl40q/UoDpEuH1IXJ9T9/cGERmXSZSTPkoj5oD81uw0eKzNjEFcRS+U8RxV9zghFaLXZlUmJrm6Ps8Ug1HQzoUGdMjDWt3IyUl3v124I64IL00iK2s3a+d0Hk3hPpGuvooYqbNLk4pbh0c795ynxuKRLoUmCzB3HTtVzBjIcgjCrDVTo8nx7wf5eBStsKtg30bJerFxE3Sxft5zh9oJdR+oZvAymrXpUZ2Uf195s1awm/byslgJ0q5PTCEVcxzvqI9XAHlxrwWZ/tuV7dC126Fw4Omqjepyoy19nRp+zycBYd2eo16mgLxs/wb9XKjjg0ym16WYccUWC95SBXX/+aNbOsovJHjDLUU2T1VXGK88dzQSwAkoPo61MfZBDt5ljlsazNsW79lm8pw/cHBuuB31idU+CZayKV5+bGqdjC4TZMNgEy8Gs760TmF5rcy8DgShZYcjgXbfBTQlwBNq2XDKQ4yp7sTVFnK0qnhXJOE9r9qE97AeUQ2ljUo57+6Ix0fMG+8eszpt1js3ZHEM068H+Jhab7iUUxlsCYweFPb0G8t5jl/PMeo5DEMPsMHXwUpV12GQBfxMHlXedAH/HbvTeNrDrTjLanprSHVeNgdmzGAoPbmpB4AXlvDfdxlGOTnaKoi/vMG9d+jhU08pbg1XgL7klT6g9Z1vEXASh7k+HlK3gJFGJIESo0aGFog5BiFDTEptEHYIQUa0s+Z2iDkGIoHBUVCFLDuRUUYkgRJyAByXPS0QdghChXuK7RdQhCBHqmX6zqEMQIigPOMpyo+PsclGJIDSQsxTlPlC2/hRRiSAPj5261FA7HspjoPhnXM4oGWWP4uFPExUKXKMKil9YQQZY7FSJ6sqiW8Fp2Z8rKhTkgbgEdUqwoTquCuYmZU86CHI8KsgRfWCfokjGukhUJ8gTw5ZGSoY9T9QmyBs2V8BfhuyuTxcIrNAA5o2MK0VdAl+gKte4+2CpUna1qEkQCsijP8uePrGLf1ZRah/kfwW/vmJGyORMAAAAg3RFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtb3Zlcj48bXJvdz48bWk+eDwvbWk+PG1pPk88L21pPjxtaT55PC9taT48L21yb3c+PG1vPl48L21vPjwvbW92ZXI+PC9tYXRoPraui2wAAAAASUVORK5CYII=" style="width: 26.67px; height: 18.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack x O y with hat on top"> A. x O y ^   =   100 ° " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAggAAAB5CAYAAABcHdkuAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABkivs33wAAFv1JREFUeNrtnQ+IVteVwM/OTibWDsJgBrFipZIG14ZENmRd14qRDVmxVqxUXLEiqVSyYmWwUknFiLiy0hVbJCtIKlbEFSQRV8QK0pVpcFNBrGSDa4UhFSupKztYN2un1k32ns79dp7P73v3vve9f997vx8cmjrve/fe8+6fc+8991wRyIIJjv8PAAAANeMvjXxiZNjILfu/n9h/BwAAgIrzhJHnjawx8gMj560x8GmEDNvnfmB/97x9DwAAAHQgfUZeMjJg5MdGrhh54DAGfOX39n0/tu9/yaYHAAAAJeFPjEw38jUjO4z8i5EbKRkCceWGTX+Hzc90mz8AAADIkCeNvGBkrZF9Rn5m5LcFGQO+8lubT83vN23+n+RTAgAAJOMpIy8b2WzkiJF/N/KHkhsDvvIHWx4t13dsOZ/ikwMAAIyhS/BfNLLcyC4jp438uoBBu9kphrzz8Gtb/l1WH18UtigAAKAGfMbIXxhZZ2S/kX8z8t8FDMS/M3LJyI+MbDDyZWkeB+HL9u8/ss//roC8qn4uWH2ts/r7DFUJAAA6lUlG/sbIFiPHjPyHkYcFDLD/aeSckX80ssrIl4x0JyxTt/39Kvu+c/b9eZdJ9XjV6nWL1fMkqhwAAJSJPzXyZ0b+1shuI2eN/KaAQfN/jfzSyHEj3zOyyMjnctLB52x637Pp/9LmJ28d/Mbqf7f9HjPs9wEAAMiUXiN/ZeTvjBwwctHI/QIGwv8x8nObB83LHCOfLZmuPmvz1dDVz22+89bVffudgrrqpSoDAEBSphj5SmBWfF2Kcdz7yMhPjPxDYFbc1aE67bL5b6y2/MSWrwiHzOuB1Zav2O8NAADw/+i++rNGviFj++p3pLh99X828l2p1756w1/ju7b8V6UYf407Muav8Q1bL7ppIgAA1Uc98+cZ+baRgzLqmT8ixXnm/5ORbwme+c1onPj4ltXTBSnmxMeIjJ34+LatP9x0CQDQwXzeyBIjbxg5YWRIij3b//dGvm7kaeFsf1IaMSO+bvVZZMyIIVuv3rD17PN8HgCAzlgpyNsYCEcH/GshOmBePGX1/R0pLurkJ6wsAAB0BkMZDgZ3jQzK2P0Cfy7cL1A2nrTf5Zsydm/F3QzrxBAqBwDoDE6k1PH/yshJGbuh8AuotqP5gjx68+WvUqon76BaAIDO4I2YHfzvjfzCyCEjA0ZeMtKHGmtBn/3eA/b7/8LWhzj1ZxtqBADoDJZEdOb/ZeRfjew1ssbI80aeQGUQ4AlbL9bYeqL1ZTiiTn0VlQEAdAbqVd7wNn/HzvC+KnibQ/v1aomtT+/I2OkY6hUAQAeBVzlQzwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOh29pGynkQOoAgAAADQ0+HYjH8voRWP3Sp7fmUY2Gjlq5JKRu0ZGjDwwct/IbSMnjHzfyMtGuihH6kwxssIak28bOW3lpJHDRtYZeYamBQDQmfTK6CVjd+XRm0jLaCCoEbPFyDWJd+26yh0ju4xMphxtoxfTDcbI83vWkIAKohbrfCOvWavwlJGbdqbRsHRHbIdyzVq7+22FmIL6AErJeCNbpfV15WUzELY0MWKCon87Z2fhIxHP3bcGURfliI2uBrybwKgJGgqsKFSAqUYGbEV90EaFULlqK/JU1ApQOOOMbLYz0ah2WxYDQQeUKy3y+JEty6Qmv3vOyJ6IQfaykemUw5ulMrb91JAROxlcbKQn8Gxj60Eniw+b1KtFNMPOXClYZeR8mwZBK9GKciTnRgkAo2gHvskORj7ttQwGwkKbj2b505XMPo93aH9zscU7dPVkHuVwsq5JmsdbGDTNDKNmY8pymmTnzCh02euWo8PQpaWt1lqcJGNLW/q/E+2/7zYy5HiPrkhsl/I6DQFUiW4ZXQ30NQzKYiCsaDL7bMjhBH3cWWm9VL+AcrRkUZO0NiV4z64mE8YFNM9ys97RcdyzH3ZazPfqctRVRwd00dMCBYD4qAG+QUb9hZKs+BVpICyNyNdgwneqM+b7EWV9gXI8xhR53Edlcxvv2xF61207uYSS8WJEJWtYd7rv1ddGGrqkud/RCemqBU4rAOkaBupQfCPQlnX17y3bpi+U3ECYY2fDzfL0sbTn+DxDWvtUaV/UTzke4Xjo3W+n8M4ToXcSb6NEdNtOIqpj+EBGHWPSYqcjvY8SrFAAQHMaK3fqBb+xxWBxsKQGQr9Er2huybg/Oks5HjFCwvVhYkq6GQ5NRun/S8AzdvCP6hQOyaPeqGlx1JGuHo/s5RMBtI3698x0PDOppAbCacdEYlwKaWg/E3XMcB3l+CN7Q+/bkXIdDb57J822WBZLay/ahgxkmL5WZpcT5BE+E0DuKw1lMRBWOvKzPcW0dkekM9zmTLkq5bgeel+ap8+mht79Ps2xOLZ4zBZW5ZCPdR75WMjnAsiFkyUyEHRGHeVMqcvQaQZdm+Yo+4Gal6Mn9J4PM/jmYQOkhyaZP/s8BuW8zqOq89RtcQdV4vgjQPacKJGB8LojLz/NIM1Bx0D+TI3LMV8ej3mQNmEHyLk0yXw57GEcrM05T3s98rSGTwdQGwOh22Pi8FoG6W5wpPlWTcuhhGMfHMog34dCaRBdMUd8vJR3F5Cvlz3ydZnPB1AbA+FVjz4hiztdnhZ3QLdJNSxHMwPhIAZCdfihR0U9U1DedPvgoUf+ZvEZAWphILgu/xnKMO0bjrS31bAcyiuh3x/LIM/hLYaXaZLZ4+OQqJWpr8A8XvfII8deAKpvIEz16AsOZ5i+6/j19ZqVo8E4yX5VNxyobzxNMluWi9+FSbNL3jGpXOFzAlTeQNggxfok+ZyserFG5QhyMzRuTEgxv/3yeGwIyJBnpXVYz6yCXSTliPiFeiVwEkC1DYRTHv1Alt7tCySd1cyqlCPIgdDv16eY3wFp35ESPNGB1GfZXqMoluEI4SFPA2ExnxagsgaC9kUj4l7xzLLP6vHohy7VpBxh5sjj2xRdKeU17DMxh+aYHUfFb8B9sST59TUQBvi0AJU1EOZ49AG3ctDDXY/BvbcG5WhG+GKvbSnkM3yHxAWaYnas9hxsD5Yoz4c983yYzwtQWQNhvUcfcCoHPZz2yMeSGpSjGc/Jo6fO9L8XtJHHRU2Mlpk0xWyYLI/f1d3qatHJJcr3cU8D4SSfGKCyBoLPymcekwQfn6idNShHK15vUi/mJXiPHp0M+8l11Cqx7q9oiEm9TEPvvb5pC6SBJs5J+1dS6ruP2UFd36lRtzSyYNILNU6K30C7o2R6PuWZ78EE79YrSpca2WwbjC5fjdjvlxYrZHQ/74E1vvQ7ELcBMBDi8Z5HH7A9Bz3s9sjHiRqUI4pw4L0HMQb3LmtkhOPf7O+ERqLhMZfZgftjh3L1wooknvUaxeqMRDsPxr3+c7HnIDss5TsNcNUz77cj3tFjl6s2WEPgsq20Ue9bkULeo44zrWbMAQwEb0akHJfI+WzT3qxBOVy82eR912Q0fHR/k+cn279da/K775e9ccyzVpHP0cCgbI2Zzgvijs8dd6lFLbKhjPKbByOeeb/TxJjTlZ1bMb9ZWrEVuiT6ymz20wADwY/xnm12SQ56WCZ+8WO6KlwOX1ZK621tdZIctHIvok9fXuZGsbzF4Oo7aN2IkdYccXuWNuRojPdu8nynrohMKJn+e2MM6MNNVg3UoDtnOzeV8zG+XbtnkWdKZzmDApTVQJjv2V7zuP59kWdeZlS4HHHQ1YI94l5xD9clXTXoK3uj0GhWuhSt+8a6XDw7YFHp4LXTo7A+kQhniJ8DYVwDoddaYT7v3FNC/S+KoZM7MWb2K8Qdj7zdW8l6U8wzQJ0NhKWefcC8HPTQziBflXIkXQXSflcdMN+zBsNDK1p3LtgJkz7T3SmNYqJHZl1e9i6Hk37PwSpJlKqtnu/TjzSthPpfHUMnlxJ828vivtmsnZjfgx7v73RelmRbOJ0oJ6S+FGkgrJLyRFOd4JmX5RUuB8RglkPB5xyz2fOhZ6fZf58tza9h1kHNx0lRl9hve1aCsyXVrW+QpKRnh6dKtJ+Ayqtt5F8db6KiVt7HQMBAwEBwstbz+/TkoIdxnnlZU+FyQEyiBoERae3osUfc2wa6/aBXMqvD3esxrMv1MTq+JSXV68UYZUh6dnizZHvVdZ+0DvZUhUumMBAwELI2EPZ6fp88QsP3eOZlZ4XLATF506HkZufeF0q2kbN8jwfekXLcuRBGt3Yexui8d7TRUKJWWjQPE1Mojx41DfuZHK1A3cdAwEDI2kB4y/P75IVPXvZXuBwQE9eRkZWh5/sDg9IHkv6e09wYnd6+kup0gcTrvJe1kZbL2XRtSmVaEnrvaxgIGAgYCJU0EN6qcDkgJi6Hj7A3fCMOtnpyPlNgg/pU2ouVnSXbYnbe7ehxmmS7zdCgS9I9QoSBgIGAgYCBgIHQAVyLUPLlwHNrMpiZhgch33gKd0usz/MxOu40nP2iThy0e5qhmYEwVJF6j4GAgYCBgIEADqIuv9B9bN1TD16YdCajfMTpsI+UVJc9Es//4O0U0nxNsg+9/EzgfXtpMoCB4MWBigysVSkHJMB1Zl8H7tOBxjQlo3zsizGwriipLpfHnNmlsZff70jjWApprAi87wWaDGAgePGmdN7A+maFywEJeFbc8RAa/70hw3x8EGNgnVhSXR6ReAbC1JTSjdpmUH+Rdk97HLPvep/mAhgI3qzrwIF1e4XLAQnxuczpcobpx7m74HpJdei65KjdCIpRuO6tmN/Gu7tlLB75JpoKYCB44xtRNY8AQ77xA9ZUuByQkJMeCp+VYfq+sb7L7H+wWOKtHqQ52M5wpLWrjXc3nFPV4XECTQUwELxZ5tkXjM9BD743Mi6vcDkgIa6jeVk7fGyJMbCuLakOj8cogw62/SmnH3U19sU23vuufccBmglgIMRioWR/1NmXfs+8LKxwOSAhrtsHsw5pfEw6O/7BBDvoZx1eOYqoo0gPE87+g/d1zKSZAAZCLPo8+4NXctCDbwC36RUuByTEdTxvXcbpn4kxuPaUUH8bJd72wnMZ5MG1TZMkYmPDcPspTQQwEBLhc+x5cQ568NkC1bx2VbwckJArOc94g9zxHFjvlVR3vvdHZHkDpesOiLhbBEG/hvk0D8BASITP6aw8jm37HMG+UYNyQEKilqizPt7mc4pCZbCEepsfc/UgS2fP8yl+w6PSvv8CQN0NBJ/t0/U56MHnyua3a1AOSMgKh9Kz9GD33b8/XkK9nZV8IydG4XI29b1ca6bku2wIUFUDYbuUI+qfT7jkHTUoByTEFbI3S0dF3wH2YMl09lyMvI/I6OVKWTJP0tkjPCXpx2oAqKOB4LNnfqwEenD1D1UpByRgqriD/GQZg3/Ec5Dd32GdT1C25ZCfLocufaKLBa/cfoWmARgIbeETBO5yDnq4JG7HvvE1KAck4ILHx7+QYfq+EQjLFF87zuqBOjF255SvU9LeFsdl++x7Fa/z3OaIgZCX4/P74l5dzBrXJOxyjcoBMdgWsr5cNzsWYRWW0UA455ln1VueFxxFBZ267fjtysCzczAQMBAwEFJhrxR7bn+6R/q7a1QO8OTFgFGgDcUVc3thQY24bAbCIvHvnDfnnLfZkszZVONL3LDPnKpB3cdAwEDIy0DwOem0LMP0fY4GzqlROcAD3ae5HlCszh51DzvqREFWN2T5XidahnC/3SG9RcnpAvLn8kNo5cCzPbDiUYeoiRgIGAh5GQjaJl2xXvZkmP4PHWnfqlk5wIOD0vx4StSxvayC/Kz07OiOlkBvOzzzqkZEX0F5PBVzRWOKjMWiqMudCxgIGAh5Bl/bJ8XFeHkvxUG9KuWACIJheTVC1rjA36LO0o9INiEsffaWipqRB3lW/EKODkuxscC3SryjSI2gSHqt82QMBAwEDITUmSVuX6Uswsj3evRZM2tYDmjBpMAykQ4I4Ru4XJdhzM0oX0MeHV2RoZZ7xC/cqM7E5xX8jaO+4VDo2WDshK01agcYCBgIefcplx15WZpBmq4AeO/WuBzQhKD3/eomf9c99ig/hE0Z5cvHQ1alvyC9HfDIm+qtDLEDXPcyNCz8roDR86GU8yIsgKoYCGsk/1teXeVfVuNyQIgB8dvPH5T2wwU/LaOOb+M8n/eNK7CiAL2tEb+VgzLdQR61X9cwYjZJfld6A9TdQFCD/KajD0nTSJ/omOxdq3k5IIDunze829WBLiou/y7Hx3ehleNKguWmd6V8jooLxH1XxD37XJmIOhmyQUa3mhoBqs7SPAADIRdcIe1fSzGtzY60VlIOEDuLb1xJPGJn61G4zvm7fr8/4WDu8n9oLONPyElvL4o7yuNHkm8gJF+izgwfkdFlwIY+n6aJQEU5VTIDoSswecpyNqzbjDci0rlIOaDB4ZiWnWsPe2PEbxtHFm8mHMhPexgJr+dkHAw78qERIMvq9R91MuSWcPMZ1INrUj7H51mO/vXVjGfdOimYSTmqjZ6x1z3vGY7ngkfe4lyXHLXc3+peBp1JN87TJ11y97k46q5k66z4ikce1Gmx7E599x1lGBJ/HxGATmO8uI/GPZRsjm67GJDokOgT23j3ZEf/NUA5qs16eXRfXLcP1jV5LuiE9mHMGf0eR8OaHXpel6k/sn/b1Wb5fAInncyw4UZ1KnpEdHmH1BPXagy3NUKVWSt+js9F+Q8dishT0nDnauycj3jvQcpRbeZK9L6PLsmoR/oxeXQZ7dmY6bjOid8ILO8ss9bip/ajpsF2j4a9K0W9TrJGR1R6b9vnOoUoR8WjNCWoMOqE7RNbReVcgfk8LumGlj8m7Z9Aq3M5Op5DEj9QyqKEFtxwzHQ+bHNJKcxujzTVIbKdWya77ErLXYfhtagD60qrlZjbKX8ngDKhRvxgzL7rTSlmq0HZ5xgM+zzLfFaKveiuKuXoaI7GrPir2khrb4x0dNDJIrywLhO67gDXLZa4y+UT7WpL1HledebbWGDH0S4LhWNBUA908FlsB5CPJVnESZ3gbLd9Sd7+RSsjJim6ramO2VOb/G66zXOr395rcwyoazk6lk2elf1BCgPBFM/Gpr4Hz2VYZt0eueKRD53p77AdRX8Tg2CRNQrOSLSfgRoc69tcmShLp5mX7wZAnsy1/c6wxwQiqYzY92s6efgdqVPeYXGfujhvxeVIfcz24XlTlXJ0JOp17rrVSv0D0roPwOUw+K7kd9RvrUSfiW1HHthKPb9CdaVXHr9EahJNCCpA3ndprM6xbHoybb/HwNkqkN0Bie9zRjkqRLddSbhgFTliP4I622zMYHlstp153gukpXtKRYXn1XRPiDvCoc+SonrDLq3AakEzwgGvltN0ADoG3drU7Y5dtr/TCLgf2z54xP73kP3bbvtsF+UAGDOUtDJtkdFlKF2uuhswmhqVT/0jTttndliDoL8G+gk6DR2hugAAAECfjPmP3BA/D2IAAACoOMHTLnNQBwAAAASvp96OOgAAAEA9hxtbC+dRBwAAAOixxusyFriKI40AAADwx6OnjRvq5qMOAAAACN6bvhF1AAAAQPDOhUOoAwAAAJ6WsVs3Nex1NyoBAACoN+qE2LibQkOV9qMSAACAaqEnELYZOSWjMck1fsHEiOfVGLgqYycWpqFCAACAajExMNgHRQf+ZlEQ9T71azJ2Q+MsVAgAAFA99kr0tacDMnpDp8p6GfM5uCeEUQYAAKgstyX+VdVqJMxFdQAAANVlJKZxoAbFC6gNAACg2nwQwzh4X0Z9EAAAAKDibPY0DvQK517UBQAAUA+6jJyJMAxuGlmGmgAAAOqJnlDQaIj3rQzaf+tBNQAAEMX/Ab/DcOXulLZFAAAAxnRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtb3Zlcj48bXJvdz48bWk+eDwvbWk+PG1pPk88L21pPjxtaT55PC9taT48L21yb3c+PG1vPl48L21vPjwvbW92ZXI+PG1vPiYjeEEwOzwvbW8+PG1vPj08L21vPjxtbz4mI3hBMDs8L21vPjxtbj4xMDA8L21uPjxtbz4mI3hCMDs8L21vPjwvbWF0aD5hReqSAAAAAElFTkSuQmCC" style="width: 82.67px; height: 18.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack x O y with hat on top space equals space 100 degree"> B. x O y ^   =   110 ° " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAggAAAB5CAYAAABcHdkuAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABkivs33wAAFvdJREFUeNrtnQ+IVdl5wL9OZ2eNEWGYHcSIkYhZrBVXKtZaI65UtmKMWIlYMSIbiVgxMhiJbMSVYSuVVEyQrSAbMSJWkF2xgxhBUpmKNYIYsYs1wrARI8ZKBzO1ZmLsbs/XOa9zvb53z7nv/nn3vvf7wUc2zn3nnvPdc+757jnf+T4RyILxjv8PAAAALcafGfnUyKCR+/Z/P7X/DgAAAE3OK0beMLLByA+MXLTGwGcRMmiv+4H93Ru2HAAAACghnUbeNNJj5MdGbhh55jAGfOV3trwf2/LftPcDAACAgvAHRqYa+SsjvUb+ycjdlAyBuHLX3r/X1meqrR8AAABkyKtG5hjZaOSgkX8x8psGGQO+8htbT63vN239X+VRAgAA1MdrRpYY2WHkuJF/M/L7ghsDvvJ72x5t13dsO1/jkQMAAIyiS/BfNrLayF4jZ438qgGTdrVTDHnX4Ve2/XutPr4sbFEAAEAL8Dkjf2pkk5FDRv7VyH81YCL+rZFrRn5kZKuRr0j1OAhfsX//kb3+tw2oq+rnstXXJqu/z9GVAACgrEww8pdGdho5aeTfjTxvwAT7H0YuGPl7I+uM/LGR9jrb1G5/v86Wd8GWn3ebVI+3rF53Wj1PoMsBAECR+EMjf2Tkr43sM3LeyK8bMGn+j5FfGDll5HtGlhn5Qk46+IK93/fs/X9h65O3Dn5t9b/PPo/p9vkAAABkyjgjf27kb4wcNnLVyNMGTIT/beRntg5al/lGPl8wXX3e1quiq5/Zeuetq6f2OQV1NY6uDAAA9TLJyFcDX8V3pDGOew+M/MTI3wW+ittKqtM2W//KastPbPsa4ZB5J7Da8lX7vAEAAP4f3VefaeQbMrqv/kgat6/+j0a+K621r17x1/iubf8taYy/xiMZ9df4hu0X7QwRAIDmRz3zFxr5tpEjMuKZPyyN88z/ByPfEjzzq1E58fEtq6fL0pgTH8MyeuLj27b/kOkSAKDEfNHICiPvGjltZEAae7b/b4183cg04Wx/vVRiRnzd6rORMSMGbL961/azL/J4AADKsVKQtzEQjg74F0J0wLx4zer7O9K4qJOfsrIAAFAOBjKcDB4b6ZfR/AJ/IuQXKBqv2ufyTRnNW/E4wz4xgMoBAMrB6ZRe/L80ckZGMxR+CdWWmi/Ji5kvf5lSP/kI1QIAlIN3Y77gf2fk50aOGukx8qaRTtTYEnTa591jn//PbX+I0392o0YAgHKwIuJl/p9G/tnIASMbjLxh5BVUBgFesf1ig+0n2l8GI/rU11AZAEA5UK/yirf5R/YL72uCtzkk71crbH/6SEZPx9CvAABKBF7lQD8DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg7mqTsPSOHaQcAAABoaPA9Rp7ISKKxIdqRCzOMbDNywsg1I4+NDBt5ZuSpkYdGThv5vpElRtoKVPdJRtZYI+xDI2etnDFyzMgmI68ztAAAysk4GUky9lhezEQ6RDsyNWJ2Grkt8dLHqzwystfIxAbWXxPT9ceo8xVrSEATohbrIiObrVXYZ+SetdArlu6wHYi3rbV7yHaISagPoJCMNbJLaqcrH6IdmbCzihETFP3bBbuaMBxx3VNrEOW5oqCrAZfqMGqChgIrCk3AZCM9tqM+S9AhVG7ZjjwZtQI0nDFGdtgv0ahxO0Q7Up9cb9So4wPblglVfjfLyP4IY+G6kak51H+ljG7bVGTYfgwuN9IRuLay9aAfi8+rPI9lDMNyrhSsM3IxoUFQS7SjHM+pMwPAi+gLfLudjHzG6xDtSI2lth7V6qcrsp0eZeh782qNMnT1ZGGG9d9U5Z6nahg01QyjanPKaoZkeb4odNnrvmOg6dLSLmstTpDRpS393y777/uMDDjK0RWJPVIsZxuAZqVdRlYDfSfUohoIZW3Hmipf0RU5Vse7+rzU3nJYnEH9l1W51/Y6ytlb5YNxMcOz2GxxDLgh+2CnxCxXl6NuOQbuVU8LFADiowb4VhnxF6pnxW+IdiRmZUS9+ussU50xb0a0dU6K9Z8kL/t27EhQXm+orIf24xIKxtyITlax7nTfqzPBPXQp8JBj8OqqBU4rAOlOqOpQfDcwlnX17wM7pi+XxEAoezvm26/6anV6IskcuKdLbd8wfad2p9SGU6GyP0yhzNOhMolTUSDa7eCKGlAfy4hjTFq857jfgzpWKACgOpWVO/WC31ZjsjhSAgOhzO3oluiV2Z0Zv1fPp1D+9Cp67EpJN4Ohj1He/wXgdTv5Rw2mo/KiN2panHDcV49HjuMRASRG/XtmOK6ZUAIDocztOOv4IBqTwj30fRl1XHJTwvIPhMrrTfnZBst+j2HbWJZLbS/aivRkeH/tzC4nyOM8JoDcv9DLesyxqO1Y66jPnhTvtS/iPoMJv/jvhMpL8/TZ5FDZNxmOjWOnh5W9Lod6bPKox1IeF0AunGkSA6FI7dCVgShnSl1OTzN43BRH2+vd3+8IlfNJBroKGyAdDMn8OegxKed1HlWdjh6KO6gSxx8Bsud0kxgIRWrHO466/DSDe/Y7DJJ6nMAXycsxD9Im7AC5gCGZL8c8jIONOdfpgEedNvDoADAQStaOdo8PoM0Z3Her454f1FFmOPbB0QzqfTR0D6Ir5oiPd+++BtRriUe9rvP4ADAQStaOtz3ebVnkppkm7sB0cePNhA2EIxgIzcMPPTrquQbVTbcPnnvUbzaPEQADoUTtcCUxGsjw3ncd994ds7y3Qr8/mUGdw1sMSxiS2ePjkKidqbOBdbzjUUeOvQBgIJSlHZM93mnHMry/6xj5nZjljZHsV3XDgfrGMiSzZbX4JUyaV/ABrXKDxwmAgVCSdrj8ALL2rfI5ITY3Zpn3QvPG+BTr2y0vx4aADJkptcN6ZhXsol6Oi1+IVAInAWAglKEdfR7vsyy99BdL+quyh0O/35JifXskuSMleKITqc+yvUZRLMIRwqOeBsJyHi0ABkLB26Hv1GFxr9xm+e7t8HifXotZ5nx5eZuiLaW6hn0m5jMcs+OE+E24cwtSX18DoYdHC4CBUPB2zPd4l93PQQ+PPYyUuKuy4YRYu1OoZziHxGWGYnas95xsjxSozsc863yMxwuAgVDwdmzxeJf15aCHsx71WBGzzFny4qkz/e/FCeq4rIrRMoOhmA0T5eVc3bVSi04sUL1PeRoIZ3jEABgIBW+HzwpuHh87Pr5d9ZwOe6eKPhfWUY4enQz7yZVqlVj3VzTEpCbT0LzX92yDNNDEBUmeklLLPmkndS1To25pZMF6E2qcEb+Jtrdgeu7zrHd/HWVritKVRnbYAaPLV8P2+aXFGhnZz3tmjS99DsRtAAyE1mzHFY932Z4c9LDPox6n6yw7HHjvWYzJvc0aGeH4N4fK0Lk0POYqO3E/cShXE1bU41mvUazOSbTzYNz0n8s9J9lBKd5pgFuedX8YUYY6uuhy1VZrCFy3nTaqvDUp1D3qONN65hzAQGi5drgcFPNKhuez3XwvQfnvVynvtoyEj+6ucv1E+7fbVX73/aJ3qoXWKvI5GhiUXTHvM0fc8bnjLrWoRTaQUX3zYNiz7o+qGHO6snM/5jNLK7ZCm0SnzGY/DTAQWqsdYz3fPSty0MMq8YuDk+Qkwlqpva2tTpL9VoYi3umri9yZVteYXH0nrbsx7jVf3J6lFTkRo9ztnmXqisj4gul/XIwJfbDKqoEadBfsS0HlYoxnl/Qs8gwplzMoAAZCtu1Y5PneySON/TLPukxPeB9dLdgv7hX38DPQVYPOoncmjWalS9G6b6zLxfMCFpVOXu95NNYnEuF08XMgjGsgjLNWmE+Z+wuo/2UxdPIoxpf9GnHHI0+alWxcinUGwEAofztWer7LFuagh7yNlbH2vasOmFeswfDciur8sv1g0mvayzIoujwq6/KydzmcdHtOVvVEqdrlWZ4+pCkF1P/6GDq5VsezvS7uzGZJYn73e5RfdpZIfVs4ZZTT0rpgICRnnRQnKux4z7qsFkjEbIeCLzi+Zi+Grp1i/32eVE/DrJOaj5OiLrE/9OwE5wuqW98gSfWeHZ4s0X4CKm8nqL863kRFrXyKgYCBwMTaMu3Y6NnPOnLQwxjPumwQSEzUJDAstR099ot720C3HzQlszrcvRPDutwi/i++FQXV69UYbaj37PAOyTbVdafUDvbUDEmmMBAwEDAQ/Djg2c/yCHHf4VkXMuWmwPsOJVc7975Uso2c5Xs88JEUI+dCGN3aeR7j5d2bYKBErbRoHbpSaI8eNQ37mZxogr6PgYCBgIHgxwee/SwvfOpySCAxriMja0PXdwcmpY8l/T2nBTFeegcLqtPFEu/lvSrBvVzOphtTatOKULmbMRAwEJhYMRAKbCCQOTEFXA4fYW/4Shxs9eR8vYEd8TNJFis7S3bHfHkn0eMUyXaboUKbpHuECAMBAwEDAQMBA6EE3I5Q8vXAdRsy+DINT0K+8RQeF1ifF2O8uNNw9os6cZD0NEM1A2GgSfo9BgIGAgYCBgI4iEp+ofvYuqceTJh0LqN6xHlhHy+oLjsknv/Bhyncc7NkH3r59UB5BxgygIHQUu04jIHQurjO7OvEfTbQCSdlVI+DMSbWNQXV5eqYX3Zp7OV3O+5xMoV7rAmUN4chAxgILdUOlzN7EQ2E9+n66TBT3PEQKv+9NcN6fBxjYu0qqC6PSzwDYXJK943aZlB/kaSnPU7asm4yXAADoeXasamEBsIeun56+CRzup7h/ePkLrhTUB26khwljaAYhStvxaIEZbfLaDzy7QwVwEBouXb4RobNI1CSbxwEAiWlyBkPhc/O8P6+sb6L7H+wXOKtHqQ52U533GtvgrIrzqnq8DieoQIYCC3XDp8Miipjc9CDb2ZJQi2niOtoXtYOHztjTKwbC6rDUzHaoJNtd8r3j0qNfTVBuZdsGYcZJoCB0JLtWCrZH9n2pduzLkvp+unhyj6YdUjjk1Lu+Afj7aSfdXjlKKKOIj2v8+s/mK9jBsMEMBBash2dnu+1t3LQg28guql0/fRwHc/blPH9z8WYXDsKqL9tEm97YVYGdXBt09QTsbFiuP2UIQIYCC3dDp/j28tz0IPPVq7WtY2uny43cv7iDfLIc2It6mD2zR+RZQZKVw6IuFsEQb+GRQwPwEBo6Xb4nDLL4/i5z1Hyu3T79Ilaos76eJvPKQqV/gLqbVHM1YMsnT0vpvgMT0hy/wUADITmaIfPNvCWHPTgk3r6Q7p9+qxxKD1LD3bf/ftTBdTbeck3cmIULmdT3+RaMyTfZUMADIRit2OPFCN6oU/Y5166ffq4QvZm6ajoO8EeKZjOZsWo+7CMJFfKkoWSzh5hn6QfqwEAA6G87fDZ+z9ZAD3wUZMBk8Ud5CfLGPzDnpPsoZIN2qDszqE+bQ5d+kQXC6bcfouhARgItEP8gtldz0EP18TtoDiWbp8ulz0e/uUM7+8bgbBI8bXjrB6oE2N7TvXqk2RbHNfttVeavM+TzREDAQMhHjfFvUqaNa6PyesCqbI7ZH25Mjs2wiosooFwwbPOqrc8ExxFBZ166Pjt2sC18zEQMBAwEGhHgAPS2PgDUz3uv48pPT3mBowC7WCumNtLG9T5i2YgLBP/l/OOnOs2T+pzNtX4EnftNX0t0PcxEDAQMBDi4XNia1WG9/c54jhfIBV0n+ZOQLH69ah72FEnCrLKkOWbTrQI4X7bQ3qLkrMNqJ/LD6GWA8+ewIpHK0RNxEDAQMBAiP9uccWs2Z/h/X/ouPd9pvX0OCLVj6dEHdvLKsjPWs8X3YkC6K3Xs65qRHQ2qI59MVc0JsloLIpWybmAgYCBgIEQn4PSuFg1VxponLQUwbC8GiFrTOBvUWfphyWbEJY+e0uN+iIPMlP8Qo4OSmNjge+SeEeRKkGRNK3zRAwEDAQMBNpRg9ni9rnKIhz+OI93L/liUmBCYJlIJ4RwBi5XMowFGdVrwONF18jB3CF+4Ub1S3xhg59x1DMcCF0bjJ2wq4XGAQYCBgIGQn1cd9RlZQb3dAXyu8TUng5B7/v1Vf6ue+xRfgjbM6qXj4esSneD9HbYo26qtyLEDnDlZahY+G0Bo+cTKWYiLAAMhGK1Y4Pkn63W1f5VdPXk9Ijffn6/JA8XPE1GHN/GeF7vG1dgTQP0tkH8Vg6KlIM8ar+uYsRsl/xSegNgIDRHO/TD4p7jXZjmx0aX46P1Nt08Obp/XvFuVwe6qLj8ex0P34V2jkp2yDjLTZekeI6Ki8WdK2LIXlckok6GbJWRraZKgKrzDA/AQKAdMXCF5t+c4r12OO61lm6eDP2Kr6QkHrZf61G4zvm7fn+ozsnc5f9QWcYfn5Pe5oo7yuMDyTcQki9RZ4aPy8gyYEWf0xgi0KT0NYmBULR2tAU+ArP8qtft0rsR9yHbbAoci2nZufawt0X8tnJk8V6dE/lZDyPhnZyMg0FHPTQCZFG9/qNOhtwXMp9Ba3C7SQyEIrZjtmOeeDvj1QP9uOHkQg30jL3ueU93XBc88hYnXXLUcn+tvAz6JV05T1/vkrtP4qjHkq2z4lsedVCnxaI79T11tGFA/H1EAMrGWHEfjXsu2RzdbpV29Eh0aPeuBGVPdLyHe+ji1dkiL+6L6/bBpirXBZ3QPon5Rb/f0SHnha7XZeoH9m97E7bPJ3DSmQw7fNRg1COiq0vST1yrMWRrhGZmo/g5Pi+mHYk4GlGnesO2q7FzMaLcI3Tv6iyQ6H0fXZJRj/SToeWnmTHv4zonfjewvLPKWouf2YeaBns8BsTeFPU6wRodUff70F5XFqIcFU8wlKCJUSdsn9gqKhdoR2JOSboh8k9K8pN0LclRiR8oZVmdFtxgzPt8knBJKcw+j3uqQ2SSLJNtdqXlscPwWlbCvlJrJeZhys8JoEioEd8f8931vhRvq6Fs7TjomNQ7Pdt8XsqR0beQnIjZYdYluNeBGPfRSSeL8MK6vObKAa5bLHGXy7vsakvUeV515tsmxd+jrMVS4VgQtAY6+Sy3E8gTqS/ipH7g7LHvkg7aUfdHSa2PLd2eVQfzyVV+N9XWudZvhxLOZS3Dds9O8iyFiWCSZydV34NZGbZZt0dueNRDv/R77QDrrmIQLLNGwTmJ9jNQg2NLwpWJorw08/LdAMiTBfa9M+jxAVGvDNvy9T6raYc36lx4TNynLi5acTmEn7RzEXigXueurFbqH5BWPgCXw+Alye+o30aJPhObRJ7ZTr2oifrKOHk5idQEhhA0AXnn0lhPO2KjJ+wOeRgAtQLyHZb4vnNgv2x1JeGyVeSwfQjqpLItg2WlefbLcyhwL91TalR4Xr3vaXFHOPRZilNv2JVNsFpQjXDAq9UMHQDIGd2i1e2Ovfa9rZF8n9i5ZNj+94D92z57bRtqgzQMJe1MO2VkGUqXqx4HjKZK51P/iLP2ml5rEHS3gH6CTkPH6S4AAADQKaP+I3fFz4MYAAAAmpzgaZf5qAMAAACC6an3oA4AAABQz+HK1sJF1AEAAAB6rPGOjAau4kgjAAAA/N/R00pmt0WoAwAAAIJ507ehDgAAAAjmXDiKOgAAAGCajGbd1LDX7agEAACgtVEnxEpuCg1V2o1KAAAAmgs9gbDbSJ+MxCTX+AVdEderMXBLRk8sTEGFAAAAzUVXYLIPik781aIgaj712zKaoXE2KgQAAGg+Dkh02tMeGcnQqbJFRn0OhoQwygAAAE3LQ4mfqlqNhAWoDgAAoHkZjmkcqEExB7UBAAA0Nx/HMA5uyogPAgAAADQ5OzyNA03hPA51AQAAtAZtRs5FGAb3jKxCTQAAAK2JnlDQaIhPrfTbf+tANQAAEMX/ArvVgahHDIh4AAAAxnRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtb3Zlcj48bXJvdz48bWk+eDwvbWk+PG1pPk88L21pPjxtaT55PC9taT48L21yb3c+PG1vPl48L21vPjwvbW92ZXI+PG1vPiYjeEEwOzwvbW8+PG1vPj08L21vPjxtbz4mI3hBMDs8L21vPjxtbj4xMTA8L21uPjxtbz4mI3hCMDs8L21vPjwvbWF0aD4CQjO2AAAAAElFTkSuQmCC" style="width: 82.67px; height: 18.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack x O y with hat on top space equals space 110 degree"> C. x O y ^   =   120 ° " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAggAAAB5CAYAAABcHdkuAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABkivs33wAAGTVJREFUeNrtnQ+IV9l1x0+ns7MbMwiDO4gRIxEj1oorFWunRmalYsUYsRKxYmQwErFiZDASMeIOw1YqqZhFtoJsxIjYAdkVO4gZkHSYytQIYsQu1giDESPGSgdjrZkYu+k9nfv6e/N8v3fvfe/e++7v9/t+4LCuztx73333z3nnnnsOEXDBZMX/AwAAAKDB+DMhnwkZFfJQ/vcz+fcAAAAAqHPeEPKOkC4hPxAyKJWB32fIqPy5H8jfe0eWAwAAAIAapE3Iu0K6hfxIyE0hLxXKgK78Vpb3I1n+u7I+AAAAAATCHwiZJeSvhPQK+Sch9y0pAqZyX9bfK9szS7YPAAAAAA55U8giIduEHBPyL0J+XZIyoCu/lu3k9n5Ttv9NvEoAAAAgH28LWSFkr5AzQv5NyO8CVwZ05Xfyefi5viOf8228cgAAAKACm+C/LGSDkENCLgr5ZQmbdtotBt9t+KV8/kOyP75MOKIAAADQAHxOyJ8K2S7kuJB/FfJfJWzEvxFyXcgPhewS8hVKj4PwFfnvP5Q//5sS2sr9Myz7a7vsv89hKAEAAKhVpgr5SyH7hPQJ+Xchr0rYYP9DyGUhfy9ks5A/FtKc85ma5e9vluVdluX7fibux9uyX/fJfp6KIQcAACAk/lDIHwn5ayGHhQwI+VUJm+b/CPm5kHNCvidktZAveOqDL8j6vifr/7lsj+8++JXs/8PyfcyV7wcAAABwSquQPxfyN0JOCLkm5EUJG+F/C/mpbAO3pUPI5wPrq8/LdkV99VPZbt999UK+p3hftWIoAwAAyMt0IV+NfRXfpXIc9x4J+bGQv4t9FTfVaJ82yfZH1pYfy+crwyHzbsza8lX5vgEAAID/h8/V5wv5BlXO1Z9Qeefq/yjku9RY5+qRv8Z35fPfpnL8NZ5QxV/jG3JcNGOKAABA/cOe+cuEfFvISRr3zB+j8jzz/0HItwie+WlENz6+JftpmMq58TFGlRsf35bjB5kuAQCghvmikLVC3hNyXsgIlXu3/2+FfF3IbMLd/rxEMSO+LvuzzJgRI3JcvSfH2RfxegAAoDYsBb6VgWR0wL8gRAf0xduyv79D5UWd/AyWBQAAqA1GHG4GT4UMUSW/wJ8Q8guExpvyvXyTKnkrnjocEyPocgAAqA3OW1r4fyHkAlUyFH4JXVvTfIkmZr78haVx8gm6FgAAaoP3DBf43wr5mZBTQrqFvCukDd3YELTJ990t3//P5HgwGT8H0Y0AAFAbrM1YzP9TyD8LOSqkS8g7Qt5Al4EYb8hx0SXHCY+X0Ywx9TV0GQAA1AbsVR55m38iv/C+RvA2B8XH1Vo5nj6hyu0YjCsAAKgh4FUOMM4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACodThJ2ftCTqArAAAAAMChwXuEPKfxRGPPAm3nIiG7hZwVMkjjydJeCHkpZEy2n3OhnBdyRMg6IS0B9/u82PNcF/JUPsdL+VyP5bN8X8gKIU0BtX26kI1SmfxYyEUpF4ScFrJdyBxMLQAAqE1aaTzJ2FOamIk0JAWBN6JeIQ/ILN16JC/lJtsZkDK2T8idHM/yRMghIdNKbD8nphsyaPNVqUiAOqRJTqwdUivslxP1eUzTHZMLyh05EY/LATEd3QdAkEwScoCqpysPQUGYLK0AL3MqBmkyLGRhic+0L0UZiwv/22VpTRjL+LkXUrHzaVFga8CVAn1/FRaF+mCGkG45UItOzttyIM9AtwJQOm8J2Su/RLPmbdkKQmcBi4FKXtH4cYpPeGO8WaU9j+Q7mZryewukklRNWbghZJaH9q+jyvFTJGPyY3ANTTzGiY4ezsu+To6r1ZiGtWkp2Ezj53quJuUZT4MZADARXsD3yM1IZ76WqSBsTdlYXEi/VJhcs0r2Z7U2tGmUwevmtSplsBVomcP2b0+p81wVhSZNMUrbUzZgStbOFwWbvR4qJhOblg5IbXEqVUxb/N8p8u8P07iDkOo8sIfCcrYBoF5ppnFroK5iULaCsNODYhCXAdlHrtiYoeyczrFWD1D1I4flDtq/OqWuPTnKOZTywbgc0zNsdioWjmfyxc7MYY66rZiY1zQ1UACAOayA76L8ZvoyFIS1npWDvBu1yTpYrc6hnGWyU+mtjHe2yGL7p9PrPip7C5TXmyjrsfy4BIGxOGOQRdodn3u1FaiDTZrHFRPzIcFpBQDbigE7FN+PzWW2/n0k5/RwoArCbKpuhr8rP1TW0UTrZbTO8FXB9UKOCbmXU0nYavl5OuRXfVpdz6mYA/dcqu4bxmtqu6VnOJco+2MLZZ5PlIl4GwHRLBeJrInyKY07xtjifUV9j3JYKAAA6USWO/aC311lszgZoIJwrcpatCJHWezgeNVQQRi1+DXbTtmW2X2O19UBC+XPTRkPUyz1zWjiYxTrfwDMkRMua5KcIjdBRc4q6uXrka14RQAUpkd+UWcxNTAFYUdK/ceouJ/Sjoyv+DQ5Yul5Lio+iGw4RvJ6mXVdcnvB8o8myuu1PEbjZb+PaVsua6i6+S6Sbof182BWOUGewWsCwLuloWwFgeMxPHG4YXRQ9VgPaY5+RT9UNinqsHm98rBDi8jdRHk2b5/NSJR9C9OxPPZpTIzNHtqxXaMdq/C6APDChUAUhP2Jevsc1MHe8rrXJrcVqIctA1lOodwGm8HjZiqeJe/5fkuinHsO3klSAWnBlPTPMY0J4es+KpsLH5M6qBKuPwLgnvMBKAhNiQ31Hrk7auzRVBCKOOLtV5T9EwfPNaRQSPI4gXfS6zEPbJN0gFyKKemX04615Twc1WhTF14dAA2hICSvNa50WBd/od4nd74XzRofQDscPNcuRZ0f5SgzGfvglIN2n0rUgeiKHtHxUj5cQrtWaLTrBl4fAA2hIMTbcMFDfXs0rQh5zN1bNcp1kZtmNqkD05nGm0kqCCehINQPH2gM1EsltY1NijpngQvxGgGoawWhmSp3+XlNmOvhmds11588Ef5USYxGHD6XyjJy0LC8leTeLyR5xLACU9I9Og6JPJjaSmzjXY024toLAPWtIMSjDJ72+NzXNNYf06/ZGVRetEZGdY38rmF5b5F7q24yUN8kTEm3bCC9hElLAl+YWG7idQJQ1wpC3B9prsfn1jl+NVUQdlG5vlU6N8QWG5b5ILFvTLZsyUnGhgAOmU96AUF6A2jrGdI7B0TgJADqV0GIvO8HPD+3i+vW/RpluvTSX072rbInEr+/02J7u6m4IyXQhDdSHbM9R1EM4QrhKU0FYQ1eLQB1qyDwOsDn8is9P7eOpXW+QXm8po6R2nLrcu1t0Xim64ZldtDrxxRNltqa9JnowHR0x1nS23AXB9JeXQWhG68WgLpVEMpineXNvENjLXvo4bmeajyXqVU2mdjroIV2JnNIDGMqumOL5mZ7MqA2n6ZyU7ACAKAgZAVrM2GnxlrW7+G5Lmq0Y61hmQto4q0P/vPyAm1cnaK0zMNUdMM00osx/lz+bCic01QQLuAVAwAFwTLrLX+Y6FhwfXzs6Ph25bkdtj9lXCzLUQ4fJSX95GrKSsxmJQ4xySE5OdzmA/lAfFf3MhVPScll98lNncvkqFvsyZs3ocYF0ttoewPr537Ndg/lKHuu/ELYKycMm6/G5PuzxUYaP897KZUvfg+I2wCgINQGKqvrRsPydNJK93h4rsMa7Tifs+zkzY+XBpt7k1QykvEnjtfCYGmWGmWfXOyzOjdvnHCOYnWJsp0HTdN/riH9HOeh3Qa4rdn2xxllsKMLm6t2SUXgBlWCrtia+GlkXWfagj0HQEEInvcpO+qg6VqsclD0lQxP57j5QYHyP0wp7w6Nh49uT/n5afLf7qT83vdDHyTLpFZkkiuc5YBhPYtIHZ/b1NTCGtmIo/b6YEyz7U9SlDm27Dw0fGe2Yis0UXbKbJynASgI4dOX8cxnDcuapLn2rPXwXOtJLw5OkZsIm6j6sTY7SQ5JeZaxpm8IeXBsqLK56m5a9w3q6iC1Z2megakbT5wtIpMD6/9Wgw19NMVqwArdZbm4sQwavLuid5HnUW05gwIABeF1siyYnYZldWquOz7S2K/WbEvRoFRsLThCaot7ciyx1aAt9MHRJc1IfG7M5uIlMY2qVWF+ikQnEuFc0nMgNFUQWqUWplPmkQD7f7VBnzwx+LLfSHqZ2opkJWu12GYAoCCE9YGSJ5zwOtJby5Z5eDbfysokue6yA+ZVqTC8ksJjZ1h+MPHPNNfKAJmi0ViVl73K4aRdc7PKE6XqgGZ5/JJmBtj/Wwz65HqOd3uD1JnNisT8HtIov9ZZQfmOcGpRzlPj0ogKQpYZfl2O8jZTOFFhJ2u2ZQOBQixUdPBlxdfsYOJnZ8q/X0LpccB5U9NxjGET+2PNQTAQaN/qBknKe3d4BmX7CbBsLdB+drzJilr5AgoCFAQoCMFSbf25lrO8bZrjrMXDs72l2ZYuAoXJ2gTGqLqjxxFSHxvw8QOnZGaHu/0G2uVO0l/41gbar9cMniHv3eG95DbVdRtVD/ZUD0mmoCBAQahHBaE54+Mhb5TZo5rjzEeI+xbNtiBTrgU+VHRy2r33VeQ2cpbu9cAnFEbOhbQJ+or0F+/eAhMly9LCbZhi4Xn4qmnSz+RsHYx9KAhQEOpRQegi+47FH2mOM1/otOU4gcKoroxsSvx8e2xT+pTsnzktNVj0jgXap8vJbPFeX6AulbPpNkvPtDZR7g4oCFAQoCAESVpAo8cFPxZqUUFA5kQLqBw+kt7wURxs9uSc46A9ugPx91QsVrZLDhou3kX6cSa5PWaIaCK7V4igIEBBgIJgn2ofWEUzxkJBaGDukN6VmC4HX6bJTUg3nsLTgPtz0GDhtuHsl3XjoOhthjQFYaROxj0UBCgI9aYgDKc83wmPH25QEOqQrOQXfI7NZ+rxhEmXHLXDZME+E2hftpCZ/8HHFurcQe5DL8+JlXcUUwZAQQiOdVU+8GzcLDgBBaFxUd3Z5437YmwyTXfUjmMGG+vGQPtyg+GXnY2z/HZFHX0W6tgYK28RpgyAghAUbCW8R687cduKEaNyZg9RQfgQQ98O80kdDyH68y6H7fjUYGOdEmhfniEzBWGGpXqzjhnYX6TobY8orvstTBcABSE4jtDrll+bPlrba1BB6MHQt4dOMqcbDus3yV1wN9A+VCU5KhpBMQtV3orOAmU3UyUe+R5MFQAFISjSHBNt+4jpRob1EShJNw4CAiVZ5IJGhy90WL9urO+Q/Q/WkJn1wOZmO1dR16ECZUfOqezwOBlTBUBBCAYOZpYMd9/roB6dDIoskzw8s25mSYRatojqap5rh499BhvrtkD78JzBM/Bm2265/qzU2NcKlHuF7HlDAwAFwd2Hnat1ehW5v7KtS7tmW1Zh6NtDlX3QdUjjPqrt+AeT5abvOrxyFllXkV7l/PqP5+uYh2kCoCAE+1F3zrGlQmddW+nhuXUD0c3C0LeH6nredsf1XzLYXFsC7L/dZHa8sMBBG1THNHkiNkaK208wRQAUhGBIHmf2e6hT5/r2mhKevdoHUROGvl1uev7ijfNEc2MNdTLr5o9wmYFSlQPC9Igg7tfQiekBoCAEwSKa6Aw9IOe+a3Rumfm4fq5zlfw+hr19skzUrq+36dyiYBkKsN86Da0HLp09By2+w7NU3H8BACgI9uC4Bo9ibWf/oLc81a1zDLzTQzt0Uk9/jGFvn42KTnfpwa57fn8uwH4bIL+RE7NQOZvqJteaR37NhgBAQciGnfPijshXyX6yvCx6KIzohTphn3sx7O2jCtnr0lFRd4M9GVifLTBo+xjZi2xWjWVk54ywn+zHagAACkI+2EkwfgTMf/YdLE7n7L8vgPeJjxoHzCB1kB+XMfjHNDfZ4zW2+MTloIf2NCn6Uie6WDzwykpMDQAFoVTYShBPwnSH7F+R1m1HmcH0Iq6T2kFxEoa9XYY1Xv6ww/p1IxCGFF/bxHrATozNntrVT8WOOG5QxYRZzyCbIxSE0BUEvrEVD3XPznfTSmzPLVJbSV2j+pi8QcAqBxPalyqzYxlaYYgKwmXNNnO/+UxwlBV06rHidzfFfrYDCgIUBCgIpdGUUPYfkr3cLXk5SuXGH5ilUf9hbOn2WBxTCniiqGJuryppEoemIKwm/cV5r+e2LaF8zqYtVAnb2t8AYx8KAhSEkBWEvoRiPyeANunc2FrvsH6dK44dBKzA5zR3Yx27SWqtWTcKXGXI0k0nGkK43+ZEv2XJxZK+PLLMcNUceHpiFo9GiJoIBQEKQqgKQtxTf5TcBFbLu7aoYtYccVj/B4q6H2Jbt8dJSr+eknVtz1WQn02aC93ZAPqtV7OtrES0ldTGfkOLxnSqxKJolJwLUBCgIISoIBxJtG2Jp3rZt2ELqSMQHqPyYtVcLVE5aSjiYXk5QlY82EbWXfoxchPCUudsqawv8jjzSS/k6CiVGwv8AJldRYqCIj2ncp2goCBAQWhkBSEea4AV9mUe646Szan8pRaS2ufKRTj8Vo21F/liLDA1ZibiDSF5tqVKhrHUUbtGKOxQyy2kF27U98ROI+sdjiR+Nh474UADzQMoCFAQQlIQumlitlefV4yjs33daKs3FH26zkEbVYH8rmBrt0Pc+35Lyr83U7Yfwh5H7dLxkGVpL6nfTmi0zffEroYqL0Ok4TfFlJ57FGYiLADqXUHYSn6z58ZhS+eorHe35u90kf9star3uB5D3a6WmnWeP0TFwwXPpnGTmW6scN24AhtL6Lcu0rMchJSDPOu8LlJi9pS0KAEABWGc9Yn2bPJYdzx8M3/c6PpM8YfFA8VaaPNjY4rio/UOhnlx+Pw88m5nB7qsON6HFC9fBQ+OKDSoibnpCoXnqLic1LkinsmfC4msmyG7aPyoKQpQNYDpAaAgeIevS8ctfds91r2AJh7rmoZJVoXm32GxrXsVdW3CMC8Gf8VHKYnHSH1tRnXPX/X7x3Nu5ir/h0jTneyp3xaTOsojZ1dbFOA7z7ozfIbGzYBRf87GFAF1Sn+gCsJympjFdo/j+prkPGcL7AV6/QhyRY7ybnr4qufj0vsZ9SDbrAVOG2p2qjPsrLOq6Mrig5wb+UUNJWG/J+VgVNEOjgAZqtd/1s2Qh4TMZ6AxuBOggtBB+uHlfci9nM+xULFPbHVsPeCPG9xcqAKfF/GZ91zFz8WvvJmkS84y91fLy7AophXnNbnrJI56Sm6dFVdqtIGdFkN36nuheIYR8pdPHgDfTCL11bhX5ObqdjUWaHx4+JYiieS6KTu0e5Gsk9MU63A3hng6O2niuTgfH6SdX+1JaIkmX/RHFIMqGcCDzVeP5L8dKvh8OoGTLjjq227FosJXRDfUyDhRWWOQrRHUM9s0N0hf/kOz5aYZ2jXYomnoT2WUnTdsOyttgxnlnsTwTmcpZZ/7sEmGPdL7Ema0+Yb1qO6J34+Zd9bHBv6gpefs0RjYhyz261SpdGTV97H8uVohy1HxLKYSqGPYCVsntgrLZQ/t4WilDwNUDmw9+zmyGyK/j4rfpGtITuUYBKtzanCmprB7BU1KSQ5r1MkOkUWyTDZJS8tTheK1ugbHSjVLzGPL7wmAkGAlfshw7fqQ3B01tBsoK77F5rXxY4pNvU3z3Q1QbWT0DZKzhgNgc4G6jhrUw5uOi/DCbCZU5QDnIxZTc/kUaW3Jus/LGv9u8ntGaZNVhGtBoDHgzWeN3ECeU35nvR65ltjyL+J15lagysGog7VtU8bHFh/PsoN5WtrqWbLvq/3us4J7WcOwR/Plv7SwEUzXnGzse+Ay4xgfj9zUaAd/6ffKhaI9ZaKulkrBJcr2M2CFY2dBy0Qoi6Yv3w0AfLJUrjujGh8QeWVMls/15PE74s33GoUbgvsDR++GnQtPk/r2yKAUlUN4n9yLgAbsda7KasX+AbbyAagcBq+Qv6t+2yj7TmwReSkHdWcdjZXWlC+GqZhCoA7wnUtjS442tlDYOTrmO35HfMPuOOW70sk3sE54aGNd0iwtCcOyI8fkS2CHk91k//rdEvnl+SxWF58plRWel+s9T+oIhzomRfaGXVcH1oI0kgGvNmDqAAA8w5YUPrY5JNdtjuT7XO4lY/LPI/LfDsufbUK3ARuKEg+mfTRuhmJz1dOY0hQNPvaPuCh/plcqBO0N0D9xp6EzGC4AAAAAaKOK/8h90k/EAgAAAIA6Jn7bpQPdAQAAAIB4euoedAcAAAAA2HM4OloYRHcAAAAAgK813qVK4CpcaQQAAADA/109jTLUdaI7AAAAABDPm74b3QEAAACAeM6FU+gOAAAAAHCO+SjrJoe9bkaXAAAAAI0NOyFGuSk4VGk7ugQAAACoL/gGwkEh/TQek5zjF0zJ+HlWBm5T5cbCTHQhAAAAUF9MiW32ceGNPy0KIudTv0OVDI0L0YUAAABA/XGUstOedtN4hk6WnVTxOXhGCKMMAAAA1C2PyTxVNSsJS9F1AAAAQP0yZqgcsEKxCN0GAAAA1DefGigHt2jcBwEAAAAAdc5eTeWAUzi3orsAAACAxqBJyKUMxeCBkPXoJgAAAKAx4RsKHA3xhZQh+Xct6BoAAABZ/C8IElVUyMWv8AAAAMZ0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bW92ZXI+PG1yb3c+PG1pPng8L21pPjxtaT5PPC9taT48bWk+eTwvbWk+PC9tcm93Pjxtbz5ePC9tbz48L21vdmVyPjxtbz4mI3hBMDs8L21vPjxtbz49PC9tbz48bW8+JiN4QTA7PC9tbz48bW4+MTIwPC9tbj48bW8+JiN4QjA7PC9tbz48L21hdGg+p0pY2gAAAABJRU5ErkJggg==" style="width: 82.67px; height: 18.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack x O y with hat on top space equals space 120 degree"> D. x O y ^   =   130 ° " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAggAAAB5CAYAAABcHdkuAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABkivs33wAAGWtJREFUeNrtnQ9oV9mVx8+mmYy1QQiZIFOxUrHiuuJIxXWzVjKy4kpqxZWKK1ZkKhVXrIRUGqbihOCGlVmxRVxBrNgg2YA44opYQbohFWsFScUV1wbCNKRis7LBWmvT1J3Ze8j9Nc/n+71773v3vnff7/f9wKF2/Hn/vfvn3HvPPYcIuGCW4v8DAAAAoMr4GyGfCBkX8kj+7yfyvwMAAACgwnlDyDtCdgr5vpB+qQx8GiPj8nffl//uHZkOAAAAAApIg5B3hbQJ+ZGQu0ImFcqArvxRpvcjmf67Mj8AAAAAeMJfCJkv5B+EdAn5DyEjlhQBUxmR+XfJ8syX5QMAAACAQ94UslzILiHHhfxUyG9zUgZ05beynFzeb8ryv4lPCQAAACTjLSFrhRwQck7Ifwn5k+fKgK78SdaH6/UdWc+38MkBAACAafgI/ktCtgjpFnJFyK9zWLSjXjFkXYZfy/p3y/b4EuGKAgAAQBXwWSF/LWS3kJNCfibkdzksxH8QckfID4XsE/IVivaD8BX59z+Uv/9DDmXl9rkp22u3bL/PoisBAAAoKrOF/L2QDiF9Qv5byMscFtj/EXJdyL8K2S7kr4TUJqxTrfz322V612X6WdeJ2/GBbNcO2c6z0eUAAAD4xGeE/KWQfxRyRMg1Ib/JYdH8PyG/FHJeyPeEtAr5fEZt8HmZ3/dk/r+U5cm6DX4j2/+I/B6L5PcBAAAAnFIv5G+F/JOQU0JuC3mRw0L4eyE/l2XgsjQL+ZxnbfU5Wa5SW/1cljvrtnohv1OwrerRlQEAACRljpCvBnbFQ5SP4d5jIT8W8i+BXXFNQdu0Rpa/dNryY1m/PAwyhwKnLV+V3xsAAAD4M3yvvkTIN2j6Xv0J5Xev/u9CvkvVda9estf4rqz/A8rHXuMJTdtrfEP2i1oMEQAAqHzYMn+1kG8LOUNTlvkTlJ9l/r8J+RbBMj+K0ouPb8l2ukn5vPiYoOkXH9+W/QeRLgEAoMB8QchGIR8IuShkmPJ92//PQr4uZAHhbX9SSj4jvi7bM0+fEcOyX30g+9kX8HkAAKAYJwVZKwNh74B/R/AOmBVvyfb+DuXndfITnCwAAEAxGHa4GDwVMkDT8QW+TIgv4Btvyu/yTZqOW/HUYZ8YRpMDAEAxuGhp4v+VkEs0HaHwi2jaQvNFejXy5a8s9ZOP0LQAAFAMPjCc4P8o5BdCzgppE/KukAY0Y1XQIL93m/z+v5D9waT/HEIzAgBAMdgYM5n/r5D/FHJMyE4h7wh5A00GArwh+8VO2U+4v4zH9KmvockAAKAYsFV5ydr8I7nD+xrB2hyk71cbZX/6iKZfx6BfAQBAgYBVOUA/AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOhwkLLDQk6hKQAAAADArsE7hTynqUBjzzwtZ62QDUI+FHJRyMeyzBNCJoW8EPJYyCUhJ4RsElLncbsvFrJfSK+QO0KehuoyJuvJ9V0rpMajss8RslUqkxeEXJHCbd8jZLeQhRhaAABQTOppKsjYU3o1EqlvCgIvpKfl4vmpoUzKBWupR8pYh5CHCeryREi3kLdzLD8HphswKPMtqUiACoQ11hYhe+QguyxkNKS1T8gJ5aHUdk/KDjEHzQeAl8wUcpDKhyv3RUHgOaQvwUJaTs4KacyxPh0RylhQ+O+uy9OEOGXohVTssjxR4NOAGyna/hZOFCqDuULaZEedTDkgH8iOPBfNCkDuzBByQO5E48atDwrCJsVimlR4g7M847rwwni3THkey28yO+Lf8anH0RhlYVDI/Iy+xfNQ3hNyM8hXPnUhpW6r3Cy+jOhXrRiGxTwp2C6k38GA/FR2lHMZdWYAwKvwBN4uFyOd8Zq3gvC+o3koWL/mjOqyXuYXVQ4+kW3QSIPnzdtl0uBToNUOy787Is/zZRSaKMUoak3ZgiFZnB0FH3s9UgwoPlo6KLXF2TR9tMX/2yj/+xEhw6S+D+wkv4xtAKhU2KivzUAx8EFB6HKsHAQX1nmO67I1Yhddkp4Ec/U1Kn/lsMZB+Vsj8mpPkE53xIZxDYan3+xVTBzP5Ic1HUR8HPVAMThva2qgAABzWAHfR1PH6Ul32HnNSeVOIK/Iv2+mV4+0+c+L5GLMi+5zg3redliXTTH5DiRMk41K78V8M5tXJ3PodRuVAxYVvzHK1x4ElGFFTCcrDUa+92pIkQcP2pOKwfmIYLQCgG3FgA2KRwJjmU//TssxfdNjBWFVzFxkYvDMBph8Sqn74sGFhX2z3NVH5fec0hlwszI0GTOnNlmqw/lQ2hcspHkxlCb8bXhErRxscYPlPtl9DnRYkd9jcn/MB0C1UDq5Yyv4/WUWizMeKgj1AaUmuLtflCLNZaR3tXLHcl2aFPl2OJ5Xr1lIf1FEf2i01DbjIQUQ878HLJSLv+oJkAunIr2KfB/KCQIAkA7eOS9W/Ga2hwrC8VD+p8mOndJi0rtyWGCxLlcUG6IZlhSquBceu1OmfyyUXpflPhpM+zCGbb5soPJWtCVpc7w7UBlBnsNnAiDzkwYfFITFjheMAxoKwnZLeW1T5NNpsV5HKN4AM82OfyiUns3XZ3NDad/DcMyPjgwHRxy7NcqxHp8LgEy45JGCELyXPuEg/TpS+1M4bSEfPhmIMwrl43SbzuPmKep0KkV7BdP52ME3CSsgdRiS2XNcY1HO6j0qHxeOkdqpEp4/ApDtopyngrAwkOd1h/n0KOrbayEPle+Gnzio14BCIUliBN5Cr/s8sE3YAHIVhmS2qAYEy66My3RMo0w78ekAqBoFoTQn8BWkyydvOxT17UuZfq3GBmiPg3rtc3AyEvZ9cNZBuc+G8oB3xQzRsVI+kkO51mqUaxCfD4CqUBD4tLDk8tn19eIGxycI72nMbS5i0ywgtWM6U38zYQXhDBSEyuEHGh31ak5l4wnhpUb5luEzAlDxCkJp0T6fQV6qzcmHKdNXBTEadli3EUXehwzTW2f5dCWK8BXDWgxJ9+gYJHJnasixjEMaZcSzFwAqX0Hg102bKZvQxSoFYXOKtOdqzGk9DuumekY+ZJjeDHJ/qht21DcTQ9ItW0gvYNJKzycmlrv4nABUvIKQJXFXDJMpN00qOwDXtlU6L8RWGKY5Glo3ZlksbxO97hsCOGQJlXfr6crZRVLOkZ77UzhOAgAKgi3ijBTTXnFc1pjPXFrpryH7p7KnQv9+r8XytpH9J6agDLyQ6hzbsxdFH54QntVUEDbg0wIABcEScXFh0riW5zlVFfPhpeO5t47su5NuptevKWoslTVsM9GM4eiOXtJbcFd4Ul5dBaENnxYAKAiWeEhuHCQ1a8xljzKon8oR1EsyP5UNB/Y6ZKGc4RgSNzEU3bGD9BbbMx6VuUezzD34vABAQbDAcipvvJf2KnOvxlx2OYM6XtEox0bDNJfSq6/O+M9rUpSxNUJpWYyh6Aa2/B3X6BTPKRsrYV3OayoIl/CJAYCCYIGoU1Z2ajTfUdp5bHZ0bLuSvA57P6JfrE6QDj+dDNvJFeqUmO9X2MUkB9PguNejskJs4couQNOGpOS0++SiPik7KHsRS+o97BLpLbRdnrXzZc1yDyRIm0OUbqKp4Cw8YPj4aoLsunDl2PF35Dd8Lr8D/DYAKAjFOT0Yszhmb2nMZZ0Z1POIRjkuJkw77Hhv0mBxr5FKRtj/zckidB52j7lZLtyqkKAcsCLJcRR7sbpK8caDpuE/N5DeIjtO/r0GeKBZ9rGYNNjQhY+r9klFYFB22rj0tlooe9xzph1YcwAUBK/guS9se8DXCjZDO6sMFLMKhqdz3TyaIv0TEelx27L76KaI378t/y7K9uND3zvOaqkV6TwNDMrBBNrrGNk1yGONbNhRebNgQrPsTyKUOT7ZeWT4zWz5Vqih+JDZuE8DUBD8Inwv32t5wzRTc+7ZmEFdN5OeH5w0LxG2UflrbTaSHJDyLGZO3+Jzh9lSZnHVXbRGDPJqJrVlaRI/4O2aafKJyCzP2r/eYEEfjzg1YIXuupzcWPoNvl3at8iLqVjGoABUq4LAJ7LBK9hHjhamFs15J4sw9q2aZVmUMh8+LThK6hP3cF/iU4MG3zsOe7OalJ2Hj4tXBjQqXrwOa1RWxxPhItIzIDRVEOppOriJSo562P6tBm3yxGBnv5XU/sjTRiWrt1hmAKAguIHdHt+m14/WO8j+desmzblsdQb1zlpZmSnnXTbAvCUVhpdSuO/clBsm/k1tUTpPo0ZhVVb2KoOTJs3FKomXqoOa6fFHmudh++8waJM7Cb7tIKkjm6Xx+T2gkX7RWUvJrnCKKBepeqlEBWEvxV8DjktFoc5SftvJH6+wszTLsoVAKpYpGvi6YjfbH/rtPPnfV1J0GOZB0jNS5E49ptkJrnnatrpOkpK+HZ6rmCBY3ktRfja8ifNa+QIKAhQEKAiZw0bb9wy+Oxucr7OQ7y7N/OoyaIMZmmXZSSA1cYvABJU39DhK6msDvn7gkMxscPe+gXa512AAbPS0XW8b1CHp2+ED5DbUdQOVd/ZUCUGmoCBAQSiCglArF+i7Kb7/6ZSL9zHNfLJwcV+nWRZEyrXACUUjR72hXU9uPWfpPg98Qn7EXIga0C8NBm9XioESd9LCZWi0UJ8N9LqdSW8F9H0oCFAQfFYQlssN1rilPsB35U0Jy3JaM4+s0CnLSQKpUT0Z2Rb6fVNgUbpP9u+cVhl0+OOetukaw4GbJj67yth0l6U6bQyluwcKAhQEKAhO4DE75Kgf3KVkFvZFVBAQOdECKoOPsDV86b0tW3IudFCe0wadfY2nbXrIcNCmacd55PaaoUQN2X1CBAUBCgIUhGh6ZZl4jp1w0BeSuHaHglDFPIxp5MHA73Y62JmGFyFdfwpPPW7PfoPBasPYL+7FQdrXDFEKwnCF9HsoCFAQimKkWCc3Evx8ml9IsW3Qxyn6g6k3VCgIVUxc8Au+x+Y79WDApKuOymEyYZ/zeCCb2B9csJDnHnLvenlhIL1jGDIACoIXLJfjUfWiKSyPyczt/SkoCNWL6s0+L9xXAoNpjqNyHDfo4Fs9bcsthgPVxl1+kyKPPgt5bA2ktxxDBkBB8Aq+Ku423Jy0G6R/goqnIJxA17fDElL7Qyj9eZ/Dctw36NyNnrblOTJTEOZayjfumoHvMtO+9uiTad3DcAFQELyey3Xj1zwwSHd3ARWETnR9e+gEcxp0mL9J7IIhT9tQFeQorQfFOFRxK1pSpF1L0/7I2zFUABQEr+HNk67PhCWaaep6hs3CUZKuHwQ4SrLIJY0GX+Ywf11f3z7bH2wgs9MDm4vtIkVe3SnSLhmnssHjLAwVAAXBe2bTlJ2BrTlIJ4Iiy8wM6qYbWRKuli2ieprn2uCjw2Bh3eVpG543qAMvtk2W8487WrydIt0bMo1TGCYACkJh0DH6Pq+Z1npy/2RblybNsqxH17eHKvqga5fGfVRs/wez5KLv2r1yHHFPkV4m3P0H43UsxjABUBAKxWVF3e9rptOgOa+ty6BOuo7o5qPr20P1PG+34/yvGiyudR62334yu15Y6qAMqmuaJB4bS4rbTzBEABSEwqHyTDthkJbOC4kNGdRJ5yqXy1qDrm+XuxnveIM80VxYfR3MuvEjXEagVMWAML0iCNo1tGB4ACgIhUTlUEl3IdV5ZZbF83Odp+Qj6Pb2iTuidv28TecVBcuAh+3WYnh64NLYs9/iN+yl9PYLAEBByJczZOdEVucaeG8G9dEJPX0B3d4+WxWN7tKCXff+/ryH7XaNsvWcGIfK2FQ3uNZiyvbYEAAoCG7YbklB6CQ/vBfquH3uQre3j8plr0tDRd0F9oxnbbbUoOx83zfPcXlWk507wpJx0x0MCwAFodCoXiDoXjHo3P33efA9salxwFxSO/lx6YNfN2rZyYJNPkE5lEF5ahRtqeNdLGjYtA5DA0BBKDRzyI6Roo4zu8EM6nOH1AaKM9Ht7XJT4+PfdJi/rgdCn/xrm5wesBFjbUblinvapHPFMSh/e6vC+zyiOUJBqAYFIW5hv2+Y1j2y9yrC1WZykIBVDoW0L1Vkxzy0Qh8VhOuaZeZ2yzLAUZzTqTHFv90W+G0zFAQoCFAQCk+c50HTK4FjlK//gfka+R/Bkm6PFQGlgAeKyuf2+pwGsW8KQivpT84HMi7bSkpmbMrGSiPyN5eroO9DQYCCUO1XDKbu3nVebG12WBedJ47NBKxplkOBhuXdI99hx70ocBUhSzecqA/ufmtD7RYnV3Ion8oOoZwBT2fgxKMavCZCQYCCUA0KQtxmZmWCuUXls+aow7r8QJH3Iyzr9gi+jw0+T4l7tufKyc82zYmu14N269IsKysRDTmV8bLhiQbvMl5QdcVcgIIABaEaFIRyp8KjCdM7Tvn5qrmVo3JSVQTd8rKhyozA38W9pZ8gNy4sde6W8tqRB1lCei5HxylfX+AHyezeseQUicM6vw0FAQoCFISK4RzZjfC6jNQ2Vy7c4ddrzL2IF2OB2YFjIl4QwhG4VMEwVjkq17DGRJfnYK4jPXejvBNfnfM3jvuGw6HfBn0nHKyicQAFAQpCNSgIj8ss4ml8sgwq2nSTg3qoHPndwNJuh6D1/Y6Iv+c79jg7hHZH5dKxkGVpyqndTmmUjdvNB98BqrgMJQ2/JqD0fEx+BsICAAqCXSU4rcfDnZR9tFrVd9yMrp6eNtK7zx+g9O6CF9CU4dsMzd/r+hXYmkO77SS9kwOfYpDH3deVlJh2yi6kNwBQELKlv0x9014j8sZiVDEX2txsNCo2rQ/RzdPD9+cl63Y2oIvzy9+t+PgquHOUokOaHDfdIP8MFdeQOlbEM/k7n4h7GbKPpq6aSg6qrmF4ACgIFcX6mLFvA5Vr/j0W63JAkdc2dPN08C6+FJJ4Qu7W41C981f9+5MJF3OV/UPpGH9WRu22gtReHvmOb7mH3zzuzTAbLvUE2nMBhgioUC57pCCwvQ878uHrSr7eneMoH349NUJujbxrAptAl7v62jJ1KQmizVqgx1CzU91h74/5t6Uni6MJF/IrGkrC+xkpB+OKcrAHSF+t/uNehjwiRD4D1cFDDxQEnk8vULSxIJ9w2La+j5pD2cao0XI+yxTrxHuOTw8mCS8XYrVEPkZapPhd8MmbSbjkuOP+cnEZeCddek+f9MhdJ3DUU3JrrLhOowy8C/DdqO+Fog7DpG8jAkDRmEnqp3Evyc3T7SCHNMrwoaX5pKfMhsDVs+s2inftnkYpeVsxD7ehi0ezl169F+frg90Rv2sPaZAmO/qjik4d9sLFx9SlJzXdKeun4zjpksMOHzep8BPRLQXpJ6rTGERrBJXMLtIzfHZtP/RAsxz8u5aEefDcHnWdwvZmrsPMn42pU1K37ay09cekewbdO5pVFH/vw0cybJHeR68eoy0xzEf1TnwkcLyzWWqLn8qPaoNOjQHVbbFdZ0ulIy6/C/J3RSHOULEXQwlUMGyEreNbheW647KMk5nfCl5UTeya+GXXaJn5KitvrufJrov8Pkr/kq4qOUvmjlJaE2pwph3b9j3XEY082SAyTZTJGnnS8lSheLUWsK+UO4kZI/v3kQD4AivxA4Zz1wlyd9VwkZI5uGKHRBydlU/6gtcP/Ge+Xj5cRgl6RPlY9h9XLOoNmt/uGhUjoq+X9Bp2su0p8jpmkA8vOi7uufiYUBUD/AGZH5c3ytOWuPe8PND2k/s7SleUe+qEZ0Gg0uDFZ4NcQJ4nXJB5g9MZsSC7Goe2hedgtjmbmfOmpNxmi69n2cB8bsS/my/bvty/fZZyLasa2jU7y6SFhWCO5mBj24OlDuvM1yN3NcrBO/0uOVE0RSgErVIpuErxdgascOxNeTLhy6SZle0GAFmySs474xobiKQyIdPnfNLaHR0id4oBX+vu9Gi+YuPCHlK/HumXojII7yN3T0IrDrY6V0W1YvsAW/EAVAaDNyi7p367KP5NbBqZlJ26pYL6Sj29HkRqNoYQqACyjqWxw9JJwqCFsvCCekHOhz6PZ35hd1JDASjnkO8UmdvOAakp8knCTdmQE/IjsLHNfrL//G6l3Hk+C+TFHTQv97yc70VSezjUOVJka9hNFXBaEEXY4dUWDB0AvFg498gNCZ9m8tH7czm3luS5PLm4LHfQbG/AxuBFdGrGV7R8bdMt5+2hUH35z8Py747I39agmwAbihJ3pg45iPi46mlAaSp1Pr6buyJ/0yUVgqYqaJ+g0dA5dBcAAAAANNC0/cgIZffcCQAAAAAeE3zt0ozmAAAAAEAwPHUnmgMAAAAAbABVulroR3MAAAAAgJ81DtG00xQ8aQQAAADAn0PKshOoFjQHAAAAAIJx0/ejOQAAAAAQ9PV+Fs0BAAAAAPasVoq6yW6va9EkAAAAQHXDRoil2BTsqrQJTQIAAABUFvwCgSO+se919knO/gsaY37PysADmn6xMA9NCAAAAFQWjYHFPhzfPcoLIsdTf0jTERqXoQkBAACAyuMYxYc9baOpCJ0se2na5uAZwY0yAAAAULGMkXmoalYSVqHpAAAAgMplwlA5YIViOZoNAAAAqGzuGygH92jKBgEAAAAAFc4BTeWAQzjXo7kAAACA6qBGyNUYxWBUyGY0EwAAAFCd8AsF9ob4QsqA/G91aBoAAABx/D/46BGhUvP9KgAAAMZ0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bW92ZXI+PG1yb3c+PG1pPng8L21pPjxtaT5PPC9taT48bWk+eTwvbWk+PC9tcm93Pjxtbz5ePC9tbz48L21vdmVyPjxtbz4mI3hBMDs8L21vPjxtbz49PC9tbz48bW8+JiN4QTA7PC9tbz48bW4+MTMwPC9tbj48bW8+JiN4QjA7PC9tbz48L21hdGg+xE2B/gAAAABJRU5ErkJggg==" style="width: 82.67px; height: 18.67px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack x O y with hat on top space equals space 130 degree">

Cho Trắc nghiệm Hai đường thẳng vuông góc. Trên nửa mặt phẳng bờ Oy có chứa tia Ox, kẻ Oz ⊥ Ox. Gọi OE là tia phân giác của <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>z</mi><mi>O</mi><mi>y</mi></mrow><mo>^</mo></mover></math>. Biết <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>z</mi><mi>O</mi><mi>E</mi></mrow><mo>^</mo></mover><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>20</mn><mo>&#xB0;</mo></math>. Tính <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>x</mi><mi>O</mi><mi>y</mi></mrow><mo>^</mo></mover></math>

A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>x</mi><mi>O</mi><mi>y</mi></mrow><mo>^</mo></mover><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>100</mn><mo>&#xB0;</mo></math>

B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>x</mi><mi>O</mi><mi>y</mi></mrow><mo>^</mo></mover><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>110</mn><mo>&#xB0;</mo></math>

C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>x</mi><mi>O</mi><mi>y</mi></mrow><mo>^</mo></mover><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>120</mn><mo>&#xB0;</mo></math>

D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>x</mi><mi>O</mi><mi>y</mi></mrow><mo>^</mo></mover><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>130</mn><mo>&#xB0;</mo></math>

  1. <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>x</mi><mi>O</mi><mi>y</mi></mrow><mo>^</mo></mover><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>100</mn><mo>&#xB0;</mo></math>

  2. <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>x</mi><mi>O</mi><mi>y</mi></mrow><mo>^</mo></mover><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>110</mn><mo>&#xB0;</mo></math>

  3. <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>x</mi><mi>O</mi><mi>y</mi></mrow><mo>^</mo></mover><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>120</mn><mo>&#xB0;</mo></math>

  4. <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>x</mi><mi>O</mi><mi>y</mi></mrow><mo>^</mo></mover><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mn>130</mn><mo>&#xB0;</mo></math>

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Cho dãy tỉ số sau: a 2019 a + b + c + d ​ = b 2019 b + a + c + d ​ = c 2019 c + a + b + d ​ = d 2019 d + a + b + c ​ Tính giá trị biểu thức: M = c + d a + b ​ + d + a b + c ​ + a + b c + d ​ ...

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG