Square root
VBT
Calculator
magnet

Câu hỏi

Cho t í ch ph ân I n ​ = ∫ 0 4 π ​ ​ + 3 m ux tg n x d x (n l à s ố nguy ê n d ươ ng b ắ t k ỳ) a, Tính I n ​ khi n = 2 b, Ch ứ ng minh r ằ ng:

Cho tích phân (n là s nguyên dương bt kỳ)

a, Tính 

b,Chng minh rng: I subscript n greater than fraction numerator 1 over denominator n plus 2 end fraction open parentheses pi over 4 close parentheses to the power of n plus 2 end exponent

R. Roboctvx97

Giáo viên

Xác nhận câu trả lời

Giải thích

Ta có I n ​ = ∫ 0 π ​ + 3 m u x 4 π ​ tg n x dx (n l à s ố nguy ê n d ươ ng b ẳ l k ỳ ) a, Tính I 2 ​ Tính J 1 ​ : J 1 ​ = ∫ 0 4 π ​ ​ + 3 m ux d ( tg x ) Đặt u = x ⇒ d u = d x Và b, chứng minh xét hàm số f ( x ) = tg x − x trong có đạo hàm f ′ ( x ) = cos 2 x 1 ​ − 1 ≥ 0 nên hàm số ( tgx − x ) đồng biến trong Do đó tg x ≥ x ⇒ tg n x > x n ⇒ x tg n x > x x n

Ta có  (n là s nguyên dương bl k)

a, Tính 

I subscript 2 equals stretchy integral subscript 0 superscript pi   x to the power of pi over 4 end exponent tg squared invisible function application x d x equals stretchy integral subscript 0 superscript pi   x open parentheses fraction numerator 1 over denominator cos squared invisible function application x end fraction minus 1 close parentheses d x equals stretchy integral subscript 0 superscript pi over 4 end superscript   x d left parenthesis tg invisible function application x right parenthesis minus stretchy integral subscript 0 superscript pi over 4 end superscript   x d x equals J subscript 1 minus J subscript 2

Tính 

Đặt 

d u equals x blank rightwards double arrow d u equals d x I subscript 1 equals open u v close vertical bar subscript 0 superscript pi minus stretchy integral subscript 0 superscript pi     v d u equals open x tg invisible function application x close vertical bar subscript 0 superscript pi over 4 end superscript minus stretchy integral subscript 0 superscript pi     tg invisible function application x d x

equals open parentheses pi over 4 tg invisible function application pi over 4 minus 0 close parentheses minus stretchy integral subscript 0 superscript pi over 4 end superscript   fraction numerator sin invisible function application x over denominator cos invisible function application x end fraction d x table attributes columnalign right end attributes row blank cell blank equals pi over 4 plus stretchy integral subscript 0 superscript pi over 4 end superscript     fraction numerator d left parenthesis cos invisible function application x right parenthesis over denominator cos invisible function application x end fraction equals pi over 4 plus open ln invisible function application vertical line cos invisible function application x vertical line close vertical bar subscript 0 superscript pi over 4 end superscript end cell row blank cell blank equals pi over 4 plus ln invisible function application fraction numerator square root of 2 over denominator 2 end fraction equals pi over 4 minus 1 half ln invisible function application 2 end cell end table

 J subscript 2 colon blank J subscript 2 equals integral subscript 0 superscript pi over 4 end superscript   x d x equals open 1 half x squared close vertical bar subscript 0 superscript pi over 4 end superscript equals 1 half open square brackets open parentheses pi over 4 close parentheses squared minus 0 close square brackets equals pi squared over 32 

b, chứng minh I subscript n greater than fraction numerator 1 over denominator n plus 2 end fraction open parentheses pi over 4 close parentheses

xét hàm số  trong open square brackets 0 comma pi over 4 close square brackets có đạo hàm

nên hàm số  đồng biến trong open square brackets 0 comma pi over 4 close square brackets rightwards double arrow straight f left parenthesis straight x right parenthesis greater or equal than straight f left parenthesis 0 right parenthesis equals 0

Do đó  

I subscript n equals stretchy integral subscript 0 superscript pi   x tg to the power of n invisible function application x d x greater than stretchy integral subscript 11 superscript pi   x x to the power of n d x equals open fraction numerator 1 over denominator n plus 2 end fraction x to the power of n minus 2 end exponent close vertical bar subscript 0 superscript pi 4

equals fraction numerator 1 over denominator n plus 2 end fraction open parentheses pi over 4 close parentheses to the power of n plus 2 end exponent rightwards double arrow d p c m

 

 

1

Câu hỏi tương tự

Tính 3 16 C 16 n ​ − 3 15 C 16 1 ​ + 3 14 C 16 2 ​ + ⋯ + C 16 16 ​ = 2 16 Tính tích phân J = ∫ 0 π ​ + 3 m u ∣ cos x ∣ sin x ​ d x

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG