Cho số phức z thỏa mãn 2 + i z + 2 1 + 2 i 1 + i = 7 + 8 i " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABPEAAADoCAYAAACOy3HYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACNUy1tAwAALnVJREFUeNrt3Q/EleffAPBLkiQjSTIZk0wmYzKTJJJMkkgymURmZmbG/MwkE/NKZiYmSWZikmRmZCYzGZnMZEaSTBKZSZLYe18751nnOefcf87/+8/nw5f3/a3nue9z3dd1Pff1PdefEAAAmuGZJHY25LMuS+LjJL7w2GFibWynYgAAAGBSXk7inSS+SuKHJO4n8TCJx0k8SuJBEjeSOJ/EsSR2JbGoBp97dxJ32p/z+Ro/35ioPNx+jv8k8bcqj/5iIi6029jFJJ5VVQAAABiHOMA8ksTt9qBz0HjcHqRvruBnX57EuY7P8n1ozaCpm6VJfJTEX13PThIP/cVkvN/xmWO726fqAAAAMKw4K+tYe1D9z5jipyReqsjn35rE3Y57j7OJFtbsGS9J4sPQmiHV73lJ4qG/eGpDEt+F1mzCGBdHvL/t7TY293lPJ7FYVQIAAGAQcRbMsDNp8uJJaC3ZLLOjXff8ec2eb0wUxJlA93KelSQe+ouWXRn3t3eE3xuTgJ1fFvyaxGpVCgAAgCIOtAem/0w44iyWss06ictnv++6z+M1erZxv7H3Qmt/vyLPSBIP/UVrCf3fGfcW9/d7YYTfH5N2tzp+X0zqbVS1AAAAyPLWFAbjnRGXppVliWo8sOJm1/0dq8lzjWX8biievJPEQ38x2Oc8NeI1VoX5ibyYGHR6LQAAAH3tnPKAfC7OlOCzvxLmL2mLcbIGz3RBEm+H4Zc6SuKhv2hdM+++7o3hOjGR92fX73XgBQAAAPOsCenLxf4IrT3i4p5QK0MrMTQnLs9cl8TuJD4LvTPZisaBGX72LX0++/mKP8/4jN4MT2f2xOWOP4ZWYjLOLvwpSOKhvyjqbMH7Goe4LLd7r8q9qhwAAABzfu4zIP0ttE5oHVTc5P7KgIPyeDrq8hl87nivD7ruJZZF1U+IvN7+LFeTeCeJFX3+zakgiYf+oojPCtzT7TFeL+6H173P4A7VDgAAgDf7DEjjoHXBGH7vwwEG5tPefy4uoe2eTRSX1K6swTONp3muy/k3K4MkHvqLIrbN4H66yzmWzcuqHwAAQHMtCb1Ltz4e4+9/NbRmzRQZlMdB6tIpfe7nQu8eeHHmy6aGPf/rQRIP/UURWbMF4yy8ScwM7F7GGw+mWaUaAgAANNP/ugaJZydwjbjn3JOCA/ODU/jMy0Jr367uax9p4PO/ECTx0F8UEZekX+5zD3HJ+nMT7Ku6D7qIS5kXqooAAADNEpe/dZ5aGjeZn9TMlsMFB+XnpvC5L/a57i8NrQPngyRet5gg+Twl9ugvGtdfdIuzBePBGjGBuHkK19vR53N/6s8XAABAs+zsGhhum+C14qmUt8Ls92D7oM8146yfdQ2tA5J4/etqWnl8rr9oVH9RFv1mzG4LAAAANEZnAufCFK73Xig2u2bRhK6/PvRfpvepOiCJ10EST39RNmv69F1xme0z/owBAADUX1wy+Dg8nYn2whSuuSIU2+tqywSuHZcC/tbnWg/CZDakrwpJvF6SePqLMvqiz2f/wp8yAACA+tvVMRA8M8Xr/lxgUP7aBK6btsfW0YbXA0m8XpJ4+osyWpvy+Tf4cwYAAFBvxzsGgS9M8bqnZjAoX53Eoz7XiTOLVja8Hkji9ZLEa3Z/UWbfBYfyAAAANM7l9gDwuylf91CBQfn2MV/zTMp1vlINJPH6kMRrdn9RZq+nlMHrujIAAID6Op3EjTD9Ew73FBiUvzjG660z+M8kiddLEq+5/UUV6ubjPmUQn80C3RkAAADjtCtnQP5kzIPRsynXeWDQ+y9JvF6SeM3tL6rgQkpZHFJdAAAAmOag/PoYr/V8xnXOehT/ksTrJYnXzP6iKg6mlMUfqgsAAADjtDtnUD7Oky+PZVznDY/iX5J4vSTxmtlfVEXWlxO7VBkAAADGZX/OoHzvmK6zMIl7Gdd53qP4lyReL0m85vUXRawKrSTZB6E1kzfOAtwyo3K5k1Iel1UZAAAAxuXjjAF53LB98ZiukzWD557H8B9JvF6SeM3rLzqtSOK1JA4kcSqJS6G1h2a//fiWzahcvs4ol7WqDQAAAONwNmPw+dUYr5OVnDrnMRQqJ0k8Sbw69xfrkziRxJehdVhEnFn3KOSfhjsXV2ZYLh9m3NdR1QYAAIBxuJ4x+Nw8pmvEpbSPM67zicfwH0m8XpJ4zegv8pbq5sXHMyyXrAM/bqo2AAAAjGppxsDzlzFeZ2cozz5aZSeJ10sSrxn9xYL2NZ5JYkMS20MrsXcpFEvibZ5h2Tybc28bVB8AAABGkbVP3ThPVfwsZ4C7yaP4jyReL0m8ZvUX/fyQ0y4ehlYScJaeZNzfEdUHAACAUZxOGXD+PObrXMsZgC/yKP4jiddLEq9Z/cUg156LsyUonxsZ93dV9QEAAGBYcZ+6v8Pkl37FBEzWDJVHHsU8knj965AkXjP6i2HbxaESlNGFjPuLfeBi1QgAAIBhvJEy2Dw15utszRl83/Yo5pHE6yWJ15z+Is29nHaxugRldCbnHneoRgAAAAzjSp9B5t0klo/5OgdzBrYXPYp5JPF6SeI1p7/oZ21Om/ijJGX0Sc59HlaNAAAAGNTGML2ZInmzU772OOaRxOslidec/qKfd3PaxGclKac3cu7znKoEAADAoH7qM8D8YkLXupgzsD3tccwjiddLEq85/UU/3+e0iZ0lKac9wdYBAAAAjNGuPoPLX8LkToi9lTOwPeGRzCOJ10sSrzn9Rbd4GETWwTiPQ+vQjTLYkdN24+dYoEoBAABQxJIkbnYNLOOG8c9N8JqPcga2xz2WeSTxekniNae/6LY7pz1cKlF5bc+51xhrVCsAAACKOBZ6Z4ZsmeD1FhQY1B70WOaRxOslideM/qKfUznt4f0SldeWAv3ddtUKAACAPP02p590Am1JgUHtGx7NPFVK4m0t8HzrEif1FzNJuN/JeS7rS1RmqwrUo926OAAAALIsC7170x2Z0nXzBrX7PZ55JPEk8ZraX3TbkPNM7pas3JYWqEev6+IAAADIciHMJiGxKUjiDUoSTxKvqf1Ft8M5z+RMycqtSBLvgC4OAACANB91DSK/nuK1iyR5JPHmk8STxGtqf9Ht55xnsrdkZVdk+wB7gAIAANDXjq4B5MUpX7/IRu+SePNJ4kniNbW/6JS3FP9J+9+UyaIC9ehjXRwAAADdXg6thM/c4PG7JBZO+R7WBUm8QUniSeI1tb/otC/neVwtYRkuDmbiAQAAMKDnwvxTHX9sDzCnrcgeUU6nnU8STxKvqf1Fp7OhejPa7IkHAADAQFYkcaNj0HilPbichYXBzJRBVSmJNy1ZyxQ/V2Vq01/MWZDEg5x2sLmEZel0WgAAAAqLe0Rd6xgwxv97+Yzv6UnOoFYSZj5JvF6SeM3pL6K8vTQfhlair4zlmZfE263aAQAAEGeB/NQxWPw9tGbZzNrdnEHtFx7dPJJ4vSTxmtNfRMdy2sC5kpbpppCfxNuu6gEAADRbTHJc6hgo3kpiVUnu7ZucQe1pj28eSbz+9VsSrxn9RfRbThs4VNJy3Rbyk3hrVD8AAIDmisvKLnYMEv9MYnWJ7u9MzqD2a49wHkm8XpJ4zekvng35ibDVJS3bHTn3/SSUcxkwAAAAU9J5imNcurq2ZPf3Ts7A9luPcB5JvF6SeM3pL97Mqf9/lLhs9+Tc+13VDwAAoLlOdgwQ7yexvoT3+FrOwPZPj3EeSbxeknjN6S8uhOoehPNGzr2fVwUBAACaqXPz95jYeWVK1417Z+0PxZeFLckZ2D7yKOeRxOslideM/mJhEo9z6v+uEpfxkZx7P64aAgAANM/hjoHhw9A6FXFavm5f9+UBfuZ6zuB2kUf6H0m8XpJ4zegvtufU/ZjgW1jics7b/3OPqggAANAs73YNardN8dpzez79OuDPfZEzuN3isf5HEq+XJF4z+ovjOXX/+5KXdd5S4FWqIwAAQHMc6BoU7pzitZ8PrX204nXfGfBnd+cMbvd6tP+RxOslideM/uJqTt3/IOfn4/6ba2ZY3jcz7v2G6ggAANAc3YmwfVO89or2IHRuNs+yAX9+ccje6+oTj/c/kni9JPHq31/EPuJJTt1/KePnY/LurzC7ZNmCnPs/oUoCAAA0w2tdA8RDU7z2+o4BeYyzQ/6eb4JTG4uQxOsliVf//mJHTr2/k/GzS8PTfTf3zajM1+Tc/zbVEgAAoP7ifnEPOwaD7034egvaA9K4xPVC6J1dsnXI3/tGxgD3nsf8n4tBEq+bJF79+4u8k11PZvzst+1/c26G5b47p80uUDUBAADq7dX2APCfksTNET7LkpC9pPZZj/tfvwdJvG6SePXvL87l/K5dKT93sv3f7yaxfIZlfzQMl4AEAACgBuKytPslGpDH+GjEz3QqONwiS0x05u0LFv9702b1SOLVv7+4mfO7lvT5mc7TbLfOuPyztgt4VfUEAACor7g87W7JBuQxnhvxc72c8btPe+zhYMHnsKVh5SKJV//+4lHO7+oUk9gnO/7b0RmX/4KM+7+megIAANRXXFb6ZwkH5JfG9PmuhME3rm+CuDn/jSk/i6qQxKt/f5E3A3Vupu6mJH4pWVvYmHHfB/xJAwAAqKcVoXgiZ9oxruWuOzOu8VJDn/vKJC4P+Dxi8qopy2ol8erfXwyzl1+c5fZMCZ5D2qEct4MDLQAAAGopbsr+a0kH5PfHPBhN+5xHG/S8lyWxI7SSUA/C8AcHHE5iW2gluupKEq/+/cWFAa8RD4BZUZJnkfYc3vFnDQAAoH7igPfnkg7IY3w65s+7K6TPXKmruOQuLhmOCY5HE3pOj9q/P15nT43KThKv/v3F/gF+/4+hPAm89SE9wW4WHgAAQA0tKvGAPMaLE/jMaUmIHTV9xlun/Mz2N6R9fK6/qE1/8W3O730YWifelik59mnKve72Zw0AAIC6eCll8PuDoqGLJF5zvJ3ET6GVsIszS+NeeTG5915oLSEuk7gfX7+l8N97jAAAANTNydA/MfOKoqGDJB5ldLhPfYxJvecVDQAAAHUTZ9bc7TMQvqxo6CCJR9nEPfn6zcJ7S9EAAABQVztD/+TMTkVDW0ziPUqJTxUPM9BvFvE3igUAAIAmDojj6Y5LFQ1QMhv79Fe3Qvn27AOATHFzV9+aw2wt0w6BClqSxK/BUkmg3OIXCzdD76m56xUNAFUSj1G/k8TjUO3NXF9O4p0kvgqt0/Hut/8wx88Vl2zEvS9uJHE+iWNJ7AqtJR5QFhfaL5QXk3hWcQAVEt8f7oXeRN5WRQOUxFd9+qgdigVgKHG8uieJE6GVY/kjtHIuMfcyl4P5K4mrSZwNrZPKNyi20cRp4+fC/CPVl1Ww4hxJ4nZI3zQ5Kx63K9xm1YESeL+jbsYOb58iASpkc/vvauff2XjwxUpFA8zYW33GAQcVCxWwfshx7iTjb4+lseI73f+SuDZC/Ykzoj8KrdWgDGBrmH+iXPxmamGF7j8+8GN9BgujxE9JvKRqMKD4bcJ3oTXrM8bFEevR9vYfxrl6eTqJxYoZqIi9ff6+XqnYOwZQL1uSeNLVL72vWKiIE6F8SbzbHkvjxORd3CYlK/8SZ+HF7VUuhVZu5e+cevRXifricY/px+5oqPaeNZvD8DPv8iL+gT+sjVLQrox6tHeE3xs7jM4ke+wMVytuoCLe7NMvnlUswAysC60tdjr7o/cUCxUR93F8FMqXxLPnbbPEWct/hf6rGk+3x8SLM+pwXHL7bUZ9il/2rqrhmH4s4vLZ77tu7HjFKtCB0PtN2iTiYjD7iWxx6XnWtwvxD+4LI/z+mLS7FeYvSduo2IGKONSnXzyqWIApei609v22hJaqejeUL4EXY4tH0wgxH/J1Sh2I//ugibc4UeW3lN8X++oXazimH0nccLr7NKZjFatEb025c4rTKS3/YZT6eGrEa8SO8VZXJ+L0WqAq4r6elrABsxC/DP0zzD+F1jsUVXM9lC+Bd9djaYQ4g+7HlDrwzoi/91JG3Zr2QavTGNMP5ZUwf2lejJMVq0Q7Z9RJndF+SXGmQP25N4brrOp6Cf0nOPACqI74bX33UrZ3FQswQTGB17n1Tpzh8bJioWI2hXLOwjvp0TTCdynP/8gYfndM5KXNyPuj/d/rNqYf+OW5e3rg+YpVoDUhfYpjfMhxeU5cxxw3W1zQ8XOLQmsfjN1JfBZ6ZyIWjQPaMH2cLVh/xuGFdufR+Xv3egRARaxN4veuPuwDxQJMQHz371xCezmJFYqFGo81ph1bPZra+zDl2V8bc1+dtk3a8RK2s6mJB0A86Lr4z6F6e7393KcQfxuyA4llcmXAjirOIFiuLdPlszDdk5s29unodngMQEXEb1W7v+08pliAMY99Omf+HlEkVNTK0D/BEU/8jLPZt0x4TL82Y1y8wOOptbicNe0wld1jvtYXIf1AiWktq532mD5TXELbPXvtbrtDqJJ+J9x9NobOI/7eh6F4Is9Ag27bZlBvuttDrMOWhwBVsrdrkB2/AV2kWIAR7Q+tkxJjvxL3E96sSKiww6F30/9pzoBLm4llKW39nUh59nHcOe4E7isZ4+hPazym7yuexNS9B17MZm6qWAVaEnqXEH48xt//aujdp+efjEq7VJumS9aszpixn8QMzrN9/qiv8iiAClnZ0ZfFLxzXKBJgBHFgOXcAwAnv7NSgPnfu6Rj3xl495Xv4NWV8s93jqbV4qGfaLLxLE7rmvZB+Wm2dx/TzxCNy/wiT2YBw2v7X9RnOTuAacSryk1AskedIerrFPVYu96krV0MrmT6pNt590MXPwUnKQPXEv8G2BQDGIc5S2qgYqIHOAx3jF13rpnz9F1LGwn8FS2nrbldIz4V8OaFrns+45rS+5J3FmH6ei30u/ksFK1D3NxDxUIpJfat2OBRL4p2rQcOMiZ7PU2KPfmtocVZnPAAlJnqnsXxjR5jdlGO0bwAAJuP7jvf7fTO4ftrY+JR35dr7JEz/VOJTGdfcWfMx/b8+CP03BVxXwQq0s+tzbJvgteJePLdCfhLv7xo0zEUZn+9z/ValXOjzDLcplkbTvgEAqmtNmPzMpzx1XkrrXTlb1kmtk6qP/5dxzb11L/D1of+y0KrOzumcVnlhCtd7LxSbjVf1zbd1XPX6I9/d5uMy22cUTWNp3wAA1XUsPN0PbPkMrp+2lPZBqMdSWu/K2b7JKJ/zE7rm0Yxr7qtzYccG9VtKY1tewc8Tp7nOnS71pN2ZTNqKUGxvvC06Lkqk37HcXyiWxtK+AQCq69sw2xlIaUtpz3hXboSsJN6DKY5n56LWS5zTGtvRin6eXTPqMH4O+Um813RclMjalGe5QdE0kvYNAFBtr87w2tdDOfYm8648GxdDdi5kEmPMrCW8tT0NOR433e8Y4DiTbWVFP9Pxjs/xwhSveypI4lE934V6HGaD9g0AwGysS3mHfBjqcyqtd+VsWQm1SW3Vdi3jeovrWtBnUj7wVxX+THPH+3435eseCvlJvKpng3Vc9fN6yvN8XdE0jvYNAMAwDtcwr+BdeTBHQnYuJCZ0xzlRLO7lnral2bW6FvK6UM9k0+kkboTpn7S5J+Qn8V7UcVHCZ/q4z/OMbWiB4mlcXdC+AQAY1O8p75C7vCs3xs6Qnw8Z53ZnBzKu81FdCzltumNdTo+Ztl05FfZJDcpVx1VPF1Ke6SFF0yjaNwAAg1qf8v4Yt+1a6F25UWOJxyE/kTeuU2OvZtS7lXUs4OczCvWs+jeUvCTedR0XJXUw5Zn+oWga94dX+wYAYBBHGpJX8K6c78uQn8SLk8ZeGfE6WbP+ajsL71jGh35D3RvK7jC9qaM6LsYpK6m/S/E0hvYNAMCg0pbS7vau3DgvhfwkXoz7YfjTapclcTvl9/5Q14KNU1rvZRTo8+reUPbnVNS9Oi66rAqtJNkHofVNVZytuWVG93In5ble9pgaQ/sGAGAQaUtpH7ffLb0rN0/eKbVz8fcQY9+4Pdl3Kb/vSmgddlHLMX3WjLF76tzQPs4o19iJ1eGIYx3XcFYk8Vpobb55KolLoTWNuN++ictmdI9fZzzbtRUs81cK/vEYZ5zXvgEAMAb+d2xRN96Vi4n70d0dYAz1TsHfu7A93ur3O75JYmmdx/TnMwrwnDo3tKyMc12O1tZxZYvfRJ0Irb0A4mERMQv/aIAO7MoM7/3DjPs6WsFncThMP4m3T/sGAKBBfq/pe7F35dFsGXAcFcfOyzN+X/xvl1N+9sO6j+lj9jLrxJBP1LehXc8o1806rkbYH0ZLAn08w3vPOpjlZgWfxQ9hugm8j7RvAAAa5OXQnKW03pUHd3DA8dSfSezo83teTeJW6H9w6IYJ3HfpxvQ7Q/33bZuFpRll+ouOqzEWtOvCM+0OZXu7E7hUsMHPMtn7bM69bajQc1gSWtOYp5XAM9MWAICmORqatbrPu/LgPhpibBVXOK5qj6uP9/nvcVbc4TC5RHHpxvSf5Vxwk3o2lKx9BnfpuAj5M8MetjuMWcpKfB2pSXscd/wYWjOctW8AgPHYGqa/Lcqsosp7Kt9I+Uyv17ReelcezjCJvLjX3J99/veLYbYHsc5kTH8t56KL1LGhnE4pz591XOTUkc5vHMr6hzjG1QqV9ckpvXTFZcbLtW8AgLGSxCu/rKW0i2taL70rD++9EdtJXN1YhglnUx/Tx0qXNdPmkbo1lDgL5+9Q/SWIOq7JOp/T4A+V4B4vZNzfkwr9Qe5ORsblrnF23pow2qy5Ax2/837792nfAADjJYlXfp+E9AMK6sq78mhG2Wvu05KMRac+ps/rDG+rV0N5I6U8T+m46HAvp/2tLsE9nsm5xx0VKOe1Hfd7J7S+JRyH+M3P3KFAMaG5RfsGAJgISbzyS1vBs7/G9dK78uji/nJ/D9lW/kjilaaN6fNOB7moTg3lSp+yvBvqtcxOxzWatQU6pDL4JOc+D1egrN8MT/dRWDem3/lcu03PlcMBLyYAABMjiVduG0L6UtqlNa6X3pXHI06y+HOENjOrMelMxvR5s2y+Vp8GtjFUd8aSjmt63s1pe5+V5D7fyLnPKpw0NTfF+YMx/b74IvJbRxl84sUEAGCiJPHK7VjKZ/mm5vXSu/L4rAz9J0MVjR/av6P2Y/qLORc9rS4N7Kc+5fiFjosu3+e0vZ0luc89odpL7uNJQHFvzzthfIf0fBOasceH9g0AlIUkXrndSvksB2peL70rj0+c9HR3xLYTx3yv1n1MfyvnoifUpYHsCv1PTanzCb86rsHFDTizDpSJ084XluRed+T0EfFzLChxWccpzr+G1jHm4/B/Yf5J04trXle178H8I4QQQjQsYEPGOGGZd2UKlOGnKWPiYfqk+HOv13lM/yinAI6rU4UtSeJmV/nFTQ6f03HRZXdOu7tUonvdXqCjXNOQ59Z5elLcs2FlAz6z9i2JJ4QQQkjikSVtKe233pXJEXMlV/uUXVym+mx7XDxs3/RhHcf0Cwp88IPq1dCdV11Pq9Rxje5UTrt7v0T3uqVAP7G9Ac8s7nU5921QPD1pXUPqqvYtiSeEEEJI4pHlVoNzCd6Vh7ctifuhd/Za91kCB8Pwp9dOcu/ymYzplxT40G+oW4UH+GXrtJq0b8TJitWXOzmfZ32J7nVVgfLfXfP2Hb8FuluypKX2LYknhBBCSOIxa6+E9KW0y70re1dO8Vbov/x0e8Z4bNhZeZM6uXYmY/plBT7wfv1SoXLs/vbhiEG+jivFhpzPcrdk97u0QPm/XuP2Hb/suNbxWd8uyX1p35J4QgghhCQes3Y8pV58713Zu3KKtOXXRSaGDDsrb9x5rZmN6TdJ4o3FhZI2Ih1XOR3O+SxnKpjEO9CQ9l2mKfHatySeEEIIIYnHrN1OqRdvelf2rtzHiZTPMMgkqNVJXB6wjOJZEC/WYUxfpGJL4mX7qKu8vjbI13Hl+Dnns+wt2f0WWXZf1/0ujoTybsyrfQMAMEsbQ/pS2hXelb0rd0mbgXdlyN93eMByulaHMX2RDesl8dLt6Cqriwb5Oq4ceUvYy3gM+6IC5f9xDdv33o7P92tozUjUvrVvAABaPg3lXErrXbl8DmSMf0c5MPC1MNjy2nFMPpnpmH5dkMQb1stdleW7JBYa5Ou4cuzL+RxXS3jPi0PzZuLFPQ4ehqf7GTxbwnvUvgEAmKU/U97d3vKu7F25w/MdY6vuODum3MzdgmX1R9XH9EX2unI6ba/nwvyTSH5sJzoM8nVcec6G6s1oa9qeeKs62vfD9h+FoH1r3wAA/CdrKe1K78relTucz7j3jWO6RpygVjSRt63KY/qFobl7XQ0rru2/Eeav317a8DLJWm75uSrznwVJPMhpb5tLeN9NOp02JuOvdnyuXaqt9g0AQI+0pbSXvSt7V+7wQkb53BvztWJC8EmBsesoh06UYkyf9yFVvKfiuuZrYf7GiMsVi46roLw9KB+2O4Uy1vu8jnB3TZ7R1x2f6QNVVvsGAKCvOynvh297V/au3OGTjPI5O4HrfVBg7DpK8rAUY/q8KYdfqHf/irORfuool9/D7E/c0XFVy7GctnaupPe9qUBHuL0Gz6fzdKNTqqv2DQBAX5sz3g+fbVhZeFfOdj2jfN6f0DWvFRi/rq7ymP6bnJs4rd792zAvdZTJrdDaNwsd1yB+y2lrh0p639sKdIJrKv5sdnV8lh9C+Q6p0b4BgKZr0h5n50v+LD5Lue8fvSt7V+6Qd0DipLYu2lGgje2o8pj+TM5NfN3wihenQl7sKI94As/qgI5rMM+GyX0bMGl5neCTUM5lwEW9FJ6elhRn2C5TXbVvAKB0JPHKI20p7bvelb0rd9geZrea63YY/57upRnTv5NzE982vOJ1njwSlx6v9fdTxzWEN8Pkj7qelD059363ws8lLon/s+NzPK+qat8AQClJ4pXD5lC9SQnelcs5jtw6wWufCOM/wLU0Y/rXcm7kzwZXupMd5XA/ifX+duq4hnQhVPcAmTdCtb8pzKq3c/tcPgrjO95c+wYAGD9JvHJIS45c8a7sXbnLvjC7JN7enGsfrvKYfknOjTxqaIXr3LDw7yRemdJ14157+0O1lifquLLF/dUeh9nsBzAOR3Lu/XhFn8uXYbTp1F5MtG8AYHok8cohbSnt+w2tl96V0+Ul8Sa5nHZzzrUPVH1Mfz3nZhY1rLJ1nlIZ98raNMVrf92+7ss6rtrI2wvgcSj3QQp5+2buqeAz6Tx6/CNVVPsGAEpPEm/2shIjz3lX9q7cZVeYXdLrmZxr7636mP6LnBva0qCK9m7Xg9g2xWvPrRn/VcdVK8dz2tf3Jb//vGnDVTupufOgjrOqp/YNAFSCJN7spS2l/cW7snflPl7JqeeTPAglb8XpoDmu0o3pd4fxZimr6kDX5945xWvHDfXvt6/7jo6rVq7mtK8Pcn4+7lu5Zob3fzPj3m9U7Fm8GFrL4+O9/xSaN8tY+wYAYBhxu6d7Q45nvCs3t85kLUH9aoLXXpFx3Sdh8FlzpRvTL84p3E8aUMG6E5n7pnjtWMFuhKez/5bpuGpjcbuTyGrwL2X8fGzof4XZJcsW5Nz/iQo9i9jObrXv+2b7/0f7BgAg35aMd8I1DS4X78rZLmWUz90JXjfrANfLdRnTfxPqd/rkIA+486EcmuK114enCbyqLu/TcaXbkdPY72T87NLwdL/KfTO6/zU597+tIs8hftPyY3h60vQL/p5q3wAAFJa2BdcvDS8X78rZDuaMJzdO6LrvZFzz7bqM6d/IuKl7Na5U8RuFhx2f9b0JXy/ObIqJkbhEOe411p3R3VrBMtRxpcs72fVkxs9+2/4352Z4/1lL7f8O1TlF+XR4OnV6S0D7BgBgkDFs2lLa/3lX9q6cIU6muJNRRpOaxPRDyvXijLildRnTx43/spbUPlvDCvVqeLo/Vhnipo6rds6F4U7kORmeTjFePsP7PzpkZ1Um73X9kVga0L4BACgq61CRtd6VvSvneDMMvxR1GOvC8HvXVW5Mfyo053CLuIz1fijXKUQf6bhq52bOM1/S52c6T76Z9czMrGX2r1ag/PsdBR5n48WNSY946dC+AQDIlbaU9pqi8a5c0A8Z5fRraO07Ny6XMurrMCvJSj2mfznjxk7XqALF5ax3Q/mOEn9Ox1U7j3KeeafYoZzs+G9HZ3zvCzLuvwp/sGOC7q8C7S4eB/5SQPsGAKDfmCBtKe1Hise7ckHxUMGsZNi4lpt+mPL74wSu5+s6pr8SBt+sr0risuA/Q/kSeJd0XLWUd4rN3AzXTaG1KWyZ6sPGjPs+UPJyjyc83xiwDR7xt1X7BgBgnm0Z74LrFI935QHEJFpWLuZiGG3ro/dD+l7uo6wiK/2YfmeY3lrlaVsxxMB+WrFXx1VLw+y5GGe5PVOCe0/bwPN2KPeBFvHevh+yHZ4f4bPFLwjioRkLvZgAAFATaVtu/aZovCsPYVWYn+jqjpiveW3A37kyia8zxq7rmzCm/zXlRo5WuLIsz/hcs477oTqnfOq4BnNhwLrwe2glm8sgrb28U/Iy/2LE9vjVgNdb2vVHIx4Q9IkXEwAAKi6OUdO2p7GKxbvysOL+d5/mjMliou+tJF7IqJvb2mX8MKQv0R3HgRKVGNPvCulZzKp2Pj+Hcibw/mlXYB1XPe0foB78GMqTwFsf0k9QLnPC+a0xtclBTi1KO63of15MAACoMEtpvStPUlzpebnA2CzuSRdzUd+G1hLVuEdj1hLXX9p1t3Fj+rSk146aNawyxIs6rlr7Nuf5x28O4qawZUqOpX0zsrvE5by14z7jH4MTSbwdWhuLxmfweMB2ubnANdeG7KngXkwAAKiqtKW0fyga78pjtKE9Zhtm2epcPEjiTMExXG3H9C+l3NwP6hg6roHFZNJP7cb9qN1BxY7gvTCeKb7j9Ey7E+x3imuZfRdaXz6kJcXjXnVx78ki3/bMzTzO28fgtYyff6x9AwCAsTCFxATY5vYY+av2uO1+xxj6UXuceq89lj7THmdvCtNJnlViTH8ypTK+on6h46qtw6H/NxvPl/y+nxmg845fUnwT8hN5Z3N+z/KMn72jfQMAgLEwTEscoN7tUxkvKxp0XLUU1+/3m4X3Vk0/b/zW5lrITuQdyvkdacnAU9o3AAAYC8M07UypkDsVDR0d16OU+FTxVEq/2bffNOBzx6nRaSdvxU1TszZG3ZzyM+u0bwAAMBaGMgzs4ymVSxUN1MbGPu38Vijfnn2TsjKkb94b9z3YlfJzC0J9T6YFAACgYpYk8WswPRTqKibkb4bexNX6BpZFPBjjYuifzDuXxJbQ+sYtivsEdif+DqtOAAAAzFIcrN7rM6jdqmig8r7q07Z3NLxMYgLzdGidMlvkNNu4t94mVQkAAIAy2NxnQBsPvlipaKCy3gq9CamDiuU/cZbi60l8mcRvYf6R4j+E1l4XGxUTAAAAZbO3z4D/ShILFQ1UTlwa+qSrPb+vWAAAAKAe3gy9ibyzigUqJZ6eer+rHb+nWAAAAKBeDoXeRN5RxQKV8FwSd4IltAAAANAI+4KleFA1q5P4M8w/hXanYgEAAIB6i3tqdS/Je1exQCnFBN7tjrYaZ+O9rFgAAACgGdYm8XuYn8j7QLFAqcQ98DqX0F5OYoViAQAAgGZZmsSZMD+Rd0yxQClsDvNnzB5RJAAAANBse8P8ZEE8tXaRYoGZ2Z/E43Z7vBVaCT0AAACAsDK0kncxafB3EmsUCczEgiSut9viidCaMQsAAAAwTzz0YodigJnamsRGxQAAAAAAAAAAAAAA0GFZEh8n8YWiAAAAAIByeSaJw0k8CE/3HwYAAAAASiAeTvRREn+FVvJuLiTxAAAAAGDGliTxYRL3w/zknSQe47Qhie+SeNiOi0m8pFgAAAAAsi1O4v0k7oX+yTtJPMZlV0rdepLEXsUDAAAA0GtREu8lcSdkJ+8k8RiHZe06lFa/HiXxgmICAAAAaFmYxLuhePJOEo9xeKtAHTulmAAAAICmW5DE20ncDoMl7yTxGIczBerYPcUEAAAANFVM3r2ZxK3wdP+xH5M4mcSxJH4KknhM3tmC9QwAAACgka6HVnLkahLvJLGiz785FSTxmKzPCtSx24oJAAAAaKrDSazL+TcrgyQek7WtQB07ppgAAAAAss3N2JPEY1KuhOxZeMsVEQAAAEC2C0ESj8mKS7kv96lbcan3c4oHAAAAIN/5IInXbWESn6fEHlVmaK8mcSCJg0lsVhwAAAAAxUni9VqUUR6fqzIAAAAATJskXi9JPAAAAABKRRKvlyQeAAAAAKUiiddLEg8AAACAUpHE6yWJBwAAAECpSOL1ksQDAAAAoFQk8XpJ4gEAAABQKpJ4vSTxAAAAACgVSbxekngAAAAAlIokXi9JPAAAAABKRRKvlyTeeK1KYlcSHyRxNonrSWxRLAAAAADFSeL1ksQbzookXkviQBKnkriUxIM+ZfgkiWWKCwAAAKA4SbxeknjZ1idxIokvk7gQWjPrHuXUo864oggBAAAABiOJ10sSL9v+UDxh1y8+VoQAAAAAg5HE6yWJl21BEkuTeCaJDUlsD63E3qVQLIm3WRECAAAADEYSr5ck3vB+yKlPD0MrCQgAAADAACTxekniDe90Tn06q4gAAAAABieJ10sSb3L16ZAiAgAAABicJF4vSbzh3cupT6sVEQAAAMDgJPF6SeINZ21OXfpDEQEAAAAMRxKvlyTecN7NqUufKSIAAACA4Uji9ZLEG873OXVppyICAAAAGI4kXi9JvMEtTuJJRrk9TmKhYgIAAAAYjiReL0m8we3OqUeXFBEAAADA8CTxekniDe5UTj16XxEBAAAADK9KSbytOfdapzhZsXp0J+fzrNfUAAAAAIYniSeJN6oNOZ/lrmYGAAAAMBpJPEm8UR3O+SxnNDMAAACA0UjiSeKN6uecz7JXMwMAAAAYjSSeJN4oluV8jiftfwMAAADACCTxJPFGsS/nc1zVxAAAAABGJ4kniTeKszmf42NNDAAAAGB0VUriTcuijPL4XJX5z4IkHuTUn82KCQAAAGB0kni9JPGK2ZJTdx6GVqIPAAAAgBFJ4vWSxCvmWE7dOaeIAAAAAMZDEq+XJF4xv+XUnUOKCAAAAGA8JPF6SeLlezbkH86xWjEBAAAAjIckXi9JvHxv5tSbPxQRAAAAwPhI4vWSxMt3IafeKCcAAACAMZLE6yWJl21hEo9z6s0uxQQAAAAwPpJ4vSTxsm3PqTMxwbdQMQEAAACMjyReL0m8bMdz6sz3iggAAABgvCTxekniZbuaU2c+yPn515JYoxgBAAAAipPE6yWJl25xEk9y6sxLGT8fk3d/JXFD0wMAAAAoThKvlyReuh059eVOxs8uTeJ6+9/t0/QAAAAAirsYJPG6SeKlO5JTX05m/Oy37X9zTrMDAAAAGMzvQRKvmyReunM59WVXys+dbP/3u0ks1+wAAAAAilsS8vc3i/99QcPKRRIv3c2c+rKkz890nma7VbMDAAAAGMzBkJ2QmYstDSsXSbx0j3LqSqeY/D3Z8d+OanIAAAAAg4mHDMQTQosk8S41rGwk8dLlzdzc2/53m5L4pcF1CAAAAGBkK5O4HIol8DqTV01ZViuJl+7vAetNjGtJPKPZAQAAAORblsSO0EpCPQiDJ2JixP3QDiexLbQSXXUliZfuwoB1Jh6cskLzAwAAAOhvYxJ3krgf8vcxGzYetX9/vM6eGpWdJF66/QPUjx+DBB4AAABApngK6D9TjP01KjtJvGzf5tSFh0l8FJp3qjEAAAAAUySJl+/tJH4KrYRdnJEZ98qLyb33kliueAAAAACYNEk8AAAAACg5STwAAAAAKLmYxHuUEp8qHgCgqv4fzZEuliNvglgAAAFcdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mZW5jZWQ+PG1yb3c+PG1uPjI8L21uPjxtbz4rPC9tbz48bWk+aTwvbWk+PC9tcm93PjwvbWZlbmNlZD48bWk+ejwvbWk+PG1vPis8L21vPjxtZnJhYz48bXJvdz48bW4+MjwvbW4+PG1mZW5jZWQ+PG1yb3c+PG1uPjE8L21uPjxtbz4rPC9tbz48bW4+MjwvbW4+PG1pPmk8L21pPjwvbXJvdz48L21mZW5jZWQ+PC9tcm93Pjxtcm93Pjxtbj4xPC9tbj48bW8+KzwvbW8+PG1pPmk8L21pPjwvbXJvdz48L21mcmFjPjxtbz49PC9tbz48bW4+NzwvbW4+PG1vPis8L21vPjxtbj44PC9tbj48bWk+aTwvbWk+PC9tYXRoPiimlfkAAAAASUVORK5CYII=" style="width: 201.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="open parentheses 2 plus i close parentheses z plus fraction numerator 2 open parentheses 1 plus 2 i close parentheses over denominator 1 plus i end fraction equals 7 plus 8 i"> . Môđun của số phức w = z + i + 1 là
Cho số phức z thỏa mãn . Môđun của số phức w = z + i + 1 là