Câu hỏi
Cho đường tròn cố định. Từ một điểm A cố định ở bên ngoài đường tròn
, kẻ các tiếp tuyến AM và AN với đường tròn ( M;N là các tiếp điểm). Đường thẳng đi qua A cắt đường tròn
tại hai điểm B và C (B nằm giữa A và C). Gọi I là trung điểm của dây BC.
1) Chứng minh rằng: AMON là tứ giác nội tiếp.
2) Gọi K là giao điểm của MN và BC. Chứng minh rằng: AK.AI=AB. AC
3) Khi cát tuyến ABC thay đổi thì điểm I chuyển động trên cung tròn nào? Vì sao?
4) Xác định vị trí của cát tuyến ABC để IM =2.IN.
G. Giang
Giáo viên
3