Square root
VBT
Calculator
magnet

Câu hỏi

Cho lần lượt tương ứng là điểm biểu diễn các số phức . Số phức biểu diễn điểm để tứ giác là hình bình hành là

Cho  lần lượt tương ứng là điểm biểu diễn các số phức . Số phức  biểu diễn điểm  để tứ giác  là hình bình hành là

G. Giáo_Viên

Giáo viên

Xác nhận câu trả lời

Giải thích

Cách 1: Từ giả thiết ta có tọa độ các điểm: . Gọi với . M N → = 3 ; - 2 ;   Q P → = 4 - x ; - 1 - y " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABeoAAAB9CAYAAADdoFP3AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABp9EpLYgAAMY5JREFUeNrtnQ+kFlvXwJfjOJJEkiSJXEeSRJIkiSRJckiSJJEkSeK6kiSRJEkiSZJEkiRXJEmSSJIkkeRKcklyHEncb9b3zPM2zZlnZs8ze8/Mnvn92N5X9zmz/8z+s9aatdcSgTZwISgTGAYAAAAAZDYAAAAAAACohv+C8ioo8xgKAAAAAGQ2AAAAAAAAqEbp0zIWlB0MBwAAAAAyGwAAAAAAAFSj9HXLtaBMZlgAAAAAkNkAAAAAAACgGqVPy/ugLGJoAAAAAJDZAAAAAAAAoBqlT8vPoOxneAAAAACQ2QAAAAAAAKAapa9b7gRlKsMEAAAAgMwGAAAAAAAA1Sh9Wj4GZQVDBQAAAIDMBgAAAAAAAPZZHZTXhsrfYYYLAAAAAJkNAAAAAAAA7DMQlD+DMmqg+D0IynSGDAAAAACZDQAAAAAAAOwzIyhXDRS/z0FZxXABAAAAILMBAAAAAACAG5YH5ZWB8ndSOp5dAAAAAIDMBgAAAAAANeM/ilfle6yMidmVai1PgjKLKQ8AAADIichsAAAAAACAAkaprnwJygamPQAAACAnIrMBAAAAAAAKGKXaciEoQ0x/AAAAQE5EZgMAAAAAABQwSnXlGtMfAAAAkBOR2QAAAAAAAAWMUk05J3hnAQAAAHIiMhsAAAAAAKCAUSqJdzrCtAcAAADkRGQ2AAAAAAAAsMP0oNw1VPieBGUWQwYAAACAzAYAAAAAAAB2WBWUz4YK38mgDDBkAAAAAMhsAAAAAAAAUBxV3o4bKnuqFK5myAAAAACQ2QAAAAAAAMAOs4PyzFDheyCda9YAAAAAgMwGAAAAAAAAFtgclK+GCt9hhgsAAAAAmQ0AAAAAAADsYqLsfQrKCoYKAAAAAJkNAAAAAAAAylf6bgVlKsMEAAAAgMwGAAAAAAAA5Sp9P4Kyl+EBAAAAQGYDAAAAAACA8pW+90FZxNAAAAAAILMBAAAAAABA+Urf1aBMYlgAAAAAkNkAAAAAAACgXKVvLCg7GA4AAAAAZDYAAAAAAAAoX+l7E5R5DAUAAAAAMhsAAAAAAACUz4WgTGAYAAAAAJDZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAawJ2g/Bcp/zIkAAD/zyBDAAAA4PdBvt7Tts8Nyu6gXA3Ks6B8Dcr3oPwM//dLUO4G5VJQNgVlCq8bas6EoIwE5WxQbgblQ1BGw/n8IyhjQfkclNtBORf+drLjNs0KynJeDQAAslxN2Cq/G+kx1AMAiCwOypNQZwDwDXROAIBwI3wTKjgLPWnzgHSM8y8TlLSsogZ8NXAu5dVDzVghHcP8jwLzeqWj9fYkrOeiuP8oAAAAzZflijBDOo4YGOoBADr8EeoR0T0RwCfQOQGg9ajX7tnIQf4oKNM8aPeGoLyX/IbMpHItKFOZClAx84Ly2NKc/i981jzLbTwcef5H6XxUAAAAZLkquNvj/MNQDwBtQ3XZ09Jx2onviQC+gc7ZAxtGgss17Jd+nXlZsF8XMuq4VuDZ6kE53fEYXBN7hqCzLBWvWRCUt5H3eStU9uqujF6yOIejB8AipgRUxL4egnXR8jN8tk00xM5YpI7DvD4oyMxwXh0PZZSH0vGSHQvlonioJz0DNgdlTsXt/uhgzcZlQg11paHc3oV91/BuR8PxmsXUAU9lORvsSlk7GOoBoC3ofn8wKN9S9kQAH0HnTOBqKOi9L2A8uFnDfh0raPDQKxg7Muroxsm+GypYees55HgM9lh4t1r0g8c2loq37IzNzysetFnjytv0OI4XFXAw1kPZXBS3xj6TD8x5WRoaQrrPvyfkfQBz1GliTVDOSyf3QpG5/TqUm6ZX0A/NDfGgT1nPVvknXN8rmVbIcp7IcjaYLelGKQz1ANAGtodyQJasAOAr6JwpDEnna8a9nMrDm5r1Y3GfStDfQVkn/WXMHgjH7kVOpWugpDHRL7Abg/LcsG36OzXOEyfKX3Qexz3SL3jQ7klBeVqC0UM9NqczTaAkLkt5Br1Llts+N1wv3ee/DY0nAL3QUExnJDmmtA3vc73lN6Oivg1LxxHilVRntH8btmGAqYYs13AeZqwFDPUA0GRWS74oEQA+g85pwM4cG8L3GrV7onSuDf+Xs/0bLNU/ECqnpnWPVDBGdzPa9CfT33s0dt0jcWu8K3t+6oetU+FanRYxUOj/Tg///YTki2d/m6kCJXBIyjfkHbTch+GY4KT/fyGvFmKot3eWYe1VuJePhPMq6hwxFM6rLUG5LumJlkeDsrfi/l7NuS7VCWKz/J4rRc8w/UC9SjoecxoSaEzMDfbLmHbIcg1lr8EawFAPAE1kflDu9yH/A/gOOqcBeWJyDtWkzWf72NC2V6i8PahgjJamtOcM09571Mvwdey9Xvek7Ycl+cbOxpzP2Rbb4NMKRg5wyUrpHWJNb3HtDPfk6Bmqhjv9GLVWOgb3fsNA2Q7vpF7SUQ9p/f9LeMUQzrW0efo9lC/yJj3WdXAqY57fkequxk7LsR5V3jO9sam3IPeL+Y2E/UxBZLmG8YeYfbDCUA8ATUJz+RTJ0QbQBNA5M8hjqF9cg/aukv7ir7tgUo7xm1vyOA2kCLuTmPZeownnPhQwDlRJUsiqo9L/1X71sjcJ9XSDaQMOz4GkeJJXJX9ySD0n8iYId3G+LY0ZT1RwWsCrbi26z2aFddLcDDMszLu0j6+vpLpQOKZx6xf2Ob6mH+pIvIUs1ySeGM57DPUA0AQ03LDmWPwRyjv6/xfJL+cdUydQgKaAztmDiTkNAusqbu8UMUuwES+7HbZpv2EbTlcwXih5zWNGwhp4K/4k4YjG+9XEYWssPFMFm6wPZj9apvxCeRyX8V7Fmwo+c5WY3xbRssVBvzbK+HwPc3jdrWOzpHt8fwrnqy3+yJj778I9v2x+GKzDDwWenydvywjTElmuAfyZsLYx1ANAU+l6D6ussE+SI1UMyPgPuBjqoemgcyawQfIZvLdW3N5+EvX9dKzUHTZsh8ZZnVDiWA32GIuZ7AXeMi1U5KLvVI3dw560f0es3TbD0YwYrMFVTCGwjHpExg14qy09W5PqmN7YeuKofycTDClTee2tQA3HVzLm3X1H8tWyUF7pVe/TkuWpKYbr8KKF/WRUzJKkT2aKIst5jN4ei95S0ZCmabfJMNQDgO+ol7CGwsy6RW4S4hmgaaBzxjgt+Yzepyps64j0F8PrieN2PZJ6ePbHWdhDqQY/mSDJV4Q3e9L+qIeAGmBWO6gjK8H0FqYRWCYeV9t2DGn1vvlmeL4MO1q3TzlHWod6sbzKmG9qVHN5S+l4Rv0XShyPdYZrcIOFuo4KIXCQ5ZqNnivRkIXvpXPDG0M9AEDHMRZDPbQNdM4YbySf0ftKRe2cFgpp0bbcNWzzEYftUo+mn1J9rPwkdiTUv4s9wFuSFJjLHrV/c6Tdex3VkWXY+YtpBBZRw8JoCcLELsPzxdW6UqNtPD73CV5/Y1ku2clNy5AFVb7K+ki1uqQxOWSw/vRmzZCFumYZrvePTFVkOU+J30ReljI2GOoBoG2YOKcCNBF0zpDh2CC8N9gUblfU1tsJCoppbPilDtu1SfJ7+C8racyuJ9Q9g/XvJXt7KOk+XX1/WMIekiXYYFwEm+yU3410fzisK8u7uevh7IokQyWhpJrHeslOmnqrxPZk3fp8Lf0nIs+DiWOIzQ91z2og3wKynAs09EPUwelk5L9hqAcAMAtNDdBU0DkD9sj4ZKdZybI+VdDObQntWJMh0EXjwrvkkpgnQirDmNJlQMbHOX3KuveS+T3W5UaP+jAnbPPXoEx3WM+qjLW3nekEFnkQmVvHHNe1U6q9sTWQcL5pnGzi1TcHEw+usmPDLzFo007HbRgUs0SyByzWeVHMDPXckkSW8wldS9GPzm9j+wmGegAADPXQbtA5ZbyX+lrJzjL9o+Q26hXg+NXnblxSk7i9ro3in2W8d5NJctvpjtu1PKHeg6x779Br9K8T3uVjz/pxIGz3Hsf1TBf38YMBlCnyyytwtAThYaJkh1kbc9yGzQl1XmUqtEYp/FyC7JJEVnLVN47rXyVmRvN5FuvcZljnBaYuspxHHJP0GyEY6gEAMNQDtFrnjHsI/Qj/7bbBxjCxxHbej9WtHxImiZmXlZatDtu2KFbXq/Df/zZo1yHH43Ykoc5FrHnvOCLVhk+yud+sLaGeBRnrjtBPYIto2LNjJdX5sAaCe1Jem9VMB69ZJWYe41VdO70p1YYUPG5Qv+3bphsNZVw+lCHL+cLiWN+PJ/wGQz0AAIZ6gFbrnOtjnb4T/vuVGilrSbEcV4b/7bChEjPTYfsOyvjQQRK2Matd/4jbuKqPZLwnHPjFXEn2oH3M0PRkTcqae87wgEW6oSnUwFnWB6ALNRDcd0t1ccLBPgvF7Hbi8QrbaDLvzzus/7lB/RcrUNLLCqUIyHJFGYop3K8lOfEyhnoAAAz1AK3WOc/EOr0v/HcTz6EywkdootuxWL1nI//dxLPwpeM2PojVty7y394YtG/EUbsmJSgFF1nr3tHrdssmhqYnacmd9zA8YJGX4by6UmKdWeEwyghNN0mSva/3MyW8Y5p0PMGzZBUVigcrbOcOgzZ+cFT3dDEzmNuWi00N9VeYxshyHhBNCq36Sa8bvhjqAQAw1AO0Wud8K8mxNbcabAyuEzLqV5JnsTrfhy9LMYnVq+WU44nzU8aHDuqyx6B9Dxy1baMQm9t3lveYM18Ez9U0zknvGyxDDA9YpJufpMzQBVnhML6W1I5rPfamyUwLb9Bz5LGYGYOXVNzWzYbt/KOiulUWnFBRn08wlZHlas6yWN+P5TxbMNQDQNvAUA/QUp1zWHrH1lwn1V4xVg5JehzHEUMFxmUMo3gb7sX+u35MGDVo41wHbbso470sMVL6xaOK1p7vvJVyb69AuxmumeB+r6R29Lq5cogp4Q0nxZ9kpZsM27qxJAWhDKeLvyrsMyDL2UJ1oXfyey6vwT7XG4Z6AGgLGOoBWqpzxmO/X4r8twVSbUxMrT/uLX8y9huTeKVqnHbprRI3hv+Z8JvTBu087aBtH2N13GWNe8XSlPmyhuHpSa8E067DPq0N19hYuO9oPOPdvA6oQHAvK8RZUni1rkf/RA/HtW1reJWYGYHV2WBaDdq7xbC9LpI6m8Tv/9NBvVcN+zyLbRFZrsZEbznqmTE/4/cY6qFJoB+AK3kfQz20habpnJn8Lb29TYcMNob7jtqldb+O1aUesvErxe8M2njb8RjG47omxVuca6gI25xkSXXuY417RS9FJR5eCX7nTo+9yuWYnUpZ23fFfjgEaDdZnsVlxjzulSfmgGdj2rY1rALvP2JmBK6Lt8o2qSZe+xLDeuc76LOJnPuKLRFZrsas6mM/wVAPTQH9AIqAoR6geTpnJoPye1B+/UIRj/HzXaqJg5uUyHZp7DfDhoqTyy/W8VsHX1J+e7/ktibFxp/L+vaGGdI7/8I9hqcna3oIwi6/tJoYj87xasAi2zPm24wS23KsRxveeTSebVzD5w1lqH9rZEg4ZNjmW5brPWxQ5ycH/Z1n2N+DbInIcjVF9croB8EXYnbLGUM9xNF5szI0yFwL59JoaMvQG+R7Czx7Qqg3q64+Fto/VIY5UvD8Qz+AomCoB5O9caF0QiAeDffHV6HssctSHXor6FG4N46GcvaiCvraBJ3TiPWxDj5O+M1LyU6cZZtlYnaN2SRJq2vj9AExDwVkEvP/pcW23Wr6BG44aXFpjzE8iUyT8TdcLoj7RG0fpLoEh9BOzqXMs2cVyxLRssqT8WzbGl5k2F9X4Vz65aJhm+9YrvepQZ2XHPTXJH+AGqmmsyUiy9WUS7G5Os/w7zDUgzJTOoam25LtPKhlZx91qIPPR3ETPQD9AIqCoR6iDIV7ln6Y1NCIajv8mTI3NGzjZIdzcCs6pxvi3lRHEn5z02BzsBm3VK9ix6/5agicpKuhtwza5to4HfeS35Lxe5MrzMsttGtAfr8t4SoGPrjjRcoc2cDwjEMPoWfy+22fMg6PmWJu8NrKawJLpJ3Ne0tuy5SUttz0xBDQtjX83LC/X0O5zId578pQP9mwTtuJyqdKx2spq95TbIfIcjVlrfQfQgtDfXuZI50PxE9ynM3RuTGUoy7TW1orkC2gIjDUg6JGedMPf7Ydbt5IutP2vBLHwXed05i40Xhpwm8uG7x8m4mQLiS8/KRrFUmG6LKvk02Q8V+wZmb8zQEpJ0FvUoK41exx3pAV1mkGQ/Qb6k0YNdK/LnGMTJMxajnLqwJL9PL++hEKMWXzNaU9dU/w07Y1vDFHf4/WrO3PpHxD/SaD+lQWtP1B44JBvRpucSrbIbJcDdFzKHrD8XnOv8dQ316uyy9nOzVOqfPBSFjUsJ6V2HubYT1ncpyF/XxUQz8AG2Coh66edSfcH6+H/9/EmUPLh4J1Zz3/MjqnXeKJRsd6/O4vg5ez0VKb1uRQEk0PP5feKiOSP5nXZMn+wKAKX9FrzCcS3u8Ae5w37E+ZH98ZnnH7xueEcXou5XirzcohiG/ndYEF0ry0qop1eielTVtqPp5tW8NvDPv6MxybOvHDsO02vWquGdT30HI/Nxn2czPbIbJcTbke6+uwxXWHob7ZaP63tI9Yq6V4jhKTvCPRMtxHP9APwAYY6qEXattTe+RHgzlSJCxMVtixss9kn3VOI/aJmRe3ibKwz0J74p4X3XjtvYzLx8UsbueQwzGMezuZhpY5Z9D2wwXb9lyqvQpicqj4Xu5UtAE95lz6f1SIv2LwntQDc7HjtryW6vNlQHvYIb0Nq1XFOU2LHX7NgzFtyxo2NQBruV6ztg/naPsVi/V+lnLj+KsRasygzgvIcshyNWWjhfWBoR7SeJgyP7Kc06IJXjX2/azw92rI+lvserujH0AZ5zC0Gw1DnhVeu4hcfFqyba7onBa5K2bJV9aWpCxcTzA4zE/5vUl81fuOxzD+9Wqd4d8tMGj7R+nfA36a2Emug3JXjXKn7/170zeggoeR3rQZzfm+9AOZq1jLJvvkVeQIsMRtKS+ZpSm7U+b+qNT/Rldb1rBp6Jh+Y/K6JE/InpOW6jRNurvIUn07xezWgMrwg8hyyHI1ldH+jfTzSZ/PwVAPWXtlP/nelkT22F7hGpaH8pTOwaK3ltAPoIxzGEDtpmlJZYs4ME+Q8bZjk8gs6Jx9MJigCPSKrT7HYHO44UD5Sks4NF3KSZyQxtyEyZ9HaXpk0P5+E5MleczNLHmOodz1z2IhjmESC6WTAPtHgXf2OtzTXLBP0j8aThKA4kzpsQa+V7DP59nzl3owtk1fw0ty7JXva9j+0znav8lSnQcN6vpsoZ7Zku59HS1/h0oTshyyXB25ETuX+r3lhaEepIAtIOm2v+bz+BDZR5EtwAcw1IMtObnoh8eDkuyA8Lxma2JpkxZ8Wmz1AYPN4WnBg/bf2PNeZPyN6dXthQ7HcL8U89438QzrN+bptZzjiXJXL+Vuq9hJktQEZoZr7aXF9/ZF3IXCWSYdb2f9svwjXHt7hfwQ4F7hO1Rxu7LyxuzzZHybvIZNkpPaCr/ngodS/m2ABwZ1FUmitTR8Lz8N+3UKWQ5ZrsZstbjvY6iHLF5Jvhsrt+RXktrJyBbgqd0OQz30YkaGPHnDQh3quR+PKnKl5H42RedM5Lzki62elV39W4G2xD2I9PCaV0B4s+nhlMZ9Kea9rwfzP+ImZl08nurRmh4qKHfJXBI3Ny18Y2oO40XeomtklgD4x1tJvikyWHG7Jolf8c7bhs6PPOHChmvYftPz4Kel9TDRsM4z0glvMLOH0WUwfNaKUDZSBUJDHXzK8T5UKVpXwbgjyyHL5TEQfIn071HB52GohyzS4hTHb4XtjpwPixg68AgM9ZCHq+I+f+dSqTYZdqN1zveSL7b6Y4MNop8vwknx5UwM3iaJvS47HL8khbEfD91DhgpgHhZKPa5/oNz1T9b197UtOWj0IFHvLPU62xGuF/3IqF9t1SvlQ8H391QA/GKz1PeKX9btu/e8vtorelXewstiTY72v7RU50gN5Az9uHJUqguNgCyHLNdPf3XeFg0ziKEe+pWJumVi+DsNv9RN0H2IYYMGym8AXbK8zTdYqif6zLKdHxurc/YTW/2G2Pe+0niccU99E8OZaWKvTQ7HML5hfunzOdMkO972WE4FLR6S5yv7lXd8zZgTKxmi/zEUrscLBuPWuKtR0CpUKHmTMIeP1qiNY5Lu5cwV7+q4nGNfrKMh42SO9p+xVOdFqc54rKEZ/pJOTgpAlqs722N922PhmRjqIYthMfsY9lR+fYRGDgHfwFAPeUm7sWkjTE3UUP6yoj42UueMG3JNkqmYxDXN6xkST6b6XcyM/QfE7NqzS+UmHjroWoFnXTLoz+4cz7trsW1QPgOSfdV+BsOUyGC4Vt5LvhA4QwwdeHh2a3lSszZmGaa4bl4dJjcR6/yeXudov60QMR+lPMO8nvuajEs/SCxjuiLLeYR60kUdrx5Yei6GeihqrPkzLGXkrgNwBYZ6yMsZcROyvMv8yPOOoHPaIx5b/YDB3+wWux7sScb2/X22/78KjBfvYvVtLfAskxsCpl+q1FAZ99DfzF7lFZMM5sMEhikVHZ9TOQwkOxkyqDkzEgQSNbzOrFk730g51y0hH/Mk38fLuvFHjvar04cNL5q5hvX9GcpZ54JyM5TXvobt+BFrlxqU9Abmg/C3F8LzR8P68MEYWc5X7scMALMtPRdDPZhwM2WePA/3XpN8fAB1BUM95CUr/M2Kgs/fIdXntGqczpkUW32+wd9tNNggDudQfr7H/vZRgfYnFZdfdpKUt6LGkqcGfTJZUOul3JsFYJ9lBnNhkGEyYqNkh5aykfAMwDU3Evb2OoZNuJux1rbyKithi5gbuq/UsP0HcrTf1i3C/Yb1TWV6QYtluT2xPu2w+GwM9WCCSb43DQMxmaECT8FQD3lRh5XRlPlyvODzb0v1N7sbp3NuSDi4TFgtdpK36qR5LuMTZc3ps/29isvEevtidb2y8MytBn26YfCc04IB0nfWchhbxTQZIAI81JWk82FXTdualTzxCK+zEkxC7NVZsH2Wo/1rSlIA/gvbBdBWWS6aoPO/cM3YBEM9mLDOYK3tYJjAYzDUg+0z9HmB56rN5EcN9tbG6ZzxWPOXc7yQrA3ipsFzjiT8XZ6EQ2cN2jHqeAzjypuNpGX6ASMrfqx6UGZ57sevgPzFHuUd6zmMrXPCYEybHpLjjlSXFNFlWdXw96aGkHjS9Tpf376d8b7Osx3Vfv3/UbO2D+do+z+W6kwKI5hUjjK1oMWyXDTX2FexH4qtboZ65Kh6MpTRvxdsR8xrz/HNUM+cqgebM/ozrc/ndkOif5FqwzY2TueMJ8bamONvs0LOZHmWL054Rt6EQ2+lvGvPpsrbekvPPiLFQvrMSPj9AuQPDmP4/ziwH6Xdnr4ITX4qny8k/wfxKrmZ8b4usR1VwjfD9TRaw7Yfy7EfHCrxHLYR4xOQ5XwlHo5qu4M6MNQjR5nyMqV/59iOmNecJ8ypFs6pKRn96TeP5avw70+gc9ojHls9b/zyrMy63zMMDnFvb1UcZ+Wof45Uf2077iGjRntbMSZnSvbHEDU29kqStl36C2sEHMZtYF/GmF5FEEdoqhmXY329L/WPaZwlNF1mK6qEn4br6VbN2q3yzj+GbVd5zFa8+HMG9Y2JnaS1gCznG/FcY7cd1YOhHjnKlCtSjQMf+gHzmvOEOVVn0kJH9pOTaoX8siPPrrhvjdI544mx8gb//9tgAve6/nBaiseL22m4iGY6HMMzCYaTsoTSbtli+LcXkT04jOF/TM4wVt1qeP8Rmvxib6yfj4MyyYN2Y6ivHxNzrKe6XRPdkKPtJy3WW/XtTUCWqysDMcVfr75Pd1QXhnrkKFPScr0R+oZ5zXnCnGrrnEq7ldpPuMgHUh8Hx0bpnPelWGxNEyPywoS/W5Hwu34SDt0wqP+l4zGMK2+2Y8AvN+hjrwSx8avtTY+53VSIUe+OtOSAdxDEEZpqQjwx2mux5ymM0NQ+puRYT3VLJPvQsN3q3W7LScM0Jv5Opha0UJY7KHauzhfVOzHUI0dFmS/pOd4G2ZKY1x6DoZ451S+rMvqUxyt+ceTv5qFz2mNIxnuT5o2taZLIdV3sb9QD8EPsN/0kHFIPjlGD+k85HMMk5W2Jg3qeG/QzvjiWyPgr4EMCPrJGMNS74mjKmN5teN8Rmvxgaeys0/NzhkftzxKaLrANlc7yHOtpbY3avTBHu23mGNkj1d/eBGS5uvJR/JIRbBr0kaPqzVhKH1ezJTGvPQZDPXOqXwZkfH7Nfj+2d52+6+Lc2BidM77A+4mtuU3ye2NdFDseW6aKpsuDOK68fXVUj0mIn3hinMOx//43coe3mBgn+AjTH5ukvR71UH807u/nyJzU/z+nYQrfGV5z6czPoYTMr1G7rxi2WQ2HNsNC3TKo8xXTCloqy7XZUA/1RW+OfRL3icYBqoCwuFCE21I84epSSY+ggs5ZgAtSPLamySYRzf67TuzFgT5iULd+LRoocZK7ik86FAqWWde8o4rpg9h/38ue5C0TDOb6RIapL9I83G4yPFAhs2IGEP0QvMjDfmQJTdt51aUzWcyNWhNq0ubhHG3eZLHeQUn3POqW00wraKksh6Ee6sjljHlwmyECj8FQD0XYL8XDhj+u4V7aGJ0zLlj1E1tzmcEm0c0ePE1+9wwsmnDoqUHdLidOkvLm8uWfMOjvnvC3KujHwxrNZU/ymp+SPxcEZLNSiJ0N9UPPy3fy+4fY5Z725X7G3rWR1106JgbDuil6lw3ba1vuW2NY7xqmFbRUlsNQD3Vjo8E8GGOYwGMw1EMRFkt6Do8sR+eo8/UCdE67JF17nuVI2esqTUmJX/tNOGTqDbbb4RgmKW8u45PONujvm/C3I7F/f+vRoeJ7cRUu5Z1UF+KpyaSF0NrP8EAF6HXtF1LfOOF5yboNhoGzGky8xOui6M0zbGsR549enJLqb2/6aCBAlmuPLIehHurENAO5o44GJgDb5zBAGmk5PJal/J3Ku6/C311H57TPAbFnyM1S9lSA25Lw70Ve7CbDA9ilF/lpSTaSu8QkEYcmBI6HNarLlWyUu/7JSo6xnvOmL9Iyn69leKBk9DbUo9g83OJ5n7KSvk/jtVfCW/HHUH/XsK0uzsHXFZ77PhsIkOXaI8thqIc6EdWVD2WcdTsZLmjwOQzQrzySlj+0m6NTPe/rFrGjETpnPH55kcD6HzIGRF/il9i/aQicqQXqvGSwOb13PIZvpPzkBCsM+q03F+IeO3Xx0EG5659jGfX6bsyrinUp+9YgwwMlovMtbpDc14B+pYV6+M5rr4wbhmda1Z7i6w3b6cIhYaZh3W3LAYQshyxXFdcEAzz0ZltkPjwK/y0tbNpVhgwafA4DpPGn5E8oO0l+ea2fR+e0T1L88nUFnne7DwF4pGAfPhnUcc7hGCYlNdtQ0vt7k3Osx6Q+V7JR7vpnJKPew5w3fbGrx3jeZWigZOKG0yMN6NNQxr71lNdeGX8ZnmkzKmyjKgQfDNp431H9O6T625u+GgiQ5ZDlXIChHnqhIXy/ya8waN1wtJtT5sw/DBs0+BwGSCMt1+ijHn9zXH7ZF2fUrD+N0DnjQqKGriniOXolp/Bb9Ou1aaxSl4bzfTLe+3aopPe3O+d430C5a4RyNyOjXhKf9sdV4TosVM95Ke9DcxRNpuwyRuvcjH3rEq++Mkxu6FUdAuy0QfvUeWGqo/pNbh28b+HcQZZDlqsKDPXQi2i0gKhD4Byp78doAJfnMEAa6sjbK4R5kve57qVdZ+86OhU0QueMXwG7V/B5x8Rc8P1kQaHaZ1CPTjqXhvN46KAHJb4/vRExmmPM62RwRLkrRppn4U3Om75Iup3zVTqJsgHK4Hhs/l0rqd6poWHjkcM61glhHuosoH8zONN2VdS+1YYy5UyH4zNm0IaLGAiQ5ZDlSgNDPWTZBpL25M8p82YjwwcNPYcBskjLARW/LXo7IntPrGFfvNc5VfGIx4s/UPCZW3MIvuss9OFvg3pcGs4ny/jQQYdKfo+nc4w5ngLN4aJwfdMmK4Wr51At8cTuKjCVlRuha/DY5rCOLPngD6ZAbc+Usj8cRZku2SEO1fAyv4Lzoaqwh4AsBxjqYTxqTPoezgFNHDsp4TfXU+bNeYYQPARDPdggzeE6+hFzTeTft9e0L97rnElXnZcUfOY6MVNmbFw3UAPGD4O6Djgcw+0J9S0t+T0OG475c/af1hzK+vFogCHKRVJ+jU89hHwA28TjXz+W8jwUtsivOK4u940TQsiQOrPUQI4o2/g1FK6FLCP9AsftMLkt+pPzApDlSgVDPUQZCHXd7trpdS7ssaArq6FqK0MOHpwjGOrBlPUp8+dkZJ99I/W3LXqvc8bj4P6wIBCaxIxXD5HJFtpv+lFgnsMxvCfjk7VWwV2DcTjK/tMosj5ULWOIjOmVQMXFtajl0ol1/C18f9/C9bsThby1xHPFvAzKlBLn/lhMCHNFmhfbGY/eV5PX8BMDWWJVie25mtGWj1JO8tbnBuPySACQ5coEQz1EORx5//tTfrdI0j+OZd1knB7OLw09OwfZAmqoR2Coh36YJNmh+KK3vxfVuC9e65x6CH0V+x7XQwYbxRpLfThvUNdnh2M4K6G+exW9zzUGY7GU/adx3Ep5303w9NADYFvYF1fzV/esVwnjd91BXacy1uhr6dyQgfawOmakeR8qgWUJ9tG45K7n3tuUub/Sk/fV9DVsklS2rLjZZyT7lmAZ4fymi5lTCGHSAFmuXDDUQ5fF8isUrUnI27ScI1mhebu56fYjW0BN2CwY6sEOb3rMn2+hzN3VG+uek8lrnXObuIs9mnb42Yr9NhgKYVXGUz2cUN/lCt/pu5Rx+MK+00jSvqBf8rhfGvLjpiRfVdIrqzY9S5Liw+rmPtlyn/aImbFHPy7OY2q3Av34NBp793Mc1jcQzi0NsxMPJ+I6CfqQjM/nEg0x5QNtWcM3pdqbisrZjPrVsFlWmJmdhu99lQAgy5UJhnpQpoT6Qff8NXF2uJ0yd46n/N2h8DcPkS2gRuwVDPVgh7SbrN19U529p9W4D97rnEnXeG19GXkhveMB2VKsTBUnV4ldJ0hy1vhDFb7TA1KvBHDgngHp/cHqlcf9ykqQrJ4liy3Uc6SHIDzHwXv6LOZJn18L11ybjsZO/ZJjTrgumxz3d1WfSnGd9tq2rOHpBn197FC2uiHpYQn2lzwe9w3f+RDbGiDLlQqG+majBni9MT6csXaie/R6w2cfTJk7rzLkGPUonY1sAZ7shd1CDh0wweTD4Z6a98FrnbNXwokrlp7fyxtrhaXnq7ftB8MDbZujMTzUo769Fb5X3YC/92jXZvadxpKWLGOap30aNVzfx0LDTl70Rk6Sx+YHcXO1dL7kN5zuZmo3ltk5FTPX5d8SFL+/Uur34Tp329awXgv9kdG/I5brHJbkMGTRm06LSx6HYcN3/Z1tDZDlSgdDfXPZGdNp1QlwJEGWj37YzRN3eGXGnr469vuF8su5wmb+KvQDKIpplIkNDBUYkBVO+4UHffBW59Sv0/9I7ySvNpT1ywnPPmuxD1dyHGYu4ifNk94G8SsVv99zkuyBNoV9p7HMlt7Xe7Z42qefOdb4P6HQOmj47GWSfOvngUNleFUfgvhTpnYjmZFyBldVjpXQ714Jz+968t7auIY3lGQwULnzzxS5Ss8DNWJOqGAMbuV439PZ3gBZrlQw1DeTBSnv9VlQdknHaP8s8u9PcugB3XPne4ZuMT/8nTq7dY30tkNRoR9AUf4ynDckvAcT0vKNqoyy0IM+eKlzaszlh+LesB3fMNQLaqKF506V9CvRvbycllgcwzkZRpYfluvLy9yENj1kz2k8vT5e+Rry6HUfgqsK0RdC4T2aYHAwXJP7QkE+KTmK65swk/voz8+cSgfUHz3DXkm9jPT/idu4+N012Ms7e5kn766ta1jDCIxl9POU9Bf2RQ0g2yQ94ZPKL1XF5P0r5/u+IYQkAGS5MsFQ30xO5Nx7P0p/H0qvSX4Due0PxugHUIRtOefOWeQUMKDXre+THrTdO51zMFzI7w0Xscav31TgENhkcVB0M1kaKoJf+zRCqLFe4xEV+QKkAoDGszMJyTEW1leVchn/GPMn+03jmSu9Pxz5GDd3v7g3Tv4I95WyvCAf9dHGhUztxjApVPLqZqQvw7tgk/Q2wvpEW9eweje+zeinJrPfYSg3avgavcWR5vSgH7TWV9BXbf9In++6Gz9YvT1nsuUBspxzMNQ3k4s59lw1KPUbymCtuP8YgGwBNlG72PxQznjcp5zyNrQNLeNcgR4kJdtWO/IED9rujc6pHqT3JTvOaNoX2xehIJTHSzx68PXz5WUwrFOvtH23bJTQ56lX7XXphOiZn9GWS1LMA3IsfAfXDOqyxUisDfPZb1qtsGzztD83xY1h8lUooJQd83Wu5I9Lvppp3QhUEL4n9TPS/yfjY766oFf4kMWevcc2r2EVzo8ZyJPfw71bYwVvD88f9Uy/EP57lne+OopsrOj8fCH5wq6Z3PLSub+HLRBaLMtVMVYY6v1mq5gb6RcUrOulmIXYnO2wv+gHkMbRcH58tSyjRG1Vul9+En9uuYJbksKYr/Ck7d7onDYNXZty1Dsr/Js30t+Xl6ESjRRZB903i3WtLem969fWbrLdT+w1reGPHge4zzHpdknxeN46JvoV9ZAFgb4o6o1zPDRGjRm0fSXTuhEsl3oa6T+K+yuw03vsS76Gcmj7Glb57oxh3/MoiZfCdVIVLtcZYUug7bKcKzDUN5f7Gfvqk/A8Koo6s31Jqcdl/ipkCzDhbIl6wSqGG6TjXOMq1yg6J7Qe9WBTz7bzDEWrON7j4F3keb/0K+7hcKPV8CFfw/ndLWOhoK2C+83wgFGPHPUM8CUWnyoC8ds7U5nS4DlHJDkvxIwG9rVNa1idMNTD97bkN9rrnq0fTzX02FohXipAW2Q5AFP0XOjmlhoLzw2VHdRb0nZyZc3TczmiW3TrGanJWKAfAECZRD+CvxU/Qt60TecEAM/QONhJHui3GRoviH7BHmU4wHMmS3JumT2s4UahBpVTMt5LXhNjqrOAhhrbLB2jPMIyALIcACBbAEA9ZfpuKC71Tl/iSbvbqHMCgGesEzyxfCX6BZtrWuA7SV6hD1jDjeOgjE98SfxcAGQ5AEC2AAB/2BjZaw6jcwIA2CUpCcgzhqX2fJT+8oIA1I1hGZ94VD00prOGG4N63VyU8Ub6tTVt7yyWJSDLAQCyBQDAOPQ233vxLy9OW3VOAPB0o/2QoODtYmhqS9R7Tq+8E7cZfOaRtC9JVZvW8BRJTva3oabt1dA8Gnt4O0sTkOUAANkCAOA3rsivZOwz0TkBANyg16O/xzYtjd2FV2H9UKH7FUo4NIT9CQLTAdZwY9DEe28T3vHmmra36/XvU6xNAGQ5AEA/AIAy2BzZZ9Z61O426pwA0AC2JWxeDxmW2nEy8n6eMBzgMYtl/PXDC6zhxrBCOp428XNlRw3bql7/dwUDByDLAQCyBQBAEnOlk6Ra95kj6JwAAOWQlFzjGMNSG7ZH3ssXwUsO/GWajA/TcIs13BjUWPgz4TxRIfnfSHkXlDvSSXh3VDrxdOdLudf1VXiPev2fYnkCshwAIFsAAPyPSRF5+R46JwBAuSQlJBthWCpnh/xu7CKeGvjKBBkfI/DvoAyyhr1HDexnE86QvEXHR72Az0nHeD/bkcJxQn7/oHCZ5QnIcgCAbAEA8Bs3wn1GnWymoHMCAJTPzdiGplecFjMslXEkJoSvZ0jAY27F9pfbLRCY2rCG1WPloRQ30vcqn6Xjea9GiXkF2qmehoel43XIFVhAlgMAZAsAgN4ckF83dv5A5wQAqI4rMt5IMsywlMpU6YSFiF5nXcGwgMfEvTyvsIYbgfbpk7gz0icVNTreDA0VG4KyIChDkTapd//EoCyTjiexhgN52uNZJ1magCwHAMgWAAC/sUZ+fQz0aZ9pm84JAC3idGyD+yjEPSwLNS5FDV+PGHvwnPOx/eQwa7gR/CXlGuhtFxLHArIcACBbAAD8zqKgfAv3mo3onAAA9UGNGD9jCt5shsU58+WXlwyGJPCdqFfnqGfCHms4GQ11c0/8NdCrZzEeiIAsBwDIFgDQBjR85PWwHJT0WPPDoays+81OdE4AgPqxPLJRa1FPjnkMi3M0XMMkhgE8RpP4ROMDvg2VTNaw36yKnQndol43Go7mknSSyqpCsF86ni0aX/61/G4srKqogjKV5QnIcshyAMgWANAC/pZkp5VFCb9dGJEX9qJzAgDUl2mxDV49OZYxLACQsmc8iuwZl1AsvUfjvp+ICfnPpJNkytTgp4L0OumE43gr5Rro34R1AyDLIcsBAAC0gR0psrE62eyWTp6nSaFMPyp+hYdE5wSA1qNXn77Kr6QiixkSAIihBt338stbY4QhaQSTg/Kv/PJKX2ThmertoglhX4hbA/32cF4CALIcAABAW7iRU25WuWAzOicAgF/MlI6R5olg+ACAZHSP0DiBhBhpFuqR7uoqqZ4talC/GpR/pJhxXj8oXJBOuA8AQJYDAABoIzclXw4n32RndE4AgAgodgDA/gCu0Kus66VzDfdyUG4H5YN0ruR+D8uYdMJ33At/s0fwDgZgrwYAAABF80WZGOk1fMws5BgAAAAAAAAAAAAAALto/PmH0ttArw4vexkmAAAAAAAAAAAAAAB3qNe5GuMfS+c2qpan0rm1OpnhqSf/B6+RgtSlTsYsAAABpnRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtb3Zlcj48bXJvdz48bWk+TTwvbWk+PG1pPk48L21pPjwvbXJvdz48bW8+JiN4MjE5Mjs8L21vPjwvbW92ZXI+PG1vPj08L21vPjxtZmVuY2VkPjxtcm93Pjxtbj4zPC9tbj48bW8+OzwvbW8+PG1vPi08L21vPjxtbj4yPC9tbj48L21yb3c+PC9tZmVuY2VkPjxtbz47PC9tbz48bW8+JiN4QTA7PC9tbz48bW92ZXI+PG1yb3c+PG1pPlE8L21pPjxtaT5QPC9taT48L21yb3c+PG1vPiYjeDIxOTI7PC9tbz48L21vdmVyPjxtbz49PC9tbz48bWZlbmNlZD48bXJvdz48bW4+NDwvbW4+PG1vPi08L21vPjxtaT54PC9taT48bW8+OzwvbW8+PG1vPi08L21vPjxtbj4xPC9tbj48bW8+LTwvbW8+PG1pPnk8L21pPjwvbXJvdz48L21mZW5jZWQ+PC9tYXRoPmvnKKMAAAAASUVORK5CYII=" style="width: 247.00px; height: 20.00px; margin-left: 0.00px; margin-top: 1.11px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack M N with rightwards arrow on top equals open parentheses 3 semicolon minus 2 close parentheses semicolon space stack Q P with rightwards arrow on top equals open parentheses 4 minus x semicolon minus 1 minus y close parentheses"> Để tứ giác là hình bình hành thì M N → = Q P → ⇔ 4 - x = 3 - 1 - y = - 2 ⇔ x = 1 y = 1 " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAxoAAANjCAYAAAAtbWxbAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAAG7hYzJ2wAAUBlJREFUeNrs3Q/kVff/B/C3JJlEkiQTk2RmIjOTJDJJkphkMhMzmUnia5JkYiYzM2OSySSSZGYiM5lMTGaSRCZJMjJJktjvvH/3fnR3u59z3ufec+49997Hg5ff97fu555z3/ece8/znvefEJg2x7NaoBnA+QcAUKV/s7qZ1euaApx/AABVXujEepLVPs0Bzj8AgCovdGbqx6yWaBZw/gEAVHmhE+teVhs1DTj/AACqvNCZqaNZzdFE4PwDAKjyQifWb1mt0Ezg/AMAqPJCJ9Y/We3SVOD8AwBI9U5WDxIveMz5D84/AIBkL4dWF42Uix1z/oPzDwCglCOJFzvm/AfnHwBAKRuyup14wWPOf3D+AQAkW5TVucSLHXP+g/MPAGrzrxrretJRj7J62K4yz2HOf+e9cv4BgAsOVUuZ8995r5x/AOCCQ9VS5vx33ivnHwC44FC1XOjsdEo475XzDwBccKgqu2687HRw3ivnHwC44FBV1afBYFTnvXL+AQDkeCmr44kXOHF6zQ2aDJx/AAB51mR1M/Ei53ywYBg4/wAACnyS1bOEC5ynWX2sucD5BwCQZ3lWl0Lar6g3snpNk4HzDwAgzztZPUi8yDkRWv3HAecfAEAuc/OD8w8AYOgXOubmB+cfAEClFzrm5gfnHwBAZRc65uYH5x8AQKUXOubmB+cfAEBlFzrm5gfnHwBApRc65uYH5x8AQKXMzQ/OPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGIrjWf1bQX3b4Nd4sYLXtynn+bcM+Ny3h9AG8yp6n2fqnFOHtoVZbc3qf1mdzOqHrO5l9SirJ1k9bf/ff7L6PavTWR1u/83cEe/77orPi1418/ofZnU/qwvtNvgmq11ZvZHVHIcRAJPo/azOZvVr+8uw3y/T0w19fR8OeJHwT/ui+tWcbbye1fftx93ucztba26Hue336Kf2BeAgbXIrqwNOnam2PqtjWf1ZwUX4+ay2j+hie13HeftsCKEjrx1+bH9eLXF4ATCpXsvqUGj9Ilnmi/JiA1/LK31eVP8dWr+4rupzu/Hvvih54XJhyG2zIqv9ofULa8r+Xc9qb1bLnCJTKx7Xn2V1t6aL7dvtY2xUv+7HMB7vTn414I8uVYSOU1mtdsgBMKkWZXWlxJfjgwa+hst9fMlfaL/2KrxR4kI+1soRtNHShFB5LOjaMc3Wt8+LvGMkHkOx29S77cfP7/j7eOwsDq27dkdD645YUahdN+LXvKKPH1uuZfVejzD+Uvv1xG5SJ0oGtRh6FjgEAZhEW0t8IT5r2L7/r4+Qcb3rAqkK8Q7R48TtHxtRW+3P2aeTToOp9WZodanMO2Zjd59NfX62XC947kMjfv37S3x2/Frys2N7O5ikPPfNEf0IAQC1ervkhXpT+hbH8RRP+wgab9e0PwdC+l2heSNor9kGs8fBq4udBlMn3uU6VXCsXgqtsUmDiF2Vvi7YztkwugHj20p8dvTTFvFOzxeJz38/5I8TA4Cx835DLtTLfnn3M0D1Vs37dCdxPz4YQZttmmVfjjoFps6e0JoA4d+c8Lmn4m0eLjgnfhpR2NiReM7+NeB2joT0MSyCPwAT43TJi/V3GrDPR0J/AzA/rXm/rifux9URtNnmWfblFafA1IgXsOfD6LrwfFew7e8b/EPLNxVsK3UK7lMOVQAmRdnBkB+PeH/fCP3P9PJmjfu1vEH70suu0LvPOdNhbSi+4xa7Si2qcR8WJOzDsD9fTiaer9sr2Fac0St1ljpdqACYiIuPshfrx0e4v3Eg5o3w4uDuJsyYtadkOw57APY3PfZhr1NgKsSL5KLJCi6G6idJ6OW9gv14Evqfcroff4S0qWirGlf1Qxj/xVEBIMnBHl/yRV+AZ0e4v1+GF2fBSp15qu7FBs+G8vPoD3Ngfa8xLcudAhPvg4Rj8fKQQkaUMpbp0pD2ZV5Iu8NQ5fpB74bxnUocAEq51ONivOgL8LcR7euGHvsSx2ocTfzifrfmi6fuX4xTprv9ZEhtt6zHtq84/CfeJyFtWtVhDz4+lrBfm4ewH6kzTh2ocJtluli+7hAGYFzF/tKdv+bF/50y1e3DEe3r7a79+KN9gf974pd2natdbwwvzhzzZUibYWYYev2KesgpMPUhI848NYq1GzaEtLssdfsyjGa8ROqK5DscxgCMq51dX2rxgn1e4hfgsFeQPhFe7DIVF8lbnLi/f9S8f92/0MbZdVYn7tvWIbRfrztVa50CE2tv4rG3bUT7NyekdVmq+xf9lCmy79Ww3dQJON53KAMwrrqnmpyZ+jXl17Zh/graa+XyQ7OEpdnq85r3sXtA6cwvkT+H4fb/ns0/Q7h4opk/IMxWX494P1MGYR+rcfvLEtvpuxq2nTrN7QGHMwDjqvtXtQ3t/34z4Qtwy5D2cXGP/ey8O5G6BsimIV6wxF9qF+WEpGEHtzeGdPHE6L0V0sYGxXN8/oj39VwY7QKbqetn1NF9KTVo7HFIAzCOuqe1jRcnM92hUqZf3Dmk/eyeySnO1NTZX/p+wr52vrZhXLB0D7K+HUb7y+3BUM+aADTL0pDeJWd9A/b3+8R9XVHT9lN+pHhWUyD7I/G173JYAzCOui8+O6esTVnAahgDiXstMNc5S9OaxC/rczXvZ/cFy9Gufz8Q0gbYz6tp/34O9a0JQDPEIH05jK4rUD++S9zfnTW116OEbdc1ze7DxNe+xaENwDj6pesL7cOOfzvcgIuV2B3pQci/U7A/8cv6w5ov8LovWLq7aS1sX9wX7ecHNezf3PDioNuLDv+J81niuRDH6ixpyD6nrsj9ZQ3bXp+47U9qOidTp7ed79AGYNws6HHx2dk9IWVBqbrvElwIxasFX0j8sq5zleH1PfazVzetb8JoZsba3mM7+5wCE2VdiQvXgw3a79SgcaaGbR9J3HYdM7NtSNz2VYc2AOOoe1aa7gGXKQOYr9W4fx/22N7+rsfEXwVT7hLcqrktuxcL/GGWx72eeHHxVsX791WPbax2CkyMee1jPOXYiuM3mvQL+dnE/b5Qw7avJGz375pe98HE122dGwDGUnff6G+6/j1l/YfHNe3bK+HF/su9ViJPXdH3m5rbsnuxwI9zHvtrwv6erHj/bgw5eDFcR0P63Yym3cn6MXG/71e83UWJ2z1Z0+tOHQi+wuENwDjqnpmmewai1D7EdQwo7r4Yf9QOH92+StzHOmdXWhrKrSC8K2F/412aqvrQL+/x/F85/CdG7BL4LPE8uNs+r5vkduK+P6h4u6nrjNQxCH1t4rbPOrwBGEdrQ9oMRCkzslS9am+v2Zk+muWxNxIv2uucXak7OBQtghfHbtwJw+sysafHc292CkyMlGmoZ+p/Ddz/1JBUddBIndZ2UQ2vOXVc2WsObwDGUXf/4J9nedzvCV+GWyvcr9hdq3tF8tmmllye+GX9c81t2X3BktLVImVGrzs17d/TUO96IgzPmyVCRuzmuLBh+7+0xP5X3XUqZe2dyzW85nFZsR0A+tY9re1sv3SmrNq7u6J9ihe/3f2W4x2V2foop67oW/evuN1jSVK6WiwJaYPYt1bQpt37d87hP7Hn8bCnhx3UthL7X+Vg8NSuS0cqfr3xh5R/QtrkFQsc3gCMo17T2s42fWPKYlqfV7RfvaaazFv7IqXrQ11TU87o9Yvy4sS/TZnW8+ca9u+DERxzm0pcUI57DSvIrS25X02cZWxfif2vcrxC6oxPVc7+tjK0xsik3Hla42sKgHHVfes+b/rGlMXwqpiV5Y1QbkG5Xr/UD6O7RbfuLlBXS77mutf/6NVFa7mgMRFB41SJffq1oZ9Fp0u8huMVbjflTlCVY0I2hxcXHp1tTIhVwAEYa913KU6VCCW96ocB9ycO1O4e1P1PwQVxat/0kzW3Zfc8/GXv7qSMgfligP27FOpfDFDQGH7QWBLSB1HHer+hn0V/lXgNeyva5kuJbXe6ovfpeEgfQyNkADD2uqe13ZXz2M2h/kHLX/Z4zj0Ff5MymLquqSlnLOyxvbdLPkfKOJOHob9Zs3pdUB0VNCYiaBwosT9xLND8Bn4OLS3ZrlVdhO9I3N67A2xjTftz7XHitm4H3aUAmAC9+nXnjSlYlvAl+WSA/Vkf+hv0mbLoXV1TU87YGQafzSmuaZAy+00/4yp6XVBtEDQmImj8UWJ/Tjf0s2hnyXatasas1DsM+9rhZsks5/XcdpjfGFrr9MTHfx/S1wXp7BK2MADABOgeBFk0pmBO4pdlP7+YLujxpfygHW7ypHZ9+K3mtuzuX/5jn89zJOG19NPlqfuC6tEIjztBozqrS+7PjoZ+Fp0o8RpuVLjduw05Ti6FeieqAICh6x4E+VnC36QMuu7nl/JevyymTJWb2vXh05rbsvtOxP4+n+flxOC0ruTz3grN+WVb0KjO/lCu29S8hn4Wlbng/2ZEIa3qetIOWAIGABOn17S2mxL+7ueEL9DtJfdlS4/nOD9AQKkq/KTqNWPUIKv4nkl4Pd+XeL6Vodo+5zRH6qrSVUzUUJfXS16gb69ou/vC8MNFvGsbJ+B4J7S6WwHAROruEx0HKqaMKUi5CH6vxH7EMSHdA9Jjl6mliX9/K6TN4FLn6tfdXdD+HvD51oe0X6eXJD7fB+HF8SqLnQJjb05IW+gxZR2aUTocyt0FqOoC/afEbcZxF3FCipPtsBY/cx629+Vp177Fz5o4S14cN3au/Tcft8ORcw6AqdE9rW1qF4+UOwhlujb0Ci67Ev92VWjGANjuaWO/r+A5/0x4XYcSn+tsGI91FCgndVrnJi/SF10t8RpOVbTNuYkh7arDDADK676LkPpr54cVXti/0+Nvz5R4DXsTL07qXP26Vxe0XRU8b0o7p0wlHH/1ftxnQKHZdpe4QP+7oa9hVSgXlt6uaLvbErf3mcMMAMrpNa1t6orTKYOvf0p4njibVPfquHFAdZnuBecTLxZerrEte03LuayC542DdlMG3hf1V+/VDesNp8BE+LbEBfqZhr6GMt2m7lS43a8St7nJYQYA5XSPKbhV4m/fTvhyfpDwPD+GwabeTO2ffq3mtuzugvZnhc99LOH1/VzwHEd6hDkmw7kSF+n7GvoayqwzcbDC7d4Iox/bBQATqXta2zJjKhaEtMXx8vTqFlS27/XGxIuTL2tuy3s1bm9F4mvMuxv1W9djv3P4T4wyYxu2NHD/N5bY/3jRX9WCm8tDcxZbBICJ0mtMQdnpIlPWeVicc/Hc3SWobJep6GgDLrDW9Nje1oq3kTIzzhc1vtc01z8lLtQXNHD/y9yROVbhdj8I4z1LFwA0VveYgnghWnYRr79D/4M2f+3x2G19vI7fQ9oUsHXOVX9gCNtL+dU3rvI9P/G9nu8UmBhPEi+YHzZw35cn/mAxc3wvrXDbZ8PgdwoBgB66xxT80sdz/JjwJd1rvEWvVYz76cqzKPFC4cea27K7C9rFmraT0p+818xaJ0K58RyMl9QL9SZOZ/x5SL+bcaTC7faaha1X3XJ4AUB53WMKPunjOU4nfFF/3PU3cQ7/7l9g74b++l3vDKMfAPtSjwu9/9W0rZQVjP/o8Xd3ux6z3+E/UVIX62vajFOxG9fDkD7TVJV34VLHhXzj8AKAcnpNa/tmH8/zZcIX9fGOx8dfEXsNXN3c5+tICTqxXq2xLXtN87u2xguzRwmvd11XsBuXBdvoT2rXqaZNAHAwpN/NqHpM0Wcj2i4ATLzuL/gHfT5PykJhnb+i9por/8QAr+NewvZv19yWxytqy1Qp8/53ztz1UdAVZNKlDgb/ukH7vCC8uH7ObHW+hu2nzNTVz7g1AJh63WMKTvf5PNsTvqwvtx+7JrzYxSh2h1jY57ZfD834FfduRW2ZanVIG/w+M2i2ezHDrxp0HG4K5VaDHueqc4rUX8cwaBxJ3OcHodoB4KH9fCnb/iUAAKX0mur03T6f662QNtNN/FXweqh2td39iRcLO2psy14X/e8O4T38OeF1Hwq9FzNs0joKgkY1UrsQNiVoLAtpXQDr6rq0K3Hb/wsAQCm9BlAv6/O55id+YX8Rqh9keSGkdX1YWGNb9go7y4fwHm4NaYNnuy/kn4ZmrXAsaFQjdS2ZpgSNU2G0i2ymBrO1AQAopXta2z8GfL7Ugaid9VcYbOGwuSFtpp1LNbdl952Fa0N8H2+HtBmoOv//Hxp2LAoa1XgnjM9g8PWJ+3op1Lf2TcpMV3/7qgCA8roHUH8+4PP91cdF14YBt7k1cTuHamzH2B2suwvaMMc/HOij3Zu2wrGgUY2lDdiHFPEO6K3EHyKW1LQPbya21SlfFQBQTq9pbd8e8Dl/KHnBVcXF+JeJ23qzxrbs9SvytiG+l4tD+voJM/WyoDGRQSO6lrAPd0f8fqect/FOwsoa9+Fw4vu1y9cFAAz2JVtFn/2TJS62boZqFt26HtJmq6nT9z3acu6Q389vSrT9Hw08HgWN6qTO4rRwRO91yl3I2KXpjZr3I3WGrsW+LgCgnO6546vos/9piYuttyrY3rLEbdU5zWwMZ91rF4xiKszXS7T9Zw7/ibYyjH4Wttm8EorXzIghY13N+xFD1rOENrrqcAKA8l/23V+on1TwvCmL9sU6VtHreD9xe3VOM/t2GO54kDypv9BucApMvJSZ2IY99mBRKO7W9aCiHyGK7BTKAaAeB3t8oW6t4HlTukTcCNV0mYrOhNF3ffguVD/WpV8pawLENQvmOAUmXsq6NrGL37C6T8Vz/lIoHjeyekj7813iZ8fbDiUAKOdmjy/UKlbcfTUMbz761Glt/6yxHV/K6nGPbc4b0fsaA8SdMLpuZDTLuYTz45Mh7Ec8Ty4W7MeVUP2q33nuJwYxoRwAStgwyxdqFeYVfHEfrfB1pHbTOlFjW+4NvfuXj1LRTDrvOgWmRhzDlDIeos4L/Hg38XLBPhwfcjhfl/jZccEhBADlXKj54vjxLF/asW92lTMx/Z54sfBBTe0Yf+nsdWfotxG/v3HNgdkGuT4LZtCZNjsSzpHzNW07TlDwV0HIGcXUsalTYh93+ABAutl+yXtS4TauznKBu7bCbaSMRZip92pqy49m2d6vDXifv59l335zCkylgwnnyZEazo8nOduL58krI2iLBaE1Tinls+Nrhw4ApH/B3sj5Ut1c0XZ69Qv/tMLXEceBFHUH6axvamjLFaH1a+xs/brnjfi9fmOWfTvsNJhaRxPOlSrO0/iDQt7dxrgI354RtsPnJT47zjhsAKBYHIxZNN3lnfYF9KC6Z3OJi8NVNaBye0gbxNl9t6bKOfljG90Ozf8ltNedpTedClMtjikqWjsiDtru507DxoLPmLjdL0JrittReT+UX1xxm8MGAHqLYyLioOkbiV+q8Vf62IVikCkmP+m6uHhtwNcQB7TGX0Avh/5XYo778VX7Qrvf0LM8tNbHSO12EbuG7AjDXyF8touq+04H2ufArVA821L8wWBzzvG7pB38vwz5M509az/XKyP8DIzTbv84wOfH+fZrnefwAYAQDoTW6tQp07/mrbcQVwv/tuS2OxfC6nfhun3tbf89wP7n3eGIv/bHLl5xLMPGgn2Jj7k5YMj5q729/UO+wOq8+/Od04K2ee1z82Hi8RvPw5/adS/kj73o/PyIdzBWjOg1xmmc/whpq3+XOZdvts/ldQ4jAKbVIL/eDToj1ZYweJepc6H6gNHvYPEnFW7rxyEfB592bHu704IusRvT/0L+zFBlL8Rj16t4B3L+iF9b3Z8bux0+AMA0ezm0pht+3IALP5rtzXYwjV0UU+6ExlARxyqdbf9d7J40VzMCAAC9xDFR3bNGxfFGcUrpODB6U1YLNRMAAJAqTk17N7y49soCTQMAAPQjjq3qHhweJ01Y1ND9jeFng7cNAACa6+Pw4hiMOJnDkobubww/v7b38xNvHwAANM83PULGjQaHjLhfM2NIHoTWhAcAAEBDxLsCP/cIGXGq26UN3ec14b+LA27yNgIAQHOsDGmLUMYpbB+3w0dcQDMu+hhXnI8rhg97ley94b9r2uzxNgIAQHPEQd//hGoWrbuV1al2CIgrZc+pYX9fDc/HY8zUAW8jAAA0x5FQ72rZcaG/C+3txLsegyzgtzGrcz22sd/bCAAAzRAHUP9Sc8iYretVXIfjeFbvhtaYiu41OWIXrDigO95p+SCr01ndn+W53vdWAgBAM2ya5cJ9nCrOLrXRWwkAAKMXx0t8PuYBI9aVYApbAABohFWhtap3r+5HcQ2K2D0prp9xKLRmbzqa1YnQGhPxoCEB40l7/+Z4OwEAYPRicHjUccF+L6svQ7nB2cuy2pnVyTCablfnQ2sKXgAAoCF+a1+sxzsacQB2FXcE1rfDyq1Q78DxM1m97i0EAIDmiRfq22p8/ldCa3aouH7GnVDNrFRxXYyl3joAAGDGoqy2ZvVxaHW1iuM8bmT1MLTGWcxUXCTwj/a/f5bVjvbfAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQ6bWsPs3qT00BAAAMYmFW+9rh4t+OAgAAKG1FVl9m9bgrYAgaAABAaUuy+iqrZ7MEDEEDAAAo5aOs/ikIGKeyWqupAACAIsuyulQQMH7O6lVNBQAApNiY1f2cgPEgq52aCQAASLUr5I/FuJLVcs0EAACk2h3yu0qdz2q+ZgIAAFJtLQgZZzURAABQxsqsHuaEjDgofK5mAgAAUs0JL67w3VlxUPhSzQQAAJTxScjvMrVdEwEAAGXEOxWPckLGT5oIAAAo61jIv5uxRhMBAABlLMnqSchf9RsAAKCUwyH/boaVvwEAgFLiTFP3c0LG4/ZjAAAAku0I+XczTmsiAACgrPMFQeNdTQQAAJTxUlZPc0LGs6wWaSYAAKCMnSH/bsYVTQQAAJT1XUHQ+FwTAQAAZd0uCBpbNREAAFDG4oKQEcdnzNdMAABAGdsLgsYNTQQAAJR1oCBonNJElfm5R/sCAMBEOlkQNP6niSrx8SztC1CluaE1ri5O4nEuq7+yepTVk9CaxvxxVvdCa+2kr0PrrvY8zQZAHX4oCBrbNdHAVre/3AUNoC6vZnW8HSj+LVkxgMQfnV7XjABU6WbBF9BGTTSQOVn9kdO+AINYntXpPsLFbBWnO1+sWQGowqOCL52XNNFAjha0L0C/4h3nfyoMGTN1J6u1mheAQRXdZp+jifr2VsIXOkA/PqkhYHTWw/ZnGAD07ZkL4VosCK1BmIIGULUjNYeMmXqQ1QrNDUC/XAjX40TiFzlAGXvD7Iur/tj+93gnonMmqfi/46QUO0Nr0HdRl9nOuqLJARA0mmN7SP8SB0i1bpaAcSy0BoWnimPvDof0Gap2anoABI3RW5LV34IGULHYHfN2ePFuw+oBnnNNaK2pUfQ59bvmB0DQGL0fu9rvb+0LVOCrrs+OuGZGFZN1xPU3UrpSrfQWACBojM6HXW13okfw0L5AP2Gg83Pj04qf/0DCd8G73gYABI3RiL/2da7+fSu0ujoIGsCgznV8Znxdw/PHweJF63Ec9zYAIGgMX+y+cCX8d3DmzPzzggYwiFUdnxcXa9zOyYLPqlPeCgAEjeE7HGbv1iBoAIP4ov1ZcTerxTVuZ3fBZ9VpbwUAgsZwvRFenJ1ljqABVCB+lsxMKLG55m1tDe5oACBoNEaci/5mR1vFmVtWdT1G0AAGvfg/M4RtbSr4rPrc2wGAoDE833a11Yc9HiNoAP2KE0rsyGpZA4LGDm8HAILGcGzpaqefZnmcoAGMg7yuU0+zWqSJABA06hdX/77f0Ubxfy8VNIAxljcY/IzmAUDQGI7zXW20PeexggYwDr7J+Zx6XfMAIGjU7/3w4urfQdAAxtyNYKE+AASNkXklq4cdbfNXaA3WFDSAcbZ2ls+nmwmfcQAgaFTgclfbvJXwN4IG0HSnenw2xbFnr2gaAASN+n0SZl/9W9CgKnGBtg2htdr82azuZPU4tGb9uZjVigGfPz53XOH5Qfs548VkXHl6saafWmtnCRlrNA0Agkb94hfus442uRr+u/q3oMEg5obWGgUxADwqOF5Suuv1EmdF+ynnea9lNd9bMXXisdQ9NiN2l1qpaQAQNOo3r+uLOP66vKrE3wsazGZ9aE0m8DjhPOysgyW3E3+xvp/wvPu8JVOn+/PpVDAmAwBBY2i+7GqPjwb8Ite+vJPVrR7HwpPEoHG7xLbiOKJ/Ep/3lLdmasS7V53TdN9tH5cAIGgMyaautrjQx3MIGnR7L7TGR5xvB9c3w/OuePHX5E8Tzss3E7azOrTGYqTeKRE0psPLWV3peu/jWKD/BXczABA0hmJRVvc62uHvMPvq34IGZcSB13MLHnOm4Lg5XPD3cfX626Fcl6y9Qwjrk1znxuDYi+/xw5zX8KAdOOY5TQEQNOrTfaG3vc/nETTox5qC4+Zizt/GuyO/dD12Rfu/xzshJ3o8X5zgoI7B4IJGM2zN6s8SryVOOvC20xAAQaN673a1wXcDPJegQb9u5hw3T8LsM58dC8XdoWK3qjj+KE6hG6durqvLjKAxOvGu2Z6s/hjgNcVVwd3dAEDQqEjsv9w5eLbf6UQFDQb1dcGx02udg80d//5DA16DoDF8a9sh8kFFrysuVLrE6QiAoDG4X0L51b8FDeqwo+DY2dX1+HgxODON7bXQjIG9gsbwxLsXN2t6bfGuyCKnJACCRv8OhP5W/xY0qMPCgmPnu1mOtbjo36qGvAZBY3hiN7mH7ff/SQ2v77xTEgBBoz+vhdaUo52/4M2p4HkFDQZxI+fYudrxuPc6/vueBu2/oDFa89qhc0tWu7M6GVrdQft9jbudkgAIGuW/jDtnZHkSqvtFWNBgEN/nHDvPQmvA77LwvD/+T5qMBHEcxxchf6rbXhWn/J6v+QAQNNIdC4Ot/i1oUJfdBcfPpo5jLF40LtdklBC75x1th9bUsLFfswEgaKTZEAZf/VvQoC6vheL1NOoIyEzfcXYrMWhc11wACBrF4iwqnasnx+4nSyveRhODxvEw2X3lJ23e/8cJr/mqjzIGFFesT11z4zXNBYCgke9U12vdUcM2BA1BY1DnE17zGh9lVCD+0HIv6D4FgKAxkHe6XufJmrYjaAgagzoUildvhqqkzBR2RjMBIGj01jlLz8zq3wsFDUGjobYUvN5tPsao2A8Fx9w1TQSAoNHbz12vcV2N2xI0BI1BxdeTNyvQBz7GqNi6gnPsiSYCQNB40cddr++zmrcnaAgaVcgbpHvSxxg1KFrYb44mAkDQKHfh39TaImhMddDIe8/+9DFGDU5M4XkGgKAhaDB1dhYcHws1ERV7V9AAQNAQNJh8HwYDwhmuzUHXKQAEDUGDifZyVg8Ljo8vNBMVWx4MBgdA0BA0mGiXE46Pyw3d901hsscDdda5CTvuFgTT2wIgaAgaTKzOxfrypriN/zZX0BA0KvRSzms97dQEQNBofrCB2bzRES5i16ndBcfSZkFD0KhQXtep/U5PAAQNQYPxFH9NvtlxnOwKrcG3T3OOpcOChqBRobwV6d90igIgaAgajKfONQyOd/z3CznH0gVBQ9Co0Gx30O44PQEQNAQNxtP28N9Bt/M7/u1QyJ8JqGlTjgoa4+v7WV7nUacoAIKGoMH4WZrV3+1j41FWq7r+fWPB8bRO0BA0KnIv9J50YIXTFABBQ9Bg/FzsODZ29/j3OLNU3jgNg3SpMyAe1zQACBqCBuNnX8dxcSrncZdyjqezidtaGVqDx+drdnr4pcexFWc+W6ZpABA0BA3Gy2uhNcYiHhNxtqkFOY89mnM8PU7Y1rys/mg/frump8vmWY6tjzQNAIKGoMF4iXcVrofnA7pfL3j8loJjqujvvwnFd01olvVZfZbVt6HVpW55TdtZlNXtHsfUj94CAAQNQYPxc7LjePgw4fFxnEbeKuEf5/ztrvB8itKFmr7x4nt9NvQelB0Hn786hM+rv7Ja7K0AQNAQNGiG+Mtw7IKyuuBxBzuOhTMlnv/XnGPq8ix/sza0ulbFx2z0Fo2FQwWfHzFwfB5a3eGqDLwzdTerV7wNAAgaggbNsDf8d2ao2C3qgx6P2x/++6txmTsMxwqOq+6Vm+Pg75npSq2DMD6uh7SpdePjNvS5jXjc/dDjOeNYIVPZAiBoCBo0xLqc9/pGVgey2pbV6fDf2XxeK7mdovUpYj/7mW41O7K63/7vv3iLxsqDUG4tjxgY1pZ4/p2h1Y2u1+xlizQ/AIKGoEFzfBfKL/S2pY/tzOnjIlRf+/FzLvS3eODVrP6X1dvhv92q4v+OXfo+zepW6N1VapdmB0DQEDRonlMlLwjfHWBbX5TYTryjoa/9+NkchrOqeTw+4nihlzQ5AIKGoEEz7U+8sItjOAb95ThOcfooYVtxbMbr3pqxdSjUFzBiV7r3Qmt2KwAQNAQNGiyuifFbKB4/sb6i7e0q2FacncpqzuMv3tm4WkGwiOOB4viLPVkt1awACBowXuKvw/HORpxmNk4n+6R9gXcxtNa4mFfx9uIMU+fb23jScTG5zVsxceJ0yXGtlTgV7U9Z/R1ad7WedFT8/+NdrDgwPE46EMdjxAkBVmo+AAQNAABA0AAAABA0AAAAQQMAABA0AAAABA0AAEDQAAAABA0AAEDQEDQAAABBAwAAEDQAAABBQ/MAAACCBgAAIGgAAACCBgAAgKABAAAIGgAAgKABAAAgaAAAAIIGAAAgaAAAAAgaAACAoAEAAAOaM2HbETQAAGDEFmd1Oav3a97OwfZ2FgkaggYAAJNtWVbXOy5y6wgbc7M60bGNa1ktFTQEDQAAJtPKrO52XeT+Eqrv3rSlx8X0naxeETQEDQAAJssbWd3vusD9LauFNW3v3R4X1HH7bwoaggYAAJNhc1aPui5ur4T6x05szepx13YftfdH0BA0AAAYY3t6XNheDcMboP1WVg967MMeQUPQAABgPB3pcVEbB4IvGfJ+xG5bD3vsyxFBQ9AAAGB8xFmfvgu9x0gsH9E+bZ7lIvv79v4KGgAA0GCxS9QvPS5mn4XRD8T+ZpYL7V/CZK+1IWgAADDWXs7qxiwXswcbsH8rci62b7T3X9AAAIAGWRdenL52pp5mNb8h+/ko54I77v9bggYAADTD7qye5FzIxn+b04D9XNAOPXkX3XE63B2CBgAAjNZnCReysc5m9foIA0dclfxC4r7GOiRoAADA8MW7A+dLXLiPY50OzenyVVfQeOpQBgCgKV7J6tqEh4zOFcyXjvF7Nb/g9d1zOAMA0ARvh94rbU9y3c1q7Zi+X1tDcZc2AAAYqf1TFjC6B4nvHsP37POC17XXYQ0AwKjE8RhnpjhkdNZnY/S+xYH3d0L++IwlDm8AAEZhVZie8Rip9WMYj5XE3y94HV86vAEAGIVtWf0jWPSsm+0Q1lRxEPjtnP2P76u7GQAADFXscvNlwYV27JKzfYLbYHEo7i72sB3Gmuirgn1/z2EOAMAwLcvqt4KL1O9Da9zGNPgwq2cF7XG0Yfu8LeH9AwCAoYlT194vuEjdN4XtsiG07l7ktcvPoRldkdYW7OvlMBmLEAIAMAZiV6mjoXhcwsEpbqO3QmuK26LuZG+OcB9XFQTFq2E8BrEDADABXg7FXaX+bT9m2u1NaKfYzWr/CPbt9YKQ8ZuQAQDAsMTB3KmrfL+ruf7fX4ntdTGrpUPap40F72Ocjvclbx0AAMNSZjrXTZrr/50r0WbHh7A/H4X8wepHvWUAAAzblqzuJl4079Fc/+9GSF/Ub1mN+7Ewq9M52/87NHfqXQAApsCiggvWmYpdhhZMeVttSminOGB8b837sT7kL8Z3IQyv2xYAAOSKYzCKpnA9P8Xts6Tg4j7WtaxerXk/Xgn5q7XHfTAeAwCARlmZ1Z8JYWPelLXL8qyuh+LxGMNqlzhT2KWcfbmZ1RsOZwAAmmR++6K5aKrbZVPSHptD/rSx8S7QrhHt25GQP83uPoczAABNszvkL1AXBxvvmODXH8c4nCwIXHFg+OoR7+fWkN/l7XSwEjgAAA0TF4G7FcpNgzstFS/gFzTofbqXs6+XQ2uMCQAANEaclepHweI/9XED36c4biNvsHq8+7LM4QwAQNMcETD+f6zG+ga/R3HQ+t2CsOHOBgAAjVM0HmCS60oYjzsCq7J6kPM6rgbroQAA0EBxCtybUxYyToTxmtL37YLXc85hDABAEy0M0zNuY++YvkfHCl7Xhw5jAACa6ugEB4w4fe/GMX5v4pS2f4X89T8MDgcAoLHiYnWPEy7c4yKAcWakOSPaz7jddSF/GtjOQdMrJuC92V3wOr92+AIA0GRvhPzVs2Mtbsi+nivYzwuhNaXvJIjh6k7Oa30azEIFAEDDxalV/8y5qH21Ift5PWcfv53A9+WzMJljUAAAmCJx2tSfZrmgPdaA/duQc8G9b0Lfk60FQeOswxYAgHHxzSwXtZtGuE+xG9G1HvsUx5dsn+D3Yn5B0LjncAUAYJzsC71nOlozov3pNd1rXNjurSl4L/KCxlOHKgAA4+adrJ50XdjGQeOrh7wf7/W4wL47gv1oYtD412EKAMA4Wh9adw66w8aqIW2/1xiFOH3tNK0hIWgAADCR4oxTd3uEjZU1bzeOCem+o3IlTN+UroIGAAATK95B6J5a9m6o785CnGGqeyHBS6E1M9a0ETQAAJhocdG+y10XuX/WsJ04wPtheHEhvvlT2u6CBgAAEy/eUbgYns94tKWGbcSVvX/ouJA+n9XcKW5zQQMAgKkQL/rPZLW55u3sDxakEzQAAABBAwAAEDQAAABBQ9AAAAAEDQAAQNAAAAAEDUEDAAAQNAAAAEEDAAAQNAAAAAQNAABA0AAAAAQNAAAAQQMAABA0AAAAQQMAAEDQAAAABA0AAEDQAAAABA1BAwAAEDQAAABBAwAAEDQEDQAAQNBgai3K6tOsvtUUAACCBgxqYVaHs3rUPk4fahIAelib1cdZncrql6weZPU4q6dZPWl/j9zK6lxWx7LantU8zQaCBtNnQVaHsvqn6zgVNACYsTyrI1ndSbjO6VVP28Fjg6YEQYPJ91JWB0Prl6hex6mgAUC8232sHRT+raguZ7VG04KgweSZn9WBrP4uOE4FDYDpFu8+9HsHo6iehVZ3XUDQYALE/rH7s7qX+CUgaABMr/fbYeDfmuuH0PoBDBA0GENzs9pXImAIGgDTbe8QAkZnXWh/VwGCBmNiTlYfhf5vewsaANNn25BDxkyd1PQgaDAeAePDrG6H5/1gf83qeGgN6LssaADQw8r2Z3+v74SbWR0Nralql7a/a2bErrmvZrUjq6+y+qvPsPG+twAEDZrtevs4+z205jlf0uMxJwQNALpc6fFdcC2rTX08VxxI/lvJoBFnQVzsbQBBg+aKs3i8WvCYpYIGAB0+7PE9EO9OzKngeR+XCBvHvBUgaDD+rgsaAITWukrdU55/WuHzvxVmX7Opu2IoWeAtAUGD8XZe0AAg80nX5//pGraxMaRPl7vHWwKCBuPtnKABMPVi16jO2QnjQO667igcTgwaZ70tIGggaAAw3rqns327xm3F2aluB2MEQdBA0NBEAFP1XXB+CNvbH9Luaszz1oCggaABwHiKq3E/Dc/XXFo9hG0uCWljNTZ6e0DQQNAAYDxtD6NZmftKwrXSFm8PCBoIGgCMpy86PvNXD3G7KYvGChogaCBoADCmLrU/7y8MebsfJFwrbfb2gKCBoAHAePouq1uh3pmmenkn4VrpNW8PCBoIGgBQxvaC7584WHyOZgJBA0EDAKoMGtc1EQgaCBoAUNaOgu+fk5oIBA0EDaZbnKUm/jJ5IKvvs7qc1ZOsLla4jZ1Z/R5ac/0/Cq0FxdZoehhruwu+f3ZqIhA0EDSYDnGF3jjV5EftQHE1PF/kq84LhY9ynn+3twXG1qc553b8bJmviUDQQNBgcsUVg89mdTfhM61X/THg9ue0j8G8waKveptgLJ3OObdPaR4QNBA0mGzxLsbj0OoGda5dv4RW16jUsLFugO2/mvD8J7xNMJau55zXGzQPCBoIGkyneKchdou6nfBZ990A21mQ8Px/eztg7OSd21c1DwgaCBqwuH1RkHcMxb7WLw2wjUsJz1+nTaG/bmPjWOcc0gxJ3oxT2zUPCBoIGhC9HPLHUcR6f4DnX5bVzZznfixoCBqMne9mOQavaBoQNBA0oNOBguPopwGff1Fozalfx4BzQUPQYLjm5vw48YbmAUEDQQM6xUHj90P+7FCLK9jO1qwehOHOTiNoQLXeCyZ2AEEDQUPQoIRPC46lPRVtZ1vX834oaAgajJXfehx79yv6MQIEDUEDQYMJtCLU231qxpyu510taAgajI11sxx7WzUNCBoIGpAnb4aoQWef6hU0bg3hNQkaUJ3LPY67bzULCBoIGlDkw4LjaWcF21jV8XxfaHIYG9tD7zUz5mkaEDQQNKDIkoLj6XQF29jZ8XxrNTmMhXg386/w4mKbKzQNCBoIGpAqr/vUo9Dq+jSI0+3n+lNTw9g4Fl6ciW6jZgFBY1DHw2T3aR73W77jGDQcU822v+D1bRjguee2w8q/7e3gO8P53Xy9BoDvcaiDoOFLQ9AQNBxTZa0ueH1HB3jumfn348Dyhb5mfGc4vxsvLrZ5u6sNjjjMQdDwpSFoCBqOqX7dynl9VwZ43l+DWWp8Zzi/x8n5rtd/3CEOgoYvDUFD0HBM1fUexb7Z/dyNWNPxHK/6ivGd4fxuvENdr/2MwxsEDV8agoag4Zga1PaC17ijj+ecGQT+s68X3xnO78bb2vW6f3Bog6DhS0PQEDQcU1WIg7af5bzGsl2fOsd9bAj4znB+N9na9nfHzGu+0P5MAAQNXxqChqDhmKrELzmvsezUtKfC4OM78J3h/K5fXBfjXsfrjeOq5jusQdBgOllHg7ocKji2FiQ+z6sdf7NVs0JjxQU7OyeC+K3EeQ4IGggakGx9wbGVGhp+aD/+d00KjRWnsf2j4/yO/3uxZgFBA0FD0KAOcQXwJznH1uGE5+hc6OttTQqNFO9aXO44V2+E1t0NQNBA0BA0qM0POcfW2YS/vxqed8EYlU1hsscMdNY5hywlxTEnFzuOobg43zLNAoIGCBrU7X85x9b9gr/d1fHYtwQNQYPGmdP1Y8LdrF7WLCBogKDBMLxZcHzNtnBf/JX0dmjG/PuCBvR2uuuHg1WaBAQNEDQYlqJxGrMNCD8cnq8iPupVwAUNeFHnNMQPsnpdk4CgAYIGw5Y3TuNAj8cvz+px6G9hP0FD0KB+x7q+I94c0nbj2I/d7R8wQNAQNBA0IBzMOb5O93j8zOJ8j0IzBpUKGvDc4Y7jJf4gsH6I2z7T3u5abwMIGggaEG3MOb5udT22c+2Ngw3Zf0EDWvZ1HCtPw3CnnH6nvd0/vQ0gaCBowIy5oTXWYrZjbF77cbE7xLX2f/ur478Do/d+13m7bYjbfiW0xoHE7X7srQBBA0EDOv2Wc4zN/Cq6f0QXMUC+HV3n7K4hbjsu/HcrPL+LssjbAYIGggZ0+jrnGPsoq6XtYy3+/xc0FzTGlvDfO5IfDHHbr3eEjNnGdIGgIWjQYD8IGgzBOznH2PdZnQzPf7FcqbmgEeL4qscd5+r+mrc3p33+78zqfHixy+UmbwkIGoyXG4IGQ/BKzjF2t+N/H9FU0Ahvhed3GZtQf3lLQNBgvLwU8gfpziyYZs5yqvC44FiLXSTmayYYudhl6UFo1oxoh7wtIGgwXvYkfsBv1FRU4MeC4+xtTQQjF7su3Q/Nm3p5hbcGBA3Gx4Lw30F2eXVRc1GBvAHhpzQPjNzy8N+ujE0p30EgaDBG4gw/l0p+0MeLRF2oGMSuWY6t+OvpYs0DI9U5jWzTaqe3BwQNmi3OPb61HRgehf4H4x0OrS4uFlOjrM2zHFe7NA2MVAz6fzY0ZMSxIn7kAkGDhlmX1b32h/STmr4AnrSfP27nHU1OQtjtPobOaxYYqXgRf6WhISPWl94iEDRonk1D/jLYrckpsCC8+EvlUs0CIzWvwSEj1mveIhA0AIps6foMdBcMAAQNgIF9Ff67GjgA0KeihdAApkUcnzEzCcHt9v8PAPSpaACuWRSAaXGq47PvLc0BAIN5WBA0XtJEwBR4r+Nz77DmAIDBXS8IGhs1ETDhVofnXaZ+0RwAUI0fCoLGdk0ETLA4ne3N8Hz1b1PZAkBFThYEjQOaCJhgZ9ufdXFijA2aAwCqs78gaJzSRMCEOtDxWfex5gCAam0rCBrXNBEwgTZ3fM59pzkAoHqLCoJG7E4wVzMBE2RlVg/an3G/+owDgPrcKggbWzQRMCHiYO/b7c+2+Nm3RJMAQH1OFASNTzUR0EBxxqhDoTV73rnQWv9icc7jY6iYmdI7zjC1QhMCQL22FwSNS5oIaJjFofc6QDFA9FrV++WsbrQfE7tNrdGEAFC/2D/5acgfp7FAMwEN8kXOZ9bjrPZlNa9de8PzMRkPZwkiAEBNzoT8uxo7NBHQIPcLPrN6VQwb6zQdAAzX1oIv6O81EdAgT0qGjBhM1mo2ABi+OVndyfmS/qf9GIAmuFYiZPwZWmM0AIAR+aTgy/ptTQQ0xIHEkHEqGGMGACO3MKtHOV/Y5zQR0BDxDutPOZ9X8Q6tsWUA0CCfhfzZp1ZpIqBB4oxScXXvx+261P5v8zQNADRLnJv+YcjvhgAAAFDa/pDf59n0kAAAQF+u5ASNm8HgSgAAoA8rwvOVdA0MBwAAKvN2yO9C9bUmAgAA+rGzIGwc10QAAEA/4lz0T3PCRpzLfpFmAgAAyoozTd3PCRt3g5XDAQCAPizN6mLI70p1NquVmgoAACjrg5A/I1VcQfz7rNZqKgAAoIy4gvgX7VCRd4cDAACgtJez+jKrx4IGAABQtbhS+MdZ/SloAAAAdXgtqyPt0AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJT1WlafZvWnpgAAAAaxMKt97XDxb0cBAACUtiKrL7N63BUwBA0AAKC0JVl9ldWzWQKGoAEAAJTyUVb/FASMU1mt1VQAAECRZVldKggYP2f1qqYCAABSbMzqfk7AeJDVTs0EAACk2hXyx2JcyWq5ZgIAAFLtDvldpc5nNV8zAQAAqbYWhIyzmggAAChjZVYPc0JGHBQ+VzMBAACp5oQXV/jurDgofKlmAgAAyvgk5HeZ2q6JAACAMuKdikc5IeMnTQQAAJR1LOTfzVijiQAAgDKWZPUk5K/6DQAAUMrhkH83w8rfAABAKXGmqfs5IeNx+zEAAADJdoT8uxmnNREAAFDW+YKg8a4mAgAAyngpq6c5IeNZVos0EwAAUMbOkH8344omAgAAyvquIGh8rokAAICybhcEja2aCAAAKGNxQciI4zPmayYAAKCM7QVB44YmAgAAyjpQEDROaSIYijiz26dZfaspAIBJcLIgaPxPE0GtFmZ1OKtH7XPuoSYBACbBDwVBY7smglosyOpQVv90nXOCBgAwEW4WBI2NmggqFRfIPJjVg1nOOUEDAJgIjwqCxkuaCCoRZ2+LY6L+LjjnBA0AYCI8KbjomaOJYCDzstqf1b2Cc03QAAAmyrOCix6gP3Oz2lciYAgaAMBEKbroAcqJdwE/yupOyYAhaAAAggbQM2B8mNXt9rkT7xb+mtXxrI5ldVnQAAAEDUEDyrrePmd+z+rjrJb0eMwJQQMAEDQEDSgjLrr3asFjlgoaAICgIWhAHa4LGgCAoAFU7bygAQAIGkDVzgkaAICgAQgaAACCBggaAACCBggaggYAIGgAggYAgKABggYAgKABgoagAQAIGoCgAQAgaICgAQAgaICgAQAgaACCBgCAoJFiTlYbsjqc1dms7mT1OKunWV3MasWAzx+f+3RWD9rPeT+rL7JarOkFDQAAQWOyzM1qRzsAPCpon7+yWtDHNpZm9VPO817Lar7DU9AAABA0xt/6rE6E1h2Lf0vUwZLbWRtady6Knnefw1PQAAAQNMbXO1nd6vHanyQGjdsltvVWVv8kPu8ph6egAQAgaIyv90JrfMT5rD7K6s3QGpsRxW5Rnya005sJ21kdWmMxUu+UCBqCBgCAoDHG4sDruQWPOVPQTocL/n5JaN35KNMla28Nr3VTyX0Y5zonaAAACBpNt6agnS7m/G28O/JL12NXtP97vBNyosfzXQ31DAYXNAQNAABBo2Fu5rTTk/C8u1W3Y6G4O1TsVvVlaE2h+0nobyYrQUPQAAAQNMbQ1wVttabH32zu+PcfGvAaBA1BAwBA0GiYHQVttavr8XFcxsw0tnFdjAUNeA2ChqABACBoNMzCgrb6ruvxP7b/e1z0b1VDXoOgIWgAAAgaDXQjp62udjzuvY7/vqdB+y9oCBoAAIJGA32f01bPQmua3GXh+XoZP2kyBA0AQNAQNIrsLmiveMfgx44LxuWaDEEDABA0BI0ir4Xi9TRm/vdHmgtBAwAQNASNVI8T2u2qZkLQAAAEDUGjjPMJ7bZGMyFoAACChqBRxqGCNjuuiRA0AABBQ9Aoa0tBm23TRAgaAICgIWiUNS+0prKdrc0+0EQIGgCAoCFo9OOPnDY7qXkQNAAAQUPQ6MfxnDb7U/MgaAAAgoag0Y+dBe22UBMhaAAAgoagUdaHwYBwBA0AAEGjQi+3Lwbz2u0LzYSgAQAIGoJGGZcT2u1yQ/d9U8K+T0qdEzQAAASNcdG5WF/eFLfx3+YKGoKGoAEACBqCRpE3OsJFvBjcXdB2mwUNQUPQAAAEDUEjz0tZ3exol11ZzcnqaU7bHRY0BA1BAwAQNASNPCc62uR4x3+/kNN2FwQNQUPQAAAEDUFjNts72uNaVvM7/u1QTts9Ca27HoKGoCFoAACChqDxH0uz+rvdFo+yWtX17xsL2m+doCFoCBoAgKAhaHS72NEWu3v8e5xZKm+cxn5NiKABAAgagkanfR3tcCrncZdy2u9s4rZWhtbg8fkOSUFDEwEAgsbkei20xljENoizTS3IeezRnPZ7nLCteVn90X78doekoKGJAABBYzLFuwrXw/MB3a8XPH5LQRsW/f03ofiuCZPjB0EDABA0ptPJjtf/YcLj4ziNvFXCP875213tx9zJaqHDcSrcEDQAAEFjciwKrZW6Vxc87mDHaz9T4vl/zWnDy7P8zdrQ6loVH7PRoTgVXioIpf+2/32OpgIABI3m2xv+OzNU7Bb1QY/H7e94zF+h3B2GYwXt+GbX4+Pg73vtfzvqMJwae0La1LyCJwAgaDTcupzXFruwHMhqW1anw3+7rrxWcjtF61PczurV9mN3ZHW//d9/cQhOjTihwK3EoHFRcwEAgkazfRfKL/S2pY/txK4uD0puJ941WewQnApx4cdLJY+Pr4MuVACAoNFYp0pe3L07wLa+KLGdeEfjFYffRIvjgra2A8Oj0N/q5jGMxvVV3g6taZABAASNhtifeEEXx3DsGnBbyxMvKOPYjNcdehNnXfu9jXe2nvQZLIrqSfv543be0eQAgKAxOnFNjN9C8fiJ9RVtb1fBtuLsVMscdhNpU6gnXMxWuzU5ACBojFZc5yLe2YjTzMbpZOOvwnHAdxxwG9e4qLpLSpxh6nx7GzPbOhtag84BAEDQ0DwAAICgAQAACBoAAICgAQAAIGgAAACCBgAAIGgAAAAIGgAAgKABAAAIGgAAAIIGAAAgaAAAAIIGAAAgaAgaAACAoAEAAAgaAACAoCFoAAAAggYAACBoAAAAggYAAICgAQAACBoAAICgAQAA42jOhG1H0AAAgBFbnNXlrN6veTsH29tZJGgIGgAATLZlWV3vuMitI2zMzepExzauZbVU0BA0AACYTCuzutt1kftLqL5705YeF9N3snpF0BA0AACYLG9kdb/rAve3rBbWtL13e1xQx+2/KWgIGgAATIbNWT3quri9EuofO7E1q8dd233U3h9BQ9AAAGCM7elxYXs1DG+A9ltZPeixD3sEDUEDAIDxdKTHRW0cCL5kyPsRu2097LEvRwQNQQMAgPERZ336LvQeI7F8RPu0eZaL7O/b+ytoAABAg8UuUb/0uJh9FkY/EPubWS60fwmTvdaGoAEAwFh7Oasbs1zMHmzA/q3Iudi+0d5/QQMAABpkXXhx+tqZeprV/Ibs56OcC+64/28JGgAA0Ay7s3qScyEb/21OA/ZzQTv05F10x+lwdwgaAAAwWp8lXMjGOpvV6yMMHHFV8guJ+xrrkKABAADDF+8OnC9x4T6OdTo0p8tXXUHjqUMZAICmeCWraxMeMjpXMF86xu/V/ILXd8/hDABAE7wdeq+0Pcl1N6u1Y/p+bQ3FXdoAAGCk9k9ZwOgeJL57DN+zzwte116HNQAAoxLHY5yZ4pDRWZ+N0fsWB97fCfnjM5Y4vAEAGIVVYXrGY6TWj2E8VhJ/v+B1fOnwBgBgFLZl9Y9g0bNutkNYU8VB4Ldz9j++r+5mAAAwVLHLzZcFF9qxS872CW6DxaG4u9jDdhhroq8K9v09hzkAAMO0LKvfCi5Svw+tcRvT4MOsnhW0x9GG7fO2hPcPAACGJk5de7/gInXfFLbLhtC6e5HXLj+HZnRFWluwr5fDZCxCCADAGIhdpY6G4nEJB6e4jd4KrSlui7qTvTnCfVxVEBSvhvEYxA4AwAR4ORR3lfq3/ZhptzehnWI3q/0j2LfXC0LGb0IGAADDEgdzp67y/a7m+n9/JbbXxayWDmmfNha8j3E63pe8dQAADEuZ6Vw3aa7/d65Emx0fwv58FPIHqx/1lgEAMGxbsrqbeNG8R3P9vxshfVG/ZTXux8KsTuds/+/Q3Kl3AQCYAosKLlhnKnYZWjDlbbUpoZ3igPG9Ne/H+pC/GN+FMLxuWwAAkCuOwSiawvX8FLfPkoKL+1jXsnq15v14JeSv1h73wXgMAAAaZWVWfyaEjXlT1i7Ls7oeisdjDKtd4kxhl3L25WZWbzicAQBokvnti+aiqW6XTUl7bA7508bGu0C7RrRvR0L+NLv7HM4AADTN7pC/QF0cbLxjgl9/HONwsiBwxYHhq0e8n1tDfpe308FK4AAANExcBO5WKDcN7rRUvIBf0KD36V7Ovl4OrTEmAADQGHFWqh8Fi//Uxw18n+K4jbzB6vHuyzKHMwAATXNEwPj/sRrrG/wexUHrdwvChjsbAAA0TtF4gEmuK2E87gisyupBzuu4GqyHAgBAA8UpcG9OWcg4EcZrSt+3C17POYcxAABNtDBMz7iNvWP6Hh0reF0fOowBAGiqoxMcMOL0vRvH+L2JU9r+FfLX/zA4HACAxoqL1T1OuHCPiwDGmZHmjGg/43bXhfxpYDsHTa+YgPdmd8Hr/NrhCwBAk70R8lfPjrW4Ift6rmA/L4TWlL6TIIarOzmv9WkwCxUAAA0Xp1b9M+ei9tWG7Of1nH38dgLfl8/CZI5BAQBgisRpU3+a5YL2WAP2b0POBfe+CX1PthYEjbMOWwAAxsU3s1zUbhrhPsVuRNd67FMcX7J9gt+L+QVB457DFQCAcbIv9J7paM2I9qfXdK9xYbu3puC9yAsaTx2qAACMm3eyetJ1YRsHja8e8n681+MC++4I9qOJQeNfhykAAONofWjdOegOG6uGtP1eYxTi9LXTtIaEoAEAwESKM07d7RE2Vta83TgmpPuOypUwfVO6ChoAAEyseAehe2rZu6G+OwtxhqnuhQQvhdbMWNNG0AAAYKLFRfsud13k/lnDduIA74fhxYX45k9puwsaAABMvHhH4WJ4PuPRlhq2EVf2/qHjQvp8VnOnuM0FDQAApkK86D+T1eaat7M/WJBO0AAAAAQNAABA0AAAAAQNQQMAABA0AAAAQQMAABA0BA0AAEDQAAAABA0AAEDQAAAAEDQAAABBAwAAEDQAAAAEDQAAQNAAAAAEDQAAAEEDAAAQNAAAAEEDAAAQNAQNAABA0AAAAAQNAABA0BA0AAAAQQMmxKKsPs3qW00BAAgawKAWZnU4q0ft8+6hJgEABA2gXwuyOpTVP13nnaABAAgaQGkvZXUwqweznHeCBgAgaADJ5md1IKu/C847QQMAEDSAQvOy2p/VvYRzTtAAAAQNINfcrPaVCBiCBgAgaACzmpPVR1ndKRkwBA0AQNAAegaMD7O63T5/nmX1a1bHszqW1WVBAwAQNAQNKOt6+7z5PauPs1rS4zEnBA0AQNAAyoiL7r1a8JilggYAIGgAdbguaAAAggZQtfOCBgAgaABVOydoAACCBiBoAAAIGiBoAAAIGiBoCBoAgKABCBoAAIIGCBrA/7V3vxF2nXkcwB8Ro2KUGBVVEVZUxL4IebEqVoSIiogINfKiapWqFbViWKsqqkpfRVXfVFVFjLBi1Fi1xIqoVaVqRawKsWLFGkusGGNE2X2e3jOdm9tzn+fcP7Mz957Phx/JuHNuzneucb+55zkPAIoGKBqKBgCgaACKBgCAogGKBgCAogGKBgCAogEoGgAAikadQ3HOxVmIcy3OX+Osx7k5xueYj/NtnCdxVuN8EeeIl6OioWgAAIrG5JuJczrOxapQfFe98c/lMT+G572YOf6rXpKKhqIBACgak2d3nBtxHjY497r524jPv6t6E9nv+D/EOexlqWiICABQNCZL+hRjLXQug1qq5lboXBrVtGwcG+H5Dzc4/mdeloqGiAAARWM6pE8a0mVRDxpk8vkIzzPb4Pj/9rJUNEQEACga02UudNZq5DJJ6zj2jPActxscfyudDMNdNjaJs6RoAAAoGjvF/pBfR5HmNyMc//k49zLHXlM0FA2/mgAARWM6LRRy+XLE4++NczVszYJzRUPRAABQNHaotGh8JeTvDjU3huc5E+dRz7EXFQ1Fw68mAEDRmF7vFbJ5fUzPc7bnuG8qGoqGX00AgKIxvQ6Erb18asOunuMeUjQUDb+aAABFY7rl7hA16t2n6orG/f/DOSkaigYAgKKxzd4s5DM/hud4set4V0TeCooGAKBotNxzhXyuj+E55ruOd1TkioaiAQAoGu2Qu3xqNXQufRrF9epYd0StaCgaAICi0R6XChkdH+HYu6uy8t/qeVA0FA0AQNFoiUOFjN4f4divhc2F5c+KWtFQNAAARaNd7mcy+maE435VHeMTESsaigYAoGi0z6chv0v4MJ9GHOk6xmERKxqKBgCgaLTPuUJO54c45sYi8L+IV9FQNAAARaOd0qLtHzI5DXrpU/e6j+PiVTQUDQBA0WivW5mcBr017WIYfX0HigYAgKIxBd4pZDXb8DiHu77njFgVDUUDAFA02u3Xhayalobl6vHfilTRUDQAAEWDtAP4eiaryw2Ocazr8adEqmgoGgCAokGynMnqRoPv/6567NfbeA4nG/zcp2WWFA0AAEVjEvw+k9VK4XsvdD32JUVD0VA0AABFgw2/KuTVb+O+mTgPqscsb/M5KBqKBgCAorHDlNZp9FsQfjls7iK+3buAKxqKBgCAorED5dZpLNQ8/oU4a2G4jf0UDUUDAEDRaIm3M3ldr3n8xuZ8q3GeVzQUDUUDAFA0qHMik9f9nsd2773x9g759ysaigYAgKKxA+0OnbUW/TKbqR6X1nPcrb72j66vg6IBACga1Po6k9nGRnyXur52VmQoGgCAoqFolHycyexinH3Vm8X09z+LC0UDAFA0FI0mXslkdi3O1erPT+IcFBc9lhUNAEDRoM4vMpk97Przu6KixveKBgCgaNDPWiG7dAeqZ8REjz0hfzOBjY0dd4kKAFA02ulPhexOiYgar4dmt+Y9ISoAQNFop9yC8EXxUGM2dD7palI0booLAFA02ulCn8xW4syJhx7pTmS3w2AbDqYy6xIqAEDRaJmX+2R2QTRU9sY5UxWG1TDc7uZps8fLoXMpnk0fAQBFoyVvInvz+kIsrXYszr/iPIqzPmSxKM16dfz0PK+IHABQNKbPbE9W6c3fPrG02sktKhf95lWRAwCKxvQ53ZOV/10GAABFY2Qfhad3AwcAACqljcOol9ZnbCzufVD9HQAAqJQWrLq1Zr3FroxeEgcAADztcaFo7BHRz7zWlc9lcQAAwM/9vVA0TojoKYfC5iVTt8QBAAD1lgtF45yIfpJuZ3svbO7+7Va2AADQx9VC0VgQ0U9uVJmkBfTHxQEAAP1dKhSNRRH9aKErk7fEAQAAeWcLReOuiMLLXXl8Lg4AACjbWyga6TKh3S3O52CcR1UWX7U8CwAAGMj9Qtk43dJc0mLvB1UGKaPnvFQAAKC5zwpF470pOMd0x6h3QucuW0uhs//FXObxqVRs3Po33WHqgJcJAAAM5lyhaNye8PObC/X7haQCUber9/4431ePSZdNHfESAQCAwaV1B09Cfp3G7ASf35XMua3F+V2cmWp+GzbXZDzuU0QAAICG/hjyn2qcn+BzWymcW92ksnHMywIAAEZzpvDG+9oEn9v6gCUjFZOjXhIAADC6XXH+mXnz/Z/qMZPo7gAl407orNEAAADG5A+FN+GnJvS8FhqWjLQL+qyXAQAAjNezcVYzb8SXJvS80icxX2bOK32Sc96PHwAAts4HIX/3qRcn+NzSHaXS7t5r1dyuvjbjxw4AAFsr7TnxOOQvLwIAABjYpZBfy+C2rwAAwFC+yRSNe8GiaQAAYAgHwuYO2dO0MBwAANhmp0L+EqqPRQQAAAxjvlA2PhURAAAwjLTHxJNM2Uh7VOwVEwAAMKh0p6mVTNl4GCZ353AAAGAb7YtzM+QvpboR56CoAACAQb0R8nekSjuIX4tzVFQAAMAg0g7iV6pSkfuEAwAAYGD743wYZ03RAAAAxi3tFP5WnDuKBgAAsBV+GefdqnQAADBl/geijS6vLWxwuwAAAsV0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bW92ZXI+PG1yb3c+PG1pPk08L21pPjxtaT5OPC9taT48L21yb3c+PG1vPiYjeDIxOTI7PC9tbz48L21vdmVyPjxtbz49PC9tbz48bW92ZXI+PG1yb3c+PG1pPlE8L21pPjxtaT5QPC9taT48L21yb3c+PG1vPiYjeDIxOTI7PC9tbz48L21vdmVyPjxtc3BhY2UgbGluZWJyZWFrPSJuZXdsaW5lIi8+PG1vPiYjeDIxRDQ7PC9tbz48bWZlbmNlZCBjbG9zZT0iIiBvcGVuPSJ7Ij48bXRhYmxlIGNvbHVtbmFsaWduPSJsZWZ0Ij48bXRyPjxtdGQ+PG1uPjQ8L21uPjxtbz4tPC9tbz48bWk+eDwvbWk+PG1vPj08L21vPjxtbj4zPC9tbj48L210ZD48L210cj48bXRyPjxtdGQ+PG1vPi08L21vPjxtbj4xPC9tbj48bW8+LTwvbW8+PG1pPnk8L21pPjxtbz49PC9tbz48bW8+LTwvbW8+PG1uPjI8L21uPjwvbXRkPjwvbXRyPjwvbXRhYmxlPjwvbWZlbmNlZD48bXNwYWNlIGxpbmVicmVhaz0ibmV3bGluZSIvPjxtbz4mI3gyMUQ0OzwvbW8+PG1mZW5jZWQgY2xvc2U9IiIgb3Blbj0ieyI+PG10YWJsZSBjb2x1bW5hbGlnbj0ibGVmdCI+PG10cj48bXRkPjxtaT54PC9taT48bW8+PTwvbW8+PG1uPjE8L21uPjwvbXRkPjwvbXRyPjxtdHI+PG10ZD48bWk+eTwvbWk+PG1vPj08L21vPjxtbj4xPC9tbj48L210ZD48L210cj48L210YWJsZT48L21mZW5jZWQ+PC9tYXRoPo4FfTgAAAAASUVORK5CYII=" style="width: 125.33px; height: 137.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="stack M N with rightwards arrow on top equals stack Q P with rightwards arrow on top left right double arrow open curly brackets table attributes columnalign left end attributes row cell 4 minus x equals 3 end cell row cell negative 1 minus y equals negative 2 end cell end table close left right double arrow open curly brackets table attributes columnalign left end attributes row cell x equals 1 end cell row cell y equals 1 end cell end table close"> Vậy Cách 2: Vẽ phác thảo các điểm trên mặt phẳng tọa độ rồi xác định tọa độ điểm sao cho tứ giác là hình bình hành.

Cách 1: Từ giả thiết ta có tọa độ các điểm:

. Gọi  với .

<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mfenced><mrow><mn>3</mn><mo>;</mo><mo>-</mo><mn>2</mn></mrow></mfenced><mo>;</mo><mo>&#xA0;</mo><mover><mrow><mi>Q</mi><mi>P</mi></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mfenced><mrow><mn>4</mn><mo>-</mo><mi>x</mi><mo>;</mo><mo>-</mo><mn>1</mn><mo>-</mo><mi>y</mi></mrow></mfenced></math>

Để tứ giác  là hình bình hành thì

<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mi>M</mi><mi>N</mi></mrow><mo>&#x2192;</mo></mover><mo>=</mo><mover><mrow><mi>Q</mi><mi>P</mi></mrow><mo>&#x2192;</mo></mover><mspace linebreak="newline"/><mo>&#x21D4;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mn>4</mn><mo>-</mo><mi>x</mi><mo>=</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn><mo>-</mo><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mspace linebreak="newline"/><mo>&#x21D4;</mo><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd><mi>y</mi><mo>=</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math> 

Vậy

Cách 2: Vẽ phác thảo các điểm  trên mặt phẳng tọa độ rồi xác định tọa độ điểm  sao cho tứ giác  là hình bình hành.

1

Câu hỏi tương tự

Tập hợp các điểm biểu diễn số phức thỏa mãn phần thực và phần ảo của đều thuộc là

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG