Square root
VBT
Calculator
magnet

Câu hỏi

Cho hình thoi ABCD tân O. Trên tia đối của các tia BA, CB, DC, AD lần lượt lấy các điểm E, F, G, H sao cho BE = CF = DG = AH. a) Chứng minh tứ giác EFGH là hình bình hành. b) Chứng minh điểm O là tâm đối xứng của hình bình hành EFGH. c) Hình thoi ABCD phải có điều kiện gì để EFGH trở thành hình thoi?

 Cho hình thoi ABCD tân O. Trên tia đối của các tia BA, CB, DC, AD lần lượt lấy các điểm E, F, G, H sao cho BE = CF = DG = AH. 

a) Chứng minh tứ giác EFGH là hình bình hành.

b) Chứng minh điểm O là tâm đối xứng của hình bình hành EFGH.

c) Hình thoi ABCD phải có điều kiện gì để EFGH trở thành hình thoi?


 

T. Thanh

Giáo viên

Xác nhận câu trả lời

Giải thích

Phương pháp giải: Sử dụng: Tứ giác có hai cặp cạnh đối bằng nhau là hình bình hành Điểm M đối xứng với N qua O nếu O là trung điểm của MN Hình bình hành có hai cạnh kề bằng nhau là hình thoi Hình thoi có một góc vuông là hình vuông. Lời giải chi tiết: a) Ta có AB = CD (cạnh hình thoi) BE = DC (gt) ⇒AB+BE=CD+DG hay AE = CG XétΔAHEΔAHEvàΔCFG(c.g.c) ⇒HE=FG Chứng minh tương tự ta có HG = FG Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).

Phương pháp giải:

Sử dụng:

Tứ giác có hai cặp cạnh đối bằng nhau là hình bình hành

Điểm M đối xứng với N qua O nếu O là trung điểm của MN

Hình bình hành có hai cạnh kề bằng nhau là hình thoi

Hình thoi có một góc vuông là hình vuông.

Lời giải chi tiết:

a) Ta có AB = CD (cạnh hình thoi) 

BE = DC (gt)

⇒AB+BE=CD+DG hay AE = CG

Xét ΔAHEΔAHE và ΔCFG(c.g.c) ⇒HE=FG

Chứng minh tương tự  ta có HG = FG

Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).



 

1

Câu hỏi tương tự

Tính giá trị của biểu thức P = (-4x 3 y 3 + x 3 y 4 ) : 2xy 2 – xy(2x – xy) cho x = 1, y = A. B. C. D.

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG