Square root
VBT
Calculator
magnet

Câu hỏi

Cho hình hộp chữ nhật ABCD ⋅ A ' B ' C ' D 'có đáy ABCD là hình vuông, AB =1và A A '= a ( a >0). Khi a thay đồi, tìm giá trị lớn nhất của góc tạo bởi đường thẳng B ' D và mặt phẳng BD C '.

Cho hình hộp chữ nhật ABCDA'B'C'D' có đáy ABCD là hình vuông, AB=1 và AA'=a(a>0).

Khi a thay đồi, tìm giá trị lớn nhất của góc tạo bởi đường thẳng B'D và mặt phẳng BDC'.

R. Roboctvx81

Giáo viên

Xác nhận câu trả lời

Giải thích

D ễ th ấ y C B ' c ắ t B C ' t ạ i trung đ i ể m c ủ a m ỗ i đườ ng sin invisible function application open parentheses stack D B with rightwards arrow on top comma open parentheses B D C to the power of straight prime close parentheses close parentheses end cell row cell equals fraction numerator d open parentheses B to the power of straight prime comma open parentheses B D C to the power of straight prime close parentheses close parentheses over denominator D B to the power of straight prime end fraction equals fraction numerator 1 over denominator square root of open parentheses a squared plus b squared plus 1 close parentheses open parentheses 1 over a squared plus 1 over b squared plus 1 close parentheses end root end fraction end cell end table" class="Wirisformula" data-latex="" data-mathml="«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnspacing=¨0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em¨ columnalign=¨right left right left right left right left right left right left¨»«mtr»«mtd»«mtext»§#160;N§#234;n§#160;«/mtext»«mi»d«/mi»«mfenced separators=¨|¨»«mrow»«msup»«mi»B«/mi»«mi mathvariant=¨normal¨»§#8242;«/mi»«/msup»«mo»,«/mo»«mfenced separators=¨|¨»«mrow»«mi»B«/mi»«msup»«mi»C«/mi»«mi mathvariant=¨normal¨»§#8242;«/mi»«/msup»«/mrow»«/mfenced»«/mrow»«/mfenced»«mo»=«/mo»«mi»d«/mi»«mfenced separators=¨|¨»«mrow»«mi»C«/mi»«mo»,«/mo»«mfenced separators=¨|¨»«mrow»«mi»B«/mi»«mi»D«/mi»«msup»«mi»C«/mi»«mi mathvariant=¨normal¨»§#8242;«/mi»«/msup»«/mrow»«/mfenced»«/mrow»«/mfenced»«mo»=«/mo»«/mtd»«/mtr»«mtr»«mtd»«mfrac»«mn»1«/mn»«msqrt»«mfrac»«mn»1«/mn»«mrow»«mi»C«/mi»«msup»«mi»D«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«mo»+«/mo»«mfrac»«mn»1«/mn»«mrow»«mi»C«/mi»«msup»«mi»C«/mi»«mrow»«mi mathvariant=¨normal¨»§#8242;«/mi»«mn»2«/mn»«/mrow»«/msup»«/mrow»«/mfrac»«mo»+«/mo»«mfrac»«mn»1«/mn»«mrow»«mi»C«/mi»«msup»«mi»B«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«/msqrt»«/mfrac»«mo»=«/mo»«mfrac»«mn»1«/mn»«msqrt»«mn»1«/mn»«mo»+«/mo»«mfrac»«mn»1«/mn»«msup»«mi»a«/mi»«mn»2«/mn»«/msup»«/mfrac»«mo»+«/mo»«mfrac»«mn»1«/mn»«msup»«mi»b«/mi»«mn»2«/mn»«/msup»«/mfrac»«/msqrt»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mi»D«/mi»«msup»«mi»B«/mi»«mi mathvariant=¨normal¨»§#8242;«/mi»«/msup»«mo»=«/mo»«msqrt»«msup»«mi»a«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi»b«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/msqrt»«mo»=§#62;«/mo»«mi»sin«/mi»«mo»§#8289;«/mo»«mfenced separators=¨|¨»«mrow»«mover accent=¨true¨»«mrow»«mi»D«/mi»«mi»B«/mi»«/mrow»«mo»§#8594;«/mo»«/mover»«mo»,«/mo»«mfenced separators=¨|¨»«mrow»«mi»B«/mi»«mi»D«/mi»«msup»«mi»C«/mi»«mi mathvariant=¨normal¨»§#8242;«/mi»«/msup»«/mrow»«/mfenced»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd»«mo»=«/mo»«mfrac»«mrow»«mi»d«/mi»«mfenced separators=¨|¨»«mrow»«msup»«mi»B«/mi»«mi mathvariant=¨normal¨»§#8242;«/mi»«/msup»«mo»,«/mo»«mfenced separators=¨|¨»«mrow»«mi»B«/mi»«mi»D«/mi»«msup»«mi»C«/mi»«mi mathvariant=¨normal¨»§#8242;«/mi»«/msup»«/mrow»«/mfenced»«/mrow»«/mfenced»«/mrow»«mrow»«mi»D«/mi»«msup»«mi»B«/mi»«mi mathvariant=¨normal¨»§#8242;«/mi»«/msup»«/mrow»«/mfrac»«mo»=«/mo»«mfrac»«mn»1«/mn»«msqrt»«mfenced separators=¨|¨»«mrow»«msup»«mi»a«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi»b«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced separators=¨|¨»«mrow»«mfrac»«mn»1«/mn»«msup»«mi»a«/mi»«mn»2«/mn»«/msup»«/mfrac»«mo»+«/mo»«mfrac»«mn»1«/mn»«msup»«mi»b«/mi»«mn»2«/mn»«/msup»«/mfrac»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/msqrt»«/mfrac»«/mtd»«/mtr»«/mtable»«/math»" role="math" src="" style="max-width: none;">

D thy CB' ct BC' ti trung đim ca mi đường

  table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell text  Nên  end text d open parentheses B to the power of straight prime comma open parentheses B C to the power of straight prime close parentheses close parentheses equals d open parentheses C comma open parentheses B D C to the power of straight prime close parentheses close parentheses equals end cell row cell fraction numerator 1 over denominator square root of fraction numerator 1 over denominator C D squared end fraction plus fraction numerator 1 over denominator C C to the power of straight prime 2 end exponent end fraction plus fraction numerator 1 over denominator C B squared end fraction end root end fraction equals fraction numerator 1 over denominator square root of 1 plus 1 over a squared plus 1 over b squared end root end fraction end cell row cell D B to the power of straight prime equals square root of a squared plus b squared plus 1 end root => sin invisible function application open parentheses stack D B with rightwards arrow on top comma open parentheses B D C to the power of straight prime close parentheses close parentheses end cell row cell equals fraction numerator d open parentheses B to the power of straight prime comma open parentheses B D C to the power of straight prime close parentheses close parentheses over denominator D B to the power of straight prime end fraction equals fraction numerator 1 over denominator square root of open parentheses a squared plus b squared plus 1 close parentheses open parentheses 1 over a squared plus 1 over b squared plus 1 close parentheses end root end fraction end cell end table

1

Câu hỏi tương tự

Cho hình hộp đứng A BC D . A 1 ​ B 1 ​ C 1 ​ D 1 ​ có các cạnh A B = A D = 2 , A A 1 ​ = 3 ​ và ∠ B A D = 6 0 ∘ .GọiM, Nlần lượt là trung điểm A 1 ​ D 1 ​ , A 1 ​ B 1 ​ a. Chứng minh rằng A C 1 ​ v...

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG