Square root
VBT
Calculator
magnet

Câu hỏi

Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tại các đỉnh A và D. Biết rằng A B = 2 a , A D = C D = a , cạnh bên S A = 3 a vuông góc với đáy. Tính diện tích tam giác SBD và thể tích tứ diện S.BCD

Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tại các đỉnh A và D. Biết rằng , cạnh bên  vuông góc với đáy. Tính diện tích tam giác SBD và thể tích tứ diện S.BCD

T. Nhã

Giáo viên

Xác nhận câu trả lời

Giải thích

Chọn hệ trục tọa độ Axyz như hình vẽ Ta có A ( 0 ; 0 ; 0 ) , B ( 2 a ; 0 ; 0 ) , D ( 0 ; a ; 0 ) , C ( a ; a ; 0 ) , S ( 0 ; 0 ; 3 a ) ( V ı ˋ S A ⊥ ( A BC D ) ⇒ { S A ⊥ A B S A ⊥ A D ​ ) S D = ( 0 ; a ; − 3 a ) , SB = ( 2 a ; 0 ; − 3 a ) , SC = ( a ; a ; − 3 a ) [ S D , SB ] = ( − 3 a 2 ; − 6 a 2 ; − 2 a 2 ) Diện tích tam giác SDB là: S S D B ​ = 2 1 ​ ∣ ∣ ​ [ S D , SB ] ∣ ∣ ​ = 2 7 a 2 ​ ( đ v d t ) Thể tích của tứ diện S.BCD là: V S . BC D ​ = 6 1 ​ ∣ ∣ ​ [ S D , SB ] . SC ∣ ∣ ​ = 2 a 3 ​ ( đ v tt )

Chọn hệ trục tọa độ Axyz như hình vẽ

Ta có

Diện tích tam giác SDB là:

Thể tích của tứ diện S.BCD là:

1

Câu hỏi tương tự

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : x + 2 y + 2 z + 5 = 0 và cắt mặt cầu ( S ) : x 2 + y 2 + z 2 − 10 x − 2 y − 6 z + 10 = 0 . Từ điểm M thuộc (P) kẻ đường thẳng △ tiếp cúc (S) ...

0

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG