Cho các số thực a, b, c > 0. Chứng minh:
a 2 + bc a ( b + c ) + b 2 + ca b ( c + a ) + c 2 + ab c ( a + b ) ≤ ≤ ( a + b + c ) ( a 1 + b 1 + c 1 ) ( 1 )
( 1 ) ⇔ ( cyc ∑ a 2 + bc a ( b + c ) ) 2 ≤ ≤ ( a + b + c ) ( a 1 + b 1 + c 1 ) ⇔ cyc ∑ a 2 + bc a ( b + c ) + 2 cyc ∑ ( a 2 + bc ) ( b 2 + ca ) ab ( a + c ) ( b + c ) ≤ 3 + cyc ∑ bc b + c ⇔ cyc ∑ a 2 + bc a ( b + c ) + 2 cyc ∑ ( a 2 + bc ) ( b 2 + ca ) ab ( a + c ) ( b + c ) − cyc ∑ bc b + c − − 3 ≤ 0 ( 2 )
Sử dụng bất đẳng thức AM - GM:
cyc ∑ a 2 + bc a ( b + c ) ≤ cyc ∑ 2 a 2 bc a ( b + c ) = cyc ∑ 2 bc b + c
Mặt khác, ( a 2 + bc ) ( b 2 + ca ) − ab ( a + c ) ( b + c ) = c ( a − b ) 2 ( a + b ) ≥ 0
⇒ ( a 2 + bc ) ( b 2 + ca ) ab ( a + c ) ( b + c ) ≤ 1 ⇒ cyc ∑ ( a 2 + bc ) ( b 2 + ca ) ab ( a + c ) ( b + c ) ≤ 3 ⇒≤ cyc ∑ 2 bc b + c + 6 − cyc ∑ bc b + c − 3 = cyc ∑ ( 1 − 2 bc b + c ) = − cyc ∑ 2 bc ( b − c ) 2 ≤ 0
→ (2) đúng⇒ (đpcm). Dấu bằng xảy ra⇔ a = b = c >0