Cho các số hữu tỉ x = a, y = (a, b, c ∈ Z, c ≠ 0). Tổng x + y bằng:
A. a   +   2 b c 2 c " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAaEAAADmCAYAAAB8gjqiAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAFVxJREFUeNrt3Q+EFtv/wPGPtVayIitJEkmSJNaVJGvJSpK1JEmSSHIliSRJVuRKklyuJEkiSXJdkSRZiStJkkiSJJGsrLUu/ebze+b57vTszDnnmWfOmdnneb/4uOm2c+aZc3Y+z5k5f0QAoP11RbGAywAA8J1sVkcxHMXpKG5G8SaK/6L4wuUBgGrpj+JQFDeieBTFtygmopiKYjKKH1G8i+JOFOfim3tPyees5a+Nz+VAFJfj8/sYJ5ufGXGL6gaA8i2OewkfDTdsU0zFN/2BEs79Ts5z/hknLABASebFvZmpFm7kjTEW90pCGY3idaLH1sy5rqIJAEA5Blro+dhCH4GdKulz6TugQak9MjSd41eaAACUY6+Y35UUFfeimFPSZzxgObebNAMACO9ggOSTjPtRdJfwOXdZzms/TQEAwtoWOAHV41oJn/W05ZxW0hwAIJzlUYxn3JDfRnFGakOcF0rtvUqdDn/WF/gjUVyM4n3ORLQ38Oe9bTiXTzQHAAjrWcrN+FUUm3IcSwc1PG0yCenotb6An/d7xXpmANCx0l7SX2zo8eQ9bjPDos8F+rwrLeexgyYBAGHMldpw5ORNeLTA46+PezkuSUgTVm9JSTc5fHw+zQIAwjgu/ocmD4r7kO99AT6z6X3QvzQJoLPo8NxLGbGdy+OVPm5LTkh977EncsoxCd0O8JlNjwjP0CyAztJjuCFc4vJ41Tgke8hzPX9wSELjnj/zRkv5gzQLgCREEgojubjn3QDlHXHsDflcdds0P2hCWh+MAYAkBAf6GLS+MKm+rwkxOXOBuL0b8tkbeWIo9w7NAiAJkYTCGJZy5sU8c0hCWzyVPdeSBA/SLACSEEkojPNSzhI1V0pMQiPCUj0ASEKV8FimFxANab9DEtrsqezLhjI/0CQAkhBJKJyrUttTZyhwudsdktBqT2W/NZR5lSYBkIRIQu1vWOwb3vkYobbMUu4IVQOQhEhCJKHXnsrdZ0l886gagCREEmp/tsEBvkbq3TKU+ZRqQZnWRnEsbqRvpDZhbSr+78so/oxiXcrP6R4qe+Ib5XWpbVX8If65zVxWkhBS7ZZyVrAeN5TpumCrbjWh+x7diOJFFD/ie8VUfPwHUht1uLFi13xlfK/S915/S23B2vp9blJqC8zqZGWdyLuaJhqGNqYTUnsx67rMvCap5Oq6dw3/dimXmCSEVKOG+tab4hwPZa6z/G4PONzEr8v05F6XeCPlbgmxIoqzkm+Twcfxl3N4Sj5nZeYChvpM+HbcaBbL9IvRJVEcleml7sekNtNcJHsRxBdcZpIQMt001PcNT2WekHxL9WhC/EPcVwBPC/2y2hvw+urWGfdTzuNz/Pukj0OTu+Pq79/W+KlP4z1xP821WAckfV+Ty3HiMdFkVF9tWFcD7jc0uj+41CQhZHrdQo8kr0fS/KrdOpruVQvJp/Gdk+9EtDzj6Yz2yHaJfcThwoxz30OTbd2iKB6mXFxNKs08ux2Q6W2IDxka3BCXnCSEVL2Gun7uqcxuS0/mQEZv4mtBCSjEArG6MOxkSk/mhLgPd19h6CkupunmpwnhS8qF1UUMF+Q43ov457Ma6JSwCi9JCFlMI+OGPZVpGxK+ouHfb5CZgxi0J7W74Was9w+dePugiUS0s+DP1pfxBftL/DmaTWQ83SlYVm9FG03el5+2da/+5rKThJDpakY9P/NY5kVD+3rf8G/XNiQgfU+yzqEM24i/erwt8HPpuabtz/Q5JbG6MD2yfEXTbd45yR710crom2OWRnaYS08SQqpuyR4m/ZvHct8Y2teVxL9bFN/A6//vQpNPNY47JqIitqkYyriW+nf9OXtUpkeWkzTf5lyS7CGT81s8tm2L4jVcfpIQUu1xSARFW2T5fR1OtMHkFhMHcpTVJW47x15s8TPpbrhZQ8W35jzmTss5T9B8W+8BfZfaaJdW/WmoqK9cfpIQMj2V9HcXfR7LND0m02/+vSm/1/taKG/UIQk9bOH4Www9lrOerpPGPzRfN4fF/0vPa4YyblIFJCGk2lDwN3dXpjlJTxI9i/rfnWyxvK0OSWi8hWtompvYyoCopWJ+HLeOJuz2DSHEEu2mVRJ2Uw0kIaQaS6nbvwKU+83QtnSJmgUyPdL1VgHl9TkkoamcSeKroUdXxGuAtPfdk9zX3CyX7Bee+qJxfoFlmZbAYCw9SQgzpQ2Rfh7Xu0/9lmSgc4Fuy/SotSImk3Z5SEI9Mj01xMc7psbelk7evxH3Cll+zLHSXwTqnZgmvb2lKkhCmGFuyhe3r4FubkfF/KJ9ONGT6C+wXFsSavYl/yXDsX6I33dqcHBWwi3PPmAo6y+qgiSEGRoHCukNfzBQ2ffFPJ/vU/znMwV/KbYloWa2ER+0HGuUJlautZYKKvplmmmpnnbclXGTFLtsSZXjMr9OhUsbjLAvUNn61MK04nV9iZt3UuxjwV6HtnaniS9nplX+9fMtoJmV64WEXbngjqG8+W14fUlCyGu+zJwzczpg+Vsc631TweUOOZT5p+OxTliOc4VmVq6DlgrqL7i8Lpm5QGC7b91AEkJed0u+vucd6tzH3BeX5Xu2OybxcbEPrEBJ9GXnZ0PlPPJQpukbzgWSEEkI/3NSZm4GWaWnJPVY5aHcqw7lLiqgF/SOZlauo4G72BLfpLLK20YSIgnh/zVO1rxXwjksdKhvXxPL31rKdXlqok9dvliOc56mVp5uSwW99VTmd8meKNbTpteaJIRm9Dc8Qrov07sQh7TDob5Xeih3hUO5JxyOs83hOOxZVqJ9lso56qFM0+J+Y218rUlCcKXzfpKPyHVJnDklnctNS13f91TuCYd25jI/6pbYJ7uyZ1mJxsS8IOFCD2U+FjZ78ol5QrObDhNODiUOsZW1yWfLTdzXFuIvC0h+XWIeWu7rnTcK6u4+9FCmbS7SVqqFJNTBdBRXchCA/rnMGfyrLb+vbzyVu96hF+SS/AaFXnul2fbyOeihzOuWnlc31UIS6lC9DU8m3kj5kycPW+4RRzyVe8NSruvOsS4b47GgaIn+tVTOksA9rzGqhCTUwXX2QH5dimZRBc7rnoR/XL9EzNsgNLObqu19lsYWml855kn4cfO2F4TnqBaSUAfqarjZf/LwBTDveZnepzzwVO4Fy32imdVbnjokoWU0wXKMWCrmesHlrXVoDNuoFpJQB0p+W/8SPzGoAttoTh/r1i2xJL6JJpPGuMN9Zw5NsByjgRvYc0t52v2eS7WQhDpMctK2bhi3pkLndsby++pjwMR1y33icJPHsz3W+0kTLM8dS8VsLrCsQ4lveVmTVF9SJSShDpPclkG/sYfa8lnfNenLeNvcGNM74ycezmuDFD+UmiRUYba1oIpaxTq5S6tpkVT2DyIJdZLkyFR9xLQxYNn1d7OmRYlt74xPFXxOmhBfGcrTL7B5BkFMkoSq64elYoqYQZzcRvea1Fa7bWUlXJCE2kFy2LO+/wi5ZMx2xycPtqV6il5P8qSYH/1tyHnc7w5JiGkhJbF9QyhCfQXc+n7zfxnKW2w5Vi9VRhJqA3ulvME4+kL/W1zuIcff3aykUOQyN/1ifmy2q4VjP3RIQqtpluXw3UU9ItM7LtZftr40dLVNdJCEDltdQbWRhGaxxhGpOwOWnVwKSHtftsftnwxt6N8Cz2uemFfKPtbi8W0DHXzt4qxfmnV4uK7Ozei7DBOWimll5EuyK78//ru5hrJuOfziTkjxG+uRhBDKloZv+/sDlr1Gfl2LzrbtwkrLveFaged211BOETvH7nVIQkXvX6YJqL4+JuvSGXwUP2u4bZPpcf5/Nvx9syt1b04ca4QqIwnNUoMNX/qOeC5PH5Utj78M3pWZj7ps73N+t9wbDhV0nqeltS0aXCxzSELvC7z22sMcSxy3j+afzTZE+2KL3zoeyq/PjU1zDtKWzRhI/OKepLpIQrOULsTpMmEyVLwv4N4wXMB1OWA4/t6C6+CZhFm6R0fv1edD6ru3VTR/M9teHT/EfUhkt/y61IZWxLwmGnbjoIONiV/ca1QVSWiWWiPTAwGqErYvdF1if1Q/2OJ12ZNx3K8FHDvNLofr8lpaGyWnc7zq79FCD7mftVyW0Xks9lFpOnQyOb4/a+Vf0+O/ZI9pJPFL8FAYPkkSmp30cdgXqd5mg7ZN4DY6HKOVRUuPZhxTX+L7XC/vlfjb0kG/0NcfeepALHZpbcJzceu+/97QePXPOuP6iczc7z1r6XnTkPBrcRf/akNvimHZJKHZaLGYR5eVFS4Lju53OE6e30v9mbSRanrzPiX+dza1DQNPDpKa53jM4bgHlVz1YpDm35wit5vWXotp2Gczx3ot5e+jQhJCHo27olYpdjic/06H4/yW4z7zXtKX/gn53mSf43XSHuxo3CvsbqhbHbB1JuXz6NYba2j++VwuoHGfdShn0vFYL0lAJKFZqk/sW1KXFd8cexs9KU84GuOK4/XYKL/ukZR8ZF/WCikHPFzbu9yzWqOZ/p+cF1+fs653LMdlhMpjKW7NOpIQSSikLsc2XlZcaLL9/CHmLRVuS+3dR0/i5xbGPQX9Upo2AVUfse8K8OjNZiCjZ9ZsfJSwE47b3klLo2tMPnubbEyHxLwMyGgFGidJCD6ueRUiz9I0+u3+uLi9O86Kz3EC7K9gfR2JH6Pl+fL9uzBoygv9JnMs7kKPx4/QdKSavmS9EyeqVhrT4fgbUv24Wpm6nD07G5KEUG36qHEk7uXoigs6mu17/Ltc/33WIda666kONNJh2LNlnsy6+N52O74//Uh8Lv3zi/gzHxbm/gAkIQAASQgAgMwkNJkRF7g8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAX9JAiCIAiHIAkRBEEQJCGCIAiCJEQSIgiCIEhCBEEQBEmIJEQQBEHMriQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG76ozgUxY0oHkXxLYqJKKaimIziRxTvorgTxbkohqPo4bIBAPJaHMXpKD5G8TNHTMVJaYBLCQBwNS/uzUzlTD5pMRbFWi4tAMBkoIWejy3+i+IUlxgAkGZvnCh+eo57UczhcgMA6g4GSD7JuB9FN5cdALAtcAKqxzUuPQB0tuVRjGckibdRnJHacOuFUXQlfk6HX6+KYiSKi1G8z5mI9lIFANC5nqUkhldRbMpxLB3U8LTJJKTzjfqoBgDoPAdSksLFhh5P3uNONJGIzlEVANBZ5kbxtSEZjBZ4/PVxL8clCWnC6qVKAKBzHG9IBDc9lDEo7kO+91ElANAZ9HFbckLqe489kVOOSeg21QIAnaFxSPaQx7J0FN0HhyQ0TrUAQGe4k7j53w1Q3hHH3hCrbgNAm9NVCuoLk+r7mpUBylwgbu+GBqkeAGhvw1LOigXPHJLQFqoHANrb+cRNf2XAcq+QhAAAj2V6AdGQ9jskoc1UDwC0t6tS24Z7KHC52x2S0GqqBwDgw7DYN7zr4jIBAMpIQq+5RAAAX0aEvYUAACXZbUlCOypynjpicI/U3p39LbVFXnWBVZ1bNSm1RVl1gu9p4R0WAMwao4YEpDf4OSWe24oozkq+jfl0tOFaqhcAqu2m4UZ+o6Rz0u0m7qecz+coLkntEWJyR1ldVmhrFC9l5qCK/VQxAFTXa0MSGgh8Lrql+d2U83gTxS6xj9JbmPE59lDNAFA9vYYE9DzwuehiqpMpPZkT4j5EfIVkb863mOoGgGoxjYwbDnQOfVE8TCn/SxQbciSyrM/zB9UNANVyNeOG/SxQ+TpwIG1Po89xr6ZZjwxJ6BXVDQDVoVtHjGfcsH8LUP5QRvn6d/05e1SmbSkmqXIAqI49GTfrKwHK1h1kpzLK35rzmDvFPGR7gioHgOp4KunvYfo8l7vF0GM528JxbZNu/6HKAaAaNhTcC2mm3ImMsl9IawulLhXz47h1VDsAVMNYyk36L89lapL4Ktkrda8poIxjkv4uaDdVDgDVkLZqts4J6vFYZk/c08nqpVwsuLd1WWqrPZyMkx8AoALmysx12L4GuFFfMiSgH+L/PRQAoALOyczHYIOeyxwU84CBUaoFANpf2mCEfZ7L1Mdw78S8SvcCqgYA2tt8mbkywekA5Z6w9IKuUDUA0P4aV6a+HCjxjVuS0HqqBgDa28mGG/+tQOXaekHvqBoAaG9bG2789wKVq5NOv1iS0HmqBwDaly4CmnwcpjuVdgcqe5vYt98eoooAoD3pvJ/PiRv+kyjmBCz/liUBTUlrS/QAACpKhzwnh0XrQqW9AcvvkuwVsuvxiGoCgPajI9KSy+Pon0OvRmCbnBpqdB4AICDt7SQXJn0j5UwEPe6QhFhQFADaiK5M8CBxk9eJqYtKOpebDkloC1UGAO1B38HcS9zgP0WxpMTzeeqQhJZRbQDQHpI9D52bs6Lk87GtkqAxh2oDgNnvcuLG/k2K2RiuVf85JCEAwCyX3JZBex+htq/Wd006sKCLJAQAnelU4oY+EcXGgGXXJ6L2Z/z/SZIQALSvw/LrygMhl7/ZHpf70vBvvjskoW6qEQBmn70NN/NtAcvWEW3f4nIPGf7dQ4cktJqqBIDZZaThRr4zYNnJpYC09zXf8G+vOyShEQ/nqJN1dXi4rs7N6DsAKJBO7ky+8N8fsOw18utadDeb7K2lxQUPCeixsC4dABRO12KbSNzAj3guT0e9LY9ih9R2ZG0c7bbJ8vPLHJLQ+wLPV3tlY4nj9tFkAKAYuv21y+TPUOGaPJ5JmKV7FkbxXKbnSa2iyQBAMdbI9ECAqsRJx3Pf5XCs19LaKDmdF/VJyhmmDgBtTR+H2bbHLiOWNvEZXom/LR1OyPRjQp2XxC6tAFCQxYlv+FWKB01+jn5xWz1BJ7/OczzmcNyDSq4UMUiTAYBiNO6KWqXYkePz7HM8tvb6RqX2SK274XpsjeKM1N5HJX9Gt6tYQ5MBgGLoqK6XFU1A+m6qK+fnOuDhfO5KORv2AUBb0hu8y4iysqLVeT0DKT2ZPPFRwk7SBYCO0FPhBFTUMjv6GXWO04cc5esgh9+FNecAAAXQ4dU63Pt2FG+j+CG1UW6T8Z9fSG1lBl2slbk/aGv/B+sTn3iD2JKZAAAAzHRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtZnJhYz48bXJvdz48bWk+YTwvbWk+PG1vPiYjeEEwOzwvbW8+PG1vPis8L21vPjxtbz4mI3hBMDs8L21vPjxtbj4yPC9tbj48bWk+YjwvbWk+PG1pPmM8L21pPjwvbXJvdz48bXJvdz48bW4+MjwvbW4+PG1pPmM8L21pPjwvbXJvdz48L21mcmFjPjwvbWF0aD7TViBIAAAAAElFTkSuQmCC" style="width: 65.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator a space plus space 2 b c over denominator 2 c end fraction">
B. a   -   2 b c 2 c " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAaEAAADmCAYAAAB8gjqiAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAFP1JREFUeNrt3Q+EFtv/wPGPtVayIitJckmSJLGuJFlLVpKsJUmSRJIrSSRJsiJXciWXayVJIklyXZEkWYkrSZJIkiSRrKy1Lv3O5/fM891pduac88wzc+bZ53m/+PjmfmvOPHPOM5/nzJw/IgDQ/rpMLOIyAADKTjZrTAybOGPihonXJv4z8ZnLAwCtpd/EYRPXTTw08dXEpIlpE1Mmvpt4a+K2ifPRzb2n4nPW8tdF53LQxFh0fh+iZPMjI25S3QBQvaVRL+GD5YZti+nopj9QwbnfznnOP6KEBQCoyIKoNzPdxI08GeNRrySUUROvYj22Rs51NU0AAKox0ETPxxX6COx0RZ9L3wENSu2Roe0cv9AEAKAa+8T+rqSouGtiXkWf8aDj3G7QDAAgvEMBkk887pnoruBz7nac1wGaAgCEtT1wAqrH1Qo+6xnHOa2iOQBAOCtMTGTckN+YOCu1Ic6LpfZepU6HP+sL/BETF028y5mI9gX+vLcs5/KR5gAAYT1NuRm/NLE5x7F0UMOTBpOQjl7rC/h5v7VYzwwAOlbaS/qLiR5P3uM2Miz6fKDPu8pxHjtpEgAQxnypDUeO34RHCzz+hqiX45OENGH1VpR048PHF9IsACCME1L+0ORB8R/yvT/AZ7a9D/qXJgEAYejjtviE1Hcl9kROeyahWwE+s+0R4VmaBQCEkRySPVRiWTqK7r1HEpoo+TNvcpQ/SLMAgDDii3veCVDeUc/eUJmrbtvmB01K84MxAAAedJWC+sKk+r4mxOTMReL3bqjM3shjS7m3aRYAEMawVDMv5qlHEtpaUtnzHUnwEM0CAMK4INUsUXO5wiQ0IizVAwAt4ZHMLCAa0gGPJLSlpLLHLGW+p0kAQDhXpLanzlDgcnd4JKE1JZX9xlLmFZoEALS/YXFveFfGCLXljnJHqBoAIAm9Kqnc/Y7Et4CqAYD25xocUNZIvZuWMp9QLajSOhPHo0b6WmoT1qaj/31h4k8T61P+ne6hstfEJRPXpLZV8fvo323hsgKp9kg1K1hPWMr0XbBVt5rQfY+um3hu4nt0r5iOjn9faqMON7XYNV8V3av0vdffUluwtn6fm5LaArM6WVkn8q6hiYahjemk1F7M+i4zr0kqvrruHcvf/YVLDKQatXxv9KY4r4Qy1zu+2wMeN/FrMjO51ydeS7VbQqw0cU7ybTL4KPpxjpKSzzmZvYChPhO+FTWapTLzYnSZiWMys9T9uNRmmotkL4L4nMsMZLphufldL6nMk5JvqR5NiL+L/wrgaaE/VnsDXl/dOuNeynl8ip7a6OPQ+O64ukTStuipT/KeeIDmWqyDkr6vyViUeGw0GdVXG9bVgPstje53LjWQ6VUTPZK8Hkrjq3braLqXTSSf5DunshPRioynM9oj2y3uEYeLM859L022eUtMPEi5uJpUGnl2OyAz2xAftjS4IS45kKrX8r15VlKZ3Y6ezMGM3sSXghJQiAVidWHYqZSezEnxH+6+0tJTXErTzU8TwueUC6uLGC7Kcbzn0b/PaqDTwiq8QBbbyLjhksp0DQlfmfj7G2X2IAbtSe1J3Iz1/qETb+83kIh2FfzZ+jJ+YH+OPkejiYynOwXL6q1oo8n78tO17tXfXHYg05WM783TEsu8aPm+vkv83XWJBKTvSdZ7lOEa8VePNwV+Lj3XtP2ZPqUkVh+2R5YvabqNOy/Zoz6aGX1z3NHIjnDpgVTdkj1M+tcSy31t+b5ejv29JdENvP7//dHgU40TnomoiG0qhjKupf63/pw9Ktsjyymab2MuSfaQyYVNHtu1RfFaLj+Qaq9HIijaEsf3tf4IsEd+3mLiYI6yusRv59iLTX4m3Q03a6j4tpzH3OU450mab/M9oG9SG+3SrD8tFfWFyw9keiLp7y76SizT9phMf/n3pnyv9zdR3qhHEnrQxPG3Wnos50q6Thr/0Hz9HJHyX3petZRxgyoAUm0s+Je7L9ucpMexnkX9v51qsrxtHklooolraJub2MyAqF/E/jhuPU3Y7xdCiCXabask7KEagFTjKd+XvwKU+9XyfdUlahbJzEjXmwWU1+eRhKZzJokvlh5dEa8B0t53T3Ff87NCsl946ovGhQWWZVsCg7H0wGxpQ6R1TlBPyeX2O5KBzgW6JTOj1oqYTNpVQhLqkZmpIWW8Y0r2tnTy/vWoV8jyY56V/jxQ78Q26e0NVQHMMj/lh9uXQDe3Y2J/0T4c60n0F1iuKwk1+pL/kuVY36Xcd2rwcE7CLc8+YCnrL6oCmCU5UEhv+IOByr4n9vl8H6M/ny34R7ErCTWyjfig41ijNLFqrXNUUNEv02xL9bTzroxjUuzyJa0WPXyVSpE2GGF/oLL1qYVtxev6EjdvC67/Xo/2dtvzWD1iX+VfP98imlm1nkvYlQtuW8pb2MbXmSSERi2U2XNmzgQsf6tn3W8uuNwhjzL/9DzWScdxLtPMqnXIUUH9BZfXJbMXCOyUrRtIQmhUchTpWODyL3jUexlzX3yW79nhmcQnxD2wAhXRl52fLJXzsIQybb9w/iAJkYTwP6dk9maQrfSUpB6rSyj3ike5SwroBb2lmVXrWOAututGvJ0kRBLC/0tO1rxbwTks9qjzsiaWv3GU6/PURJ+6fHYc5wJNrTrdjgp6U1KZ3yR7oli738RIQvDRn3iEdE9mdiEOaadHna8qodyVHuWe9DjOdo/jsGdZhfY7KudYCWXaFvcb74BrThKCi877iT8i1yVx5lV0Ljcc9X2vpHJPerQ1n/lRN8U92ZU9yyo0LvYFCReXUOYjYbMnIIsOE44PJQ6xlbXNJ8dNvKwtxF8UkPy6xD60vKx33iiou/ughDJdc5G2US3oYDqKKz4IQP9c5Qz+NY7v6+uSyt3g0QvySX6DHscZo9lVx7WXz6ESyrzm6Hl1Uy3oUL2JJxOvpfrJk0cc94ijJZV73VGu786xPhvjsaBohf51VM6ywD2vcaoEHUrfo92Xn5eiWdIC53VXwj+uXyb2bRAa2U3V9T5LYyvNrxoLJPy4edcLwvNUCzpQV+Jm/7GEH4B5z8v2PuV+SeX+4bhPNLJ6yxOPJLScJliNEUfFXCu4vHUejWE71YIOFP+1/jl6YtAKNju+r2WsW7fMkfgmG0warlUSNObRBKsxGriBPXOUp93v+VQLOkx8uL5uGLe2hc7trOP7WsaAiWuO+8SRBo/neqz3gyZYnduOitlSYFmHY7/ysiapvqBK0GHi2zLoL/ZQWz7ruyZ9Ge+aG2N7Z/y4hPPaKMUPpSYJtTDXWlBFrWId36XVtkgq+wehk8RHpuojpk0By66/m7UtSux6Z3y64HPShPjSUp7+gM0zCGKKJNS6vjsqpogZxPFtdK9KbbXbZlbCBdpBfNizvv8IuWTMDs8nD66leopeT/KU2B/9bcx53G8eSYhpIRVx/UIoQn0F3Pp+839ZylvqOFYvVYY2sE+qG4yjL/S/RuUe9vzuZiWFIpe56Rf7Y7PdTRz7gUcSWkOzrEbZXdSjMrPjYv1l6wtLV9tGB0nosNWVVBvmsOSI1F0By44vBaS9L9fj9o+We8O/BZ7XArGvlH28yeO7BjqUtYuz/mjW4eG6Ojej7zJMOiqmmZEv8a78gei/zbeUddPjizspxW+sB4SyNfFr/0DAstfKz2vRubZdWOW4N1wt8NzuWMopYufYfR5JqOj9yzQB1dfHZF06iw9Szhpu22VmnP+fif/e6ErdW2LHGqHKMEcNJn70HS25PH1UtiL6MXhHZj/qcr3P+c1xbzhc0Hmekea2aPCx3CMJvSvw2msPczx23D6afzbXEO2LTf7qeCA/Pze2zTlIWzZjIPbFPUV1YY7ShTh9JkyGincF3BuGC7guBy3H31dwHTyVMEv36Oi9+nxIffe2muZv59qr47v4D4nslp+X2tCKWNBAw04OOtgU++JepaowR62VmYEArRKuH3Rd4n5UP9jkddmbcdwvBRw7zW6P6/JKmhslp3O86u/RQg+5n7N8ltF5JO5RaTp0Mj6+P2vlX9vjv3iPaST2JXggDJ/E3KSPwz5L62046NoEbpPHMZpZtPRYxjH1JX6Z6+W9lPK2dNAf9PVHnjoQi11aG/BM/LrvvyUar/5ZZ1w/ltn7vWctPW8bEn416uJfSfSmGJaNuWip2EeXVRU+C44e8DhOnu+l/pu0kWp68z4t5e9s6hoGHh8ktcDzmMNRDyq+6sUgzb8xmwts4NprsQ37bORYr6T6fVSAPJK7orZS7PQ4/10ex/k1x33mnaQv/RPyvcl+z+ukPdjRqFfYnahbHbB1NuXz6NYba2n++YwV0LjPeZQz5XmsFyQgzFF94t6Suqr46tnb6El5wpGMy57XY5P8vEdS/JF9VSukHCzh2t7hntUczfT/5Lz4+px1g2c5PiNUHklxa9YBIXV5tvGqopG5MJqIfhf7lgq3pPbuoyf27xZHPQX9UZo2AVUfse8O8OjNZSCjZ9ZofJCwE47b3ilHo0smn30NNqbDYl8GZLQFGieQV08LJ6C8S9Por/sT4vfuOCs+RQmwvwXr62j0GC3Pj+/fhEFTpdBfMsejLvRE9AhNR6rpS9bbUaJqpjEdiX4h1Y+rlanL2bOzIdDa9FHjSNTL0RUXdDTbt+i7XP8+6xBr3fVUBxrpMOy5Mk9mfXRvuxXdn77HPpf++Xn0mY8Ic38AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAtvCDIAiCIDyCJEQQBEGQhAiCIAiSEEmIIAiCIAkRBEEQJCGSEEEQBDG3khAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Ok3cdjEdRMPTXw1MWli2sSUie8m3pq4beK8iWETPVw2AEBeS02cMfHBxI8cMR0lpQEuJQDA14KoNzOdM/mkxbiJdVxaAIDNQBM9H1f8Z+I0lxgAkGZflCh+lBx3TczjcgMA6g4FSD7xuGeim8sOANgeOAHV4yqXHgA62woTExlJ4o2Js1Ibbr3YRFfs3+nw69UmRkxcNPEuZyLaRxUAQOd6mpIYXprYnONYOqjhSYNJSOcb9VENANB5DqYkhYuJHk/e4042kIjOUxUA0Fnmm/iSSAajBR5/Q9TL8UlCmrB6qRIA6BwnEongRgllDIr/kO/9VAkAdAZ93BafkPquxJ7Iac8kdItqAYDOkBySPVRiWTqK7r1HEpqgWgCgM9yO3fzvBCjvqGdviFW3AaDN6SoF9YVJ9X3NqgBlLhK/d0ODVA8AtLdhqWbFgqceSWgr1QMA7e1C7Ka/KmC5l0lCAIBHMrOAaEgHPJLQFqoHANrbFaltwz0UuNwdHkloDdUDACjDsLg3vOviMgEAqkhCr7hEAICyjAh7CwEAKrLHkYR2tsh56ojBvVJ7d/a31BZ51QVWdW7VlNQWZdUJvmeEd1gAMGeMWhKQ3uDnVXhuK02ck3wb8+low3VULwC0thuWG/n1is5Jt5u4l3I+n0xcktojxPiOsrqs0DYTL2T2oIoDVDEAtK5XliQ0EPhcdEvzOynn8drEbnGP0luc8Tn2Us0A0Hp6LQnoWeBz0cVUp1J6MifFf4j4SsnenG8p1Q0ArcU2Mm440Dn0mXiQUv5nExtzJLKsz/M71Q0AreVKxg37aaDydeBA2p5Gn6JeTaMeWpLQS6obAFqHbh0xkXHD/jVA+UMZ5et/68/Zo7JtSzFFlQNA69ibcbO+HKBs3UF2OqP8bTmPuUvsQ7YnqXIAaB1PJP09TF/J5W619FjONXFc16Tbf6hyAGgNGwvuhTRS7mRG2c+luYVSfxH747j1VDsAtIbxlJv0XyWXqUnii2Sv1L22gDKOS/q7oD1UOQC0hrRVs3VOUE+JZfZEPZ2sXsrFgntbY1Jb7eFUlPwAAC1gvsxeh+1LgBv1JUsC+i7lv4cCALSA8zL7MdhgyWUOin3AwCjVAgDtL20wwv6Sy9THcG/Fvkr3IqoGANrbQpm9MsGZAOWedPSCLlM1AND+kitTjwVKfBOOJLSBqgGA9nYqceO/GahcVy/oLVUDAO1tW+LGfzdQuTrp9LMjCV2gegCgfekioPHHYbpTaXegsreLe/vtIaoIANqTzvv5FLvhPzYxL2D5Nx0JaFqaW6IHANCidMhzfFi0LlTaG7D8LsleIbseD6kmAGg/OiItvjyO/jn0agSuyamhRucBAALS3k58YdLXUs1E0BMeSYgFRQGgjejKBPdjN3mdmLqkonO54ZGEtlJlANAe9B3M3dgN/qOJZRWezxOPJLScagOA9hDveejcnJUVn49rlQSNeVQbAMx9Y7Eb+1cpZmO4Zv3nkYQAAHNcfFsG7X2E2r5a3zXpwIIukhAAdKbTsRv6pIlNAcuuT0Ttz/j/p0hCANC+jsjPKw+EXP5mR1TuC8vf+eaRhLqpRgCYe/YlbubbA5atI9q+RuUetvy9Bx5JaA1VCQBzy0jiRr4rYNnxpYC097XQ8neveSShkRLOUSfr6vBwXZ2b0XcAUCCd3Bl/4X8gYNlr5ee16G402FtLiz9KSECPhHXpAKBwuhbbZOwGfrTk8nTU2woTO6W2I2tytNtmx79f7pGE3hV4vtorG48dt48mAwDF0O2vfSZ/hgrf5PFUwizds9jEM5mZJ7WaJgMAxVgrMwMBWiVOeZ77bo9jvZLmRsnpvKiPUs0wdQBoa/o4zLU9dhXxSwOf4aWUt6XDSZl5TKjzktilFQAKsjT2C7+V4n6Dn6Nf/FZP0MmvCzyPORz1oOIrRQzSZACgGMldUVspdub4PPs9j629vlGpPVLrTlyPbSbOSu19VPzf6HYVa2kyAFAMHdX1okUTkL6b6sr5uQ6WcD53pJoN+wCgLekN3mdEWVXR7LyegZSeTJ74IGEn6QJAR+hp4QRU1DI7+hl1jtP7HOXrIIffhDXnAAAF0OHVOtz7lok3Jr5LbZTbVPTn51JbmUEXa2XuD9ra/wF8tjWtqAa7BgAAAMx0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1yb3c+PG1pPmE8L21pPjxtbz4mI3hBMDs8L21vPjxtbz4tPC9tbz48bW8+JiN4QTA7PC9tbz48bW4+MjwvbW4+PG1pPmI8L21pPjxtaT5jPC9taT48L21yb3c+PG1yb3c+PG1uPjI8L21uPjxtaT5jPC9taT48L21yb3c+PC9tZnJhYz48L21hdGg+K56v6wAAAABJRU5ErkJggg==" style="width: 65.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator a space minus space 2 b c over denominator 2 c end fraction">
C. 2 a c   +   b 2 c " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAaEAAADmCAYAAAB8gjqiAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAFWNJREFUeNrt3Q+EFtsbwPHHWkkSSZIkkiRJrCtJ1pJcSdaSJEkiyZUkkiRZkSRJLleSJEuS5LoiSZLElSRJJEmSSFbWWpd+5/HO+9vp3ZlzzjvvmTPv++73w+OX+6s5886ZmWfOzPkjAgBoNz0m5nMYAABlJ5tVJgZNnDIxYuKNif9MfOHwtKc+EwdN3DDx0MQ3E2MmJkyMm/hh4p2J2ybOJZU7g8MGoCJ6/1mT3Iv2m7ic3J8+JsnmZ07c5NC1j0XJU8JHS4XZYiKp9H4OJYCIbhe8Z/1MEhYqNidpzUy0UJGN8SR5KgGAsg2beC2Tb2yauVet5PBVq7+Flo8rtAl8kkMMIDL9BjQgtU8GtnvUVw5VtfaI/V1pqLhrYiaHG0Bk+x33phEOUXUOREg+6bhnopfDDiCinY770j4OUTW2Rk5A9bjGoQcQ0SnHPWkFhyi+ZSZGcyrkrYnTUuviuEBq71XrtPujfsAbMnHRxPuCiWgPVQAgkluWe9EnDk81nmVUxisTGwtsSzs1PG0yCWnvlXlUA4AIvgtvZtpK1ke6iw0tnqLbbaZb5DmqAkDJVjjuQ9s5RHHNklp3xHQlDAfc/rqkleOThDRhzaZKAER+6E4PH5nLIYrrmJTfNXFA/Lt876VKAJTI9j3oXw5PXPq6LT0g9X2JLZGTnknoFtWCDqTDDC7lxDYOT1vd82yfCE5ziOJq7JK9qcSytBfdB48kNEq1oAPNsJzTlzg8bWOD4/4zwCGKKz25350I5R32bA0x6zZIQiiDbXzQmLTeGQtNvj6oT0yq32tiDM6aL37fhngaAUkIZXhsqafbHJ64BqWafvHPPJLQZqoHJCEENsvxEHyAQxTXealmioorJCGQhFCBIWGqnrbySCYnEI1pn0cS+p3qAUkIgV221NEHDk98V6W2psamyOVu80hCq6gekIQQ2FtLHV3l8Ewfg+Je8I4eKiAJIaSljvvOEIeIJFSP1xwikIQQ2F7Hg+8cDtH04fo4yAy2IAkhtJuW+nnK4ZledklnzGC7xsTR5OR9I7WBbBPJ/7408aeJtRn/TtdW2p3ceK5LbQnzD8m/q6LDxYpkf/Sd999Sm6y2/lvGpTa5rA5U1kF8fIsjCXWrUUv9+E7YrEvN6LpnN0y8MPEjuY4mku3fl1qv4w0c7vY2bDkZtDJnVrhvepIdl1qHDd/lJzRJpWfdvWP5u0si/Y7lJs5IsQUGHyUJGCShbrHWcc73ezzIXZfJwf0+8UZYEqJtjVgq7kaFyeeMTJ3YUN8V30pOpkUy2WFisYkjMrkExhOpzUAhkj854osIv0OXzbiXUfbn5Eaor0LTK+PqjXNL0rJr/N37OFVJQl3iuBSbqkcfiM+K/woAWaEPpSxP02Zet/BEUgZdWyRrvaPLSeKx0WRUn4VcZwnvs/y2syX+hmU5LTB9Gtsp7t6GC3L2eTenK0moCzyU5mft1950r1pIPo3fnEhEbWK2paKeR96XhSYeZOyHJpVm3un2y+Ty5Actv6+s8Vg6Kex4RkvmuPh3dV9ueUpcxGlLEupgvY6WzP6cNwpfAyWgmBNEw4OtZ9xgxP3QhPAlYx90csP5Bbb3Ivn3eSfuhIQf+zQvJ4nq71pfIJFV0YIjCaFsriEhyxv+vl47jZ0YtCW1q+GBTO8TOvD+fhOJaAfVUb2rOZXzLOI+5LVW9GQq2inCNR/e34F/g3YcyFqb6XPGRdXq64pXnLYkoQ520VIv7zOuq3QC0m+laz3KcPX4rcdbqqP6ZnFeN8nfIu3DOcnvEdZKr7yjjpPvUOBWXNZx1P/WV7BFZXtdMc6pSxLqYG8s9XIl9fcWJg9x9f/vQpNvL455JiKWqanQbo8ToUyXJL8r5dwWt+1aunx1oN+gK+HmdRPdUnCbOxz7PsapSxLqUAsd5/Zgqu7SS8zsL1BWj/itHH2RaqnOU8n+fjGvwhbQd6n1gmnVn5aT7mug37DZ0mI508J2Xa8S/uHUJQl1KNu5rdfS7Izrd28L5Q17JKEHVEs11gd+em/GISm/M8Q1SxkjgY6fbfxRK50eloj9ddxaTl+SUIeyjUl8nHq7UP9vJ1osb4tHEhqlWqrxJKMy/opQ7maJM3W7bZaEXS1ue4nk97rT5BHiVV/WN63xAPtOEiIJVembpU50mqr5qWvrZoDy5nkkoQmqJb6sLpLPk4u2TMskvyOEfoCcG7As2/Q4rYyzmSGT3b/Lfr+srS0doHsjeSJcwqlLEupgfY5koGOBbslkr7UQg0l7SELtZ1bGDfprhBtcj+PmHfIJ3zYYrtUumZcsv+GHxPmeBpJQJzoi9s42g6m3CX0By3UlITr6RNbYIUArPEYXxTMSb9r2fktZrbxyHHCczMOcXiQh5Lon9nF7n5I/nw788OtKQiwjHlFWZ4S9Ecpd4zgJQn9ot03VU3S1Rr2hvXM06edzinnZKGGnX2nnuEx1///thG3G6/o0V+8k7GeB2R51dJvqiWOuTO0zfypS2S8k3swFkpxUeeUV/e503HEiX+EUIwmRhHJt9jxeGwOXu8mjzD+pnjjuVHRxHHCcAH2By+uRqZOHtrp0gyauUXF/VAVJiCSU7bzHsSpj/JvP9D3bqJ7ynZCpi77FoJ0gPlsq/2EJZdqefC6U1Ap6xylGEiIJFX4bUo+VJZR71aPchVRPuRoHa92NWPaRyE1vSS76vPK2FmxZfXH8jvOcZiQhklCuBR7HaaSkst86yn1B9ZSrr+E1kvZO6Y1Udq/j5v22pDK/S/4g0iIfPLd6XECbONVIQiShXNs9jtOKEspd7lHucaqnPEsaXoXplBgzI5a/11H5R0oo0zbx55OC27wp7oFuPZxuJCGSUK4RxzG6V1K5xz3qhwHgJdGuwunuxFUsZftE7BMVLiihzEcSdiG4HrF3Ky3ruxbCYJxQe/jsuIb6Syr3ZUXJb9rTnlzpj4D659ij+F3N4DJmrXWNRSoyMatrcCpPuiQh2K1yXD9vSip3nce120/1hDe7oQXyRqoZQOlay+dACWVed7S8inwL81kUiwlFSULId8hx/RwuqdwbjnKfUTXlXHDptdV1YGpVXQ//dZwAiyO3vIp+D3K9y9bYzKlHEkKuuxL/tfxisS+FwmqqJehpqOxPJdzofc2R+GNqXJ0HzhXc7lOPJLSU048khNz7ku2b6v2Syr3guGb/pmrCSz+xf0laBlUZcpwA1wOX5/oWVHR8kBr12PZMTj+SEDK5ekGWMW/lYkfiG+PBMbz04ExdMGp1xfszHPnEe+4oT5vlswpu29Wk/8npRxJCrtOO67KMDlPXHdfrIaolrPSyDPrUHmvZZ/3WtEuyx8fcdpwEvwfcj4Op1l/eINWXLWyfJEQSQnG2b8OPSyhvvTCcIqqTDU3MDRHLrn+DyZp81DVHVKjVU9OrtNomSW1l/aBxkhBJCIW4vg2fDFyePhC/spSnD6oLqJZw0t0e9f1nzGljtjlaGD8cJ19PoJtLPdldS+1T6Blyv3skoV5OR5IQpnBN1RN63sgTYn/1t54qCWePhPnoXoR+0PuWlHuwYOshhPrMuPV16P+ylLfIsS3bTBIPPJLQKk5JkhByr9G8pBByqqs+sb8630l1hNPY82xHxLLTUwFp6yvvtVrZr68Oy+RKjPVOGC8tTXAb7SSh3dnzehNe9/g9QyUca02M2j1cZ+em9x1JqBN9shz7fwOWM0fsM2UfpSrC2dyQ7fdFLHu1/DoXnW3a9THHTbuVHjHbM37/LEtZNz0S+pjkL6y3xyMJXQh8rDUB1efA40MqSagTrXBcM9cClnXHUs4pqiKcgYab++GSy9Om8rLkpn8no6lre5/7UcLP4aa2ymT//z8b/nuzM3X/ntqWrSWz1CMJvQ943LV1+SS13Xmc+iShDvSH45o5GKicU8ISDVHoRHw+gyZjheum6+qifbHAMUi3SB7Ir++TbWMRsqbU6U8l9BMeZT+TOFP3aM+d+pgn/e62klOfJNShXPeAwQBl7Ldsfw9VEM5qmewI0C7hunG71vD4If5dJXvl1yk49CY9p4kTvrHTwYZUQvd9JbDT45i8ltZ6yen4rvo79Njd7UlCCP0WxfVKvtV523bnbPerMCdcUPo6zLWsdBXhWgTKZxqdR+Je30i7VKb7/efNCG57/ZduMQ2lLo4HTSaNV1Lekg6atOuvO7WzBau0koQ62QaPa6WV8TpHcrapHXkWc/jDWST23iVVhe+Eg8/F77XeHw1JTf+sMzE8lqnrwOctSWHrEn4tafpfbWhNNbvAn6sLaLojxBzPbQ4mLaj0jBc8xZGEOt0+j+ukyAKb+m+yeqvqdXlSWN04qMZVUdsptnv+hpDLN2urxTbLQjPbei3F11fa61mGtl6HkyfC3oZ61U4Zp5MEnP43uuzGak59klAX2OFxjfzW5DY3Zlwz9al/+HYamPaGeintmYC+Nfm0cTlAmWc8yhn33NZLaX2Bv/0lHNc7Us3CgyQhlHXMHzvO+StNvNq7L9mrsW7jUIenN3ifnlhVRbPjYbQV8E/BsvQbzDrPcnyO2SMJN2ddf85TWbPxUeIONiYJkYRiHvezYl9S4ZbUvn/OSP27BcnbAn34zBqAqq/Sd/LqrZoLph2i6PQ0JxwnY2Py2dPkSXZQ7NODDJdw0mpdHU5eoxVJsH8Ic86RhLqftvCPid834rz4nDwA93E40Qp9wjmaNK1Hk1do2lNNO1/cThJVKyfZoeTJqb5dvdHrMhcxFq9am+z/rWQffiT7MZ78WTtVjCT7yPtrktB0pZ8ahpJWjl4P2pvte+pa0etWu1jrqqfaoWg31wsAkhAAACQhAEAnJqHxnLjA4QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDVT4IgCILwCJIQQRAEQRIiCIIgSEIkIYIgCIIkRBAEQZCESEIEQRBEZyUhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDTZ+KgiRsmHpr4ZmLMxISJcRM/TLwzcdvEORODJmZw2AAARS0yccrERxM/C8REkpT6OZQAAF9zktbMRMHkkxVPTKzh0AIAbPpbaPm44j8TJznEAIAse5JE8bPkuGtiJocbAFB3IELyScc9E70cdgDA1sgJqB7XOPQAML0tMzGakyTemjgtte7WC0z0pP6ddr9eaWLIxEUT7wsmoj1UAQBMX88yEsMrExsLbEs7NTxtMgnpeKN5VAMATD/7M5LCxYYWT9HtjjWRiM5RFQAwvcwy8bUhGQwH3P66pJXjk4Q0Yc2mSgBg+jjWkAhGSihjQPy7fO+lSgBgetDXbekBqe9LbImc9ExCt6gWAJgeGrtkbyqxLO1F98EjCY1SLQAwPdxO3fzvRCjvsGdriFm3AaDL6SwF9YlJ9XvNighlzhe/b0MDVA8AdLdBqWbGgmceSWgz1QMA3e186qa/ImK5V0hCAIBHMjmBaEz7PJLQ71QPAHS3q1JbhntT5HK3eSShVVQPAKAMg+Je8K6HwwQAqCIJveYQAQDKMiSsLQQAqMguRxLa3ib7qT0Gd0vt29nfUpvkVSdY1bFV41KblFUH+J4SvmEBQMcYtiQgvcHPrHDflps4I8UW5tPehmuoXgBobyOWG/mNivZJl5u4l7E/n01cktorxPSKsjqt0BYTL2Vqp4p9VDEAtK/XliTUH3lfdEnzOxn78cbETnH30luQ8zt2U80A0H5mWxLQ88j7opOpjme0ZI6Lfxfx5ZK/ON8iqhsA2outZ9xgpH2YZ+JBRvlfTKwvkMjyfs9ZqhsA2svVnBv2s0jla8eBrDWNPietmmY9tCShV1Q3ALQPXTpiNOeG/VuE8jfllK//ra9gi8q2LMU4VQ4A7WN3zs36SoSydQXZiZzytxTc5g6xd9keo8oBoH08lezvMPNKLnezpcVypoXtugbd/kOVA0B7WB+4FdJMuWM5Zb+Q1iZKXSL213FrqXYAaA9PMm7Sf5VcpiaJr5I/U/fqAGUclexvQbuocgBoD1mzZuuYoBklljkjaenktVIuBm5tXZbabA8nkuQHAGgDs2TqPGxfI9yoL1kS0A8p/zsUAKANnJOpr8EGSi5zQOwdBoapFgDoflmdEfaWXKa+hnsn9lm651M1ANDd5srUmQlORSj3uKMVdIWqAYDu1zgz9eVIiW/UkYTWUTUA0N1ONNz4b0Yq19UKekfVAEB329Jw478bqVwddPrFkYTOUz0A0L10EtD06zBdqbQ3Utlbxb389iaqCAC6k477+Zy64T82MTNi+TcdCWhCWpuiBwDQprTLc7pbtE5UOjti+T2SP0N2PR5STQDQfbRHWnp6HP1z7NkIXINTY/XOAwBEpK2d9MSkb6SagaDHPJIQE4oCQBfRmQnup27yOjB1YUX7MuKRhDZTZQDQHfQbzN3UDf6TicUV7s9TjyS0lGoDgO6Qbnno2JzlFe+Pa5YEjZlUGwB0vsupG/s3CbMwXKv+80hCAIAOl16WQVsfsZav1m9N2rGghyQEANPTydQNfczEhohl1wei9uX8/+MkIQDoXofk15kHYk5/sy0p96Xl73z3SEK9VCMAdJ49DTfzrRHL1h5t35JyD1r+3gOPJLSKqgSAzjLUcCPfEbHs9FRA2vqaa/m71z2S0FAJ+6iDdbV7uM7OTe87AAhIB3emP/jvi1j2avl1LrqRJltrWXGhhAT0SJiXDgCC07nYxlI38MMll6e93paZ2C61FVkbe7ttdPz7pR5J6H3A/dVW2ZPUdudxygBAGLr8tc/gz1jhmzyeSZypexaYeC6T46RWcsoAQBirZbIjQLvECc993+mxrdfSWi85HRf1Sarppg4AXU1fh7mWx64iljTxG15JeUs6HJfJ14Q6LolVWgEgkEWpJ/x2ivtN/o4+8Zs9QQe/zvHc5mDSgkrPFDHAKQMAYTSuitpOsb3A79nruW1t9Q1L7ZVab8Px2GLitNS+R6X/jS5XsZpTBgDC0F5dL9s0Aem3qZ6Cv2t/CftzR6pZsA8AupLe4H16lFUVrY7r6c9oyRSJjxJ3kC4ATAsz2jgBhZpmR3+jjnH6UKB87eTwhzDnHAAgAO1erd29b5l4a+KH1Hq5jSd/fiG1mRl0slbG/qCr/Q/eXZ94iMHdqgAAAMx0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1yb3c+PG1uPjI8L21uPjxtaT5hPC9taT48bWk+YzwvbWk+PG1vPiYjeEEwOzwvbW8+PG1vPis8L21vPjxtbz4mI3hBMDs8L21vPjxtaT5iPC9taT48L21yb3c+PG1yb3c+PG1uPjI8L21uPjxtaT5jPC9taT48L21yb3c+PC9tZnJhYz48L21hdGg+znI3aAAAAABJRU5ErkJggg==" style="width: 65.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator 2 a c space plus space b over denominator 2 c end fraction">
D. 2 a c   -   b 2 c " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAaEAAADmCAYAAAB8gjqiAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAFQlJREFUeNrt3Q+EFtsbwPHHWitJJEmSSJIksa4kWUtyJVlLkiSJJFeSSJJkRa4kyeVKkmRJklxXJEmSuJIkiSRJEsnKWutHv/N457XTuzPnnHfeM2fe993vh8cv91dz5p0zM8+cmfNHBADQbnpMLOAwAADKTjarTQyZOG1i1MQbE/8z8YXD0576TRwyccPEQxPfTIybmDQxYeKHiXcmbps4l1RuH4cNQEX0/rM2uRcdMHE5uT99TJLNz5y4yaFrH4uTp4SPlgqzxWRS6QMcSgAR3S54z/qZJCxUbG7SmplsoSIb40nyVAIAZRsx8Vqm3tg0c69axeGr1kALLR9XaBP4FIcYQGT6DWhQap8MbPeorxyqau0V+7vSUHHXxCwON4DIDjjuTaMcouocjJB80nHPRC+HHUBEuxz3pf0compsi5yA6nGNQw8gotOOe9JKDlF8y02M5VTIWxNnpNbFcaHU3qvWafdH/YA3bOKiifcFE9FeqgBAJLcs96JPHJ5qPMuojFcmNhXYlnZqeNpkEtLeK/OpBgARfBfezLSVrI90FxtaPEW320y3yHNUBYCSrXTch3ZwiOKaLbXuiOlKGAm4/fVJK8cnCWnCmkOVAIj80J0ePjKPQxTXcSm/a+Kg+Hf53keVACiR7XvQfxyeuPR1W3pA6vsSWyKnPJPQLaoFQIn3PNsngjMcorgau2RvLrEs7UX3wSMJjVEtAEqy0XH/GeQQxZWe3O9OhPKOeLaGmHUbQBls44PGpfXOWGiCzlJQn5hUv9fEGJy1QPy+DfE0AqAMjy33ndscnriGpJp+8c88ktAWqgdAYLMdD8EHOURxnZdqpqi4QhICUIFhYaqetvJIpiYQjWm/RxL6neoBENhlyz3nA4cnvqtSW1Njc+Ryt3skodVUD4DA3lruOVc5PDPHkLgXvKOHCoCQljnuO8McIpJQPV5ziAAEts/x4DuXQzRzuD4OMoMtgNBuWu45Tzk8M8tu6YwZbNeaOJacvG+kNpBtMvnflyb+MrEu49/p2kp7TFwycV1qS5h/SP5dFR0uVib7o++8/5HaZLX13zIhtclldaCyDuLjWxy61ZjlnuM7YbMuNaPrnt0w8cLEj+Q6mky2f19qvY43crjb24jlZNDKnFXhvulJdkJqHTZ8l5/QJJWedfeO5e8ujfQ7Vpg4K8UWGHyUJGCgW6xznPMDHg9y12VqcL9PvBGWhGhbo5aKu1Fh8jkr0yc21HfFt5KTabFMdZhYYuKoTC2B8URqM1CI5E+O+CLC79BlM+5llP05aZnpq9D0yrg6PdLWpGXX+Lv3c6qiS5yQYlP16APxn+K/AkBW6EMpy9O0mdctPJGUQdcWyVrv6HKSeGw0GdVnIddZwvstv+3PEn/D8pwWmD6N7RJ3b8OFOfu8h9MVXeChND9rv/ame9VC8mn85kQiahNzLBX1PPK+LDLxIGM/NKk08053QKaWJz9k+X1ljcfSSWEnMloyJ8S/q/sKy1PiYk5bdLBeR0vmQM4bha+BElDMCaLhwdYzbijifmhC+JKxDzq54YIC23uR/Pu8E3dSwo99mp+TRPV3bSiQyKpowQFlcw0JWdHw9/XaaezEoC2p3Q0PZHqf0IH395tIRDupjupdzamcZxH3Ia+1oidT0U4Rrvnw/gn8G7TjQNbaTJ8zLqpWX1e84rRFB7toObffZ1xX6QSk30rXeZTh6vFbj7dUR/XN4rxukr9F2odzkt8jrJVeecccJ9/hwK24rOOo/62/YIvK9rpiglMXHeyN5dy+kvp7i5KHuPr/d6HJtxfHPRMRy9RUaI/HiVCmS5LflXJei9t2LV2+JtBv0JVw87qJbi24zZ2OfR/n1EWHWuQ4t+ufAPrk1yVmDhQoq0f8Vo6+SLVU56lkf7+YX2EL6LvUesG06i/LSfc10G/YYmmxnG1hu65XCf9y6qJD2c5tvZbmZFy/+1oob8QjCT2gWqqxIfDTezMOS/mdIa5ZyhgNdPxs449a6fSwVOyv49Zx+qJD2cYkPk69Xaj/t5MtlrfVIwmNUS3VeJJRGX9HKHeLxJm63TZLwu4Wt71U8nvdafII8aov65vWRIB9B6r0zXJd6jRVC1LX1s0A5c33SEKTVEt8WV0kdUxQX8nlLpf8jhD6AXJewLJs0+O0Ms6mT6a6f5f9fllbWzpA90byRLiUUxcdrN+RDHQs0C2Z6rUWYjBpD0mo/czOuEF/jXCD63HcvEM+4dsGw7XaJfOS5Tf8kDjf04BOdFTsnW2GUm8T+gOW60pCdPSJrLFDgFZ4jC6KZyXetO0DlrJaeeU46DiZRzi9gFz3xD5u71Py5zOBH35dSYhlxCPK6oywL0K5ax0nQegP7bapeoqu1qiv4d45mvQLOMWaclnCTsPSbtFHFf/ydsI243V9mqt3gY/bHI96uk31xDFPpveZPx2p7BcSb+YCSU6qvPKKfnc64TiRr3CKkYRIQrm2eB6zTYHL3exR5l9UTxyNvcUuRyr3oOME6A9cXo9Mnzy01aUbNHGNifujKkhCJKFs5z2OVxnj33ym79lO9ZTvpExf9C0G7QTx2VL5D0so0/bkc6GkVtA7TjGSEEmo8NuQeqwqodyrHuUuonrK1ThY627Eso9Gbnq7bmzbCrasvjh+x3lOM5IQSSjXQo9jNVpS2W8d5b6gesrV3/AaSXun9EYqu9dx835bUpnfJX8QaZGbwjaPC2gzpxpJiCSUa4fHsVpZQrkrPMo9QfWUZ2nDqzCdEmNWxPL3OSr/aAll2ib+fFJwmzfFPdCth9ONJEQSyjXqOE73Sir3hEcdMQC8JNpVON2duIqlbJ+IfaLChSWU+UjCLgTXI/ZupWV91wK6yWfHNTRQUrkvK0p+M5725Ep/BNQ/xx7F72oGlzFrrWssUpGJWV2DU2P2MgQ60WrH9fOmpHLXe1y7A1RPeHMaWiBvpJoBlK61fA6WUOZ1R8uryLcwn0WxmFAUyHfYcf0cKancG45yn1E14en75/Ta6jowtaquh/85ToAlkVteRb8Hud5la2zh1ANy3ZX4r+WXiH0pFFZTLUFPQ2V/KuFG72uuxB9T4+o8cK7gdp96JKFlnH5A7n3J9k31fknlXnBcs/9QNeGln9i/JC2Dqgw7ToDrgctzfQsqOj5IjXlsexanH5Bpk+PaKWPeyiWOxDfOg2N46W6uumDUmor3ZyTyiffcUZ42y2cX3LarSf+T0w/IdcZxXZbRYeq643o9TLWElV6WQZ/aYy37rN+adkv2+JjbjpPg94D7cSjV+ssbpPqyhe2ThIDibN+GH5dQ3gZhOEVUpxqamBsjll3/BpM1+ahrjqhQq6emV2m1TZLayvpBEyQhoBDXt+FTgcvTB+JXlvL0QXUh1RJOutujvv+MOW3MdkcL44fj5Asxu0B6ie1rqX0KPUPud48k1MvpCEzjmqon9LyRJ8X+6m8DVRLOXgnz0b0I/aD3LSn3UMHWQwj1mXHr69D/bSlvsWNbtpkkHngkodWckkDuNZqXFEJOddUv9lfnu6iOcBp7nu2MWHZ6KiBtfeW9Viv79dURmVqJsd4J46WlCW6jnSS0O3teb8LrHr9nuIRjrYlRu4fr7Nz0vkMn+mS5Zv4LWM5csc+UfYyqCGdLQ7bfH7HsNfLrXHS2adfHHTftVnrE7Mj4/bMtZd30SOjjkr+w3l6PJHQh8LHWBFSfA48PqehEKx3XzLWAZd2xlHOaqghnsOHmfqTk8rSpvDy56d/JaOra3ud+lPBzuKltMtX//6+G/97sTN2/p7Zla8ks80hC7wMed21dPkltdz6nPjrQH45r5lCgck4LSzREoRPx+QyajBWum66ri/bFAscg3SJ5IL++T7aNRciaUmcgldBPepT9TOJM3aM9d+pjnvS72ypOfXQo1z1gKEAZByzb30sVhLNGpjoCtEu4btyuNTx+iH9XSe15lp6CQ2/Sc5s44Rs7HWxMJXTfVwK7PI7Ja2mtl5yO76q/Q4/d3R4I/RbF9Uq+1Xnb9uRs96swJ1xQ+jrMtax0FeFaBMpnGp1H4l7fSLtUpvv9580Ibnv9l24xDacujgdNJo1XUt6SDpq06687tbMFq7Sik230uFZaGa9zNGeb2pFnCYc/nMVi711SVfhOOPhc/F7r/dGQ1PTPOhPDY5m+DnzekhS2LuHXkqb/1YbWVLML/Lm6gKY7Qsz13OZQ0oJKz3jBUxw63X6P66TIApv6b7J6q+p1eUpY3TioxlVR2yl2eP6GTQHL1FaLbZaFZrb1Woqvr7TPswxtvY4kT4S9DfWqnTLOJAk4/W902Y01nProAjs9rpHfmtzmpoxrpj71D99OA9PeUC+lPRPQtyafNi4HKPOsRzkTntt6Ka0v8HeghON6R6pZeBAoQ1/Gm4zGuNLEq737kr0a63YOdXh6g/fpiVVVNDseRlsB/xYsS7/BrPcsx+eYPZJwc9YN5DyVNRsfJe5gYyBmIvpT7Esq3JLa98++1L9bmLwt0IfPrAGo+ip9F6/eyq24n20cRaenOek4GRuTz94mT7JDYp8eZKSEk1br6kjyGq1Igv1DmHMO3U9b+MfF7xtxXnxOHoD7OZxohT7hHEua1voBXl+haU817XxxO0lUrZxkh5Mnp/p29Uavy1zEWLxqXbL/t5J9+JHsx0TyZ+1UMZrsI++vMVPpp4bhpJWj14P2Zvueulb0utUu1rrqqXYo2sP1AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMwcPwmCIAjCI0hCBEEQBEmIIAiCIAmRhAiCIAiSEEEQBEESIgkRBEEQnZWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBPv4lDJm6YeGjim4lxE5MmJkz8MPHOxG0T50wMmejjsAEAilps4rSJjyZ+FojJJCkNcCgBAL7mJq2ZyYLJJyuemFjLoQUA2Ay00PJxxf9MnOIQAwCy7E0Sxc+S466JWRxuAEDdwQjJJx33TPRy2AEA2yInoHpc49ADwMy23MRYTpJ4a+KM1LpbLzTRk/p32v16lYlhExdNvC+YiPZSBQAwcz3LSAyvTGwqsC3t1PC0ySSk443mUw0AMPMcyEgKFxtaPEW3O95EIjpHVQDAzDLbxNeGZDAScPvrk1aOTxLShDWHKgGAmeN4QyIYLaGMQfHv8r2PKgGAmUFft6UHpL4vsSVyyjMJ3aJaAGBmaOySvbnEsrQX3QePJDRGtQDAzHA7dfO/E6G8I56tIWbdBoAup7MU1Ccm1e81KyOUuUD8vg0NUj0A0N2GpJoZC555JKEtVA8AdLfzqZv+yojlXiEJAQAeydQEojHt90hCv1M9ANDdrkptGe7Nkcvd7pGEVlM9AIAyDIl7wbseDhMAoIok9JpDBAAoy7CwthAAoCK7HUloR5vsp/YY3CO1b2f/SG2SV51gVcdWTUhtUlYd4Hta+IYFAB1jxJKA9AY/q8J9W2HirBRbmE97G66legGgvY1abuQ3KtonXW7iXsb+fDZxSWqvENMryuq0QltNvJTpnSr2U8UA0L5eW5LQQOR90SXN72TsxxsTu8TdS29hzu/YQzUDQPuZY0lAzyPvi06mOpHRkjkh/l3EV0j+4nyLqW4AaC+2nnFDkfZhvokHGeV/MbGhQCLL+z1/Ut0A0F6u5tywn0UqXzsOZK1p9Dlp1TTroSUJvaK6AaB96NIRYzk37N8ilL85p3z9b/0FW1S2ZSkmqHIAaB97cm7WVyKUrSvITuaUv7XgNneKvcv2OFUOAO3jqWR/h5lfcrlbLC2Wsy1s1zXo9l+qHADaw4bArZBmyh3PKfuFtDZR6lKxv45bR7UDQHt4knGT/rvkMjVJfJX8mbrXBCjjmGR/C9pNlQNAe8iaNVvHBPWVWGZf0tLJa6VcDNzauiy12R5OJskPANAGZsv0edi+RrhRX7IkoB9S/ncoAEAbOCfTX4MNllzmoNg7DIxQLQDQ/bI6I+wruUx9DfdO7LN0L6BqAKC7zZPpMxOcjlDuCUcr6ApVAwDdr3Fm6suREt+YIwmtp2oAoLudbLjx34xUrqsV9I6qAYDutrXhxn83Urk66PSLIwmdp3oAoHvpJKDp12G6UmlvpLK3iXv57c1UEQB0Jx338zl1w39sYlbE8m86EtCktDZFDwCgTWmX53S3aJ2odE7E8nskf4bsejykmgCg+2iPtPT0OPrn2LMRuAanxuqdBwCISFs76YlJ30g1A0GPeyQhJhQFgC6iMxPcT93kdWDqoor2ZdQjCW2hygCgO+g3mLupG/wnE0sq3J+nHkloGdUGAN0h3fLQsTkrKt4f1ywJGrOoNgDofJdTN/ZvEmZhuFb9zyMJAQA6XHpZBm19xFq+Wr81aceCHpIQAMxMp1I39HETGyOWXR+I2p/z/0+QhACgex2WX2ceiDn9zfak3JeWv/PdIwn1Uo0A0Hn2NtzMt0UsW3u0fUvKPWT5ew88ktBqqhIAOstww418Z8Sy01MBaetrnuXvXvdIQsMl7KMO1tXu4To7N73vACAgHdyZ/uC/P2LZa+TXuehGm2ytZcWFEhLQI2FeOgAITudiG0/dwI+UXJ72eltuYofUVmRt7O22yfHvl3kkofcB91dbZU9S253PKQMAYejy1z6DP2OFb/J4JnGm7llo4rlMjZNaxSkDAGGskamOAO0SJz33fZfHtl5La73kdFzUJ6mmmzoAdDV9HeZaHruKWNrEb3gl5S3pcEKmXhPquCRWaQWAQBannvDbKe43+Tv6xW/2BB38Otdzm0NJCyo9U8QgpwwAhNG4Kmo7xY4Cv2ef57a11TcitVdqvQ3HY6uJM1L7HpX+N7pcxRpOGQAIQ3t1vWzTBKTfpnoK/q4DJezPHalmwT4A6Ep6g/fpUVZVtDquZyCjJVMkPkrcQboAMCP0tXECCjXNjv5GHeP0oUD52snhD2HOOQBAANq9Wrt73zLx1sQPqfVym0j+/EJqMzPoZK2M/UFX+z/bPTWtEdPhzAAAAMx0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1yb3c+PG1uPjI8L21uPjxtaT5hPC9taT48bWk+YzwvbWk+PG1vPiYjeEEwOzwvbW8+PG1vPi08L21vPjxtbz4mI3hBMDs8L21vPjxtaT5iPC9taT48L21yb3c+PG1yb3c+PG1uPjI8L21uPjxtaT5jPC9taT48L21yb3c+PC9tZnJhYz48L21hdGg+JyiWlgAAAABJRU5ErkJggg==" style="width: 65.33px; height: 36.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator 2 a c space minus space b over denominator 2 c end fraction">
Cho các số hữu tỉ x = a, y =(a, b, c ∈ Z, c ≠ 0). Tổng x + y bằng: