Square root
VBT
Calculator
magnet

Câu hỏi

Cho các số hữu tỉ (a, b, c, d ∈ Z, b ≠ 0, d ≠ 0). Tổng x + y bằng: A. a c   -   b d b d " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAaIAAADXCAYAAABYk1WpAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAGFVJREFUeNrt3Q+EVlkfwPFjZGSMSJIkkWQkGcbKykokK8kYxlpZyZCRtZLISpJEkpWseCVJMoyMJCuSJEkkSZIhSZIMI2OMkei9v/c5zzu3Z+49v9+9z7nP7EzfD8e7emfOvc+Z85xzz5/7O84BwMLRlqTlFENhlBkAlOhwNiapN0knkjSUpFdJ+pKkjxRPsNy6k9SfpLNJGknSZJK+JmkHxQMA32r3jaZ0NoNJuugbzne+w/mak4a/83LrSNI2X24DqXIbVcptGVUOAGaMBBpMLQ1+p2W2X+loQuk5VQ4AvnUySS+TNJ6kqYKN6obvtMx2JempL7PpgmX2N1UOAMJkbUOmm14rDeoYRfV/7anOSeuIeikuALAZVBrUIYpolk1Kmcl0XifFBAA2e5RGdT9FNMtipcweU0QAYHdCaVS7KKJZOpQyO0MRAYDd9UCD+p7iybRN6Yh2UUQAYPcp0KBeoXgyHXDh9aFFFBEA2HQpT/a/UESZhgNl9oDiAQC7QeXJfilFlGkiUG4nKR4AsAutDz2heDL9oIwiiS8HAEbyQmsowsIpiijT0UCZffblCgAw+El5st9GEWW6FyizOxQPANiF3h+a4sk+k0RLCAVBPUYRAYDdg0CDOkLxZOpTRpGbKSIAsOlQnuwPUESZLgXKbJLiAYB4T/aE9cn23hEcFgCiuBhoUN9SPJm0l3/3UUQAYDcaaFAvUzyZDikd0SqKCABs1ioNah9FlOl2oMxeUTwAYDfgwmF9llBEs0gQ08+BcjtPEQGAXShg5yOKJ1OvMorcTRFVrztJR3wFliHolH86kP99nqQLLnv//IYk7U3S30m6mqSbrrYQKr/38xx8ji5/PzIHfitJY6nPMp2k8STdcLUX/TbyZ8cCFSNg5zJXW5y/lqRnrrZ1+bNPkr9EGPjL1aI3/Jssd7WI4tIG3HW1IzCmU/ctURPkpdTGYK9/u3BYH459qIhUNImp9Fp5Ekin4YY/4I3Az65p0edYn6TTSXpT4HPU033fCQMLxWalzm81PMxddeFpqqz1k7k8TqLNd5rSyXwx3vPHJG1K5RHa3HGXalVNB3TazQ6GKH/A675CrXIz4T9WJ+mwH13Izz1MPR3kBVR81oLP8aPLXlz84J9uZEF2RepztLvaqYrPMz73fqoFFohQwM5QWJ/Frnb8tbUhz0ryYNrZws+62LdNH1x2ZPGD/kGzLdXJnkv9zBvfLqxTPtcRqlVcg356qrGgLzp9a6J0SO/8zx9PUo+bm/Pc1+WMxOSpbI/T42etyLnnvVQPLAChgJ3Xc35Hdtm9aKIDalyDakVnJN/XrJdPHydpi/K76fWgARc+s+mrb+sQwUo/vGwsYOlYiszxbvW/J53ZH67153XIPv/pjBHNUWcP4Lg+8LTIewKYzxYpI5rBnJmFsUidUHpkVBWZ8r+f8/0dLJDP2VTnHFpiGKdaxSGdwkeXfdzt8hL5PfO/n1d5qzivY1lOR/rR8PST1ZnNxUgOqJq282t9w8/Ld6dxY4OMqH5reCiTdqLf1TYoWDujXyv4fHJfkxnXkpHRphIP51/95w+thxHWJ4K8UYtUqMUl87ykVMBbkT+DzPG+ddlrQesjT128oMpgHjsfqNtvMr5X6U5I1k4tkaV/M3ZEo5FHenkhi976TqWMUcPn2EO1as5Zl79TbHET+R5R/nAHI4/msraiyr+VmbddpkxdTFNtMI+9CtTtSw2jgfQC/7mCsxh/GjujGAfvLXP5x1nIjMjaJvK+ZfgMK6lW5eXtiZeKurTJvI8rf7hNkT7D7sCQeVfJPH9V7n2KqoN5aqVSt3v9z8kusccuvG6kacuZpYgdjUA+08vAd7XZTQRaR8QMSQUjoU9NPj3UXQj84cYifYadgZHL6Sby1aYV/qH6YJ4K1W35LnVmfH8HmrjeSUNH1Mz7N9IJhd4NjPHe0m3l/s9Rrco5aHgiatYVV+3C3hYXfj+pmY0Qa1x4ao7TFzFfDQXq9YPULEOsI693GTqiiZJ5y+aI0RZ0EOPK/e+iWpUbRbQi7Htoq+NvTea9xuXvxpMOJMa0X9Ya13SEewfmUqhRPeEb9/p3azjC9ZYZOqLPJfKVkduTQJ6yqSJWuJ1pR1ifqNa5/PhSsii5NOK1QsPlZt7DaXczW8Orjn4roy7ZhXPNPxmuoQphHutROgR5V+i6m9nNFuOF07aKOqKbSn4bIpVZh3Lvd6hWxSvEswpHKWmhF+aa3a4ZCjo46Z/AAMx22IU34PSmZhViRgnQOqKim3+OKfkdi3jvO5VrHaZaFXPatS7k+9bAtf7TRL7blEpxkj8zkCu06C47w+qhcE5FfgDWOqK3kdqW+o7fmFNlA8r1CIZcQLdSmLEX30Nhfcqe+ihTcq+V4fhy/tSFXHRxQ7b821I7f+JvZilCkQHq6yCvI5dbp+HvNGLMS5YO3il57Yxcbldd9bt/vxvPXOsiHDhfsfKuV3Yd6qhSAS/xZ6YjoiMqPcVUT9sjX3eH4ZoXItXXexWUW+jl32tUK7sDrrURY9tc/i6Tssc+SOc14fSFVtAR0RFl+8tQXlW8H2cJ9dNvyGeLIZ/YbdkK1/o4eQuS7Pj40OIniNATUNl9/dpo6DV/ajoiOqLSsyL1tKGC6152ccLjaPdfxe41bX2IjVFGh1s8DNcatzLnucsI66PyOf7iT01HREdU+sm+yujRWsBQyyzJHsP9b63g3kNbxJ9SrWwWKQ34aEXX/OTyXzQt0zDsNlTCHfy56YjoiHL9Yiirrgquu95w3aOGfF5F6MzKzCaFNndwFEykYWUV+99DwUIflsxz2Okvw7Xx56YjoiPKNaSU0+2KrnvU8DfSXhLvNeRxYA7az+1UK5uHLhzccEUF17wf+QmiTXkqqWqdC1hIPszBtJZ4HqEDvG94EF3S4vZzioffOEPiuxVcU3tXqUxgQO0F1q/+qR5Ato1OfwG0Cj+65td11hnyqOK4ca0tG6Fa2WhnAVUxlL2qjMDKvO1sOViLIKRAvoPK9+dQRde9plz3cYR2rKqTUa/OQfu5ID1RCnJ1i0dgZdeHhgwVcSd/biDXTdf6KfrVLnyMivVU1qdKHnKNpZHvfY3h3ruoVrolrvXv3GgbCs6WzPeRoSNay58cyKStsVYVOfqc8p21RHOxbDmvYgv1Jcc7i1H0KQV5NfL1ug0VZnfJvCcMeS/mTw5k2q58dwYquOZqpfObMj489hu++7HDenUZRkOsSRudbHHlswyfO0rm/cVQGQFkO6V8L6uIDKCtrxyMNKqqYn3oluGavVQrmxGlIH+OeK16lG15cTbvRdbnTeRPRwSUF1orflDB9bR4cEVetRhxrQ3Q2me4XtmX8r9LWkymWIt76dNeQ4FVmzl/aJqOCChFWys+Hvl6sh71InA9eVgtsjHileG7H2tEJ23iB8P17lOt7CaVwozxIlb6uO4rLjyf29/EdT4ZKgfnxQOzaWF9YkcGOKaMJLZEbsditWWifjz6VIs77wVNG0XEUI+oWz/X/j+B661S8uoM/H93DZVxI39yIPc7mtcxxIwM0OPC0+hl1nI+u9bMhtRnc2QaU4sE8RPVyq7qP94hN3Oi4yb/b88Dw/EQ2TghxxOvz/n/rxo+T18FZSido2wdl6je7MrDfPQ+8J15EvE6S1w4wvaRkvm2Yn14q+/wJGm7fy1hfWRUOOxYR/ofbXjZzLxqeri/3/9bR+Baw4G8+lJ/4LwDrfYZKuO5yOUnnVA9vhVx7DAfdSnfmSsRr3UjcJ0TFbZj1nOM8sjZS+M+H4ngop1ge1PJr95WPaD61Whnuu8qme/u1HD5QsO/F43w/XMqr9CIZq2hMr6JWHayaPkwlS8HX2E++l35zvwR6TonXHPHO4RYDvIrOxuy0c0ckfOgYaanzGkF9cNApWNbTfWr0bY9ni+RZ3pkcrdhiBp6V2FnznC4/rRzzHDtx641YX5kR8/TVIXaQFXCAm0DYrwLMxjIf1+E/K+5agKeyjrPmJtZOqiPqrRwYnkhiSS4a31jxW6q3gztDJBJZ99GKTvS0i+WSUO9pECl78yoBBMFpwcspzO+dM3tntvsZubUpxyLkpi/2pw+rbWtyWvszcl3LELedfud7cypngJ5yqinvvb0peF7/tAV353b7Wam905T9WYXjmU/fKeSj2y3TL8XIPv6l2f8XGgqMD1y6kt9Qe4W7DheuOqOgziaqpzTjtNeMb/9ZPiuNBPo9HBOno8iT0utcLYNC/IAqYUM2uRmx61s3MmnhRNry2gf653QENUu21NnW1uRueT0CYny33KswgM3+yje5TnXCm0Xv+KnAS43jKo6C36eHmOlHHb2Q7J6/Uiq/rsTEZ/mgLliGUl0lshXfidrF6t8L4+7ag6Ku2wcFU34e0hHxZYX7mVX7j1nCzOkbRc/7T+jtC9HUu2ePFSzszbHdhfvuGUp6FA0hiJ5vQx0aJoB4zVk3vekfzJMj7rkurJR45TvhNO/89bNbEUH5rNfDd+RH0q0J29cdpigKtdSVzlb4OMiaX/Otb6UyEtOmO2gyoVdjPBHs8x7Thvzet5EJ1Q3GLlS1hc8l1NdsEC0Z8xolI1aLQ9zd1z2qa79Lfo8/ZG+57J+FZp2/1QwvyuO94VMZDTwT8k/mqzJ/Gi8jmVX230XL8bd1pyns6LpnX96BBZiZ3RGmW667hvmdGO6ws8ayANo1kuqMq2+p6JpOG2UN93Ed13eAdLeObJOA076B2IUdMzZwmXUO6B9BSvaHy4cSuRkBRVXvjyH/JRamU72d0eMOix8MtL/09nWjPOSBAOVnbM9c/xZZArwXsF7v+cfXC1kTWnc6We5raFalSdPOkf8MHvCP13IDjbZcTLiO6tmKtpB/wRVz1caezmVtRWnp27293/d38Okv49p/9+y0WLI3yPvBuF7JS9n9/nRjnwfHvnpqOnU91amr275aae9/9LvS7d/uL3VcP/17/o1P2Ip02Gs95+93kZO+FmlI3RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGL5SiKRSCSSMdERkUgkEomOiEQikUh0RHREJBKJRKIjIpFIJBIdER0RiUQikeZ/RwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLzTlqTlFENhlBkAlOhwNiapN0knkjSUpFdJ+pKkjxRPsNy6k9SfpLNJGknSZJK+JmkHxQMA32r3jaZ0NoNJuugbzne+w/mak4a/83LrSNI2X24DqXIbVcptGVUOAGaMBBpMLQ1+p2W2X+loQuk5VQ4AvnUySS+TNJ6kqYKN6obvtMx2JempL7PpgmX2N1UOAMJkbUOmm14rDeoYRfV/7anOSeuIeikuALAZVBrUIYpolk1Kmcl0XifFBAA2e5RGdT9FNMtipcweU0QAYHdCaVS7KKJZOpQyO0MRAYDd9UCD+p7iybRN6Yh2UUQAYPcp0KBeoXgyHXDh9aFFFBEA2HQpT/a/UESZhgNl9oDiAQC7QeXJfilFlGkiUG4nKR4AsAutDz2heDL9oIwiiS8HAEbyQmsowsIpiijT0UCZffblCgAw+El5st9GEWW6FyizOxQPANiF3h+a4sk+k0RLCAVBPUYRAYDdg0CDOkLxZOpTRpGbKSIAsOlQnuwPUESZLgXKbJLiAYB4T/aE9cn23hEcFgCiuBhoUN9SPJm0l3/3UUQAYDcaaFAvUzyZDikd0SqKCABs1ioNah9FlOl2oMxeUTwAYDfgwmF9llBEs0gQ08+BcjtPEQGAXShg5yOKJ1OvMorcTREBgF2MgJ3LXG1x/lqSnrna1uXPPkn+EmHgL1eL3vBvstzVIorLOthdVzsCYzp13xI1QV5KbQz2+rcLh/Xh2AcAMNqsPNlvVX5fdo5ddeFpqqz1k7k8TqLNd5rSyXwx3vPHJG1K5RHa3HGXagUAdqGAnaGwPotd7fhra0OelW64WoicVpF7PpykDy47svjBJHWnPrN0sudSP/MmSe1JWqd8riNUKwCwCwXsvJ7zO7LL7kUTHVDjGlQrOqO9Lvvl08dJ2qL8bno9SDZ2DCqfqYdqBQA2i5QRzWDG7/yYpLFInVB6ZFSVNUm6nzPaGyyQz9lU53wj8FnGqVYAYKft/Frf8PMycmjc2CAjqt/cty9vygaAflfboGDtjH6t4PPJfU1mXEtGRpsK5rXS/658/tB6GGF9AKCA84EG9U3Dz3Y3dELPnS2y9G/Gjmg08kgvL2TRW9+plDFq+Bx7qFYAYPcq0KBeahgNpBf4ZQG/yNlEfxo7oxgH78k28rzjLGTn29om8r5l+AwrqVYAYLNSaVB7/c/JLrHHLrxupGnzIxGtET8f4TO9dPk7AJvdRKB1RC+oVgBgF5oykw0M9Z1sF9y3O8bKOmnoiJp5/0Y6oTeBvGO8t3Rbuf9zVCsAsBsKNKgP/M/sdvGOvN5l6IgmSuYtmyNGW9BBjCv3v4tqBQBxGtUTvnGvb9MejnC9ZYaO6HOJfGXk9iSQp2yqiBVuZ9oR1gcAouhROgR5V+i6m9nNFuOF07aKOqKbSn4bIpVZh3Lvd6hWAGB32IXD+tTfL/ri4kYJ0DqiqYL5HVPyOxbx3ncq1zpMtQIAu9Ciu+wMq4fCORXxmpYRUZEjybc6PbBqzKmyAeV63VQrALDRDnSrr4O8drWt27F0GjqiEWNeciTDOyWvnZHL7WrgWmNUKwCw06aY6ml75OvuMFzzgjGvi0o+9yoot9DLv9eoVgBg95ehQ/ingutaQv30G/LZYsgndvTrFa71cfIAYMF6ZmjIN1Rw3csuTngc7f6r2L2mrQ8to1oBQJwn+yqjR2sBQ58Z8thjuP+tFdx7aIv4U6oVANj9YmjIuyq47nrDdY8a8nkVoTMrSt4fCm3uOEO1AgC7IaUhv13RdY8aOqI1Sh69hjwOVHDv2rTcdqoVANh9cK2f1hLPI3SA950elWFJBff+0IVfwG2jWgGAzUanvwBahR9d8+s669zcHDfe7eK89wQASBxUGtVDFV33mnLdx4Y8jru5ORn1qmv9VCAALFihnV8SU25FBddc7fNu9lTWp0oeco2lke99jeHeu6hWAGAj6xihnV9VRY4+pzTktwx5WLacV7GF+pJyzddUKwCw2640qgMVXHO10vnJQv9aQz79ho7oUuR77zKMhi5SrQDA7pQLT2tVERlAW185GGlUVcX60C3DNXupVgBgFzrB9EEF19PiwRUJSjriWhugtc9wPem826lWAGCzRGlUj0e+nqxHvQhc76MrtjFCi6YQM9abbHj4YLjefaoVANhpYX1iRwY4powkthTMb9LQMcR6qbR+PPpUiztvAFjQLisdQ8zIAD0uvMhfZi3ns6EjiuGAz0umMbVIED9RrQDA7n2gQX0S8ToyBRiKsH2kZL7a7rUYHdFW3+FJ0qIpWML6yKhw2LGOBAD/24YcalSvRLzWjcB1TjSRrzZNZj3HKI+cvTTu8/nT6SfY3lTy2+eq2wQCAPPO70qj+kek65xwzR3vEGI5yK+vZN4Sf+9jQ8dxSLnW4UB+9ePQpWNbTfUDAH3rc4x3YQYD+e+LkL8Wq65swFNZ5xlzMzv56qMq7aiMvJBEEty1vrFiN1UPAGrrGNq01rYmr7E3J9+xCHnX7Td0RJJ6CuQpo5762tMX9+3mg4fKdRZl5NftZqb3TlP1AGDmiV9rvJsJdHo4J89HLu601Apn27AgmzK0kEGb/P2FdvJNuGJbxbekOqEhqh0AFBtJdJbIV34nK3yPdBbHXTUHxV02joom/D2ko2LLWUYSS++es4UZ0raLn/afUXYJyk7Aaf/vd5O0mGoHADN+NTTcPxTMU15+feOywwRtqPCzrDKMVIqm/TnX+lIiLzlhtoMqBwDfavcdRIyo1TLNd8dln+ra36LPY4nCbUmyfrUjcJ1PBfO74nhfCACCndEZF55uuu4b5nRjKusyu1xtGirrJVU5/0fWVtpa/HlklDfdRCck7wBp7xxZpwFlh9wgVQwAbJa72sua2kmnoSTBQOVIhp45/iwyBXiv4L3Lz2815i9rSuNKfrJGtoZqBQDlSKTqPj/akV1esovskx9pSJIt3zJ9JWfyyLTTXlft+k9ZsmX6pL/P9P3LSEVegr3mRyxlOoz1/rNP+Dzlf/9xtc0JdECYl/4LOi58OBfLIAUAAADMdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtcm93PjxtaT5hPC9taT48bWk+YzwvbWk+PG1vPiYjeEEwOzwvbW8+PG1vPi08L21vPjxtbz4mI3hBMDs8L21vPjxtaT5iPC9taT48bWk+ZDwvbWk+PC9tcm93Pjxtcm93PjxtaT5iPC9taT48bWk+ZDwvbWk+PC9tcm93PjwvbWZyYWM+PC9tYXRoPklktcUAAAAASUVORK5CYII=" style="width: 65.33px; height: 33.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator a c space minus space b d over denominator b d end fraction"> B. a c   +   b d b d " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAaIAAADXCAYAAABYk1WpAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAGLdJREFUeNrt3Q+EVtn/wPFjJBkjkiRJJBlJhqysrBHJysgYxlpZyZCRr5VEVpIksrKSFV9JkgwjI8mKJBlJJEmSSJIkw8gYYyT63s/3Oc/O7Zl7z+dz73PuM830fnH8vvbXnHuf85znfO75c89xDgAWjrYkraAYCqPMAKBEwNmUpN4knUjSUJJeJOlzkj5QPMFy60pSf5LOJGkkSZNJ+pKknRQPAHxtsW80JdgMJumCbzjf+oDzJScNf+fl1p6k7b7cBlLl9lIpt+VUOQCYMRJoMLU0+J2W2X4l0ITSU6ocAHztZJKeJ2k8SVMFG9WN32mZ9STpsS+z6YJl9jdVDgDCZG5DhpteKQ3qGEX1r8Wp4KQFol6KCwBsBpUGdYgimmWzUmYynNdBMQGAzR6lUd1PEc2yRCmzhxQRANidUBrVTopolnalzP6kiADA7lqgQX1H8WTargSiHooIAOw+BhrUyxRPpgMuPD+0iCICAJtO5cn+F4oo03CgzEYpHgCwG1Se7JdRRJkmAuV2kuIBALvQ/NAjiifTD0ovkv3lgG+AjI//nZP6KZ5vhrzQGtph4RRFlOlooMw++XIFMMcWO7Y9mQ9+Up7st1NEme4Gyuw2xQMQiGAXen9oiif7TLJbQmgT1GMUEUAggt1o4HsaoXgy9Sm9yK0UEUAggk278mR/gCLKdDFQZpMUD0AgQrwne7b1yfbOsTksQCBCFBcC39EbiieT9vLvPooIIBDB7mXgO7pE8WQ6pASi1RQRQCCCzTqlQe2jiDLdCpTZC4oHIBDBbsCFt/VZShHNIi9pfwqU2zmKCCAQwS60YecDiidTr9KL3E0RVa8rSUd8BZYu6JR/OpD/+zRJ5132+vmNSdrrG58rSbrhahOh8nc/z8Hn6PT3I2PgN5M0lvos00kaT9J1V3vRbxNfO4FogYqxYedyV5ucv5qkJ662dPmTT5K/7DDwl6vt3vAtWeFqO4pLG3DH1Y7AmE7dt+yaIC+lNm72+rcLb+vDsQ8VkYomeyq9Up4E0mm44Qu8Hvi3a1v0OTYk6XSSXhf4HPV0zwdhEIgWiq1Kne82PMxdceFhqqz5k7k8TqLNB00JMp+N9/whSZtTeYQWd9yhWlUTgE672Zshyhd4zVeo1W5m+481STrsexfy7+6nng7yNlR80oLP8aPLnlx87xtDmZBdmfoc0nj2+B5e4+feT7UgEC0QoQ07Q9v6LHG146+tDXlWkgfTjhZ+1iW+bXrvsncWP+gfNNtSQfZs6t+89nV5vfK5jlCt4hr0w1ONBX3B6UsTJSC99f/+eJK2uLk5z319Tk9Mnsr2OH3/rJU597yX6kEgWgBCG3Zey/kbWWX3rIkA1DgH1YpgJL/XrJdPHyZpm/K36fmgARc+s+mLb+sQwSrfvWwsYAksRcZ4u/3fSTD73bX+vA5Z5z+d0aM56uwbOG4IPC3yngCBaD5bpPRoBnNGFsYiBaF0z6gqMuR/L+f3O1ggnzOp4ByaYhinWsUhQeGDyz7udkWJ/J74v8+rvFWc17E8J5B+MDz9ZAWzuejJEYhQNW3l14aGfy+/ncaFDdKj+q3hoUzaCTln6naBYPRrBZ9P7msy41rSM9pc4uH8i//8ofkwtvWJIK/XIhVqSck8LyoV8GbkzyBjvG9c9lzQhshDF8+oMgSieexc4Ht5nfG7SgchmTu17Cz9mzEQvYzc08vbsuiNDyplvDR8jj1Uq+accfkrxZY0ke8R5Ys7GLk3l7UUVf5bmXHb5crQxTTVhkA0j70IfC8XG3oD6Qn+swVHMf4wBqMYB+8td/nHWciIyLom8r5p+AyrqFbl5a2Jl4q6rMm8jytf3OZIn2F3oMvcUzLPX5V7n6LqEIjmqVVK3e5NfXcPXXjeSNOWM0oRezcC+UzPA7/VZhcRaIGIEZIKekIfm3x6qDsf+OLGIn2GXYGey+km8tWGFf6h+hCI5qlQ3ZbfUkfG73egieudNASiZt6/kSAUejcwxntLt5T7P0u1Kueg4YmoWZddtRN721z4/aRmFkKsdeGhOU5fJBDNV0OB72Q0NcoQ68jrHkMgmiiZtyyOeNmCADGu3H8P1apcL6IV276Hljr+1mTea13+ajwJIDGG/bLmuKYj3DuBiEA0l0KN6gnfuNd/W8MRrrfcEIg+lchXem6PAnnKoopY2+1MO7b1iWq9y99fSiYll0W8Vqi73Mx7OIvdzNLwqne/lV6XrMK56p8M11KFCETz2BYlIMi7QtfczGq2GC+ctlUUiG4o+W2MVGbtyr3fploVrxBPKuylpIVemGt2uWZo08FJ/wQGAhFmO+zCC3B6U6MKMXcJ0AJR0cU/x5T8jkW8913KtQ5TrYo57Vq35Xt34Fr/bSLf7UqlOMnXTCBCrtCku6wMq2+FcyryA7AWiN5EalvqK35jDpUNKNdjM+QCupTCjD35HtrWp+ypj9KovVK64yv4qk12uLhbtXzL6QJf97+jFKGdAerzIK/8by2WDsN3NGLMS6YO3ip57Ypcbldc9at/vxtPXOt2OHC+YuVdr+w81FGlAl7kayYQEYhKDzHV047I191puOZ5Y14XlHzuVlBuoZd/r1Kt7A641u4Y2+byV5mUPfZBgteE0ydaQSAiEGX7y1BWVbwfZ9nqp9+QzzZDPrHbspWu9fvkLUiy4uN9i58gQk9AZdf1a72hV3zVBCICUelRkXraWMF1L7k42+No91/F6jVtfoiFUUaHW9wN17rPZc5zlx7WB+Vz/MVXTSAiEJV+sq9y92htw1DLKMkew/13V3DvoSXij6lWNouUBvxlRdf86PJfNC0zCbrbUAl38nUTiAhEuX4xlFNnBdfdYLjuUUM+LyIEszKjSaHFHRwFE6lbWcX699BmofdL5jns9Jfh2vi6CUQEolxDShndqui6Rw3fj/aSeK8hjwNz0H7uoFrZ3HfhzQ1XVnDNe5GfINqUp5Kq5rkQB+8RfRvez8GwlngaIQDeMzyILm1x+znFw2+cLvGdCq6pvatUZmNA7QVWnngJRAjb5PQXQKvwo2t+Xme9IY8qjhvX2rIRqpWNdhZQFV3ZK0oPrMzbzpaDtdiElECEfAeV38+hiq57VbnuwwjtWFUno16Zg/ZzQXqkFOSaFvfAys4PDRkq4i6+bgIRct1wrR+iX+PCx6hYT2V9rOQh11gW+d7XGu69k2qlW+pa/86NtqDgTMl8HxgC0Tq+cgIRMmlzrFXtHH1W+c1adnOxLDmvYgn1Rcc7i1H0KQV5JfL1ugwVZnfJvCcMeS/hKycQIZO2OnKggmuuUYLflPHhsd/w24+9rVenoTfEnLTRyRZXPkv3ub1k3p8NlREEImQ7pfwuq9gZQJtfORipV1XF/NBNwzV7qVY2I0pB/hzxWvVdtuXF2bwXWZ82kT+BiECE8kJzxaMVXE/bD67IqxYjrrUbtPYZrlf2pfzvkrYnU6zJvfRpr6GNVZs5f2iaQEQgQinaXPHxyNeT+ahngevJw2qRhREvDL/9WD06aRPfG653j2plN6kUZlukBqYe8C678HhufxPX+WioHJwXTyDCbNq2PrF3Bjim9CS2RW7HYrVlon48+lSLg/eCpvUiYqjvqFs/1/6/geutVvLqCPz/7hgq4ya+cgIRcn+jeYEh5s4AW1x4GL3MXM4n15rRkPpojgxjajtB/ES1sqv6yzvkZk503Oz/29NAdzxEFk7I8cQbcv7/Vwyfp6+CMpTgKEvHZVdvVuURiOajd4GyfxTxOktdeIftIyXzbcX8cLcPeJK01b+WbX2kVzjsmEf6P6172cy4arq7v9//t/bAtYYDefWlvuC8A632GSrj2cjlJ0Govr8V+9gRiOajTuU3cznita4HrnOiwnbMeo5RHjl7adznIzu4aCfY3lDyq7dVo1S/Gu1M956S+e5OdZfPN/z3ojt8/5zKK9SjWWeojK8jlp1MWt5P5cvBVwSi+eg/ym/m90jXOeGaO94hxHKQX9nRkE1u5oic0YaRnjKnFdQPA5XAtobqV6MtezxXIs90z+ROQxc19K7CrpzucP1p55jh2g9da7b5kRU9j1MVaiNViUC0QNuAGO/CDAby3xch/6uumg1PZZ5nzM1MHdR7Vdp2YnlbEsnmrvWFFbupejO0M0AmnX0ZpaxIS79YJg310gKVviOjEkwUHB6wnM743DW3em6rmxlTn3JMShKI5q82w7DW9iavsTcn37EIedftd7bzprYUyFN6PfW5p88Nv/P7rvjq3C43M7x3mqo3u3As6+E7lHxkuWX6vQBZ178i49+FhgLTPae+1A/kTsHA8cxVdxzE0VTlnHac9kogmt9+MvxWmtno9HBOng8iD0utdLYFC/IAqW0ZtNnN3reycSWftp1YW0b7WA9CQ1S7bI+dbW5FxpLTJyTK/5ZjFUbd7KN4V+RcK7Rc/LIfBrjU0KvqKPh5thgr5bCzH5LV63tS9b+diPg0BwLRXLH0JDpK5Ct/k7WKVX6Xx101B8VdMvaKJvw9pHfFlhfuZVXuXWfbZkhbLn7af0ZpX46k2j15qGZlbY6YR0FLQYd2YyiS1/NAQNMMGK8h474n/ZNhutcl15WFGqd8EE7/zRs3sxQdBKL57FfDb+SHEu3Ja5e9TVCVc6mrnW3j4yJpf861PpfIS06YbafKhV2I8KVZxj2njXk9bSII1Q1GrpT1Cc8VVBcC0QIq81EXZ9dqeZi77bJPde1v0efpj/Q7l/mr0LD7x4L5XXa8L2QivYF/Sn5pMifzo/E6llVt91y8Pe66c57Oiqa3/ukRBKKFWO5/KsNN13zDnG5MV/pRA3kAzXpJVYbV91Q0DKf18qab+K3LO0DaO0fWYcBJ/0CMgo4523YZ9QC0r2BF+92FtxI5WUHFlR/PIT+kVibI/sexRx2BaOGTnv4fzjZnnJdkM1BZObtljj+LDAHeLXjvd/2Dq4XMKY07/Sy3tVSr8uRJ54jvZk/4pwtZwSYrTkZ8sGqmoh30T1D1fKWxl1NZW3F66lZ//9f8PUz6+5j2/1sWWgz5e+TdIALR90pezu7zvR35PTzww1HTqd+tDF/d9MNOe7/R30uXf7i92XD/9d/6Vd9jKRMwNvjPXm8jJ/yo0hECEEAgAgCAQAQAmJ+BaDonnaV4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDn0hUQikUgkYyIQkUgkEolARCKRSCQCEYGIRCKRSAQiEolEIhGICEQkEolEmv+BCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAeactSSsohsIoMwAoEXA2Jak3SSeSNJSkF0n6nKQPFE+w3LqS1J+kM0kaSdJkkr4kaSfFAwBfW+wbTQk2g0m64BvOtz7gfMlJw995ubUnabsvt4FUub1Uym05VQ4AZowEGkwtDX6nZbZfCTSh9JQqBwBfO5mk50kaT9JUwUZ143daZj1JeuzLbLpgmf1NlQOAMJnbkOGmV0qDOkZR/WtxKjhpgaiX4gIAm0GlQR2iiGbZrJSZDOd1UEwAYLNHaVT3U0SzLFHK7CFFBAB2J5RGtZMimqVdKbM/KSIAsLsWaFDfUTyZtiuBqIciAgC7j4EG9TLFk+mAC88PLaKIAMCmU3my/4UiyjQcKLNRigcA7AaVJ/tlFFGmiUC5naR4AMAuND/0iOLJ9IPSi2R/OQAwkhdaQzssnKKIMh0NlNknX64AAIOflCf77RRRpruBMrtN8QCAXej9oSme7DPJbgmhTVCPUUQAYDcaaFBHKJ5MfUovcitFBAA27cqT/QGKKNPFQJlNUjwAEO/Jnm19sr1zbA4LAFFcCDSobyieTNrLv/soIgCwexloUC9RPJkOKYFoNUUEADbrlAa1jyLKdCtQZi8oHgCwG3DhbX2WUkSzyCamnwLldo4iAgC70IadDyieTL1KL3I3RQQAdjE27FzuapPzV5P0xNWWLn/ySfKXHQb+crXdG74lK1xtR3GZB7vjakdgTKfuW3ZNkJdSGzd7/duFt/Xh2AcAMNqqPNl3K38vK8euuPAwVdb8yVweJ9Hmg6YEmc/Ge/6QpM2pPEKLO+5QrQDALrRhZ2hbnyWudvy1tSHPStddbYucVpF7Ppyk9y57Z/GDSepKfWYJsmdT/+Z1khYnab3yuY5QrQDALrRh57Wcv5FVds+aCECNc1CtCEZ7XfbLpw+TtE352/R8kCzsGFQ+0xaqFQDYLFJ6NIMZf/NjksYiBaF0z6gqa5N0L6e3N1ggnzOp4Hw98FnGqVYAYKet/NrQ8O+l59C4sEF6VL+5r1/elAUA/a62QMEajH6t4PPJfU1mXEt6RpsL5rXK/618/tB8GNv6AEAB5wIN6uuGf9vVEISeOtvO0r8ZA9HLyD29vC2L3vigUsZLw+fYQ7UCALsXgQb1YkNvID3BLxP4Rc4m+sMYjGIcvCfLyPOOs5CVb+uayPum4TOsoloBgM0qpUHt9f9OVok9dOF5I02b74lojfi5CJ/puctfAdjsIgItED2jWgGAXWjITBYw1FeynXdfrxgr66QhEDXz/o0EodeBvGO8t3RLuf+zVCsAsBsKNKij/t/sdvGOvO4xBKKJknnL4oiXLQgQ48r991CtACBOo3rCN+71ZdrDEa633BCIPpXIV3pujwJ5yqKKWNvtTDu29QGAKLYoAUHeFbrmZlazxXjhtK2iQHRDyW9jpDJrV+79NtUKAOwOu/C2PvX3iz67uLsEaIFoqmB+x5T8jkW8913KtQ5TrQDALjTpLivD6lvhnIp4TUuPqMiR5N1O31g15lDZgHK9LqoVANhoB7rV50FeudrS7Vg6DIFoxJiXHMnwVslrV+RyuxK41hjVCgDstCGmetoR+bo7Ddc8b8zrgpLP3QrKLfTy71WqFQDY/WUICP9UcF3LVj/9hny2GfKJvfv1Stf6ffIAYMF6YmjIN1Zw3UsuzvY42v1XsXpNmx9aTrUCgDhP9lXuHq1tGPrEkMcew/13V3DvoSXij6lWAGD3i6Eh76zguhsM1z1qyOdFhGBWlLw/FFrc8SfVCgDshpSG/FZF1z1qCERrlTx6DXkcqODetWG5HVQrALB771o/rCWeRgiA95y+K8PSCu79vgu/gNtGtQIAm01OfwG0Cj+65ud11ru5OW68y8V57wkAkDioNKqHKrruVeW6Dw15HHdzczLqFdf6oUAAWLBCK79kT7mVFVxzjc+72VNZHyt5yDWWRb73tYZ776RaAYCNzGOEVn5VtXP0WaUhv2nIw7LkvIol1BeVa76iWgGA3Q6lUR2o4JprlOAnE/3rDPn0GwLRxcj33mnoDV2gWgGA3SkXHtaqYmcAbX7lYKReVRXzQzcN1+ylWgGAXegE09EKrqftB1dkU9IR19oNWvsM15PgvZhqBQA2S5VG9Xjk68l81LPA9T64YgsjtN0UYu71Jgse3huud49qBQB22rY+sXcGOKb0JLYVzG/SEBhivVRaPx59qsXBGwAWtEtKYIi5M8AWF57kLzOX88kQiGI44POSYUxtJ4ifqFYAYPcu0KA+ingdGQIM7bB9pGS+2uq1GIGo2wc8SdpuCpZtfaRXOOyYRwKA/y9DDjWqlyNe63rgOieayFcbJrOeY5RHzl4a9/n84fQTbG8o+e1z1S0CAYB55z9Ko/p7pOuccM0d7xBiOcivr2Tesv/eh4bAcUi51uFAfvXj0CWwraH6AYC+9DnGuzCDgfz3Rchf26uu7IanMs8z5mZW8tV7VdpRGXlbEsnmrvWFFbupegBQm8fQhrW2N3mNvTn5jkXIu26/IRBJ2lIgT+n11OeePruvFx/cV66zKCO/LjczvHeaqgcAM0/8WuPdzEanh3PyfODiDkutdLYFC7IoQ9syaLO/v9BKvglXbKn4tlQQGqLaAUCxnkRHiXzlb7K275FgcdxVc1DcJWOvaMLfQ3pXbDnLSPbSu+ts2wxpy8VP+88oqwRlJeC0/+93krSEagcAM341NNw/FMxTXn597bK3CdpY4WdZbeipFE37c671uURecsJsO1UOAL622AeIGLtWyzDfbZd9qmt/iz6PZRduS5L5q52B63wsmN9lx/tCABAMRn+68HDTNd8wpxtTmZfpcbVhqKyXVOX8H5lbaWvx55Fe3nQTQUjeAdLeObIOA8oKuUGqGADYrHC1lzW1k05DSTYDlSMZtszxZ5EhwLsF713+fbcxf5lTGlfykzmytVQrAChHdqru870dWeUlq8g++p6GJFnyLcNXciaPDDvtddXO/5QlS6ZP+vtM37/0VOQl2Ku+x1ImYGzwn33C5yn/9x9XW5xAAMK89D/yCOYDYPXpQgAAAMx0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1yb3c+PG1pPmE8L21pPjxtaT5jPC9taT48bW8+JiN4QTA7PC9tbz48bW8+KzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1pPmI8L21pPjxtaT5kPC9taT48L21yb3c+PG1yb3c+PG1pPmI8L21pPjxtaT5kPC9taT48L21yb3c+PC9tZnJhYz48L21hdGg+5uCTigAAAABJRU5ErkJggg==" style="width: 65.33px; height: 33.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator a c space plus space b d over denominator b d end fraction"> C. a d   +   b c b d " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAaIAAADXCAYAAABYk1WpAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAGNJJREFUeNrt3Q+EVtn/wPFjJBmJJEkSSZJkGCsrK5GsJGMYK1lJZORrJZGVrCSSrGTFV5IkkYwkK5IkWZEkSSJZSTIkI2Mk+t3Pb87zndvTvefzufc597kzt/eL4/u1pnOfe57z3M89f+7nOgc4t5AmwHegh74OTI8fYl9ShpJyMikjSfmYlC9J2UzzoEH9fE1SBpJyJCmXk/I8KZ+T8o7mAarXm5SN/ke4OylnfcB54X+IX3LKApoOM8hsf1Ml/Xw41c9fK/38Ck0HVGeP8gMMlSc0H2aQkZL9/IsPWgAqsjUpj5LyPikTBX+cf9F8mEGOJuWZ7+vjBfv6apoP6O7URSs4aT/OAZoLM5isCcl09Euln4/SVEA91io/TpnOm0szoQGGlb5+mSYC6jFH+XE+oInQEDuUvr6HJgLq0av8OE/QRGiII0pfX0UTAfXYqPw4t9JEaIirgX7+huYB6rPXhdeHZtFEaIgPgb5+geYB6nMl8OO8R/OgIVYpI/9faCKgPmOBH+dRmgcNMayM/OfTREA9flDuEskvh6YIrQ89pHmA+hwK/Dg/uckHAZFP1s/+yilDNM+0If04lGHhGE0E1OdO4Md5i+ZRzXakRZoJflJG/htpIqAeki0hlAT1ME1EIGqI0PND44z8gfoMKneJ62giAlFD3At8TyM0D1Cfc4Ef50eah0DUEL3KyH8vTQTU540j+SOBiJE/aX2AmmgP9+2iiQhEDXE28B39S/MA9dmvBKIlNBGBqCFeBL6j8zQPUJ+bgR/nc5qHQNQQy5UbrkGaCKiHPIT5KfDjPE0TEYgaYrcLp/WZRxMB9RhQ7hK30UQEooYIJfT9h+ZBnfqSctB3UpmGGvcjBPnfJ0k547KfoVmdlJ3+AnMxKdfd5GKn/LufaziPhW4yY7DMc992kynuJ/y5SCJTyZogD6W2J3P8y4XT+vDaBwJRU8RI6LvATW7euZSUx27y0YZPqd+ZZCD5001mb5hOVvnrlVwfbiRlNHWtk+vE+6Rcc5MP+66hq3SHdCbJq/ZSGQ2ky5W2i/i1wN8u69J59PgfxR0XfjYiXd4lZW2qjtDi7W26CoGoIdYpv4sNhgv5RReexs5aX63zdRIrk3I8Ka8KfOZWuetv0lFRADruvk14KBfxq77TLHFTKT6WJuWAv3uQv7ufGiHkJU183IXzmOM/11uXnTl4n+9EPakf0anU37zyF80VSmc8SJchEDVEKKFvKK2P/NZOFLjRyypy0zq3i+f6o8vegPTW90PZlLEodc7Sb7f6GaD26+Ieuk5cw3742f7lnHX69mQJSK/93/+RlP5ApztR8XnI8Drr4dMHSVmv/Nv0etBuF34nyxd/niAQNUEooe/VnH8ju+yedhCA2tegqg5GK3JmamRktsPpOfQW5Xz2nXSfzi32U0ztjSuBpcg87gb/7ySY/ea6/86eZX64nHU3N1ygnpOpH19oevE9XYdA1BCzlBHNcM6oYjRSEEqPjKoizwJOZIxoDjl7EteVgREjzxJ2QILCO5f9yuuFJep77P99Xget6p09v7rJRdH248nIaG2JwCz/dsyF57tJ60MgagptZ+jKtr9f777d2HDH/w7TF2S5hsh7pm4VCEbbI5/bgpwb7XeGGZKsYFbXTE9j5Y1apNPMKVnnOaWT3ajgTi4vJcm/PqiU8cLwg9lBFyIQNcTpwPfyqu1v+9qCkKybWDLP/2oMRC8inlefvw5krQWtLFFfaPryKd2ouJMufyfInA7qPah0sn2R73Ty0tXL3c7yDuq+YfjBLKYbEYga4nngeznXNluQ3gB0quAMx+/GYBTjxXubXfZ2dPlv/SWvN6Hpywm6UTF5z8VIZ5zfYd1/KB1sbaRzkB/EM5c/X9vpJgItEHH3QyBqisVKXx9IfXcPXHjdSNOTM0KJna1EHjLPm1bfWrLO7cpnHqcrdT4S+tDhCKLlTOCLGo34wwnt+4/xXMJNpdOdoisRiBoiNGUmI4C5Gb/t3R0c76ghEHXyfN6WwMjleEXtJOVvupLNPsNdT6cuuGoX92Xx80UXAsR7pdNtpTsRiBricuA7uZcaYbT+2+EOj7fVEIjGSta93oWfX+xko9QyF56a4w3NxruEbqR2D213/rXDuuXO7GGgflk0jZVuZ8KR1odA9H0I3XQd8Td/rV2wVyIcb4EhEH0qGShGAyO7GMsCWWvgExGubd+FFS4/h5QsPM6PeKzQlFmn++yvKx13daRz6FV+JLfoUgSihuhX+ro8K3TVTe1mi/HAaU8FgWi2m3p0pOoM+TLqkp26l/zocBndyPalP65wlJIWeiiu0y2Zh5WOezjieWxRjnWAbkUgaogDLrz4PpAaUcTMIqIFoqIL/6HExB/9KAw1Ou66l9Z9Q+BY/62o3tZuv5hTZbuV45HokEDUFKFNObJztJUq61jkm2MtEBV5JflGpa6jfM316lO+oNiLa6G0PmXf7CjThq+V89gS+Twuuup3/k03m1zcVC3TuZzl0vC/GYxQ5pDWOulLfwMRy1zDdzRS4MYm9IYAOb+FfNX1euy6l+HA+c6Td7yy61BnlQ57p4LzCD3cd4lARCBqiC3G9toU+bibDcc8Y6zrkFLPOb7meu113c0a3ePyd5qVfe3DekOHjX0ei1x382ARiAhEdfnT0FZVPBtjSfUzZJwtGXP6ZgvURHZ9ve3yKCJ0l1P22Z7Hrvu717T1oaYuehKImDHJKqsrOO55Fyd9ljYaeslXXK8DXR5qa1No20rUt8PQWTdUcB6hLeKPGtxnCETfl0WGdqoqu7yWUNgygyIzMO+Uev7ka67PLOULelHRMT+4/AfJyix0Po/QWcuMJEOLt01O804g+r78YminVRUcd6XhuIcM9Wwz1LOZr7k+2tRSFc/AhJIB3i9R34Chk+2toe02NbjfEIi+L5eVNrpZ0XEPGb4fywOiV5z+QGwPX3N97rtwAsNFFRzzbuRRxF1DJ5vX5bYbp2NHwXNE08Nb1/1pb/EkQgDsUWYuqloHR6Rh7+0Kjqk9q1Q0OegKwx3TtRrOY4TuRSBqiDVOf0C8Cj+6OOu+Gx2j3mlNexdQFdNZF5UR2KzI51DVm1Ev1tB2BCICUR32KX19f0XHvaQc94GxHsvL9UhCWqOHypeztMsjsDLrQ4+UOiW4zY98Hlp696oWbglEBKI6XHfdn75faviNWd/Kqq1vVZFtBUbzXPf31GsLhicL1mfZUlrFFupzjucRCETfB219parM8qeU31iRTC//GK4Ty/mq6zGofDEXIx+vz9AZij4/NGSoM3bKjlWGOzXmmwlETaHtjtxdwTGXKsFvvGDgGDNcJ+bwVdfjaJc7mGUKrTfyXVMV60M3DMccoHsRiBrimPKbrSJziLb+uq9gfZ8Nv1nUZET5Yn6OeKxWlm15cDbvQdYnFZxD7Gd5Bg3HK/tALghE01FoHfleBcfT8kWW2WZNIJrGtLxRsRb40297DSVWLfP+oeeGDhbrjk3a463heHfpWgSihtDWkf+IfDxZj3oaOJ7cyJbZGDFBIJq+PipfTE+ki0gr4F1w4TWdoQrOIdZ5iNbrj8e7/OMkEBGI6qKl9YmdOeSwMtOwvmS9HwzXiVl83fXQ7hJiaGXNbb27/r+B4y1R6pqb8d8+ue7c6bRGcjJNoT3p/RNdi0DUEOeVwBAzc0i/C0+hdbLWe9twnVjD112Pqi/g+93UWxvX+v/2JDDkDpGNE/IK4pVt/70bc78bfMCTou38s6T1kbu+K451JALR9Pcm0PYPIx5nngtn2D7YYf0XDdeJwQraT26eZeu4ZPVmV14ObYqpk7WV9JB+j/9vvYFjXQnUNZi6yPcXPAfre0ryyLtV3vt65Ols7Q2V15X6drnqFnkJRIhpldLXL0Q81rXAcY5EqH+X4TpxKnL7SRBq5cAkj13Aaxc351vLNjc1ZXam7b8XzfD9c6qurDsWy4u6yt7prHFTr8e41zbKK5OpvPUiQAlsS+l+BKJp7j9KX/8t0nGOuM5e72Cx3HCdeBWx7WRj0/1UvQvoTvm0rc+nO7zzuN02TRV6HiErvcaG1IjncM7xLrlqEp7KOs+om5o2bI2qtFQheSlHJHlja2PFNroegagB14cYz8oNB+rfFfl8HrjupPmRXX2PUjedq+lKYdp7Pj46+1bJWe7rh0vli5hXoGPPzQgEY4YpgD3O9j6Z/gLtIqOe1trTZ/f15oP7rvjOmz43Nb13nG5HIJoBepw+7b2xw2PszKl3NELdWSxvcH7mOts9t85NrauNOzYumVhS7tx12bvV0mRLZXrvvzzbszDj70JTgemR02DqR3Bb6RiLnG3DwhunpwSRDRXtOanad+poqUJ6MtqmFYQu0+UIRDPET4bfVCeJTg/k1Cm/vyqnrZ+66l4HcSh1LZINWrzttYBHzjZ3KvPF6bcgyv+XtOn33Lev416Yc6zQdvELfqh/vm1UNddwDueNoyIJIvKMTzortjxsKzvy7jhbGhFtu/hxH4xkNHgwdc4SUNk1QyCaKSwzDXNL1Cv/JmsH22f/26z6RZLaFvH05inrizQH/EgqfZ3ZSBcqJubrnuViG8rGUKSuZ4GA1m6JsyU1LFL25Bzrc4m65A2SvXQ1AtEMst3Qr38oca155bLTBHVzHWW38Xcra8NH/egwPSsj1yXZyHUs43z+dVOPqqCgsxEu3Ja1jwljXU8KBKGWIRcnAI0qQ+oPBeu74HheiEA0M9v8nouT1V4u5Ldc9ltdh2o6v+HIN66tTVEL6TrlSbT/u2Tjy5zrj8bjWHat3HXlc9xtLxDs8p4B0p45sk4DfvSdHQSimdzuJ1x4Ovqqv3FL32wt8iMGuTnNekhVptx3dGEaTrMhZ4RWtLz21x5EctjZUua0AtCugp3pNxdOF3I0QueUIf6dgh3pjrO9917ImtJ7p7/HaRndiUDUEHKX/7uzrSfnFUkWLLtq+6dh39rvp9TK3IT/x5GjrhJyN3PQD6XH/AhDdrDJrrMRH6w66Uz7/F1Sq175MuWtrLHfjtjnA9sNP5024YuMVGRDxSU/YikTMCTN0IVU+4z5EeVBAhCBqOHkwcxBP9qRXaD/tP2+5Dc96n938hvZ6WbOczTr/PXtqr9Gfcy4blz21zCeDQIIRAQiAACBCADwHQWiiZxyiuYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKvaFQqFQKBRjIRBRKBQKhUBEoVAoFAIRgYhCoVAoBCIKhUKhEIgIRBQKhUKZ+YEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAZpycpC2mGwmgzACgRcNYkZSApR5JyOSnPk/I5Ke9onmC79SVlKCknkzKSlI9J+ZKUzTQPAHxttr9oSrAZTspZf+F87QPOl5xy5Ttvt96kbPTttjvVbi+UdltAlwOAKSOBC6ZWhr/TNtujBJpQeUKXA4CvHU3Ks6S8T8p4wYvq6u+0zbYm5ZFvs4mCbfYXXQ4AwmRtQ6abXioX1FGa6n9mp4KTFogGaC4AsBlWLqiXaaJvrFXaTKbz5tJMAGCzQ7mo7qGJvjFHabMHNBEA2B1RLqqraKJv9CptdoImAgC7q4EL6huaJ9NGJRBtpYkAwO5D4IJ6gebJtNeF14dm0UQAYLNKubP/hSbKdCXQZvdoHgCwG1bu7OfTRJnGAu12lOYBALvQ+tBDmifTD8ookvxyAGAkD7SGMiwco4kyHQq02SffrgAAg5+UO/uNNFGmO4E2u0XzAIBd6Pmhce7sM0m2hFAS1MM0EQDY3QtcUEdonkyDyihyHU0EADa9yp39Xpoo07lAm32keQAg3p09aX2yvXEkhwWAKM4GLqj/0jyZtId/d9FEAGD3InBBPU/zZNqvBKIlNBEA2CxXLqiDNFGmm4E2e07zAIDdbhdO6zOPJvqGJDH9FGi30zQRANiFEnb+Q/NkGlBGkdtoIgCwi5Gwc4GbXJy/lJTHbnLr8idfpH7JMPCnm8zeMJ0sdJMZxWUd7LabfAXGROpzS9YEeSi1PdnrXy6c1ofXPgCA0Trlzn6D8u9l59hFF56mylo/qfN1Ej0+aEqQ+Wz8zO+SsjZVR2hzx226FQDYhRJ2htL6zHGTr7+2XsizyjU3mSKnW+QzH0jKW5edWXxfUvpS5yxB9lTqb14lZXZSVijndZBuBQB2oYSdV3P+jeyye9pBAGpfg+pGMNrpsh8+fZCU9cq/Ta8HycaOYeWc+ulWAGAzSxnRDGf8mx+TMhopCKVHRlVZlpS7OaO94QL1nEwF52uBc3lPtwIAO23n18q2v5eRQ/vGBhlR/eq+fnhTNgAMuckNCtZgtL2C85PP9THjWDIyWluwrsX+38r5h9bDSOsDAAWcDlxQX7X9bV9bEHribJmlfzUGoheRR3p5KYv+9UGljBeG89hBtwIAu+eBC+q5ttFAeoFfFvCLvJvod2MwivHiPdlGnvc6C9n5tryDum8YzmEx3QoAbBYrF9QB/3eyS+yBC68baXr8SES7iJ+OcE7PXP4OwE43EWiB6CndCgDsQlNmsoGhtZPtjPt6x1hZRw2BqJPnbyQIvQrUHeO5pZvK5z9FtwIAu8uBC+o9/zfbXLxXXm81BKKxknXL5ogXXQgQ75XPv5VuBQBxLqpH/MW9tU37SoTjLTAEok8l6pWR28NAnbKpIla6nQlHWh8AiKJfCQjyrNBVN7WbLcYDpz0VBaLrSn2rI7VZr/LZb9GtAMDugAun9Wk9X/TZxc0SoAWi8YL1HVbqOxzxs29RjnWAbgUAdqFFd9kZ1kqFcyziMS0joiKvJN/g9MSqMafKdivH66NbAYCN9kK31jrISze5dTuWuYZANGKsS17J8Fqpa0vkdrsYONYo3QoA7LQpplbZFPm4mw3HPGOs66xSz50K2i308O8luhUA2P1pCAh/V3BcS6qfIUM96w31xM5+vch1P08eADTWY8OFfHUFxz3v4qTH0T5/FbvXtPWhBXQrAIhzZ19l9mgtYehjQx07DJ9/QwWfPbRF/BHdCgDsfjFcyFdVcNyVhuMeMtTzPEIwK0qeHwpt7jhBtwIAu8vKhfxmRcc9ZAhEy5Q6Bgx17K3gs2vTcpvoVgBg99Z1f1pLPIkQAO86PSvDvAo++30XfgC3h24FADZrnP4AaBV+dJ2v66xw9bxuvM/Fee4JAJDYp1xU91d03EvKcR8Y6vjD1fNm1Iuu+1OBANBYoZ1fklNuUQXHXOrr7vStrI+UOuQY8yN/9mWGz76KbgUANrKOEdr5VVXm6FPKhfyGoQ7LlvMqtlCfU475km4FAHablIvq7gqOuVQJfrLQv9xQz5AhEJ2L/NlXGUZDZ+lWAGB3zIWntarIDKCtr+yLNKqqYn3ohuGYA3QrALALvcH0XgXH0/LBFUlKOuK6m6B10HA8Cd6z6VYAYDNPuaj+Efl4sh71NHC8d67Yxggtm0LMXG+y4eGt4Xh36VYAYKel9YmdGeCwMpJYX7C+j4bAEOuh0tbr0ce7HLwBoNHOK4EhZmaAfhde5C+zlvPJEIhi2OvrkmlMLRPET3QrALB7E7igPox4HJkCDGXYPliyXm33WoxAtMEHPClaNgVLWh8ZFV5xrCMBwP9vQw5dVC9EPNa1wHGOdFCvNk1mfY9RHnn30ntfz+9Of4PtdaW+Xa66TSAAMOP8R7mo/hbpOEdcZ693CLG8yG+wZN2Sf+9dW+DYrxzrQKC+1uvQJbAtpfsBgL71OcazMMOB+ndFqF/LVVc24ams84y6qZ18rVGV9qqMvJREkty1tbFiG10PACbXMbRprY0dHmNnTr2jEepu2WMIRFL6C9Qpo57W2tNn9/Xmg/vKcWZl1Nfnpqb3jtP1AGDqjl+7eHeS6PRATp3/uLjTUoucbcOCbMrQUgat9Z8vtJNvzBXbKr4+FYQu0+0AoNhIYm6JeuXfZKXvkWDxh6vmRXHnjaOiMf8Z0lmx5V1GkkvvjrOlGdK2ix/35yi7BGUn4IT/77eTModuBwBTthsu3D8UrFMefn3lstMEra7wXJYYRipFy56cY30uUZe8YbaXLgcAX5vtA0SMrNUyzXfLZb/VdahL52PJwm0psn61OXCcDwXru+B4XggAgsHohAtPN131F+b0xVTWZba6yWmorIdU5f0/srbS0+XzkVHeRAdBSJ4B0p45sk4Dyg65YboYANgsdJMPa2pvOg0VSQYqr2Tor/lcZArwTsHPLn+/wVi/rCm9V+qTNbJldCsAKEcyVQ/60Y7s8pJdZB/8SEOKbPmW6St5J49MO+101a7/lCVbpo/6z5n+/DJSkYdgL/kRS5mAsdKf+5ivU/73bze5OYEAhBnp/wCRL+YDeeMcVgAAAMx0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1yb3c+PG1pPmE8L21pPjxtaT5kPC9taT48bW8+JiN4QTA7PC9tbz48bW8+KzwvbW8+PG1vPiYjeEEwOzwvbW8+PG1pPmI8L21pPjxtaT5jPC9taT48L21yb3c+PG1yb3c+PG1pPmI8L21pPjxtaT5kPC9taT48L21yb3c+PC9tZnJhYz48L21hdGg+p7yKzQAAAABJRU5ErkJggg==" style="width: 65.33px; height: 33.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator a d space plus space b c over denominator b d end fraction"> D. a d   -   b c b d " src="data:image/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAaIAAADXCAYAAABYk1WpAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACOyiQ8uQAAGHJJREFUeNrt3Q+EVtn/wPFjJBmJJEkSSZJkGCsra0SykoxhrGQlkZGvlURWkiSSrGTFV5IkkYwkK5IkWZEkSSJJkgzJyBiJfvfze87zndvTfc7nc+9z7nObO+8Xx648c+5zz3PuPff8uZ/jHODcQooAM0APdR34MS7EviQNJ+lkkkaT9ClJX5O0ieJBjer5miQNJulIki4n6XmSviTpPcUDlK83SRv8RbgrSWd9g/PCX4hf26QFFB2mkdn+oUrq+Uiqnr9R6vkVig4oz27lAgylJxQfppHRgvX8q2+0AJRkS5IeJelDkiZzXpx/U3yYRo4m6Zmv6xM56/pqig/o7tBFs3HSLs5BigvTmMwJyXD0S6Wej1FUQDXWKhenDOfNpZhQAyNKXb9MEQHVmKNcnA8oItTEdqWu76aIgGr0KhfnCYoINXFEqeurKCKgGhuUi3MLRYSauBqo528pHqA6e1x4fmgWRYSa+Bio6xcoHqA6VwIX5z2KBzWxSun5/0YRAdUZD1ycRyke1MSI0vOfTxEB1fhJeUokvhzqIjQ/9JDiAapzMHBxfnaNFwGB6U7qcSjCwjGKCKjOncDFeYviQU38ovT8N1BEQDUkWkIoCOohigg1EXp/aIKeP1CdIeUpcR1FhJq4F6jnoxQPUJ1zgYvzE8WDmuhVev57KCKgOm8dwR9Bz5+wPkBFtJf7dlJEqImzgXr+muIBqrNPaYiWUESoiReBen6e4gGqczNwcT6neFATy5UHriGKCKiGBDH9HLg4T1NEqIldLhzWZx5FBFRjUHlK3EoRoSZCAX3/pXhQpb4kHfCVVIahJnwPQf77JElnXPY7NKuTtCNJfyfpYpKuu8Zkp/zdrxWcx0LXiBgs49y3XSPE/aQ/FwlkKlET5KXU1mCOf7twWB+2fUBdxAjou8A1Fu9cStJj13i14XPqOpMIJH+5RvSGH8kqf7+S+8ONJI2l7nVyn/iQpGuu8bLvGqpKd0hlkrhqL5XeQDpdabmJXwt8dlmXzqPHXxR3XPjdiHR6n6S1qTxCk7e3qSqoiXXKdTFguJFfdOFh7Kz51Sq3k1iZpONJepXjOzfTXf+QjpIaoOPu+4CHchO/6ivNEjcV4mNpkvb7pwf53P1UD6Fd0MTHXTiPOf57vXPZkYP3+krUk7qITqU+IxVzdpJWKJXxAFUGNREK6BsK6yPX2okcD3pZSR5a53bxXH922QuQ3vkREFmUsSh1znIv2OJHgFrvi7upOnGN+O5n649z1unLk6VBeuM/fzhJ/YFKd6Lk85DuddbLpw+StF752/R80C4X3pPlqz9PoA5CAX2vtvkbWWX3tIMGqHUOquzGaEWbkRrpmW13egy9RW2++w6qT+cW+yGm1sKVhiXPOO6A/ztpzP5w3d+zZ5nvLmc9zY3kyOdk6uILDS9+oOqgJmYpPZqRNr2KsUiNULpnVBZ5F3Ayo0dz0NmDuK4M9Bh5l7AD0ii8d9lbXi8skN9j//ftKmhZe/b87hqToq3Hk57R2gINs/ztuAuPdxPWB3WhrQxd2fL59e77hQ13/HWYviHLPWTYNRYoWBujbZHPbUGbB+33hhGSrMasqpGe2mrXa5FKM6dgnueUSnajhCe5diFJXvtGpYgXhgtmO1UINXE6UM9ftXy2r6URknkTS+T5340N0YuI59Xn7wNZc0ErC+QXGr58SjXK76RrvxJkTgf5HlAq2d7ITzrtwtXL087yDvK+YbhgFlONUBPPA/X8XMtoQXoB0KmcIxx/GhujGBvvbXLZy9Hl3/oL3m9Cw5eTVKN82r0XI5Vxfod5H1Yq2NpI5yAXxDPXfry200UEWkPE0w/qYrFS1wf952Tl2AMXnjfS9LTpocSOViIvmbcbVt9SMM9tyneeoCp13hP62GEPoulM4Icai3jhhNb9x3gv4aZS6U5RlVAToSEz6QHMzbi2d3VwvKOGhqiT9/M2B3oux0sqJ0n/UJVs9hqeejp1wZU7uS+Tny+60EB8UCrdFqoTauJyoJ7fS/Uwmv92qMPjbTE0ROMF817vwu8vdrJQapkLD82xQ7PxKaEbod1Dy51/7zBveTJ7GMhfJk1jhduZdIT1wcwQeug64h/+mqtgr0Q43gJDQ/S5YEMxFujZxZgWyJoDn4xwb5sRVrj2MaRk4nF+xGOFhsw6XWd/Xam4qyOdQ69ykdyiSqEm+pW6Lu8KXXVTq9livHDaU0JDNNtNvTpSdoR86XXJSt1Lvne4jGpk+9Efl9hLSQu9FNfpksxDSsU9FPE8NivH2k+1Qk3sd+HJ98FUjyJmFBGtIco78R8KTPzJ98JQoeOue2HdBwLH+m9J+TZX+8UcKtulHI9Ah6iL0KIcWTnaDJV1LPLDsdYQ5dmSfIOS11F+5mr1KT9Q7Mm1UFifojs7yrDhG+U8Nkc+j4uu/JV/P6qzLm7Ilh8tzea28M0IRihySHOe9GXkcptr+J1GjXnNduEdAuT8FvJTV+ux616EA+crT7vjzS/pxninhPMIvdx3iYaIhqgmNhvLbGPk424yHPOMMa+DSj7n+Jmrtcd1N2p0j2u/0qzotg/rDRU29nksct2Ng0VDRENUlb8M5VXGuzGWUD/DxtGScacvtkBFZNXXuy73IkJPOUXf7Xnsur96TZsfqvukJw0RIybptLqE4553ccJnab2hl/zE1drf5a62dgPbWiC/7YbKOlDCeYSWiD+aAXWHhmhmWGQoq7Kiy2sBhS0jKDIC817J5y9+5urMUn6gFyUd86Nr/yJZkYv/eYTKWqQnGZq8nQlh3mmIZobfDGW1qoTjrjQc96Ahn62GfDbxM1dHG1oq4x2YUDDA+wXyGzRUsj0VlN3GGVB/aIhmhstKOd0s6bgHDb+R5QXRK05/IbaHn7k69104gOGiEo55N3Iv4q6hks3rctlNULFRI+9c94e9xZMIDWCPMnJR1jw4InV7b5dwTO1dpbzBQVcYnpiuVXAeo1Qv1MQap78gXoafXZx53w2GfM7yM1dH2wuojOGsi0oPbFbkcyhrZ9SLFZQdUIW9Sl3fV9JxLynHfWDMx7K5HkFIK/RQ+XGWdrkHVmR+6JGSpzRu8yOfhxbevayJW6AK1133h++XGq4x666s2vxWGdFWYDTPdX9NvTZheDJnfpYlpWUsoT7neB8BM4M2v1JWZPlTyjWWJ9LLv4b7xHJ+6moMKT/MxcjH6zNUhrzvDw0b8owdsmOV4UmN8WbUxUalru8q4ZhLlcZvImfDMW64T8zhp67G0S5XMMsQWm/kp6Yy5oduGI45SPVCTRxTrtkyIodo8697c+b3xXDNoiKjyg/za8RjNaNsy4uz7V5kfVLCOcR+l2fIcLyiL+QCP6LQPPK9Eo6nxYssssyahugHpsWNijXBn97tNRRYtcj+Q88NFSzWE5uUxzvD8e5StVAT2jzy4cjHk/mop4HjyYNskYURkzREP65Pyg8T42XM9Ha8F1x4Tme4hHOIdR6iuf3xRJcvTqAqWlif2JFDDikjDesL5vvRcJ+Yxc9dDe0pIYZm1Nzm3vX/DRxviZLX3Ix/++y686TT7MnJMIX2pvcvVC3UxHmlYYgZOaTfhYfQOpnrvW24T6zh565G2TfwfW5q18a1/t+eBLrcIbJwQrYgXtny790Y+x3wDZ4kbeWfJayPPPVdccwj4cf3NlDXH0Y8zjwXjrB9oMP8LxruE0MllJ88PMvScYnqzaq8NrQhpk7mVtJd+t3+33oDx7oSyGsodZPvz3kO1n1K2pG9VT74fOTtbG2HyutKfjtdeZO8QEyrlLp+IeKxrgWOcyRC/jsN94lTkctPGqFmDEzi2AW8cXFjvjVtdVNDZmda/j1vhO9fU3llPbFYNuoq+qSzxk1tj3GvpZdXJFJ5cyNAadiWUv3wg/uPUtf/iHScI66z7R0slhvuE68ilp0sbLqfyncB1ak9benz6Q6fPGRcNj1MFXofISu8xkCqx3OozfEuuXICnso8z5ibGjZs9qq0UCHtQo5I8MbmwoqtVD3U4P4Q4125kUD+OyOfzwPXnTA/sqrvUeqhczVVKUzb5+OTsy+VnOW+fblUfoh5OSr23IyGYNwwBLDb2faU6c9RLtLrac49fXHfLj647/KvvOlzU8N7x6l2mAZ6nD7svaHDY+xok+9YhLyzWHZwfuY6Wz23zk3Nq004Fi6ZWELu3HXZq9XSZElleu2/vNuzMONzoaHAdM9pKHUR3FYqxiJnW7Dw1ukhQWRBRWtMqtaVOlqokJ6Msmk2QpepcpgmfjFcU50EOt3fJk+5/soctn7qytsO4mDqXiQLtNjtNYdHzjZ2KuPF6V0Q5f8lbPo99/123AvbHCu0XPyC7+qfb+lVzTWcw3ljr0gaEXnHJx0VW162lRV5d5wtjIi2XPy4b4ykN3ggdc7SoLJqBtOFZaRhboF85W+yVrB98ddm2RtJakvE04unrBtpDvqeVPo+s4EqlM9GF29LZbnZhqIx5MnrWaBBa7XE2YIa5km72xzrS4G8ZAfJXqoappFthnr9U4F7zSuXHSaom/Mou4zXrcwNH/W9w/SojNyXZCHXsYzzee2mXlVBTmcj3Lgtcx+Txrye5GiEmoZdnAZoTOlSf8yZn/T0eF8I083sjNGOolHt5UZ+y2Xv6jpc0fmNRH5wbS6KWkjVKU5a+38KFr6Muf5sPI5l1cpdVzzG3bYcjV27d4C0d46sw4CffGUHpnNjdMKFh6Ov+ge39MPWIt9jkIfTrJdUZch9exeG4TQDbXpoedMbf+9BJIecLWROswHambMy/eHC4UKORqic0sW/k7Mi3XG2fe+FzCl9cPo+TsuoTqgJecr/09nmk9slCRYsq2r7f7BzkwZUVsm+LvgQ/h9HjLpSyNPMAd+VHvc9DFnBJqvORn1j1Ull2uufkpr5yo8pu7LG3h2xzzdssnfQR3+8Sd9TkQUVl3yPpUiDIWGGLqTKZ9z3KA/QAKHm5MXMId/bkVWg/7ZcX3JNj/nrTq6RHW76vEezzt/frvp71KeM+8Zlfw/j3SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApftKIpFIJJIx0RCRSCQSiYaIRCKRSDRENEQkEolEoiEikUgkEg0RDRGJRCKRpn9DBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAtNOTpIUUQ26UGQAUaHDWJGkwSUeSdDlJz5P0JUnvKZ5gufUlaThJJ5M0mqRPSfqapE0UDwB8a7a/aUpjM5Kks/7G+cY3OF/bpCszvNx6k7TBl9uuVLm9UMptAVUOAKaMBm6YWhqZoWW2W2loQukJVQ4AvnU0Sc+S9CFJEzlvqqtnaJltSdIjX2aTOcvsb6ocAITJ3IYMN71UbqhjFNX/zE41TlpDNEhxAYDNiHJDvUwRfWetUmYynDeXYgIAm+3KTXU3RfSdOUqZPaCIAMDuiHJTXUURfadXKbMTFBEA2F0N3FDfUjyZNigN0RaKCADsPgZuqBconkx7XHh+aBZFBAA2q5Qn+98ookxXAmV2j+IBALsR5cl+PkWUaTxQbkcpHgCwC80PPaR4Mv2k9CKJLwcARvJCayjCwjGKKNPBQJl99uUKADD4RXmy30ARZboTKLNbFA8A2IXeH5rgyT6TREsIBUE9RBEBgN29wA11lOLJNKT0ItdRRABg06s82e+hiDKdC5TZJ4oHAOI92RPWJ9tbR3BYAIjibOCG+priyaS9/LuTIgIAuxeBG+p5iifTPqUhWkIRAYDNcuWGOkQRZboZKLPnFA8A2O1y4bA+8yii70gQ08+BcjtNEQGAXShg578UT6ZBpRe5lSICALsYATsXuMbk/KUkPXaNpcuffZL8JcLAX64RveFHstA1IorLPNht19gCYzL1vSVqgryU2hrs9W8XDuvDtg8AYLROebIfUP5eVo5ddOFhqqz5kyq3k+jxjaY0Ml+M3/l9ktam8ggt7rhNtQIAu1DAzlBYnzmusf219Uaela65RoicbpHvvD9J71x2ZPG9SepLnbM0sqdSn3mVpNlJWqGc1wGqFQDYhQJ2Xm3zN7LK7mkHDVDrHFQ3GqMdLvvl0wdJWq/8bXo+SBZ2jCjn1E+1AgCbWUqPZiTjb35O0likRijdMyrLsiTdbdPbG8mRz8lU43wtcC4fqFYAYKet/FrZ8nnpObQubJAe1e/u25c3ZQHAsGssULA2RttKOD/5Xp8yjiU9o7U581rs/1bOPzQfRlgfAMjhdOCG+qrls30tjdATZ4ss/buxIXoRuafXLmTRa9+oFPHCcB7bqVYAYPc8cEM919IbSE/wywR+nr2J/jQ2RjE23pNl5O22s5CVb8s7yPuG4RwWU60AwGaxckMd9J+TVWIPXHjeSNPjeyLaTfx0hHN65tqvAOx0EYHWED2lWgGAXWjITBYwNFeynXHfrhgr6qihIerk/RtphF4F8o7x3tJN5fufoloBgN3lwA31nv/MVhdvy+sthoZovGDesjjiRRcaiA/K999CtQKAODfVI/7m3lymfSXC8RYYGqLPBfKVntvDQJ6yqCJWuJ1JR1gfAIiiX2kQ5F2hq25qNVuMF057SmqIriv5rY5UZr3Kd79FtQIAu/0uHNan+X7RFxc3SoDWEE3kzO+Qkt+hiN99s3Ks/VQrALALTbrLyrBmKJxjEY9p6RHl2ZJ8wOmBVWMOle1SjtdHtQIAG21Dt+Y8yEvXWLody1xDQzRqzEu2ZHij5LU5crldDBxrjGoFAHbaEFMzbYx83E2GY54x5nVWyedOCeUWevn3EtUKAOz+MjQI/5RwXEuon2FDPusN+cSOfr3IdT9OHgDU1mPDjXx1Ccc97+KEx9G+fxmr17T5oQVUKwCI82RfZvRoLWDoY0Me2w3ff6CE7x5aIv6IagUAdr8ZbuSrSjjuSsNxDxryeR6hMctL3h8KLe44QbUCALvLyo38ZknHPWhoiJYpeQwa8thTwnfXhuU2Uq0AwO6d6/6wlngSoQG86/SoDPNK+O73XfgF3B6qFQDYrHH6C6Bl+Nl1Pq+zwlWz3Xifi/PeEwAgsVe5qe4r6biXlOM+MORx2FWzM+pF1/2hQACordDKL4kpt6iEYy71eXe6K+sjJQ85xvzI332Z4buvoloBgI3MY4RWfpUVOfqUciO/YcjDsuS8jCXU55RjvqRaAYDdRuWmuquEYy5VGj+Z6F9uyGfY0BCdi/zdVxl6Q2epVgBgd8yFh7XKiAygza/sjdSrKmN+6IbhmINUKwCwC+1geq+E42nx4PIEJR113Q3QOmQ4njTes6lWAGAzT7mpHo58PJmPeho43nuXb2GEFk0hZqw3WfDwznC8u1QrALDTwvrEjgxwSOlJrM+Z3ydDwxDrpdLm9ugTXW68AaDWzisNQ8zIAP0uPMlfZC7ns6EhimGPz0uGMbVIEL9QrQDA7m3ghvow4nFkCDAUYftAwXy11WsxGqIB3+BJ0qIpWML6SK/wimMeCQD+fxly6KZ6IeKxrgWOc6SDfLVhMus+Ru3I3ksffD5/On0H2+tKfjtdeYtAAGDa+Y9yU/0j0nGOuM62dwixbOQ3VDBvib/3vqXh2Kcca38gv+Z26NKwLaX6AYC+9DnGuzAjgfx3Rshfi1VXNOCpzPOMuamVfM1elbZVRruQRBLctbmwYitVDwAa8xjasNaGDo+xo02+YxHybtptaIgk9efIU3o9zbmnL+7bxQf3lePMysivz00N7x2n6gHA1BO/dvPuJNDp/jZ5/uviDkstcrYFC7IoQwsZtNZ/v9BKvnGXb6n4+lQjdJlqBwD5ehJzC+Qrf5MVvkcai8OunI3izht7ReP+O6SjYsteRhJL746zhRnSlosf9+coqwRlJeCk//fbSZpDtQOAKdsMN+6fcuYpL7++ctlhglaXeC5LDD2VvGl3m2N9KZCX7DDbS5UDgG/N9g1EjKjVMsx3y2Xv6jrcpfOxROG2JJm/2hQ4zsec+V1wvC8EAMHG6IQLDzdd9Tfm9M1U5mW2uMYwVNZLqrL/j8yt9HT5fKSXN9lBIyTvAGnvHFmHAWWF3AhVDABsFrrGy5raTqehJMFAZUuG/orPRYYA7+T87vL5AWP+Mqf0QclP5siWUa0AoBiJVD3kezuyyktWkX30PQ1JsuRbhq9kTx4Zdtrhyp3/KUqWTB/13zP9/aWnIi/BXvI9liINxkp/7uM+T/nvP66xOIEGCNPS/wFsLnw4dTl0fgAAAMx0RVh0TWF0aE1MADxtYXRoIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8xOTk4L01hdGgvTWF0aE1MIj48bWZyYWM+PG1yb3c+PG1pPmE8L21pPjxtaT5kPC9taT48bW8+JiN4QTA7PC9tbz48bW8+LTwvbW8+PG1vPiYjeEEwOzwvbW8+PG1pPmI8L21pPjxtaT5jPC9taT48L21yb3c+PG1yb3c+PG1pPmI8L21pPjxtaT5kPC9taT48L21yb3c+PC9tZnJhYz48L21hdGg+CDisggAAAABJRU5ErkJggg==" style="width: 65.33px; height: 33.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title="fraction numerator a d space minus space b c over denominator b d end fraction">

Cho các số hữu tỉ Trắc nghiệm Cộng, trừ số hữu tỉ  (a, b, c, d ∈ Z, b ≠ 0, d ≠ 0). Tổng x + y bằng:

A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mi>c</mi><mo>&#xA0;</mo><mo>-</mo><mo>&#xA0;</mo><mi>b</mi><mi>d</mi></mrow><mrow><mi>b</mi><mi>d</mi></mrow></mfrac></math>

B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mi>c</mi><mo>&#xA0;</mo><mo>+</mo><mo>&#xA0;</mo><mi>b</mi><mi>d</mi></mrow><mrow><mi>b</mi><mi>d</mi></mrow></mfrac></math>

C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mi>d</mi><mo>&#xA0;</mo><mo>+</mo><mo>&#xA0;</mo><mi>b</mi><mi>c</mi></mrow><mrow><mi>b</mi><mi>d</mi></mrow></mfrac></math>

D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mi>d</mi><mo>&#xA0;</mo><mo>-</mo><mo>&#xA0;</mo><mi>b</mi><mi>c</mi></mrow><mrow><mi>b</mi><mi>d</mi></mrow></mfrac></math>

  1. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mi>c</mi><mo>&#xA0;</mo><mo>-</mo><mo>&#xA0;</mo><mi>b</mi><mi>d</mi></mrow><mrow><mi>b</mi><mi>d</mi></mrow></mfrac></math>

  2. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mi>c</mi><mo>&#xA0;</mo><mo>+</mo><mo>&#xA0;</mo><mi>b</mi><mi>d</mi></mrow><mrow><mi>b</mi><mi>d</mi></mrow></mfrac></math>

  3. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mi>d</mi><mo>&#xA0;</mo><mo>+</mo><mo>&#xA0;</mo><mi>b</mi><mi>c</mi></mrow><mrow><mi>b</mi><mi>d</mi></mrow></mfrac></math>

  4. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mi>d</mi><mo>&#xA0;</mo><mo>-</mo><mo>&#xA0;</mo><mi>b</mi><mi>c</mi></mrow><mrow><mi>b</mi><mi>d</mi></mrow></mfrac></math>

T. ThuỳTrangNguyễn

Giáo viên

Xác nhận câu trả lời

Giải thích

1

Câu hỏi tương tự

Tính 3,2+4,5:1,5

3

Xác nhận câu trả lời

THÔNG TIN

TẢI MIỄN PHÍ ỨNG DỤNG