Với α∈(0; 1). Sử dụng bất đẳng thức AM - GM:
⎩⎨⎧α(x2+y2)≥2α.xy(1−α)x2+2z2≥2(1−α)x2.2z2≥2(1−α)xz(1−α)y2+2z2≥2(1−α)y2.2z2≥2(1−α)yz⇒x2+y2+z2≥2α.xy+2(1−α)(xy+yz)⇒a2≥(2α+169)xy+2(1−α)(xy+yz)
Chọn α∈(0; i) sao cho 2α+169=2(1−α)⇔α=32125−17. Khi đó ta có:
a2≥435−2(xy+yz+zx)⇒S=xy+yz+zx≤35−24a2=414(35+2)a2⇒MaxS=414(35+2)a2
Dấu bằng xảy ra ⇔
{3249−125x=3249−125y=22zx2+y2+z2+169xy=a2⇔⎣⎡x=y=90−1254a;z=90−12549−125ax=y=90−125−4a;z=−90−12549−125a