a)
A(x)=2015+2x−x2=2016−(x2−2x+1)=2016−(x−1)2
Do (x−1)2≥0,∀x nên 2016−(x−1)2≤2016,∀x. Do đó
maxA(x)=2016⇔x−1=0⇔x=1
b)
B(x)=2x2−2x+10=2(x2−x+5)=2(x2−2x21+41+419)=2(x−21)2+219
Do 2(x−21)2≥0,∀x Nên
2(x−21)2+219≥219∀x
Do đó minB(x)=219⇔x=21
c)
C(y)=(y+2)2+(y−5)2=y2+4y+4+y2−10y+25=2y2−6y+29=2(y2−3y+229)=2(y2−2y.23+49+449)=2(y−23)2+249≥249,∀y
Do đó minC(y)=24,5⇔y=1,5.