P=3−1+(31)2−(31)3+(31)4−(31)5+...+(31)100 ⇒P=−1+(3−1)0−31+(31)2−(31)3 +(31)4−(31)5+...+(31)100⇒P= −1+3−1−1(3−1)101−1 =−1−43[(3−1)101−1] =−1+43(31011+1)⇒P=4−4+43(31011+3101) =4.3100−4.3100+3101+1⇒4P=3100−4.3100+3101+1 =31003100(−4+3)+1 =−31003100−1⇒4∣P∣=31003100−1Thay vaˋo Q ta được: Q=4.∣P∣+31001=31003100−1+31001 =31003100−1+1=1